1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/FunctionLoweringInfo.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineConstantPool.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/RuntimeLibcalls.h"
39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
40 #include "llvm/CodeGen/SelectionDAGNodes.h"
41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
42 #include "llvm/CodeGen/TargetFrameLowering.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/KnownBits.h"
64 #include "llvm/Support/MachineValueType.h"
65 #include "llvm/Support/ManagedStatic.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/Mutex.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Target/TargetOptions.h"
71 #include "llvm/Transforms/Utils/SizeOpts.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <cstdlib>
76 #include <limits>
77 #include <set>
78 #include <string>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 
84 /// makeVTList - Return an instance of the SDVTList struct initialized with the
85 /// specified members.
86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
87   SDVTList Res = {VTs, NumVTs};
88   return Res;
89 }
90 
91 // Default null implementations of the callbacks.
92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
95 
96 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
97 
98 #define DEBUG_TYPE "selectiondag"
99 
100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
101        cl::Hidden, cl::init(true),
102        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
103 
104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
105        cl::desc("Number limit for gluing ld/st of memcpy."),
106        cl::Hidden, cl::init(0));
107 
108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
109   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
110 }
111 
112 //===----------------------------------------------------------------------===//
113 //                              ConstantFPSDNode Class
114 //===----------------------------------------------------------------------===//
115 
116 /// isExactlyValue - We don't rely on operator== working on double values, as
117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
118 /// As such, this method can be used to do an exact bit-for-bit comparison of
119 /// two floating point values.
120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
121   return getValueAPF().bitwiseIsEqual(V);
122 }
123 
124 bool ConstantFPSDNode::isValueValidForType(EVT VT,
125                                            const APFloat& Val) {
126   assert(VT.isFloatingPoint() && "Can only convert between FP types");
127 
128   // convert modifies in place, so make a copy.
129   APFloat Val2 = APFloat(Val);
130   bool losesInfo;
131   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
132                       APFloat::rmNearestTiesToEven,
133                       &losesInfo);
134   return !losesInfo;
135 }
136 
137 //===----------------------------------------------------------------------===//
138 //                              ISD Namespace
139 //===----------------------------------------------------------------------===//
140 
141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
142   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
143     unsigned EltSize =
144         N->getValueType(0).getVectorElementType().getSizeInBits();
145     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
146       SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize);
147       return true;
148     }
149     if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
150       SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize);
151       return true;
152     }
153   }
154 
155   auto *BV = dyn_cast<BuildVectorSDNode>(N);
156   if (!BV)
157     return false;
158 
159   APInt SplatUndef;
160   unsigned SplatBitSize;
161   bool HasUndefs;
162   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
163   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
164                              EltSize) &&
165          EltSize == SplatBitSize;
166 }
167 
168 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
169 // specializations of the more general isConstantSplatVector()?
170 
171 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
172   // Look through a bit convert.
173   while (N->getOpcode() == ISD::BITCAST)
174     N = N->getOperand(0).getNode();
175 
176   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
177     APInt SplatVal;
178     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnesValue();
179   }
180 
181   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
182 
183   unsigned i = 0, e = N->getNumOperands();
184 
185   // Skip over all of the undef values.
186   while (i != e && N->getOperand(i).isUndef())
187     ++i;
188 
189   // Do not accept an all-undef vector.
190   if (i == e) return false;
191 
192   // Do not accept build_vectors that aren't all constants or which have non-~0
193   // elements. We have to be a bit careful here, as the type of the constant
194   // may not be the same as the type of the vector elements due to type
195   // legalization (the elements are promoted to a legal type for the target and
196   // a vector of a type may be legal when the base element type is not).
197   // We only want to check enough bits to cover the vector elements, because
198   // we care if the resultant vector is all ones, not whether the individual
199   // constants are.
200   SDValue NotZero = N->getOperand(i);
201   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
202   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
203     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
204       return false;
205   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
206     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
207       return false;
208   } else
209     return false;
210 
211   // Okay, we have at least one ~0 value, check to see if the rest match or are
212   // undefs. Even with the above element type twiddling, this should be OK, as
213   // the same type legalization should have applied to all the elements.
214   for (++i; i != e; ++i)
215     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
216       return false;
217   return true;
218 }
219 
220 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
221   // Look through a bit convert.
222   while (N->getOpcode() == ISD::BITCAST)
223     N = N->getOperand(0).getNode();
224 
225   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
226     APInt SplatVal;
227     return isConstantSplatVector(N, SplatVal) && SplatVal.isNullValue();
228   }
229 
230   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
231 
232   bool IsAllUndef = true;
233   for (const SDValue &Op : N->op_values()) {
234     if (Op.isUndef())
235       continue;
236     IsAllUndef = false;
237     // Do not accept build_vectors that aren't all constants or which have non-0
238     // elements. We have to be a bit careful here, as the type of the constant
239     // may not be the same as the type of the vector elements due to type
240     // legalization (the elements are promoted to a legal type for the target
241     // and a vector of a type may be legal when the base element type is not).
242     // We only want to check enough bits to cover the vector elements, because
243     // we care if the resultant vector is all zeros, not whether the individual
244     // constants are.
245     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
246     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
247       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
248         return false;
249     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
250       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
251         return false;
252     } else
253       return false;
254   }
255 
256   // Do not accept an all-undef vector.
257   if (IsAllUndef)
258     return false;
259   return true;
260 }
261 
262 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
263   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
264 }
265 
266 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
267   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
268 }
269 
270 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
271   if (N->getOpcode() != ISD::BUILD_VECTOR)
272     return false;
273 
274   for (const SDValue &Op : N->op_values()) {
275     if (Op.isUndef())
276       continue;
277     if (!isa<ConstantSDNode>(Op))
278       return false;
279   }
280   return true;
281 }
282 
283 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
284   if (N->getOpcode() != ISD::BUILD_VECTOR)
285     return false;
286 
287   for (const SDValue &Op : N->op_values()) {
288     if (Op.isUndef())
289       continue;
290     if (!isa<ConstantFPSDNode>(Op))
291       return false;
292   }
293   return true;
294 }
295 
296 bool ISD::allOperandsUndef(const SDNode *N) {
297   // Return false if the node has no operands.
298   // This is "logically inconsistent" with the definition of "all" but
299   // is probably the desired behavior.
300   if (N->getNumOperands() == 0)
301     return false;
302   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
303 }
304 
305 bool ISD::matchUnaryPredicate(SDValue Op,
306                               std::function<bool(ConstantSDNode *)> Match,
307                               bool AllowUndefs) {
308   // FIXME: Add support for scalar UNDEF cases?
309   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
310     return Match(Cst);
311 
312   // FIXME: Add support for vector UNDEF cases?
313   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
314       ISD::SPLAT_VECTOR != Op.getOpcode())
315     return false;
316 
317   EVT SVT = Op.getValueType().getScalarType();
318   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
319     if (AllowUndefs && Op.getOperand(i).isUndef()) {
320       if (!Match(nullptr))
321         return false;
322       continue;
323     }
324 
325     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
326     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
327       return false;
328   }
329   return true;
330 }
331 
332 bool ISD::matchBinaryPredicate(
333     SDValue LHS, SDValue RHS,
334     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
335     bool AllowUndefs, bool AllowTypeMismatch) {
336   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
337     return false;
338 
339   // TODO: Add support for scalar UNDEF cases?
340   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
341     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
342       return Match(LHSCst, RHSCst);
343 
344   // TODO: Add support for vector UNDEF cases?
345   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
346       ISD::BUILD_VECTOR != RHS.getOpcode())
347     return false;
348 
349   EVT SVT = LHS.getValueType().getScalarType();
350   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
351     SDValue LHSOp = LHS.getOperand(i);
352     SDValue RHSOp = RHS.getOperand(i);
353     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
354     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
355     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
356     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
357     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
358       return false;
359     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
360                                LHSOp.getValueType() != RHSOp.getValueType()))
361       return false;
362     if (!Match(LHSCst, RHSCst))
363       return false;
364   }
365   return true;
366 }
367 
368 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
369   switch (VecReduceOpcode) {
370   default:
371     llvm_unreachable("Expected VECREDUCE opcode");
372   case ISD::VECREDUCE_FADD:
373   case ISD::VECREDUCE_SEQ_FADD:
374     return ISD::FADD;
375   case ISD::VECREDUCE_FMUL:
376   case ISD::VECREDUCE_SEQ_FMUL:
377     return ISD::FMUL;
378   case ISD::VECREDUCE_ADD:
379     return ISD::ADD;
380   case ISD::VECREDUCE_MUL:
381     return ISD::MUL;
382   case ISD::VECREDUCE_AND:
383     return ISD::AND;
384   case ISD::VECREDUCE_OR:
385     return ISD::OR;
386   case ISD::VECREDUCE_XOR:
387     return ISD::XOR;
388   case ISD::VECREDUCE_SMAX:
389     return ISD::SMAX;
390   case ISD::VECREDUCE_SMIN:
391     return ISD::SMIN;
392   case ISD::VECREDUCE_UMAX:
393     return ISD::UMAX;
394   case ISD::VECREDUCE_UMIN:
395     return ISD::UMIN;
396   case ISD::VECREDUCE_FMAX:
397     return ISD::FMAXNUM;
398   case ISD::VECREDUCE_FMIN:
399     return ISD::FMINNUM;
400   }
401 }
402 
403 bool ISD::isVPOpcode(unsigned Opcode) {
404   switch (Opcode) {
405   default:
406     return false;
407 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...)                                   \
408   case ISD::SDOPC:                                                             \
409     return true;
410 #include "llvm/IR/VPIntrinsics.def"
411   }
412 }
413 
414 /// The operand position of the vector mask.
415 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
416   switch (Opcode) {
417   default:
418     return None;
419 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, ...)        \
420   case ISD::SDOPC:                                                             \
421     return MASKPOS;
422 #include "llvm/IR/VPIntrinsics.def"
423   }
424 }
425 
426 /// The operand position of the explicit vector length parameter.
427 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
428   switch (Opcode) {
429   default:
430     return None;
431 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, EVLPOS)     \
432   case ISD::SDOPC:                                                             \
433     return EVLPOS;
434 #include "llvm/IR/VPIntrinsics.def"
435   }
436 }
437 
438 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
439   switch (ExtType) {
440   case ISD::EXTLOAD:
441     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
442   case ISD::SEXTLOAD:
443     return ISD::SIGN_EXTEND;
444   case ISD::ZEXTLOAD:
445     return ISD::ZERO_EXTEND;
446   default:
447     break;
448   }
449 
450   llvm_unreachable("Invalid LoadExtType");
451 }
452 
453 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
454   // To perform this operation, we just need to swap the L and G bits of the
455   // operation.
456   unsigned OldL = (Operation >> 2) & 1;
457   unsigned OldG = (Operation >> 1) & 1;
458   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
459                        (OldL << 1) |       // New G bit
460                        (OldG << 2));       // New L bit.
461 }
462 
463 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
464   unsigned Operation = Op;
465   if (isIntegerLike)
466     Operation ^= 7;   // Flip L, G, E bits, but not U.
467   else
468     Operation ^= 15;  // Flip all of the condition bits.
469 
470   if (Operation > ISD::SETTRUE2)
471     Operation &= ~8;  // Don't let N and U bits get set.
472 
473   return ISD::CondCode(Operation);
474 }
475 
476 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
477   return getSetCCInverseImpl(Op, Type.isInteger());
478 }
479 
480 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
481                                                bool isIntegerLike) {
482   return getSetCCInverseImpl(Op, isIntegerLike);
483 }
484 
485 /// For an integer comparison, return 1 if the comparison is a signed operation
486 /// and 2 if the result is an unsigned comparison. Return zero if the operation
487 /// does not depend on the sign of the input (setne and seteq).
488 static int isSignedOp(ISD::CondCode Opcode) {
489   switch (Opcode) {
490   default: llvm_unreachable("Illegal integer setcc operation!");
491   case ISD::SETEQ:
492   case ISD::SETNE: return 0;
493   case ISD::SETLT:
494   case ISD::SETLE:
495   case ISD::SETGT:
496   case ISD::SETGE: return 1;
497   case ISD::SETULT:
498   case ISD::SETULE:
499   case ISD::SETUGT:
500   case ISD::SETUGE: return 2;
501   }
502 }
503 
504 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
505                                        EVT Type) {
506   bool IsInteger = Type.isInteger();
507   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
508     // Cannot fold a signed integer setcc with an unsigned integer setcc.
509     return ISD::SETCC_INVALID;
510 
511   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
512 
513   // If the N and U bits get set, then the resultant comparison DOES suddenly
514   // care about orderedness, and it is true when ordered.
515   if (Op > ISD::SETTRUE2)
516     Op &= ~16;     // Clear the U bit if the N bit is set.
517 
518   // Canonicalize illegal integer setcc's.
519   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
520     Op = ISD::SETNE;
521 
522   return ISD::CondCode(Op);
523 }
524 
525 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
526                                         EVT Type) {
527   bool IsInteger = Type.isInteger();
528   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
529     // Cannot fold a signed setcc with an unsigned setcc.
530     return ISD::SETCC_INVALID;
531 
532   // Combine all of the condition bits.
533   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
534 
535   // Canonicalize illegal integer setcc's.
536   if (IsInteger) {
537     switch (Result) {
538     default: break;
539     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
540     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
541     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
542     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
543     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
544     }
545   }
546 
547   return Result;
548 }
549 
550 //===----------------------------------------------------------------------===//
551 //                           SDNode Profile Support
552 //===----------------------------------------------------------------------===//
553 
554 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
555 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
556   ID.AddInteger(OpC);
557 }
558 
559 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
560 /// solely with their pointer.
561 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
562   ID.AddPointer(VTList.VTs);
563 }
564 
565 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
566 static void AddNodeIDOperands(FoldingSetNodeID &ID,
567                               ArrayRef<SDValue> Ops) {
568   for (auto& Op : Ops) {
569     ID.AddPointer(Op.getNode());
570     ID.AddInteger(Op.getResNo());
571   }
572 }
573 
574 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
575 static void AddNodeIDOperands(FoldingSetNodeID &ID,
576                               ArrayRef<SDUse> Ops) {
577   for (auto& Op : Ops) {
578     ID.AddPointer(Op.getNode());
579     ID.AddInteger(Op.getResNo());
580   }
581 }
582 
583 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
584                           SDVTList VTList, ArrayRef<SDValue> OpList) {
585   AddNodeIDOpcode(ID, OpC);
586   AddNodeIDValueTypes(ID, VTList);
587   AddNodeIDOperands(ID, OpList);
588 }
589 
590 /// If this is an SDNode with special info, add this info to the NodeID data.
591 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
592   switch (N->getOpcode()) {
593   case ISD::TargetExternalSymbol:
594   case ISD::ExternalSymbol:
595   case ISD::MCSymbol:
596     llvm_unreachable("Should only be used on nodes with operands");
597   default: break;  // Normal nodes don't need extra info.
598   case ISD::TargetConstant:
599   case ISD::Constant: {
600     const ConstantSDNode *C = cast<ConstantSDNode>(N);
601     ID.AddPointer(C->getConstantIntValue());
602     ID.AddBoolean(C->isOpaque());
603     break;
604   }
605   case ISD::TargetConstantFP:
606   case ISD::ConstantFP:
607     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
608     break;
609   case ISD::TargetGlobalAddress:
610   case ISD::GlobalAddress:
611   case ISD::TargetGlobalTLSAddress:
612   case ISD::GlobalTLSAddress: {
613     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
614     ID.AddPointer(GA->getGlobal());
615     ID.AddInteger(GA->getOffset());
616     ID.AddInteger(GA->getTargetFlags());
617     break;
618   }
619   case ISD::BasicBlock:
620     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
621     break;
622   case ISD::Register:
623     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
624     break;
625   case ISD::RegisterMask:
626     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
627     break;
628   case ISD::SRCVALUE:
629     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
630     break;
631   case ISD::FrameIndex:
632   case ISD::TargetFrameIndex:
633     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
634     break;
635   case ISD::LIFETIME_START:
636   case ISD::LIFETIME_END:
637     if (cast<LifetimeSDNode>(N)->hasOffset()) {
638       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
639       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
640     }
641     break;
642   case ISD::PSEUDO_PROBE:
643     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
644     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
645     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
646     break;
647   case ISD::JumpTable:
648   case ISD::TargetJumpTable:
649     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
650     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
651     break;
652   case ISD::ConstantPool:
653   case ISD::TargetConstantPool: {
654     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
655     ID.AddInteger(CP->getAlign().value());
656     ID.AddInteger(CP->getOffset());
657     if (CP->isMachineConstantPoolEntry())
658       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
659     else
660       ID.AddPointer(CP->getConstVal());
661     ID.AddInteger(CP->getTargetFlags());
662     break;
663   }
664   case ISD::TargetIndex: {
665     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
666     ID.AddInteger(TI->getIndex());
667     ID.AddInteger(TI->getOffset());
668     ID.AddInteger(TI->getTargetFlags());
669     break;
670   }
671   case ISD::LOAD: {
672     const LoadSDNode *LD = cast<LoadSDNode>(N);
673     ID.AddInteger(LD->getMemoryVT().getRawBits());
674     ID.AddInteger(LD->getRawSubclassData());
675     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
676     break;
677   }
678   case ISD::STORE: {
679     const StoreSDNode *ST = cast<StoreSDNode>(N);
680     ID.AddInteger(ST->getMemoryVT().getRawBits());
681     ID.AddInteger(ST->getRawSubclassData());
682     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
683     break;
684   }
685   case ISD::MLOAD: {
686     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
687     ID.AddInteger(MLD->getMemoryVT().getRawBits());
688     ID.AddInteger(MLD->getRawSubclassData());
689     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
690     break;
691   }
692   case ISD::MSTORE: {
693     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
694     ID.AddInteger(MST->getMemoryVT().getRawBits());
695     ID.AddInteger(MST->getRawSubclassData());
696     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
697     break;
698   }
699   case ISD::MGATHER: {
700     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
701     ID.AddInteger(MG->getMemoryVT().getRawBits());
702     ID.AddInteger(MG->getRawSubclassData());
703     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
704     break;
705   }
706   case ISD::MSCATTER: {
707     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
708     ID.AddInteger(MS->getMemoryVT().getRawBits());
709     ID.AddInteger(MS->getRawSubclassData());
710     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
711     break;
712   }
713   case ISD::ATOMIC_CMP_SWAP:
714   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
715   case ISD::ATOMIC_SWAP:
716   case ISD::ATOMIC_LOAD_ADD:
717   case ISD::ATOMIC_LOAD_SUB:
718   case ISD::ATOMIC_LOAD_AND:
719   case ISD::ATOMIC_LOAD_CLR:
720   case ISD::ATOMIC_LOAD_OR:
721   case ISD::ATOMIC_LOAD_XOR:
722   case ISD::ATOMIC_LOAD_NAND:
723   case ISD::ATOMIC_LOAD_MIN:
724   case ISD::ATOMIC_LOAD_MAX:
725   case ISD::ATOMIC_LOAD_UMIN:
726   case ISD::ATOMIC_LOAD_UMAX:
727   case ISD::ATOMIC_LOAD:
728   case ISD::ATOMIC_STORE: {
729     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
730     ID.AddInteger(AT->getMemoryVT().getRawBits());
731     ID.AddInteger(AT->getRawSubclassData());
732     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
733     break;
734   }
735   case ISD::PREFETCH: {
736     const MemSDNode *PF = cast<MemSDNode>(N);
737     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
738     break;
739   }
740   case ISD::VECTOR_SHUFFLE: {
741     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
742     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
743          i != e; ++i)
744       ID.AddInteger(SVN->getMaskElt(i));
745     break;
746   }
747   case ISD::TargetBlockAddress:
748   case ISD::BlockAddress: {
749     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
750     ID.AddPointer(BA->getBlockAddress());
751     ID.AddInteger(BA->getOffset());
752     ID.AddInteger(BA->getTargetFlags());
753     break;
754   }
755   } // end switch (N->getOpcode())
756 
757   // Target specific memory nodes could also have address spaces to check.
758   if (N->isTargetMemoryOpcode())
759     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
760 }
761 
762 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
763 /// data.
764 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
765   AddNodeIDOpcode(ID, N->getOpcode());
766   // Add the return value info.
767   AddNodeIDValueTypes(ID, N->getVTList());
768   // Add the operand info.
769   AddNodeIDOperands(ID, N->ops());
770 
771   // Handle SDNode leafs with special info.
772   AddNodeIDCustom(ID, N);
773 }
774 
775 //===----------------------------------------------------------------------===//
776 //                              SelectionDAG Class
777 //===----------------------------------------------------------------------===//
778 
779 /// doNotCSE - Return true if CSE should not be performed for this node.
780 static bool doNotCSE(SDNode *N) {
781   if (N->getValueType(0) == MVT::Glue)
782     return true; // Never CSE anything that produces a flag.
783 
784   switch (N->getOpcode()) {
785   default: break;
786   case ISD::HANDLENODE:
787   case ISD::EH_LABEL:
788     return true;   // Never CSE these nodes.
789   }
790 
791   // Check that remaining values produced are not flags.
792   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
793     if (N->getValueType(i) == MVT::Glue)
794       return true; // Never CSE anything that produces a flag.
795 
796   return false;
797 }
798 
799 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
800 /// SelectionDAG.
801 void SelectionDAG::RemoveDeadNodes() {
802   // Create a dummy node (which is not added to allnodes), that adds a reference
803   // to the root node, preventing it from being deleted.
804   HandleSDNode Dummy(getRoot());
805 
806   SmallVector<SDNode*, 128> DeadNodes;
807 
808   // Add all obviously-dead nodes to the DeadNodes worklist.
809   for (SDNode &Node : allnodes())
810     if (Node.use_empty())
811       DeadNodes.push_back(&Node);
812 
813   RemoveDeadNodes(DeadNodes);
814 
815   // If the root changed (e.g. it was a dead load, update the root).
816   setRoot(Dummy.getValue());
817 }
818 
819 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
820 /// given list, and any nodes that become unreachable as a result.
821 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
822 
823   // Process the worklist, deleting the nodes and adding their uses to the
824   // worklist.
825   while (!DeadNodes.empty()) {
826     SDNode *N = DeadNodes.pop_back_val();
827     // Skip to next node if we've already managed to delete the node. This could
828     // happen if replacing a node causes a node previously added to the node to
829     // be deleted.
830     if (N->getOpcode() == ISD::DELETED_NODE)
831       continue;
832 
833     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
834       DUL->NodeDeleted(N, nullptr);
835 
836     // Take the node out of the appropriate CSE map.
837     RemoveNodeFromCSEMaps(N);
838 
839     // Next, brutally remove the operand list.  This is safe to do, as there are
840     // no cycles in the graph.
841     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
842       SDUse &Use = *I++;
843       SDNode *Operand = Use.getNode();
844       Use.set(SDValue());
845 
846       // Now that we removed this operand, see if there are no uses of it left.
847       if (Operand->use_empty())
848         DeadNodes.push_back(Operand);
849     }
850 
851     DeallocateNode(N);
852   }
853 }
854 
855 void SelectionDAG::RemoveDeadNode(SDNode *N){
856   SmallVector<SDNode*, 16> DeadNodes(1, N);
857 
858   // Create a dummy node that adds a reference to the root node, preventing
859   // it from being deleted.  (This matters if the root is an operand of the
860   // dead node.)
861   HandleSDNode Dummy(getRoot());
862 
863   RemoveDeadNodes(DeadNodes);
864 }
865 
866 void SelectionDAG::DeleteNode(SDNode *N) {
867   // First take this out of the appropriate CSE map.
868   RemoveNodeFromCSEMaps(N);
869 
870   // Finally, remove uses due to operands of this node, remove from the
871   // AllNodes list, and delete the node.
872   DeleteNodeNotInCSEMaps(N);
873 }
874 
875 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
876   assert(N->getIterator() != AllNodes.begin() &&
877          "Cannot delete the entry node!");
878   assert(N->use_empty() && "Cannot delete a node that is not dead!");
879 
880   // Drop all of the operands and decrement used node's use counts.
881   N->DropOperands();
882 
883   DeallocateNode(N);
884 }
885 
886 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
887   assert(!(V->isVariadic() && isParameter));
888   if (isParameter)
889     ByvalParmDbgValues.push_back(V);
890   else
891     DbgValues.push_back(V);
892   for (const SDNode *Node : V->getSDNodes())
893     if (Node)
894       DbgValMap[Node].push_back(V);
895 }
896 
897 void SDDbgInfo::erase(const SDNode *Node) {
898   DbgValMapType::iterator I = DbgValMap.find(Node);
899   if (I == DbgValMap.end())
900     return;
901   for (auto &Val: I->second)
902     Val->setIsInvalidated();
903   DbgValMap.erase(I);
904 }
905 
906 void SelectionDAG::DeallocateNode(SDNode *N) {
907   // If we have operands, deallocate them.
908   removeOperands(N);
909 
910   NodeAllocator.Deallocate(AllNodes.remove(N));
911 
912   // Set the opcode to DELETED_NODE to help catch bugs when node
913   // memory is reallocated.
914   // FIXME: There are places in SDag that have grown a dependency on the opcode
915   // value in the released node.
916   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
917   N->NodeType = ISD::DELETED_NODE;
918 
919   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
920   // them and forget about that node.
921   DbgInfo->erase(N);
922 }
923 
924 #ifndef NDEBUG
925 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
926 static void VerifySDNode(SDNode *N) {
927   switch (N->getOpcode()) {
928   default:
929     break;
930   case ISD::BUILD_PAIR: {
931     EVT VT = N->getValueType(0);
932     assert(N->getNumValues() == 1 && "Too many results!");
933     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
934            "Wrong return type!");
935     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
936     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
937            "Mismatched operand types!");
938     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
939            "Wrong operand type!");
940     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
941            "Wrong return type size");
942     break;
943   }
944   case ISD::BUILD_VECTOR: {
945     assert(N->getNumValues() == 1 && "Too many results!");
946     assert(N->getValueType(0).isVector() && "Wrong return type!");
947     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
948            "Wrong number of operands!");
949     EVT EltVT = N->getValueType(0).getVectorElementType();
950     for (const SDUse &Op : N->ops()) {
951       assert((Op.getValueType() == EltVT ||
952               (EltVT.isInteger() && Op.getValueType().isInteger() &&
953                EltVT.bitsLE(Op.getValueType()))) &&
954              "Wrong operand type!");
955       assert(Op.getValueType() == N->getOperand(0).getValueType() &&
956              "Operands must all have the same type");
957     }
958     break;
959   }
960   }
961 }
962 #endif // NDEBUG
963 
964 /// Insert a newly allocated node into the DAG.
965 ///
966 /// Handles insertion into the all nodes list and CSE map, as well as
967 /// verification and other common operations when a new node is allocated.
968 void SelectionDAG::InsertNode(SDNode *N) {
969   AllNodes.push_back(N);
970 #ifndef NDEBUG
971   N->PersistentId = NextPersistentId++;
972   VerifySDNode(N);
973 #endif
974   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
975     DUL->NodeInserted(N);
976 }
977 
978 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
979 /// correspond to it.  This is useful when we're about to delete or repurpose
980 /// the node.  We don't want future request for structurally identical nodes
981 /// to return N anymore.
982 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
983   bool Erased = false;
984   switch (N->getOpcode()) {
985   case ISD::HANDLENODE: return false;  // noop.
986   case ISD::CONDCODE:
987     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
988            "Cond code doesn't exist!");
989     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
990     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
991     break;
992   case ISD::ExternalSymbol:
993     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
994     break;
995   case ISD::TargetExternalSymbol: {
996     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
997     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
998         ESN->getSymbol(), ESN->getTargetFlags()));
999     break;
1000   }
1001   case ISD::MCSymbol: {
1002     auto *MCSN = cast<MCSymbolSDNode>(N);
1003     Erased = MCSymbols.erase(MCSN->getMCSymbol());
1004     break;
1005   }
1006   case ISD::VALUETYPE: {
1007     EVT VT = cast<VTSDNode>(N)->getVT();
1008     if (VT.isExtended()) {
1009       Erased = ExtendedValueTypeNodes.erase(VT);
1010     } else {
1011       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1012       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1013     }
1014     break;
1015   }
1016   default:
1017     // Remove it from the CSE Map.
1018     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1019     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1020     Erased = CSEMap.RemoveNode(N);
1021     break;
1022   }
1023 #ifndef NDEBUG
1024   // Verify that the node was actually in one of the CSE maps, unless it has a
1025   // flag result (which cannot be CSE'd) or is one of the special cases that are
1026   // not subject to CSE.
1027   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1028       !N->isMachineOpcode() && !doNotCSE(N)) {
1029     N->dump(this);
1030     dbgs() << "\n";
1031     llvm_unreachable("Node is not in map!");
1032   }
1033 #endif
1034   return Erased;
1035 }
1036 
1037 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1038 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1039 /// node already exists, in which case transfer all its users to the existing
1040 /// node. This transfer can potentially trigger recursive merging.
1041 void
1042 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1043   // For node types that aren't CSE'd, just act as if no identical node
1044   // already exists.
1045   if (!doNotCSE(N)) {
1046     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1047     if (Existing != N) {
1048       // If there was already an existing matching node, use ReplaceAllUsesWith
1049       // to replace the dead one with the existing one.  This can cause
1050       // recursive merging of other unrelated nodes down the line.
1051       ReplaceAllUsesWith(N, Existing);
1052 
1053       // N is now dead. Inform the listeners and delete it.
1054       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1055         DUL->NodeDeleted(N, Existing);
1056       DeleteNodeNotInCSEMaps(N);
1057       return;
1058     }
1059   }
1060 
1061   // If the node doesn't already exist, we updated it.  Inform listeners.
1062   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1063     DUL->NodeUpdated(N);
1064 }
1065 
1066 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1067 /// were replaced with those specified.  If this node is never memoized,
1068 /// return null, otherwise return a pointer to the slot it would take.  If a
1069 /// node already exists with these operands, the slot will be non-null.
1070 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1071                                            void *&InsertPos) {
1072   if (doNotCSE(N))
1073     return nullptr;
1074 
1075   SDValue Ops[] = { Op };
1076   FoldingSetNodeID ID;
1077   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1078   AddNodeIDCustom(ID, N);
1079   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1080   if (Node)
1081     Node->intersectFlagsWith(N->getFlags());
1082   return Node;
1083 }
1084 
1085 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1086 /// were replaced with those specified.  If this node is never memoized,
1087 /// return null, otherwise return a pointer to the slot it would take.  If a
1088 /// node already exists with these operands, the slot will be non-null.
1089 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1090                                            SDValue Op1, SDValue Op2,
1091                                            void *&InsertPos) {
1092   if (doNotCSE(N))
1093     return nullptr;
1094 
1095   SDValue Ops[] = { Op1, Op2 };
1096   FoldingSetNodeID ID;
1097   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1098   AddNodeIDCustom(ID, N);
1099   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1100   if (Node)
1101     Node->intersectFlagsWith(N->getFlags());
1102   return Node;
1103 }
1104 
1105 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1106 /// were replaced with those specified.  If this node is never memoized,
1107 /// return null, otherwise return a pointer to the slot it would take.  If a
1108 /// node already exists with these operands, the slot will be non-null.
1109 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1110                                            void *&InsertPos) {
1111   if (doNotCSE(N))
1112     return nullptr;
1113 
1114   FoldingSetNodeID ID;
1115   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1116   AddNodeIDCustom(ID, N);
1117   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1118   if (Node)
1119     Node->intersectFlagsWith(N->getFlags());
1120   return Node;
1121 }
1122 
1123 Align SelectionDAG::getEVTAlign(EVT VT) const {
1124   Type *Ty = VT == MVT::iPTR ?
1125                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1126                    VT.getTypeForEVT(*getContext());
1127 
1128   return getDataLayout().getABITypeAlign(Ty);
1129 }
1130 
1131 // EntryNode could meaningfully have debug info if we can find it...
1132 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1133     : TM(tm), OptLevel(OL),
1134       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1135       Root(getEntryNode()) {
1136   InsertNode(&EntryNode);
1137   DbgInfo = new SDDbgInfo();
1138 }
1139 
1140 void SelectionDAG::init(MachineFunction &NewMF,
1141                         OptimizationRemarkEmitter &NewORE,
1142                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1143                         LegacyDivergenceAnalysis * Divergence,
1144                         ProfileSummaryInfo *PSIin,
1145                         BlockFrequencyInfo *BFIin) {
1146   MF = &NewMF;
1147   SDAGISelPass = PassPtr;
1148   ORE = &NewORE;
1149   TLI = getSubtarget().getTargetLowering();
1150   TSI = getSubtarget().getSelectionDAGInfo();
1151   LibInfo = LibraryInfo;
1152   Context = &MF->getFunction().getContext();
1153   DA = Divergence;
1154   PSI = PSIin;
1155   BFI = BFIin;
1156 }
1157 
1158 SelectionDAG::~SelectionDAG() {
1159   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1160   allnodes_clear();
1161   OperandRecycler.clear(OperandAllocator);
1162   delete DbgInfo;
1163 }
1164 
1165 bool SelectionDAG::shouldOptForSize() const {
1166   return MF->getFunction().hasOptSize() ||
1167       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1168 }
1169 
1170 void SelectionDAG::allnodes_clear() {
1171   assert(&*AllNodes.begin() == &EntryNode);
1172   AllNodes.remove(AllNodes.begin());
1173   while (!AllNodes.empty())
1174     DeallocateNode(&AllNodes.front());
1175 #ifndef NDEBUG
1176   NextPersistentId = 0;
1177 #endif
1178 }
1179 
1180 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1181                                           void *&InsertPos) {
1182   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1183   if (N) {
1184     switch (N->getOpcode()) {
1185     default: break;
1186     case ISD::Constant:
1187     case ISD::ConstantFP:
1188       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1189                        "debug location.  Use another overload.");
1190     }
1191   }
1192   return N;
1193 }
1194 
1195 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1196                                           const SDLoc &DL, void *&InsertPos) {
1197   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1198   if (N) {
1199     switch (N->getOpcode()) {
1200     case ISD::Constant:
1201     case ISD::ConstantFP:
1202       // Erase debug location from the node if the node is used at several
1203       // different places. Do not propagate one location to all uses as it
1204       // will cause a worse single stepping debugging experience.
1205       if (N->getDebugLoc() != DL.getDebugLoc())
1206         N->setDebugLoc(DebugLoc());
1207       break;
1208     default:
1209       // When the node's point of use is located earlier in the instruction
1210       // sequence than its prior point of use, update its debug info to the
1211       // earlier location.
1212       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1213         N->setDebugLoc(DL.getDebugLoc());
1214       break;
1215     }
1216   }
1217   return N;
1218 }
1219 
1220 void SelectionDAG::clear() {
1221   allnodes_clear();
1222   OperandRecycler.clear(OperandAllocator);
1223   OperandAllocator.Reset();
1224   CSEMap.clear();
1225 
1226   ExtendedValueTypeNodes.clear();
1227   ExternalSymbols.clear();
1228   TargetExternalSymbols.clear();
1229   MCSymbols.clear();
1230   SDCallSiteDbgInfo.clear();
1231   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1232             static_cast<CondCodeSDNode*>(nullptr));
1233   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1234             static_cast<SDNode*>(nullptr));
1235 
1236   EntryNode.UseList = nullptr;
1237   InsertNode(&EntryNode);
1238   Root = getEntryNode();
1239   DbgInfo->clear();
1240 }
1241 
1242 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1243   return VT.bitsGT(Op.getValueType())
1244              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1245              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1246 }
1247 
1248 std::pair<SDValue, SDValue>
1249 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1250                                        const SDLoc &DL, EVT VT) {
1251   assert(!VT.bitsEq(Op.getValueType()) &&
1252          "Strict no-op FP extend/round not allowed.");
1253   SDValue Res =
1254       VT.bitsGT(Op.getValueType())
1255           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1256           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1257                     {Chain, Op, getIntPtrConstant(0, DL)});
1258 
1259   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1260 }
1261 
1262 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1263   return VT.bitsGT(Op.getValueType()) ?
1264     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1265     getNode(ISD::TRUNCATE, DL, VT, Op);
1266 }
1267 
1268 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1269   return VT.bitsGT(Op.getValueType()) ?
1270     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1271     getNode(ISD::TRUNCATE, DL, VT, Op);
1272 }
1273 
1274 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1275   return VT.bitsGT(Op.getValueType()) ?
1276     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1277     getNode(ISD::TRUNCATE, DL, VT, Op);
1278 }
1279 
1280 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1281                                         EVT OpVT) {
1282   if (VT.bitsLE(Op.getValueType()))
1283     return getNode(ISD::TRUNCATE, SL, VT, Op);
1284 
1285   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1286   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1287 }
1288 
1289 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1290   EVT OpVT = Op.getValueType();
1291   assert(VT.isInteger() && OpVT.isInteger() &&
1292          "Cannot getZeroExtendInReg FP types");
1293   assert(VT.isVector() == OpVT.isVector() &&
1294          "getZeroExtendInReg type should be vector iff the operand "
1295          "type is vector!");
1296   assert((!VT.isVector() ||
1297           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1298          "Vector element counts must match in getZeroExtendInReg");
1299   assert(VT.bitsLE(OpVT) && "Not extending!");
1300   if (OpVT == VT)
1301     return Op;
1302   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1303                                    VT.getScalarSizeInBits());
1304   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1305 }
1306 
1307 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1308   // Only unsigned pointer semantics are supported right now. In the future this
1309   // might delegate to TLI to check pointer signedness.
1310   return getZExtOrTrunc(Op, DL, VT);
1311 }
1312 
1313 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1314   // Only unsigned pointer semantics are supported right now. In the future this
1315   // might delegate to TLI to check pointer signedness.
1316   return getZeroExtendInReg(Op, DL, VT);
1317 }
1318 
1319 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1320 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1321   EVT EltVT = VT.getScalarType();
1322   SDValue NegOne =
1323     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1324   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1325 }
1326 
1327 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1328   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1329   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1330 }
1331 
1332 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1333                                       EVT OpVT) {
1334   if (!V)
1335     return getConstant(0, DL, VT);
1336 
1337   switch (TLI->getBooleanContents(OpVT)) {
1338   case TargetLowering::ZeroOrOneBooleanContent:
1339   case TargetLowering::UndefinedBooleanContent:
1340     return getConstant(1, DL, VT);
1341   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1342     return getAllOnesConstant(DL, VT);
1343   }
1344   llvm_unreachable("Unexpected boolean content enum!");
1345 }
1346 
1347 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1348                                   bool isT, bool isO) {
1349   EVT EltVT = VT.getScalarType();
1350   assert((EltVT.getSizeInBits() >= 64 ||
1351           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1352          "getConstant with a uint64_t value that doesn't fit in the type!");
1353   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1354 }
1355 
1356 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1357                                   bool isT, bool isO) {
1358   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1359 }
1360 
1361 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1362                                   EVT VT, bool isT, bool isO) {
1363   assert(VT.isInteger() && "Cannot create FP integer constant!");
1364 
1365   EVT EltVT = VT.getScalarType();
1366   const ConstantInt *Elt = &Val;
1367 
1368   // In some cases the vector type is legal but the element type is illegal and
1369   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1370   // inserted value (the type does not need to match the vector element type).
1371   // Any extra bits introduced will be truncated away.
1372   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1373                            TargetLowering::TypePromoteInteger) {
1374     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1375     APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1376     Elt = ConstantInt::get(*getContext(), NewVal);
1377   }
1378   // In other cases the element type is illegal and needs to be expanded, for
1379   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1380   // the value into n parts and use a vector type with n-times the elements.
1381   // Then bitcast to the type requested.
1382   // Legalizing constants too early makes the DAGCombiner's job harder so we
1383   // only legalize if the DAG tells us we must produce legal types.
1384   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1385            TLI->getTypeAction(*getContext(), EltVT) ==
1386                TargetLowering::TypeExpandInteger) {
1387     const APInt &NewVal = Elt->getValue();
1388     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1389     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1390 
1391     // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1392     if (VT.isScalableVector()) {
1393       assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1394              "Can only handle an even split!");
1395       unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1396 
1397       SmallVector<SDValue, 2> ScalarParts;
1398       for (unsigned i = 0; i != Parts; ++i)
1399         ScalarParts.push_back(getConstant(
1400             NewVal.lshr(i * ViaEltSizeInBits).trunc(ViaEltSizeInBits), DL,
1401             ViaEltVT, isT, isO));
1402 
1403       return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1404     }
1405 
1406     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1407     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1408 
1409     // Check the temporary vector is the correct size. If this fails then
1410     // getTypeToTransformTo() probably returned a type whose size (in bits)
1411     // isn't a power-of-2 factor of the requested type size.
1412     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1413 
1414     SmallVector<SDValue, 2> EltParts;
1415     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1416       EltParts.push_back(getConstant(
1417           NewVal.lshr(i * ViaEltSizeInBits).zextOrTrunc(ViaEltSizeInBits), DL,
1418           ViaEltVT, isT, isO));
1419     }
1420 
1421     // EltParts is currently in little endian order. If we actually want
1422     // big-endian order then reverse it now.
1423     if (getDataLayout().isBigEndian())
1424       std::reverse(EltParts.begin(), EltParts.end());
1425 
1426     // The elements must be reversed when the element order is different
1427     // to the endianness of the elements (because the BITCAST is itself a
1428     // vector shuffle in this situation). However, we do not need any code to
1429     // perform this reversal because getConstant() is producing a vector
1430     // splat.
1431     // This situation occurs in MIPS MSA.
1432 
1433     SmallVector<SDValue, 8> Ops;
1434     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1435       llvm::append_range(Ops, EltParts);
1436 
1437     SDValue V =
1438         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1439     return V;
1440   }
1441 
1442   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1443          "APInt size does not match type size!");
1444   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1445   FoldingSetNodeID ID;
1446   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1447   ID.AddPointer(Elt);
1448   ID.AddBoolean(isO);
1449   void *IP = nullptr;
1450   SDNode *N = nullptr;
1451   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1452     if (!VT.isVector())
1453       return SDValue(N, 0);
1454 
1455   if (!N) {
1456     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1457     CSEMap.InsertNode(N, IP);
1458     InsertNode(N);
1459     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1460   }
1461 
1462   SDValue Result(N, 0);
1463   if (VT.isScalableVector())
1464     Result = getSplatVector(VT, DL, Result);
1465   else if (VT.isVector())
1466     Result = getSplatBuildVector(VT, DL, Result);
1467 
1468   return Result;
1469 }
1470 
1471 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1472                                         bool isTarget) {
1473   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1474 }
1475 
1476 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1477                                              const SDLoc &DL, bool LegalTypes) {
1478   assert(VT.isInteger() && "Shift amount is not an integer type!");
1479   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1480   return getConstant(Val, DL, ShiftVT);
1481 }
1482 
1483 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1484                                            bool isTarget) {
1485   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1486 }
1487 
1488 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1489                                     bool isTarget) {
1490   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1491 }
1492 
1493 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1494                                     EVT VT, bool isTarget) {
1495   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1496 
1497   EVT EltVT = VT.getScalarType();
1498 
1499   // Do the map lookup using the actual bit pattern for the floating point
1500   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1501   // we don't have issues with SNANs.
1502   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1503   FoldingSetNodeID ID;
1504   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1505   ID.AddPointer(&V);
1506   void *IP = nullptr;
1507   SDNode *N = nullptr;
1508   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1509     if (!VT.isVector())
1510       return SDValue(N, 0);
1511 
1512   if (!N) {
1513     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1514     CSEMap.InsertNode(N, IP);
1515     InsertNode(N);
1516   }
1517 
1518   SDValue Result(N, 0);
1519   if (VT.isScalableVector())
1520     Result = getSplatVector(VT, DL, Result);
1521   else if (VT.isVector())
1522     Result = getSplatBuildVector(VT, DL, Result);
1523   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1524   return Result;
1525 }
1526 
1527 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1528                                     bool isTarget) {
1529   EVT EltVT = VT.getScalarType();
1530   if (EltVT == MVT::f32)
1531     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1532   if (EltVT == MVT::f64)
1533     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1534   if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1535       EltVT == MVT::f16 || EltVT == MVT::bf16) {
1536     bool Ignored;
1537     APFloat APF = APFloat(Val);
1538     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1539                 &Ignored);
1540     return getConstantFP(APF, DL, VT, isTarget);
1541   }
1542   llvm_unreachable("Unsupported type in getConstantFP");
1543 }
1544 
1545 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1546                                        EVT VT, int64_t Offset, bool isTargetGA,
1547                                        unsigned TargetFlags) {
1548   assert((TargetFlags == 0 || isTargetGA) &&
1549          "Cannot set target flags on target-independent globals");
1550 
1551   // Truncate (with sign-extension) the offset value to the pointer size.
1552   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1553   if (BitWidth < 64)
1554     Offset = SignExtend64(Offset, BitWidth);
1555 
1556   unsigned Opc;
1557   if (GV->isThreadLocal())
1558     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1559   else
1560     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1561 
1562   FoldingSetNodeID ID;
1563   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1564   ID.AddPointer(GV);
1565   ID.AddInteger(Offset);
1566   ID.AddInteger(TargetFlags);
1567   void *IP = nullptr;
1568   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1569     return SDValue(E, 0);
1570 
1571   auto *N = newSDNode<GlobalAddressSDNode>(
1572       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1573   CSEMap.InsertNode(N, IP);
1574     InsertNode(N);
1575   return SDValue(N, 0);
1576 }
1577 
1578 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1579   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1580   FoldingSetNodeID ID;
1581   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1582   ID.AddInteger(FI);
1583   void *IP = nullptr;
1584   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1585     return SDValue(E, 0);
1586 
1587   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1588   CSEMap.InsertNode(N, IP);
1589   InsertNode(N);
1590   return SDValue(N, 0);
1591 }
1592 
1593 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1594                                    unsigned TargetFlags) {
1595   assert((TargetFlags == 0 || isTarget) &&
1596          "Cannot set target flags on target-independent jump tables");
1597   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1598   FoldingSetNodeID ID;
1599   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1600   ID.AddInteger(JTI);
1601   ID.AddInteger(TargetFlags);
1602   void *IP = nullptr;
1603   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1604     return SDValue(E, 0);
1605 
1606   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1607   CSEMap.InsertNode(N, IP);
1608   InsertNode(N);
1609   return SDValue(N, 0);
1610 }
1611 
1612 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1613                                       MaybeAlign Alignment, int Offset,
1614                                       bool isTarget, unsigned TargetFlags) {
1615   assert((TargetFlags == 0 || isTarget) &&
1616          "Cannot set target flags on target-independent globals");
1617   if (!Alignment)
1618     Alignment = shouldOptForSize()
1619                     ? getDataLayout().getABITypeAlign(C->getType())
1620                     : getDataLayout().getPrefTypeAlign(C->getType());
1621   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1622   FoldingSetNodeID ID;
1623   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1624   ID.AddInteger(Alignment->value());
1625   ID.AddInteger(Offset);
1626   ID.AddPointer(C);
1627   ID.AddInteger(TargetFlags);
1628   void *IP = nullptr;
1629   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1630     return SDValue(E, 0);
1631 
1632   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1633                                           TargetFlags);
1634   CSEMap.InsertNode(N, IP);
1635   InsertNode(N);
1636   SDValue V = SDValue(N, 0);
1637   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1638   return V;
1639 }
1640 
1641 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1642                                       MaybeAlign Alignment, int Offset,
1643                                       bool isTarget, unsigned TargetFlags) {
1644   assert((TargetFlags == 0 || isTarget) &&
1645          "Cannot set target flags on target-independent globals");
1646   if (!Alignment)
1647     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1648   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1649   FoldingSetNodeID ID;
1650   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1651   ID.AddInteger(Alignment->value());
1652   ID.AddInteger(Offset);
1653   C->addSelectionDAGCSEId(ID);
1654   ID.AddInteger(TargetFlags);
1655   void *IP = nullptr;
1656   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1657     return SDValue(E, 0);
1658 
1659   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1660                                           TargetFlags);
1661   CSEMap.InsertNode(N, IP);
1662   InsertNode(N);
1663   return SDValue(N, 0);
1664 }
1665 
1666 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1667                                      unsigned TargetFlags) {
1668   FoldingSetNodeID ID;
1669   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1670   ID.AddInteger(Index);
1671   ID.AddInteger(Offset);
1672   ID.AddInteger(TargetFlags);
1673   void *IP = nullptr;
1674   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1675     return SDValue(E, 0);
1676 
1677   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1678   CSEMap.InsertNode(N, IP);
1679   InsertNode(N);
1680   return SDValue(N, 0);
1681 }
1682 
1683 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1684   FoldingSetNodeID ID;
1685   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1686   ID.AddPointer(MBB);
1687   void *IP = nullptr;
1688   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1689     return SDValue(E, 0);
1690 
1691   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1692   CSEMap.InsertNode(N, IP);
1693   InsertNode(N);
1694   return SDValue(N, 0);
1695 }
1696 
1697 SDValue SelectionDAG::getValueType(EVT VT) {
1698   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1699       ValueTypeNodes.size())
1700     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1701 
1702   SDNode *&N = VT.isExtended() ?
1703     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1704 
1705   if (N) return SDValue(N, 0);
1706   N = newSDNode<VTSDNode>(VT);
1707   InsertNode(N);
1708   return SDValue(N, 0);
1709 }
1710 
1711 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1712   SDNode *&N = ExternalSymbols[Sym];
1713   if (N) return SDValue(N, 0);
1714   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1715   InsertNode(N);
1716   return SDValue(N, 0);
1717 }
1718 
1719 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1720   SDNode *&N = MCSymbols[Sym];
1721   if (N)
1722     return SDValue(N, 0);
1723   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1724   InsertNode(N);
1725   return SDValue(N, 0);
1726 }
1727 
1728 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1729                                               unsigned TargetFlags) {
1730   SDNode *&N =
1731       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1732   if (N) return SDValue(N, 0);
1733   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1734   InsertNode(N);
1735   return SDValue(N, 0);
1736 }
1737 
1738 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1739   if ((unsigned)Cond >= CondCodeNodes.size())
1740     CondCodeNodes.resize(Cond+1);
1741 
1742   if (!CondCodeNodes[Cond]) {
1743     auto *N = newSDNode<CondCodeSDNode>(Cond);
1744     CondCodeNodes[Cond] = N;
1745     InsertNode(N);
1746   }
1747 
1748   return SDValue(CondCodeNodes[Cond], 0);
1749 }
1750 
1751 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, SDValue Step) {
1752   if (ResVT.isScalableVector())
1753     return getNode(ISD::STEP_VECTOR, DL, ResVT, Step);
1754 
1755   EVT OpVT = Step.getValueType();
1756   APInt StepVal = cast<ConstantSDNode>(Step)->getAPIntValue();
1757   SmallVector<SDValue, 16> OpsStepConstants;
1758   for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
1759     OpsStepConstants.push_back(getConstant(StepVal * i, DL, OpVT));
1760   return getBuildVector(ResVT, DL, OpsStepConstants);
1761 }
1762 
1763 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1764 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1765 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1766   std::swap(N1, N2);
1767   ShuffleVectorSDNode::commuteMask(M);
1768 }
1769 
1770 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1771                                        SDValue N2, ArrayRef<int> Mask) {
1772   assert(VT.getVectorNumElements() == Mask.size() &&
1773            "Must have the same number of vector elements as mask elements!");
1774   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1775          "Invalid VECTOR_SHUFFLE");
1776 
1777   // Canonicalize shuffle undef, undef -> undef
1778   if (N1.isUndef() && N2.isUndef())
1779     return getUNDEF(VT);
1780 
1781   // Validate that all indices in Mask are within the range of the elements
1782   // input to the shuffle.
1783   int NElts = Mask.size();
1784   assert(llvm::all_of(Mask,
1785                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1786          "Index out of range");
1787 
1788   // Copy the mask so we can do any needed cleanup.
1789   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1790 
1791   // Canonicalize shuffle v, v -> v, undef
1792   if (N1 == N2) {
1793     N2 = getUNDEF(VT);
1794     for (int i = 0; i != NElts; ++i)
1795       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1796   }
1797 
1798   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1799   if (N1.isUndef())
1800     commuteShuffle(N1, N2, MaskVec);
1801 
1802   if (TLI->hasVectorBlend()) {
1803     // If shuffling a splat, try to blend the splat instead. We do this here so
1804     // that even when this arises during lowering we don't have to re-handle it.
1805     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1806       BitVector UndefElements;
1807       SDValue Splat = BV->getSplatValue(&UndefElements);
1808       if (!Splat)
1809         return;
1810 
1811       for (int i = 0; i < NElts; ++i) {
1812         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1813           continue;
1814 
1815         // If this input comes from undef, mark it as such.
1816         if (UndefElements[MaskVec[i] - Offset]) {
1817           MaskVec[i] = -1;
1818           continue;
1819         }
1820 
1821         // If we can blend a non-undef lane, use that instead.
1822         if (!UndefElements[i])
1823           MaskVec[i] = i + Offset;
1824       }
1825     };
1826     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1827       BlendSplat(N1BV, 0);
1828     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1829       BlendSplat(N2BV, NElts);
1830   }
1831 
1832   // Canonicalize all index into lhs, -> shuffle lhs, undef
1833   // Canonicalize all index into rhs, -> shuffle rhs, undef
1834   bool AllLHS = true, AllRHS = true;
1835   bool N2Undef = N2.isUndef();
1836   for (int i = 0; i != NElts; ++i) {
1837     if (MaskVec[i] >= NElts) {
1838       if (N2Undef)
1839         MaskVec[i] = -1;
1840       else
1841         AllLHS = false;
1842     } else if (MaskVec[i] >= 0) {
1843       AllRHS = false;
1844     }
1845   }
1846   if (AllLHS && AllRHS)
1847     return getUNDEF(VT);
1848   if (AllLHS && !N2Undef)
1849     N2 = getUNDEF(VT);
1850   if (AllRHS) {
1851     N1 = getUNDEF(VT);
1852     commuteShuffle(N1, N2, MaskVec);
1853   }
1854   // Reset our undef status after accounting for the mask.
1855   N2Undef = N2.isUndef();
1856   // Re-check whether both sides ended up undef.
1857   if (N1.isUndef() && N2Undef)
1858     return getUNDEF(VT);
1859 
1860   // If Identity shuffle return that node.
1861   bool Identity = true, AllSame = true;
1862   for (int i = 0; i != NElts; ++i) {
1863     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1864     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1865   }
1866   if (Identity && NElts)
1867     return N1;
1868 
1869   // Shuffling a constant splat doesn't change the result.
1870   if (N2Undef) {
1871     SDValue V = N1;
1872 
1873     // Look through any bitcasts. We check that these don't change the number
1874     // (and size) of elements and just changes their types.
1875     while (V.getOpcode() == ISD::BITCAST)
1876       V = V->getOperand(0);
1877 
1878     // A splat should always show up as a build vector node.
1879     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1880       BitVector UndefElements;
1881       SDValue Splat = BV->getSplatValue(&UndefElements);
1882       // If this is a splat of an undef, shuffling it is also undef.
1883       if (Splat && Splat.isUndef())
1884         return getUNDEF(VT);
1885 
1886       bool SameNumElts =
1887           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1888 
1889       // We only have a splat which can skip shuffles if there is a splatted
1890       // value and no undef lanes rearranged by the shuffle.
1891       if (Splat && UndefElements.none()) {
1892         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1893         // number of elements match or the value splatted is a zero constant.
1894         if (SameNumElts)
1895           return N1;
1896         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1897           if (C->isNullValue())
1898             return N1;
1899       }
1900 
1901       // If the shuffle itself creates a splat, build the vector directly.
1902       if (AllSame && SameNumElts) {
1903         EVT BuildVT = BV->getValueType(0);
1904         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1905         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1906 
1907         // We may have jumped through bitcasts, so the type of the
1908         // BUILD_VECTOR may not match the type of the shuffle.
1909         if (BuildVT != VT)
1910           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1911         return NewBV;
1912       }
1913     }
1914   }
1915 
1916   FoldingSetNodeID ID;
1917   SDValue Ops[2] = { N1, N2 };
1918   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1919   for (int i = 0; i != NElts; ++i)
1920     ID.AddInteger(MaskVec[i]);
1921 
1922   void* IP = nullptr;
1923   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1924     return SDValue(E, 0);
1925 
1926   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1927   // SDNode doesn't have access to it.  This memory will be "leaked" when
1928   // the node is deallocated, but recovered when the NodeAllocator is released.
1929   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1930   llvm::copy(MaskVec, MaskAlloc);
1931 
1932   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1933                                            dl.getDebugLoc(), MaskAlloc);
1934   createOperands(N, Ops);
1935 
1936   CSEMap.InsertNode(N, IP);
1937   InsertNode(N);
1938   SDValue V = SDValue(N, 0);
1939   NewSDValueDbgMsg(V, "Creating new node: ", this);
1940   return V;
1941 }
1942 
1943 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1944   EVT VT = SV.getValueType(0);
1945   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1946   ShuffleVectorSDNode::commuteMask(MaskVec);
1947 
1948   SDValue Op0 = SV.getOperand(0);
1949   SDValue Op1 = SV.getOperand(1);
1950   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1951 }
1952 
1953 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1954   FoldingSetNodeID ID;
1955   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1956   ID.AddInteger(RegNo);
1957   void *IP = nullptr;
1958   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1959     return SDValue(E, 0);
1960 
1961   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1962   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1963   CSEMap.InsertNode(N, IP);
1964   InsertNode(N);
1965   return SDValue(N, 0);
1966 }
1967 
1968 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1969   FoldingSetNodeID ID;
1970   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1971   ID.AddPointer(RegMask);
1972   void *IP = nullptr;
1973   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1974     return SDValue(E, 0);
1975 
1976   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1977   CSEMap.InsertNode(N, IP);
1978   InsertNode(N);
1979   return SDValue(N, 0);
1980 }
1981 
1982 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1983                                  MCSymbol *Label) {
1984   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1985 }
1986 
1987 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1988                                    SDValue Root, MCSymbol *Label) {
1989   FoldingSetNodeID ID;
1990   SDValue Ops[] = { Root };
1991   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1992   ID.AddPointer(Label);
1993   void *IP = nullptr;
1994   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1995     return SDValue(E, 0);
1996 
1997   auto *N =
1998       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1999   createOperands(N, Ops);
2000 
2001   CSEMap.InsertNode(N, IP);
2002   InsertNode(N);
2003   return SDValue(N, 0);
2004 }
2005 
2006 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
2007                                       int64_t Offset, bool isTarget,
2008                                       unsigned TargetFlags) {
2009   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2010 
2011   FoldingSetNodeID ID;
2012   AddNodeIDNode(ID, Opc, getVTList(VT), None);
2013   ID.AddPointer(BA);
2014   ID.AddInteger(Offset);
2015   ID.AddInteger(TargetFlags);
2016   void *IP = nullptr;
2017   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2018     return SDValue(E, 0);
2019 
2020   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
2021   CSEMap.InsertNode(N, IP);
2022   InsertNode(N);
2023   return SDValue(N, 0);
2024 }
2025 
2026 SDValue SelectionDAG::getSrcValue(const Value *V) {
2027   FoldingSetNodeID ID;
2028   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
2029   ID.AddPointer(V);
2030 
2031   void *IP = nullptr;
2032   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2033     return SDValue(E, 0);
2034 
2035   auto *N = newSDNode<SrcValueSDNode>(V);
2036   CSEMap.InsertNode(N, IP);
2037   InsertNode(N);
2038   return SDValue(N, 0);
2039 }
2040 
2041 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
2042   FoldingSetNodeID ID;
2043   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
2044   ID.AddPointer(MD);
2045 
2046   void *IP = nullptr;
2047   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2048     return SDValue(E, 0);
2049 
2050   auto *N = newSDNode<MDNodeSDNode>(MD);
2051   CSEMap.InsertNode(N, IP);
2052   InsertNode(N);
2053   return SDValue(N, 0);
2054 }
2055 
2056 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2057   if (VT == V.getValueType())
2058     return V;
2059 
2060   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2061 }
2062 
2063 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2064                                        unsigned SrcAS, unsigned DestAS) {
2065   SDValue Ops[] = {Ptr};
2066   FoldingSetNodeID ID;
2067   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2068   ID.AddInteger(SrcAS);
2069   ID.AddInteger(DestAS);
2070 
2071   void *IP = nullptr;
2072   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2073     return SDValue(E, 0);
2074 
2075   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2076                                            VT, SrcAS, DestAS);
2077   createOperands(N, Ops);
2078 
2079   CSEMap.InsertNode(N, IP);
2080   InsertNode(N);
2081   return SDValue(N, 0);
2082 }
2083 
2084 SDValue SelectionDAG::getFreeze(SDValue V) {
2085   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2086 }
2087 
2088 /// getShiftAmountOperand - Return the specified value casted to
2089 /// the target's desired shift amount type.
2090 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2091   EVT OpTy = Op.getValueType();
2092   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2093   if (OpTy == ShTy || OpTy.isVector()) return Op;
2094 
2095   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2096 }
2097 
2098 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2099   SDLoc dl(Node);
2100   const TargetLowering &TLI = getTargetLoweringInfo();
2101   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2102   EVT VT = Node->getValueType(0);
2103   SDValue Tmp1 = Node->getOperand(0);
2104   SDValue Tmp2 = Node->getOperand(1);
2105   const MaybeAlign MA(Node->getConstantOperandVal(3));
2106 
2107   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2108                                Tmp2, MachinePointerInfo(V));
2109   SDValue VAList = VAListLoad;
2110 
2111   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2112     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2113                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2114 
2115     VAList =
2116         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2117                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2118   }
2119 
2120   // Increment the pointer, VAList, to the next vaarg
2121   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2122                  getConstant(getDataLayout().getTypeAllocSize(
2123                                                VT.getTypeForEVT(*getContext())),
2124                              dl, VAList.getValueType()));
2125   // Store the incremented VAList to the legalized pointer
2126   Tmp1 =
2127       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2128   // Load the actual argument out of the pointer VAList
2129   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2130 }
2131 
2132 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2133   SDLoc dl(Node);
2134   const TargetLowering &TLI = getTargetLoweringInfo();
2135   // This defaults to loading a pointer from the input and storing it to the
2136   // output, returning the chain.
2137   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2138   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2139   SDValue Tmp1 =
2140       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2141               Node->getOperand(2), MachinePointerInfo(VS));
2142   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2143                   MachinePointerInfo(VD));
2144 }
2145 
2146 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2147   const DataLayout &DL = getDataLayout();
2148   Type *Ty = VT.getTypeForEVT(*getContext());
2149   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2150 
2151   if (TLI->isTypeLegal(VT) || !VT.isVector())
2152     return RedAlign;
2153 
2154   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2155   const Align StackAlign = TFI->getStackAlign();
2156 
2157   // See if we can choose a smaller ABI alignment in cases where it's an
2158   // illegal vector type that will get broken down.
2159   if (RedAlign > StackAlign) {
2160     EVT IntermediateVT;
2161     MVT RegisterVT;
2162     unsigned NumIntermediates;
2163     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2164                                 NumIntermediates, RegisterVT);
2165     Ty = IntermediateVT.getTypeForEVT(*getContext());
2166     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2167     if (RedAlign2 < RedAlign)
2168       RedAlign = RedAlign2;
2169   }
2170 
2171   return RedAlign;
2172 }
2173 
2174 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2175   MachineFrameInfo &MFI = MF->getFrameInfo();
2176   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2177   int StackID = 0;
2178   if (Bytes.isScalable())
2179     StackID = TFI->getStackIDForScalableVectors();
2180   // The stack id gives an indication of whether the object is scalable or
2181   // not, so it's safe to pass in the minimum size here.
2182   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2183                                        false, nullptr, StackID);
2184   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2185 }
2186 
2187 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2188   Type *Ty = VT.getTypeForEVT(*getContext());
2189   Align StackAlign =
2190       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2191   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2192 }
2193 
2194 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2195   TypeSize VT1Size = VT1.getStoreSize();
2196   TypeSize VT2Size = VT2.getStoreSize();
2197   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2198          "Don't know how to choose the maximum size when creating a stack "
2199          "temporary");
2200   TypeSize Bytes =
2201       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2202 
2203   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2204   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2205   const DataLayout &DL = getDataLayout();
2206   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2207   return CreateStackTemporary(Bytes, Align);
2208 }
2209 
2210 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2211                                 ISD::CondCode Cond, const SDLoc &dl) {
2212   EVT OpVT = N1.getValueType();
2213 
2214   // These setcc operations always fold.
2215   switch (Cond) {
2216   default: break;
2217   case ISD::SETFALSE:
2218   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2219   case ISD::SETTRUE:
2220   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2221 
2222   case ISD::SETOEQ:
2223   case ISD::SETOGT:
2224   case ISD::SETOGE:
2225   case ISD::SETOLT:
2226   case ISD::SETOLE:
2227   case ISD::SETONE:
2228   case ISD::SETO:
2229   case ISD::SETUO:
2230   case ISD::SETUEQ:
2231   case ISD::SETUNE:
2232     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2233     break;
2234   }
2235 
2236   if (OpVT.isInteger()) {
2237     // For EQ and NE, we can always pick a value for the undef to make the
2238     // predicate pass or fail, so we can return undef.
2239     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2240     // icmp eq/ne X, undef -> undef.
2241     if ((N1.isUndef() || N2.isUndef()) &&
2242         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2243       return getUNDEF(VT);
2244 
2245     // If both operands are undef, we can return undef for int comparison.
2246     // icmp undef, undef -> undef.
2247     if (N1.isUndef() && N2.isUndef())
2248       return getUNDEF(VT);
2249 
2250     // icmp X, X -> true/false
2251     // icmp X, undef -> true/false because undef could be X.
2252     if (N1 == N2)
2253       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2254   }
2255 
2256   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2257     const APInt &C2 = N2C->getAPIntValue();
2258     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2259       const APInt &C1 = N1C->getAPIntValue();
2260 
2261       switch (Cond) {
2262       default: llvm_unreachable("Unknown integer setcc!");
2263       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2264       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2265       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2266       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2267       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2268       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2269       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2270       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2271       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2272       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2273       }
2274     }
2275   }
2276 
2277   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2278   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2279 
2280   if (N1CFP && N2CFP) {
2281     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2282     switch (Cond) {
2283     default: break;
2284     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2285                         return getUNDEF(VT);
2286                       LLVM_FALLTHROUGH;
2287     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2288                                              OpVT);
2289     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2290                         return getUNDEF(VT);
2291                       LLVM_FALLTHROUGH;
2292     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2293                                              R==APFloat::cmpLessThan, dl, VT,
2294                                              OpVT);
2295     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2296                         return getUNDEF(VT);
2297                       LLVM_FALLTHROUGH;
2298     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2299                                              OpVT);
2300     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2301                         return getUNDEF(VT);
2302                       LLVM_FALLTHROUGH;
2303     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2304                                              VT, OpVT);
2305     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2306                         return getUNDEF(VT);
2307                       LLVM_FALLTHROUGH;
2308     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2309                                              R==APFloat::cmpEqual, dl, VT,
2310                                              OpVT);
2311     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2312                         return getUNDEF(VT);
2313                       LLVM_FALLTHROUGH;
2314     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2315                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2316     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2317                                              OpVT);
2318     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2319                                              OpVT);
2320     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2321                                              R==APFloat::cmpEqual, dl, VT,
2322                                              OpVT);
2323     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2324                                              OpVT);
2325     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2326                                              R==APFloat::cmpLessThan, dl, VT,
2327                                              OpVT);
2328     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2329                                              R==APFloat::cmpUnordered, dl, VT,
2330                                              OpVT);
2331     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2332                                              VT, OpVT);
2333     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2334                                              OpVT);
2335     }
2336   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2337     // Ensure that the constant occurs on the RHS.
2338     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2339     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2340       return SDValue();
2341     return getSetCC(dl, VT, N2, N1, SwappedCond);
2342   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2343              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2344     // If an operand is known to be a nan (or undef that could be a nan), we can
2345     // fold it.
2346     // Choosing NaN for the undef will always make unordered comparison succeed
2347     // and ordered comparison fails.
2348     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2349     switch (ISD::getUnorderedFlavor(Cond)) {
2350     default:
2351       llvm_unreachable("Unknown flavor!");
2352     case 0: // Known false.
2353       return getBoolConstant(false, dl, VT, OpVT);
2354     case 1: // Known true.
2355       return getBoolConstant(true, dl, VT, OpVT);
2356     case 2: // Undefined.
2357       return getUNDEF(VT);
2358     }
2359   }
2360 
2361   // Could not fold it.
2362   return SDValue();
2363 }
2364 
2365 /// See if the specified operand can be simplified with the knowledge that only
2366 /// the bits specified by DemandedBits are used.
2367 /// TODO: really we should be making this into the DAG equivalent of
2368 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2369 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2370   EVT VT = V.getValueType();
2371 
2372   if (VT.isScalableVector())
2373     return SDValue();
2374 
2375   APInt DemandedElts = VT.isVector()
2376                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2377                            : APInt(1, 1);
2378   return GetDemandedBits(V, DemandedBits, DemandedElts);
2379 }
2380 
2381 /// See if the specified operand can be simplified with the knowledge that only
2382 /// the bits specified by DemandedBits are used in the elements specified by
2383 /// DemandedElts.
2384 /// TODO: really we should be making this into the DAG equivalent of
2385 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2386 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2387                                       const APInt &DemandedElts) {
2388   switch (V.getOpcode()) {
2389   default:
2390     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2391                                                 *this, 0);
2392   case ISD::Constant: {
2393     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2394     APInt NewVal = CVal & DemandedBits;
2395     if (NewVal != CVal)
2396       return getConstant(NewVal, SDLoc(V), V.getValueType());
2397     break;
2398   }
2399   case ISD::SRL:
2400     // Only look at single-use SRLs.
2401     if (!V.getNode()->hasOneUse())
2402       break;
2403     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2404       // See if we can recursively simplify the LHS.
2405       unsigned Amt = RHSC->getZExtValue();
2406 
2407       // Watch out for shift count overflow though.
2408       if (Amt >= DemandedBits.getBitWidth())
2409         break;
2410       APInt SrcDemandedBits = DemandedBits << Amt;
2411       if (SDValue SimplifyLHS =
2412               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2413         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2414                        V.getOperand(1));
2415     }
2416     break;
2417   }
2418   return SDValue();
2419 }
2420 
2421 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2422 /// use this predicate to simplify operations downstream.
2423 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2424   unsigned BitWidth = Op.getScalarValueSizeInBits();
2425   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2426 }
2427 
2428 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2429 /// this predicate to simplify operations downstream.  Mask is known to be zero
2430 /// for bits that V cannot have.
2431 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2432                                      unsigned Depth) const {
2433   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2434 }
2435 
2436 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2437 /// DemandedElts.  We use this predicate to simplify operations downstream.
2438 /// Mask is known to be zero for bits that V cannot have.
2439 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2440                                      const APInt &DemandedElts,
2441                                      unsigned Depth) const {
2442   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2443 }
2444 
2445 /// Return true if the DemandedElts of the vector Op are all zero.  We
2446 /// use this predicate to simplify operations downstream.
2447 bool SelectionDAG::MaskedElementsAreZero(SDValue Op, const APInt &DemandedElts,
2448                                          unsigned Depth) const {
2449   unsigned BitWidth = Op.getScalarValueSizeInBits();
2450   APInt DemandedBits = APInt::getAllOnesValue(BitWidth);
2451   return MaskedValueIsZero(Op, DemandedBits, DemandedElts, Depth);
2452 }
2453 
2454 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2455 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2456                                         unsigned Depth) const {
2457   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2458 }
2459 
2460 /// isSplatValue - Return true if the vector V has the same value
2461 /// across all DemandedElts. For scalable vectors it does not make
2462 /// sense to specify which elements are demanded or undefined, therefore
2463 /// they are simply ignored.
2464 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2465                                 APInt &UndefElts, unsigned Depth) {
2466   EVT VT = V.getValueType();
2467   assert(VT.isVector() && "Vector type expected");
2468 
2469   if (!VT.isScalableVector() && !DemandedElts)
2470     return false; // No demanded elts, better to assume we don't know anything.
2471 
2472   if (Depth >= MaxRecursionDepth)
2473     return false; // Limit search depth.
2474 
2475   // Deal with some common cases here that work for both fixed and scalable
2476   // vector types.
2477   switch (V.getOpcode()) {
2478   case ISD::SPLAT_VECTOR:
2479     UndefElts = V.getOperand(0).isUndef()
2480                     ? APInt::getAllOnesValue(DemandedElts.getBitWidth())
2481                     : APInt(DemandedElts.getBitWidth(), 0);
2482     return true;
2483   case ISD::ADD:
2484   case ISD::SUB:
2485   case ISD::AND:
2486   case ISD::XOR:
2487   case ISD::OR: {
2488     APInt UndefLHS, UndefRHS;
2489     SDValue LHS = V.getOperand(0);
2490     SDValue RHS = V.getOperand(1);
2491     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2492         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2493       UndefElts = UndefLHS | UndefRHS;
2494       return true;
2495     }
2496     return false;
2497   }
2498   case ISD::ABS:
2499   case ISD::TRUNCATE:
2500   case ISD::SIGN_EXTEND:
2501   case ISD::ZERO_EXTEND:
2502     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2503   }
2504 
2505   // We don't support other cases than those above for scalable vectors at
2506   // the moment.
2507   if (VT.isScalableVector())
2508     return false;
2509 
2510   unsigned NumElts = VT.getVectorNumElements();
2511   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2512   UndefElts = APInt::getNullValue(NumElts);
2513 
2514   switch (V.getOpcode()) {
2515   case ISD::BUILD_VECTOR: {
2516     SDValue Scl;
2517     for (unsigned i = 0; i != NumElts; ++i) {
2518       SDValue Op = V.getOperand(i);
2519       if (Op.isUndef()) {
2520         UndefElts.setBit(i);
2521         continue;
2522       }
2523       if (!DemandedElts[i])
2524         continue;
2525       if (Scl && Scl != Op)
2526         return false;
2527       Scl = Op;
2528     }
2529     return true;
2530   }
2531   case ISD::VECTOR_SHUFFLE: {
2532     // Check if this is a shuffle node doing a splat.
2533     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2534     int SplatIndex = -1;
2535     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2536     for (int i = 0; i != (int)NumElts; ++i) {
2537       int M = Mask[i];
2538       if (M < 0) {
2539         UndefElts.setBit(i);
2540         continue;
2541       }
2542       if (!DemandedElts[i])
2543         continue;
2544       if (0 <= SplatIndex && SplatIndex != M)
2545         return false;
2546       SplatIndex = M;
2547     }
2548     return true;
2549   }
2550   case ISD::EXTRACT_SUBVECTOR: {
2551     // Offset the demanded elts by the subvector index.
2552     SDValue Src = V.getOperand(0);
2553     // We don't support scalable vectors at the moment.
2554     if (Src.getValueType().isScalableVector())
2555       return false;
2556     uint64_t Idx = V.getConstantOperandVal(1);
2557     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2558     APInt UndefSrcElts;
2559     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2560     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2561       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2562       return true;
2563     }
2564     break;
2565   }
2566   }
2567 
2568   return false;
2569 }
2570 
2571 /// Helper wrapper to main isSplatValue function.
2572 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2573   EVT VT = V.getValueType();
2574   assert(VT.isVector() && "Vector type expected");
2575 
2576   APInt UndefElts;
2577   APInt DemandedElts;
2578 
2579   // For now we don't support this with scalable vectors.
2580   if (!VT.isScalableVector())
2581     DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2582   return isSplatValue(V, DemandedElts, UndefElts) &&
2583          (AllowUndefs || !UndefElts);
2584 }
2585 
2586 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2587   V = peekThroughExtractSubvectors(V);
2588 
2589   EVT VT = V.getValueType();
2590   unsigned Opcode = V.getOpcode();
2591   switch (Opcode) {
2592   default: {
2593     APInt UndefElts;
2594     APInt DemandedElts;
2595 
2596     if (!VT.isScalableVector())
2597       DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2598 
2599     if (isSplatValue(V, DemandedElts, UndefElts)) {
2600       if (VT.isScalableVector()) {
2601         // DemandedElts and UndefElts are ignored for scalable vectors, since
2602         // the only supported cases are SPLAT_VECTOR nodes.
2603         SplatIdx = 0;
2604       } else {
2605         // Handle case where all demanded elements are UNDEF.
2606         if (DemandedElts.isSubsetOf(UndefElts)) {
2607           SplatIdx = 0;
2608           return getUNDEF(VT);
2609         }
2610         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2611       }
2612       return V;
2613     }
2614     break;
2615   }
2616   case ISD::SPLAT_VECTOR:
2617     SplatIdx = 0;
2618     return V;
2619   case ISD::VECTOR_SHUFFLE: {
2620     if (VT.isScalableVector())
2621       return SDValue();
2622 
2623     // Check if this is a shuffle node doing a splat.
2624     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2625     // getTargetVShiftNode currently struggles without the splat source.
2626     auto *SVN = cast<ShuffleVectorSDNode>(V);
2627     if (!SVN->isSplat())
2628       break;
2629     int Idx = SVN->getSplatIndex();
2630     int NumElts = V.getValueType().getVectorNumElements();
2631     SplatIdx = Idx % NumElts;
2632     return V.getOperand(Idx / NumElts);
2633   }
2634   }
2635 
2636   return SDValue();
2637 }
2638 
2639 SDValue SelectionDAG::getSplatValue(SDValue V) {
2640   int SplatIdx;
2641   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2642     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2643                    SrcVector.getValueType().getScalarType(), SrcVector,
2644                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2645   return SDValue();
2646 }
2647 
2648 const APInt *
2649 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2650                                           const APInt &DemandedElts) const {
2651   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2652           V.getOpcode() == ISD::SRA) &&
2653          "Unknown shift node");
2654   unsigned BitWidth = V.getScalarValueSizeInBits();
2655   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2656     // Shifting more than the bitwidth is not valid.
2657     const APInt &ShAmt = SA->getAPIntValue();
2658     if (ShAmt.ult(BitWidth))
2659       return &ShAmt;
2660   }
2661   return nullptr;
2662 }
2663 
2664 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2665     SDValue V, const APInt &DemandedElts) const {
2666   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2667           V.getOpcode() == ISD::SRA) &&
2668          "Unknown shift node");
2669   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2670     return ValidAmt;
2671   unsigned BitWidth = V.getScalarValueSizeInBits();
2672   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2673   if (!BV)
2674     return nullptr;
2675   const APInt *MinShAmt = nullptr;
2676   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2677     if (!DemandedElts[i])
2678       continue;
2679     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2680     if (!SA)
2681       return nullptr;
2682     // Shifting more than the bitwidth is not valid.
2683     const APInt &ShAmt = SA->getAPIntValue();
2684     if (ShAmt.uge(BitWidth))
2685       return nullptr;
2686     if (MinShAmt && MinShAmt->ule(ShAmt))
2687       continue;
2688     MinShAmt = &ShAmt;
2689   }
2690   return MinShAmt;
2691 }
2692 
2693 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2694     SDValue V, const APInt &DemandedElts) const {
2695   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2696           V.getOpcode() == ISD::SRA) &&
2697          "Unknown shift node");
2698   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2699     return ValidAmt;
2700   unsigned BitWidth = V.getScalarValueSizeInBits();
2701   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2702   if (!BV)
2703     return nullptr;
2704   const APInt *MaxShAmt = nullptr;
2705   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2706     if (!DemandedElts[i])
2707       continue;
2708     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2709     if (!SA)
2710       return nullptr;
2711     // Shifting more than the bitwidth is not valid.
2712     const APInt &ShAmt = SA->getAPIntValue();
2713     if (ShAmt.uge(BitWidth))
2714       return nullptr;
2715     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2716       continue;
2717     MaxShAmt = &ShAmt;
2718   }
2719   return MaxShAmt;
2720 }
2721 
2722 /// Determine which bits of Op are known to be either zero or one and return
2723 /// them in Known. For vectors, the known bits are those that are shared by
2724 /// every vector element.
2725 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2726   EVT VT = Op.getValueType();
2727 
2728   // TOOD: Until we have a plan for how to represent demanded elements for
2729   // scalable vectors, we can just bail out for now.
2730   if (Op.getValueType().isScalableVector()) {
2731     unsigned BitWidth = Op.getScalarValueSizeInBits();
2732     return KnownBits(BitWidth);
2733   }
2734 
2735   APInt DemandedElts = VT.isVector()
2736                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2737                            : APInt(1, 1);
2738   return computeKnownBits(Op, DemandedElts, Depth);
2739 }
2740 
2741 /// Determine which bits of Op are known to be either zero or one and return
2742 /// them in Known. The DemandedElts argument allows us to only collect the known
2743 /// bits that are shared by the requested vector elements.
2744 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2745                                          unsigned Depth) const {
2746   unsigned BitWidth = Op.getScalarValueSizeInBits();
2747 
2748   KnownBits Known(BitWidth);   // Don't know anything.
2749 
2750   // TOOD: Until we have a plan for how to represent demanded elements for
2751   // scalable vectors, we can just bail out for now.
2752   if (Op.getValueType().isScalableVector())
2753     return Known;
2754 
2755   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2756     // We know all of the bits for a constant!
2757     return KnownBits::makeConstant(C->getAPIntValue());
2758   }
2759   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2760     // We know all of the bits for a constant fp!
2761     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2762   }
2763 
2764   if (Depth >= MaxRecursionDepth)
2765     return Known;  // Limit search depth.
2766 
2767   KnownBits Known2;
2768   unsigned NumElts = DemandedElts.getBitWidth();
2769   assert((!Op.getValueType().isVector() ||
2770           NumElts == Op.getValueType().getVectorNumElements()) &&
2771          "Unexpected vector size");
2772 
2773   if (!DemandedElts)
2774     return Known;  // No demanded elts, better to assume we don't know anything.
2775 
2776   unsigned Opcode = Op.getOpcode();
2777   switch (Opcode) {
2778   case ISD::BUILD_VECTOR:
2779     // Collect the known bits that are shared by every demanded vector element.
2780     Known.Zero.setAllBits(); Known.One.setAllBits();
2781     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2782       if (!DemandedElts[i])
2783         continue;
2784 
2785       SDValue SrcOp = Op.getOperand(i);
2786       Known2 = computeKnownBits(SrcOp, Depth + 1);
2787 
2788       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2789       if (SrcOp.getValueSizeInBits() != BitWidth) {
2790         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2791                "Expected BUILD_VECTOR implicit truncation");
2792         Known2 = Known2.trunc(BitWidth);
2793       }
2794 
2795       // Known bits are the values that are shared by every demanded element.
2796       Known = KnownBits::commonBits(Known, Known2);
2797 
2798       // If we don't know any bits, early out.
2799       if (Known.isUnknown())
2800         break;
2801     }
2802     break;
2803   case ISD::VECTOR_SHUFFLE: {
2804     // Collect the known bits that are shared by every vector element referenced
2805     // by the shuffle.
2806     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2807     Known.Zero.setAllBits(); Known.One.setAllBits();
2808     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2809     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2810     for (unsigned i = 0; i != NumElts; ++i) {
2811       if (!DemandedElts[i])
2812         continue;
2813 
2814       int M = SVN->getMaskElt(i);
2815       if (M < 0) {
2816         // For UNDEF elements, we don't know anything about the common state of
2817         // the shuffle result.
2818         Known.resetAll();
2819         DemandedLHS.clearAllBits();
2820         DemandedRHS.clearAllBits();
2821         break;
2822       }
2823 
2824       if ((unsigned)M < NumElts)
2825         DemandedLHS.setBit((unsigned)M % NumElts);
2826       else
2827         DemandedRHS.setBit((unsigned)M % NumElts);
2828     }
2829     // Known bits are the values that are shared by every demanded element.
2830     if (!!DemandedLHS) {
2831       SDValue LHS = Op.getOperand(0);
2832       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2833       Known = KnownBits::commonBits(Known, Known2);
2834     }
2835     // If we don't know any bits, early out.
2836     if (Known.isUnknown())
2837       break;
2838     if (!!DemandedRHS) {
2839       SDValue RHS = Op.getOperand(1);
2840       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2841       Known = KnownBits::commonBits(Known, Known2);
2842     }
2843     break;
2844   }
2845   case ISD::CONCAT_VECTORS: {
2846     // Split DemandedElts and test each of the demanded subvectors.
2847     Known.Zero.setAllBits(); Known.One.setAllBits();
2848     EVT SubVectorVT = Op.getOperand(0).getValueType();
2849     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2850     unsigned NumSubVectors = Op.getNumOperands();
2851     for (unsigned i = 0; i != NumSubVectors; ++i) {
2852       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2853       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2854       if (!!DemandedSub) {
2855         SDValue Sub = Op.getOperand(i);
2856         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2857         Known = KnownBits::commonBits(Known, Known2);
2858       }
2859       // If we don't know any bits, early out.
2860       if (Known.isUnknown())
2861         break;
2862     }
2863     break;
2864   }
2865   case ISD::INSERT_SUBVECTOR: {
2866     // Demand any elements from the subvector and the remainder from the src its
2867     // inserted into.
2868     SDValue Src = Op.getOperand(0);
2869     SDValue Sub = Op.getOperand(1);
2870     uint64_t Idx = Op.getConstantOperandVal(2);
2871     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2872     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2873     APInt DemandedSrcElts = DemandedElts;
2874     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2875 
2876     Known.One.setAllBits();
2877     Known.Zero.setAllBits();
2878     if (!!DemandedSubElts) {
2879       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2880       if (Known.isUnknown())
2881         break; // early-out.
2882     }
2883     if (!!DemandedSrcElts) {
2884       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2885       Known = KnownBits::commonBits(Known, Known2);
2886     }
2887     break;
2888   }
2889   case ISD::EXTRACT_SUBVECTOR: {
2890     // Offset the demanded elts by the subvector index.
2891     SDValue Src = Op.getOperand(0);
2892     // Bail until we can represent demanded elements for scalable vectors.
2893     if (Src.getValueType().isScalableVector())
2894       break;
2895     uint64_t Idx = Op.getConstantOperandVal(1);
2896     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2897     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2898     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2899     break;
2900   }
2901   case ISD::SCALAR_TO_VECTOR: {
2902     // We know about scalar_to_vector as much as we know about it source,
2903     // which becomes the first element of otherwise unknown vector.
2904     if (DemandedElts != 1)
2905       break;
2906 
2907     SDValue N0 = Op.getOperand(0);
2908     Known = computeKnownBits(N0, Depth + 1);
2909     if (N0.getValueSizeInBits() != BitWidth)
2910       Known = Known.trunc(BitWidth);
2911 
2912     break;
2913   }
2914   case ISD::BITCAST: {
2915     SDValue N0 = Op.getOperand(0);
2916     EVT SubVT = N0.getValueType();
2917     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2918 
2919     // Ignore bitcasts from unsupported types.
2920     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2921       break;
2922 
2923     // Fast handling of 'identity' bitcasts.
2924     if (BitWidth == SubBitWidth) {
2925       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2926       break;
2927     }
2928 
2929     bool IsLE = getDataLayout().isLittleEndian();
2930 
2931     // Bitcast 'small element' vector to 'large element' scalar/vector.
2932     if ((BitWidth % SubBitWidth) == 0) {
2933       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2934 
2935       // Collect known bits for the (larger) output by collecting the known
2936       // bits from each set of sub elements and shift these into place.
2937       // We need to separately call computeKnownBits for each set of
2938       // sub elements as the knownbits for each is likely to be different.
2939       unsigned SubScale = BitWidth / SubBitWidth;
2940       APInt SubDemandedElts(NumElts * SubScale, 0);
2941       for (unsigned i = 0; i != NumElts; ++i)
2942         if (DemandedElts[i])
2943           SubDemandedElts.setBit(i * SubScale);
2944 
2945       for (unsigned i = 0; i != SubScale; ++i) {
2946         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2947                          Depth + 1);
2948         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2949         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2950         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2951       }
2952     }
2953 
2954     // Bitcast 'large element' scalar/vector to 'small element' vector.
2955     if ((SubBitWidth % BitWidth) == 0) {
2956       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2957 
2958       // Collect known bits for the (smaller) output by collecting the known
2959       // bits from the overlapping larger input elements and extracting the
2960       // sub sections we actually care about.
2961       unsigned SubScale = SubBitWidth / BitWidth;
2962       APInt SubDemandedElts(NumElts / SubScale, 0);
2963       for (unsigned i = 0; i != NumElts; ++i)
2964         if (DemandedElts[i])
2965           SubDemandedElts.setBit(i / SubScale);
2966 
2967       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2968 
2969       Known.Zero.setAllBits(); Known.One.setAllBits();
2970       for (unsigned i = 0; i != NumElts; ++i)
2971         if (DemandedElts[i]) {
2972           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2973           unsigned Offset = (Shifts % SubScale) * BitWidth;
2974           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2975           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2976           // If we don't know any bits, early out.
2977           if (Known.isUnknown())
2978             break;
2979         }
2980     }
2981     break;
2982   }
2983   case ISD::AND:
2984     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2985     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2986 
2987     Known &= Known2;
2988     break;
2989   case ISD::OR:
2990     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2991     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2992 
2993     Known |= Known2;
2994     break;
2995   case ISD::XOR:
2996     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2997     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2998 
2999     Known ^= Known2;
3000     break;
3001   case ISD::MUL: {
3002     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3003     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3004     Known = KnownBits::mul(Known, Known2);
3005     break;
3006   }
3007   case ISD::MULHU: {
3008     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3009     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3010     Known = KnownBits::mulhu(Known, Known2);
3011     break;
3012   }
3013   case ISD::MULHS: {
3014     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3015     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3016     Known = KnownBits::mulhs(Known, Known2);
3017     break;
3018   }
3019   case ISD::UMUL_LOHI: {
3020     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3021     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3022     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3023     if (Op.getResNo() == 0)
3024       Known = KnownBits::mul(Known, Known2);
3025     else
3026       Known = KnownBits::mulhu(Known, Known2);
3027     break;
3028   }
3029   case ISD::SMUL_LOHI: {
3030     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3031     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3032     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3033     if (Op.getResNo() == 0)
3034       Known = KnownBits::mul(Known, Known2);
3035     else
3036       Known = KnownBits::mulhs(Known, Known2);
3037     break;
3038   }
3039   case ISD::UDIV: {
3040     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3041     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3042     Known = KnownBits::udiv(Known, Known2);
3043     break;
3044   }
3045   case ISD::SELECT:
3046   case ISD::VSELECT:
3047     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3048     // If we don't know any bits, early out.
3049     if (Known.isUnknown())
3050       break;
3051     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3052 
3053     // Only known if known in both the LHS and RHS.
3054     Known = KnownBits::commonBits(Known, Known2);
3055     break;
3056   case ISD::SELECT_CC:
3057     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3058     // If we don't know any bits, early out.
3059     if (Known.isUnknown())
3060       break;
3061     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3062 
3063     // Only known if known in both the LHS and RHS.
3064     Known = KnownBits::commonBits(Known, Known2);
3065     break;
3066   case ISD::SMULO:
3067   case ISD::UMULO:
3068   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
3069     if (Op.getResNo() != 1)
3070       break;
3071     // The boolean result conforms to getBooleanContents.
3072     // If we know the result of a setcc has the top bits zero, use this info.
3073     // We know that we have an integer-based boolean since these operations
3074     // are only available for integer.
3075     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3076             TargetLowering::ZeroOrOneBooleanContent &&
3077         BitWidth > 1)
3078       Known.Zero.setBitsFrom(1);
3079     break;
3080   case ISD::SETCC:
3081   case ISD::STRICT_FSETCC:
3082   case ISD::STRICT_FSETCCS: {
3083     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3084     // If we know the result of a setcc has the top bits zero, use this info.
3085     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3086             TargetLowering::ZeroOrOneBooleanContent &&
3087         BitWidth > 1)
3088       Known.Zero.setBitsFrom(1);
3089     break;
3090   }
3091   case ISD::SHL:
3092     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3093     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3094     Known = KnownBits::shl(Known, Known2);
3095 
3096     // Minimum shift low bits are known zero.
3097     if (const APInt *ShMinAmt =
3098             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3099       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3100     break;
3101   case ISD::SRL:
3102     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3103     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3104     Known = KnownBits::lshr(Known, Known2);
3105 
3106     // Minimum shift high bits are known zero.
3107     if (const APInt *ShMinAmt =
3108             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3109       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3110     break;
3111   case ISD::SRA:
3112     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3113     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3114     Known = KnownBits::ashr(Known, Known2);
3115     // TODO: Add minimum shift high known sign bits.
3116     break;
3117   case ISD::FSHL:
3118   case ISD::FSHR:
3119     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3120       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3121 
3122       // For fshl, 0-shift returns the 1st arg.
3123       // For fshr, 0-shift returns the 2nd arg.
3124       if (Amt == 0) {
3125         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3126                                  DemandedElts, Depth + 1);
3127         break;
3128       }
3129 
3130       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3131       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3132       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3133       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3134       if (Opcode == ISD::FSHL) {
3135         Known.One <<= Amt;
3136         Known.Zero <<= Amt;
3137         Known2.One.lshrInPlace(BitWidth - Amt);
3138         Known2.Zero.lshrInPlace(BitWidth - Amt);
3139       } else {
3140         Known.One <<= BitWidth - Amt;
3141         Known.Zero <<= BitWidth - Amt;
3142         Known2.One.lshrInPlace(Amt);
3143         Known2.Zero.lshrInPlace(Amt);
3144       }
3145       Known.One |= Known2.One;
3146       Known.Zero |= Known2.Zero;
3147     }
3148     break;
3149   case ISD::SIGN_EXTEND_INREG: {
3150     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3151     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3152     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3153     break;
3154   }
3155   case ISD::CTTZ:
3156   case ISD::CTTZ_ZERO_UNDEF: {
3157     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3158     // If we have a known 1, its position is our upper bound.
3159     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3160     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3161     Known.Zero.setBitsFrom(LowBits);
3162     break;
3163   }
3164   case ISD::CTLZ:
3165   case ISD::CTLZ_ZERO_UNDEF: {
3166     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3167     // If we have a known 1, its position is our upper bound.
3168     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3169     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3170     Known.Zero.setBitsFrom(LowBits);
3171     break;
3172   }
3173   case ISD::CTPOP: {
3174     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3175     // If we know some of the bits are zero, they can't be one.
3176     unsigned PossibleOnes = Known2.countMaxPopulation();
3177     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3178     break;
3179   }
3180   case ISD::PARITY: {
3181     // Parity returns 0 everywhere but the LSB.
3182     Known.Zero.setBitsFrom(1);
3183     break;
3184   }
3185   case ISD::LOAD: {
3186     LoadSDNode *LD = cast<LoadSDNode>(Op);
3187     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3188     if (ISD::isNON_EXTLoad(LD) && Cst) {
3189       // Determine any common known bits from the loaded constant pool value.
3190       Type *CstTy = Cst->getType();
3191       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3192         // If its a vector splat, then we can (quickly) reuse the scalar path.
3193         // NOTE: We assume all elements match and none are UNDEF.
3194         if (CstTy->isVectorTy()) {
3195           if (const Constant *Splat = Cst->getSplatValue()) {
3196             Cst = Splat;
3197             CstTy = Cst->getType();
3198           }
3199         }
3200         // TODO - do we need to handle different bitwidths?
3201         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3202           // Iterate across all vector elements finding common known bits.
3203           Known.One.setAllBits();
3204           Known.Zero.setAllBits();
3205           for (unsigned i = 0; i != NumElts; ++i) {
3206             if (!DemandedElts[i])
3207               continue;
3208             if (Constant *Elt = Cst->getAggregateElement(i)) {
3209               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3210                 const APInt &Value = CInt->getValue();
3211                 Known.One &= Value;
3212                 Known.Zero &= ~Value;
3213                 continue;
3214               }
3215               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3216                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3217                 Known.One &= Value;
3218                 Known.Zero &= ~Value;
3219                 continue;
3220               }
3221             }
3222             Known.One.clearAllBits();
3223             Known.Zero.clearAllBits();
3224             break;
3225           }
3226         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3227           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3228             Known = KnownBits::makeConstant(CInt->getValue());
3229           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3230             Known =
3231                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3232           }
3233         }
3234       }
3235     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3236       // If this is a ZEXTLoad and we are looking at the loaded value.
3237       EVT VT = LD->getMemoryVT();
3238       unsigned MemBits = VT.getScalarSizeInBits();
3239       Known.Zero.setBitsFrom(MemBits);
3240     } else if (const MDNode *Ranges = LD->getRanges()) {
3241       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3242         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3243     }
3244     break;
3245   }
3246   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3247     EVT InVT = Op.getOperand(0).getValueType();
3248     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3249     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3250     Known = Known.zext(BitWidth);
3251     break;
3252   }
3253   case ISD::ZERO_EXTEND: {
3254     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3255     Known = Known.zext(BitWidth);
3256     break;
3257   }
3258   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3259     EVT InVT = Op.getOperand(0).getValueType();
3260     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3261     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3262     // If the sign bit is known to be zero or one, then sext will extend
3263     // it to the top bits, else it will just zext.
3264     Known = Known.sext(BitWidth);
3265     break;
3266   }
3267   case ISD::SIGN_EXTEND: {
3268     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3269     // If the sign bit is known to be zero or one, then sext will extend
3270     // it to the top bits, else it will just zext.
3271     Known = Known.sext(BitWidth);
3272     break;
3273   }
3274   case ISD::ANY_EXTEND_VECTOR_INREG: {
3275     EVT InVT = Op.getOperand(0).getValueType();
3276     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3277     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3278     Known = Known.anyext(BitWidth);
3279     break;
3280   }
3281   case ISD::ANY_EXTEND: {
3282     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3283     Known = Known.anyext(BitWidth);
3284     break;
3285   }
3286   case ISD::TRUNCATE: {
3287     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3288     Known = Known.trunc(BitWidth);
3289     break;
3290   }
3291   case ISD::AssertZext: {
3292     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3293     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3294     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3295     Known.Zero |= (~InMask);
3296     Known.One  &= (~Known.Zero);
3297     break;
3298   }
3299   case ISD::AssertAlign: {
3300     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3301     assert(LogOfAlign != 0);
3302     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3303     // well as clearing one bits.
3304     Known.Zero.setLowBits(LogOfAlign);
3305     Known.One.clearLowBits(LogOfAlign);
3306     break;
3307   }
3308   case ISD::FGETSIGN:
3309     // All bits are zero except the low bit.
3310     Known.Zero.setBitsFrom(1);
3311     break;
3312   case ISD::USUBO:
3313   case ISD::SSUBO:
3314     if (Op.getResNo() == 1) {
3315       // If we know the result of a setcc has the top bits zero, use this info.
3316       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3317               TargetLowering::ZeroOrOneBooleanContent &&
3318           BitWidth > 1)
3319         Known.Zero.setBitsFrom(1);
3320       break;
3321     }
3322     LLVM_FALLTHROUGH;
3323   case ISD::SUB:
3324   case ISD::SUBC: {
3325     assert(Op.getResNo() == 0 &&
3326            "We only compute knownbits for the difference here.");
3327 
3328     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3329     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3330     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3331                                         Known, Known2);
3332     break;
3333   }
3334   case ISD::UADDO:
3335   case ISD::SADDO:
3336   case ISD::ADDCARRY:
3337     if (Op.getResNo() == 1) {
3338       // If we know the result of a setcc has the top bits zero, use this info.
3339       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3340               TargetLowering::ZeroOrOneBooleanContent &&
3341           BitWidth > 1)
3342         Known.Zero.setBitsFrom(1);
3343       break;
3344     }
3345     LLVM_FALLTHROUGH;
3346   case ISD::ADD:
3347   case ISD::ADDC:
3348   case ISD::ADDE: {
3349     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3350 
3351     // With ADDE and ADDCARRY, a carry bit may be added in.
3352     KnownBits Carry(1);
3353     if (Opcode == ISD::ADDE)
3354       // Can't track carry from glue, set carry to unknown.
3355       Carry.resetAll();
3356     else if (Opcode == ISD::ADDCARRY)
3357       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3358       // the trouble (how often will we find a known carry bit). And I haven't
3359       // tested this very much yet, but something like this might work:
3360       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3361       //   Carry = Carry.zextOrTrunc(1, false);
3362       Carry.resetAll();
3363     else
3364       Carry.setAllZero();
3365 
3366     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3367     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3368     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3369     break;
3370   }
3371   case ISD::SREM: {
3372     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3373     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3374     Known = KnownBits::srem(Known, Known2);
3375     break;
3376   }
3377   case ISD::UREM: {
3378     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3379     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3380     Known = KnownBits::urem(Known, Known2);
3381     break;
3382   }
3383   case ISD::EXTRACT_ELEMENT: {
3384     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3385     const unsigned Index = Op.getConstantOperandVal(1);
3386     const unsigned EltBitWidth = Op.getValueSizeInBits();
3387 
3388     // Remove low part of known bits mask
3389     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3390     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3391 
3392     // Remove high part of known bit mask
3393     Known = Known.trunc(EltBitWidth);
3394     break;
3395   }
3396   case ISD::EXTRACT_VECTOR_ELT: {
3397     SDValue InVec = Op.getOperand(0);
3398     SDValue EltNo = Op.getOperand(1);
3399     EVT VecVT = InVec.getValueType();
3400     // computeKnownBits not yet implemented for scalable vectors.
3401     if (VecVT.isScalableVector())
3402       break;
3403     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3404     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3405 
3406     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3407     // anything about the extended bits.
3408     if (BitWidth > EltBitWidth)
3409       Known = Known.trunc(EltBitWidth);
3410 
3411     // If we know the element index, just demand that vector element, else for
3412     // an unknown element index, ignore DemandedElts and demand them all.
3413     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3414     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3415     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3416       DemandedSrcElts =
3417           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3418 
3419     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3420     if (BitWidth > EltBitWidth)
3421       Known = Known.anyext(BitWidth);
3422     break;
3423   }
3424   case ISD::INSERT_VECTOR_ELT: {
3425     // If we know the element index, split the demand between the
3426     // source vector and the inserted element, otherwise assume we need
3427     // the original demanded vector elements and the value.
3428     SDValue InVec = Op.getOperand(0);
3429     SDValue InVal = Op.getOperand(1);
3430     SDValue EltNo = Op.getOperand(2);
3431     bool DemandedVal = true;
3432     APInt DemandedVecElts = DemandedElts;
3433     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3434     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3435       unsigned EltIdx = CEltNo->getZExtValue();
3436       DemandedVal = !!DemandedElts[EltIdx];
3437       DemandedVecElts.clearBit(EltIdx);
3438     }
3439     Known.One.setAllBits();
3440     Known.Zero.setAllBits();
3441     if (DemandedVal) {
3442       Known2 = computeKnownBits(InVal, Depth + 1);
3443       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3444     }
3445     if (!!DemandedVecElts) {
3446       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3447       Known = KnownBits::commonBits(Known, Known2);
3448     }
3449     break;
3450   }
3451   case ISD::BITREVERSE: {
3452     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3453     Known = Known2.reverseBits();
3454     break;
3455   }
3456   case ISD::BSWAP: {
3457     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3458     Known = Known2.byteSwap();
3459     break;
3460   }
3461   case ISD::ABS: {
3462     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3463     Known = Known2.abs();
3464     break;
3465   }
3466   case ISD::USUBSAT: {
3467     // The result of usubsat will never be larger than the LHS.
3468     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3469     Known.Zero.setHighBits(Known2.countMinLeadingZeros());
3470     break;
3471   }
3472   case ISD::UMIN: {
3473     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3474     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3475     Known = KnownBits::umin(Known, Known2);
3476     break;
3477   }
3478   case ISD::UMAX: {
3479     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3480     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3481     Known = KnownBits::umax(Known, Known2);
3482     break;
3483   }
3484   case ISD::SMIN:
3485   case ISD::SMAX: {
3486     // If we have a clamp pattern, we know that the number of sign bits will be
3487     // the minimum of the clamp min/max range.
3488     bool IsMax = (Opcode == ISD::SMAX);
3489     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3490     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3491       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3492         CstHigh =
3493             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3494     if (CstLow && CstHigh) {
3495       if (!IsMax)
3496         std::swap(CstLow, CstHigh);
3497 
3498       const APInt &ValueLow = CstLow->getAPIntValue();
3499       const APInt &ValueHigh = CstHigh->getAPIntValue();
3500       if (ValueLow.sle(ValueHigh)) {
3501         unsigned LowSignBits = ValueLow.getNumSignBits();
3502         unsigned HighSignBits = ValueHigh.getNumSignBits();
3503         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3504         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3505           Known.One.setHighBits(MinSignBits);
3506           break;
3507         }
3508         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3509           Known.Zero.setHighBits(MinSignBits);
3510           break;
3511         }
3512       }
3513     }
3514 
3515     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3516     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3517     if (IsMax)
3518       Known = KnownBits::smax(Known, Known2);
3519     else
3520       Known = KnownBits::smin(Known, Known2);
3521     break;
3522   }
3523   case ISD::FrameIndex:
3524   case ISD::TargetFrameIndex:
3525     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3526                                        Known, getMachineFunction());
3527     break;
3528 
3529   default:
3530     if (Opcode < ISD::BUILTIN_OP_END)
3531       break;
3532     LLVM_FALLTHROUGH;
3533   case ISD::INTRINSIC_WO_CHAIN:
3534   case ISD::INTRINSIC_W_CHAIN:
3535   case ISD::INTRINSIC_VOID:
3536     // Allow the target to implement this method for its nodes.
3537     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3538     break;
3539   }
3540 
3541   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3542   return Known;
3543 }
3544 
3545 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3546                                                              SDValue N1) const {
3547   // X + 0 never overflow
3548   if (isNullConstant(N1))
3549     return OFK_Never;
3550 
3551   KnownBits N1Known = computeKnownBits(N1);
3552   if (N1Known.Zero.getBoolValue()) {
3553     KnownBits N0Known = computeKnownBits(N0);
3554 
3555     bool overflow;
3556     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3557     if (!overflow)
3558       return OFK_Never;
3559   }
3560 
3561   // mulhi + 1 never overflow
3562   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3563       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3564     return OFK_Never;
3565 
3566   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3567     KnownBits N0Known = computeKnownBits(N0);
3568 
3569     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3570       return OFK_Never;
3571   }
3572 
3573   return OFK_Sometime;
3574 }
3575 
3576 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3577   EVT OpVT = Val.getValueType();
3578   unsigned BitWidth = OpVT.getScalarSizeInBits();
3579 
3580   // Is the constant a known power of 2?
3581   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3582     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3583 
3584   // A left-shift of a constant one will have exactly one bit set because
3585   // shifting the bit off the end is undefined.
3586   if (Val.getOpcode() == ISD::SHL) {
3587     auto *C = isConstOrConstSplat(Val.getOperand(0));
3588     if (C && C->getAPIntValue() == 1)
3589       return true;
3590   }
3591 
3592   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3593   // one bit set.
3594   if (Val.getOpcode() == ISD::SRL) {
3595     auto *C = isConstOrConstSplat(Val.getOperand(0));
3596     if (C && C->getAPIntValue().isSignMask())
3597       return true;
3598   }
3599 
3600   // Are all operands of a build vector constant powers of two?
3601   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3602     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3603           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3604             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3605           return false;
3606         }))
3607       return true;
3608 
3609   // More could be done here, though the above checks are enough
3610   // to handle some common cases.
3611 
3612   // Fall back to computeKnownBits to catch other known cases.
3613   KnownBits Known = computeKnownBits(Val);
3614   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3615 }
3616 
3617 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3618   EVT VT = Op.getValueType();
3619 
3620   // TODO: Assume we don't know anything for now.
3621   if (VT.isScalableVector())
3622     return 1;
3623 
3624   APInt DemandedElts = VT.isVector()
3625                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3626                            : APInt(1, 1);
3627   return ComputeNumSignBits(Op, DemandedElts, Depth);
3628 }
3629 
3630 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3631                                           unsigned Depth) const {
3632   EVT VT = Op.getValueType();
3633   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3634   unsigned VTBits = VT.getScalarSizeInBits();
3635   unsigned NumElts = DemandedElts.getBitWidth();
3636   unsigned Tmp, Tmp2;
3637   unsigned FirstAnswer = 1;
3638 
3639   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3640     const APInt &Val = C->getAPIntValue();
3641     return Val.getNumSignBits();
3642   }
3643 
3644   if (Depth >= MaxRecursionDepth)
3645     return 1;  // Limit search depth.
3646 
3647   if (!DemandedElts || VT.isScalableVector())
3648     return 1;  // No demanded elts, better to assume we don't know anything.
3649 
3650   unsigned Opcode = Op.getOpcode();
3651   switch (Opcode) {
3652   default: break;
3653   case ISD::AssertSext:
3654     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3655     return VTBits-Tmp+1;
3656   case ISD::AssertZext:
3657     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3658     return VTBits-Tmp;
3659 
3660   case ISD::BUILD_VECTOR:
3661     Tmp = VTBits;
3662     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3663       if (!DemandedElts[i])
3664         continue;
3665 
3666       SDValue SrcOp = Op.getOperand(i);
3667       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3668 
3669       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3670       if (SrcOp.getValueSizeInBits() != VTBits) {
3671         assert(SrcOp.getValueSizeInBits() > VTBits &&
3672                "Expected BUILD_VECTOR implicit truncation");
3673         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3674         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3675       }
3676       Tmp = std::min(Tmp, Tmp2);
3677     }
3678     return Tmp;
3679 
3680   case ISD::VECTOR_SHUFFLE: {
3681     // Collect the minimum number of sign bits that are shared by every vector
3682     // element referenced by the shuffle.
3683     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3684     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3685     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3686     for (unsigned i = 0; i != NumElts; ++i) {
3687       int M = SVN->getMaskElt(i);
3688       if (!DemandedElts[i])
3689         continue;
3690       // For UNDEF elements, we don't know anything about the common state of
3691       // the shuffle result.
3692       if (M < 0)
3693         return 1;
3694       if ((unsigned)M < NumElts)
3695         DemandedLHS.setBit((unsigned)M % NumElts);
3696       else
3697         DemandedRHS.setBit((unsigned)M % NumElts);
3698     }
3699     Tmp = std::numeric_limits<unsigned>::max();
3700     if (!!DemandedLHS)
3701       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3702     if (!!DemandedRHS) {
3703       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3704       Tmp = std::min(Tmp, Tmp2);
3705     }
3706     // If we don't know anything, early out and try computeKnownBits fall-back.
3707     if (Tmp == 1)
3708       break;
3709     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3710     return Tmp;
3711   }
3712 
3713   case ISD::BITCAST: {
3714     SDValue N0 = Op.getOperand(0);
3715     EVT SrcVT = N0.getValueType();
3716     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3717 
3718     // Ignore bitcasts from unsupported types..
3719     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3720       break;
3721 
3722     // Fast handling of 'identity' bitcasts.
3723     if (VTBits == SrcBits)
3724       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3725 
3726     bool IsLE = getDataLayout().isLittleEndian();
3727 
3728     // Bitcast 'large element' scalar/vector to 'small element' vector.
3729     if ((SrcBits % VTBits) == 0) {
3730       assert(VT.isVector() && "Expected bitcast to vector");
3731 
3732       unsigned Scale = SrcBits / VTBits;
3733       APInt SrcDemandedElts(NumElts / Scale, 0);
3734       for (unsigned i = 0; i != NumElts; ++i)
3735         if (DemandedElts[i])
3736           SrcDemandedElts.setBit(i / Scale);
3737 
3738       // Fast case - sign splat can be simply split across the small elements.
3739       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3740       if (Tmp == SrcBits)
3741         return VTBits;
3742 
3743       // Slow case - determine how far the sign extends into each sub-element.
3744       Tmp2 = VTBits;
3745       for (unsigned i = 0; i != NumElts; ++i)
3746         if (DemandedElts[i]) {
3747           unsigned SubOffset = i % Scale;
3748           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3749           SubOffset = SubOffset * VTBits;
3750           if (Tmp <= SubOffset)
3751             return 1;
3752           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3753         }
3754       return Tmp2;
3755     }
3756     break;
3757   }
3758 
3759   case ISD::SIGN_EXTEND:
3760     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3761     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3762   case ISD::SIGN_EXTEND_INREG:
3763     // Max of the input and what this extends.
3764     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3765     Tmp = VTBits-Tmp+1;
3766     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3767     return std::max(Tmp, Tmp2);
3768   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3769     SDValue Src = Op.getOperand(0);
3770     EVT SrcVT = Src.getValueType();
3771     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3772     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3773     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3774   }
3775   case ISD::SRA:
3776     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3777     // SRA X, C -> adds C sign bits.
3778     if (const APInt *ShAmt =
3779             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3780       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3781     return Tmp;
3782   case ISD::SHL:
3783     if (const APInt *ShAmt =
3784             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3785       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3786       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3787       if (ShAmt->ult(Tmp))
3788         return Tmp - ShAmt->getZExtValue();
3789     }
3790     break;
3791   case ISD::AND:
3792   case ISD::OR:
3793   case ISD::XOR:    // NOT is handled here.
3794     // Logical binary ops preserve the number of sign bits at the worst.
3795     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3796     if (Tmp != 1) {
3797       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3798       FirstAnswer = std::min(Tmp, Tmp2);
3799       // We computed what we know about the sign bits as our first
3800       // answer. Now proceed to the generic code that uses
3801       // computeKnownBits, and pick whichever answer is better.
3802     }
3803     break;
3804 
3805   case ISD::SELECT:
3806   case ISD::VSELECT:
3807     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3808     if (Tmp == 1) return 1;  // Early out.
3809     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3810     return std::min(Tmp, Tmp2);
3811   case ISD::SELECT_CC:
3812     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3813     if (Tmp == 1) return 1;  // Early out.
3814     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3815     return std::min(Tmp, Tmp2);
3816 
3817   case ISD::SMIN:
3818   case ISD::SMAX: {
3819     // If we have a clamp pattern, we know that the number of sign bits will be
3820     // the minimum of the clamp min/max range.
3821     bool IsMax = (Opcode == ISD::SMAX);
3822     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3823     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3824       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3825         CstHigh =
3826             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3827     if (CstLow && CstHigh) {
3828       if (!IsMax)
3829         std::swap(CstLow, CstHigh);
3830       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3831         Tmp = CstLow->getAPIntValue().getNumSignBits();
3832         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3833         return std::min(Tmp, Tmp2);
3834       }
3835     }
3836 
3837     // Fallback - just get the minimum number of sign bits of the operands.
3838     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3839     if (Tmp == 1)
3840       return 1;  // Early out.
3841     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3842     return std::min(Tmp, Tmp2);
3843   }
3844   case ISD::UMIN:
3845   case ISD::UMAX:
3846     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3847     if (Tmp == 1)
3848       return 1;  // Early out.
3849     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3850     return std::min(Tmp, Tmp2);
3851   case ISD::SADDO:
3852   case ISD::UADDO:
3853   case ISD::SSUBO:
3854   case ISD::USUBO:
3855   case ISD::SMULO:
3856   case ISD::UMULO:
3857     if (Op.getResNo() != 1)
3858       break;
3859     // The boolean result conforms to getBooleanContents.  Fall through.
3860     // If setcc returns 0/-1, all bits are sign bits.
3861     // We know that we have an integer-based boolean since these operations
3862     // are only available for integer.
3863     if (TLI->getBooleanContents(VT.isVector(), false) ==
3864         TargetLowering::ZeroOrNegativeOneBooleanContent)
3865       return VTBits;
3866     break;
3867   case ISD::SETCC:
3868   case ISD::STRICT_FSETCC:
3869   case ISD::STRICT_FSETCCS: {
3870     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3871     // If setcc returns 0/-1, all bits are sign bits.
3872     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3873         TargetLowering::ZeroOrNegativeOneBooleanContent)
3874       return VTBits;
3875     break;
3876   }
3877   case ISD::ROTL:
3878   case ISD::ROTR:
3879     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3880 
3881     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3882     if (Tmp == VTBits)
3883       return VTBits;
3884 
3885     if (ConstantSDNode *C =
3886             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3887       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3888 
3889       // Handle rotate right by N like a rotate left by 32-N.
3890       if (Opcode == ISD::ROTR)
3891         RotAmt = (VTBits - RotAmt) % VTBits;
3892 
3893       // If we aren't rotating out all of the known-in sign bits, return the
3894       // number that are left.  This handles rotl(sext(x), 1) for example.
3895       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3896     }
3897     break;
3898   case ISD::ADD:
3899   case ISD::ADDC:
3900     // Add can have at most one carry bit.  Thus we know that the output
3901     // is, at worst, one more bit than the inputs.
3902     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3903     if (Tmp == 1) return 1; // Early out.
3904 
3905     // Special case decrementing a value (ADD X, -1):
3906     if (ConstantSDNode *CRHS =
3907             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3908       if (CRHS->isAllOnesValue()) {
3909         KnownBits Known =
3910             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3911 
3912         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3913         // sign bits set.
3914         if ((Known.Zero | 1).isAllOnesValue())
3915           return VTBits;
3916 
3917         // If we are subtracting one from a positive number, there is no carry
3918         // out of the result.
3919         if (Known.isNonNegative())
3920           return Tmp;
3921       }
3922 
3923     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3924     if (Tmp2 == 1) return 1; // Early out.
3925     return std::min(Tmp, Tmp2) - 1;
3926   case ISD::SUB:
3927     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3928     if (Tmp2 == 1) return 1; // Early out.
3929 
3930     // Handle NEG.
3931     if (ConstantSDNode *CLHS =
3932             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
3933       if (CLHS->isNullValue()) {
3934         KnownBits Known =
3935             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3936         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3937         // sign bits set.
3938         if ((Known.Zero | 1).isAllOnesValue())
3939           return VTBits;
3940 
3941         // If the input is known to be positive (the sign bit is known clear),
3942         // the output of the NEG has the same number of sign bits as the input.
3943         if (Known.isNonNegative())
3944           return Tmp2;
3945 
3946         // Otherwise, we treat this like a SUB.
3947       }
3948 
3949     // Sub can have at most one carry bit.  Thus we know that the output
3950     // is, at worst, one more bit than the inputs.
3951     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3952     if (Tmp == 1) return 1; // Early out.
3953     return std::min(Tmp, Tmp2) - 1;
3954   case ISD::MUL: {
3955     // The output of the Mul can be at most twice the valid bits in the inputs.
3956     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3957     if (SignBitsOp0 == 1)
3958       break;
3959     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3960     if (SignBitsOp1 == 1)
3961       break;
3962     unsigned OutValidBits =
3963         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3964     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
3965   }
3966   case ISD::SREM:
3967     // The sign bit is the LHS's sign bit, except when the result of the
3968     // remainder is zero. The magnitude of the result should be less than or
3969     // equal to the magnitude of the LHS. Therefore, the result should have
3970     // at least as many sign bits as the left hand side.
3971     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3972   case ISD::TRUNCATE: {
3973     // Check if the sign bits of source go down as far as the truncated value.
3974     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3975     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3976     if (NumSrcSignBits > (NumSrcBits - VTBits))
3977       return NumSrcSignBits - (NumSrcBits - VTBits);
3978     break;
3979   }
3980   case ISD::EXTRACT_ELEMENT: {
3981     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3982     const int BitWidth = Op.getValueSizeInBits();
3983     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3984 
3985     // Get reverse index (starting from 1), Op1 value indexes elements from
3986     // little end. Sign starts at big end.
3987     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3988 
3989     // If the sign portion ends in our element the subtraction gives correct
3990     // result. Otherwise it gives either negative or > bitwidth result
3991     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3992   }
3993   case ISD::INSERT_VECTOR_ELT: {
3994     // If we know the element index, split the demand between the
3995     // source vector and the inserted element, otherwise assume we need
3996     // the original demanded vector elements and the value.
3997     SDValue InVec = Op.getOperand(0);
3998     SDValue InVal = Op.getOperand(1);
3999     SDValue EltNo = Op.getOperand(2);
4000     bool DemandedVal = true;
4001     APInt DemandedVecElts = DemandedElts;
4002     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4003     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4004       unsigned EltIdx = CEltNo->getZExtValue();
4005       DemandedVal = !!DemandedElts[EltIdx];
4006       DemandedVecElts.clearBit(EltIdx);
4007     }
4008     Tmp = std::numeric_limits<unsigned>::max();
4009     if (DemandedVal) {
4010       // TODO - handle implicit truncation of inserted elements.
4011       if (InVal.getScalarValueSizeInBits() != VTBits)
4012         break;
4013       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
4014       Tmp = std::min(Tmp, Tmp2);
4015     }
4016     if (!!DemandedVecElts) {
4017       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
4018       Tmp = std::min(Tmp, Tmp2);
4019     }
4020     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4021     return Tmp;
4022   }
4023   case ISD::EXTRACT_VECTOR_ELT: {
4024     SDValue InVec = Op.getOperand(0);
4025     SDValue EltNo = Op.getOperand(1);
4026     EVT VecVT = InVec.getValueType();
4027     // ComputeNumSignBits not yet implemented for scalable vectors.
4028     if (VecVT.isScalableVector())
4029       break;
4030     const unsigned BitWidth = Op.getValueSizeInBits();
4031     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
4032     const unsigned NumSrcElts = VecVT.getVectorNumElements();
4033 
4034     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
4035     // anything about sign bits. But if the sizes match we can derive knowledge
4036     // about sign bits from the vector operand.
4037     if (BitWidth != EltBitWidth)
4038       break;
4039 
4040     // If we know the element index, just demand that vector element, else for
4041     // an unknown element index, ignore DemandedElts and demand them all.
4042     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
4043     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4044     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4045       DemandedSrcElts =
4046           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4047 
4048     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
4049   }
4050   case ISD::EXTRACT_SUBVECTOR: {
4051     // Offset the demanded elts by the subvector index.
4052     SDValue Src = Op.getOperand(0);
4053     // Bail until we can represent demanded elements for scalable vectors.
4054     if (Src.getValueType().isScalableVector())
4055       break;
4056     uint64_t Idx = Op.getConstantOperandVal(1);
4057     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
4058     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
4059     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4060   }
4061   case ISD::CONCAT_VECTORS: {
4062     // Determine the minimum number of sign bits across all demanded
4063     // elts of the input vectors. Early out if the result is already 1.
4064     Tmp = std::numeric_limits<unsigned>::max();
4065     EVT SubVectorVT = Op.getOperand(0).getValueType();
4066     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4067     unsigned NumSubVectors = Op.getNumOperands();
4068     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4069       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
4070       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
4071       if (!DemandedSub)
4072         continue;
4073       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4074       Tmp = std::min(Tmp, Tmp2);
4075     }
4076     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4077     return Tmp;
4078   }
4079   case ISD::INSERT_SUBVECTOR: {
4080     // Demand any elements from the subvector and the remainder from the src its
4081     // inserted into.
4082     SDValue Src = Op.getOperand(0);
4083     SDValue Sub = Op.getOperand(1);
4084     uint64_t Idx = Op.getConstantOperandVal(2);
4085     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4086     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4087     APInt DemandedSrcElts = DemandedElts;
4088     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
4089 
4090     Tmp = std::numeric_limits<unsigned>::max();
4091     if (!!DemandedSubElts) {
4092       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4093       if (Tmp == 1)
4094         return 1; // early-out
4095     }
4096     if (!!DemandedSrcElts) {
4097       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4098       Tmp = std::min(Tmp, Tmp2);
4099     }
4100     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4101     return Tmp;
4102   }
4103   }
4104 
4105   // If we are looking at the loaded value of the SDNode.
4106   if (Op.getResNo() == 0) {
4107     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4108     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4109       unsigned ExtType = LD->getExtensionType();
4110       switch (ExtType) {
4111       default: break;
4112       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4113         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4114         return VTBits - Tmp + 1;
4115       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4116         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4117         return VTBits - Tmp;
4118       case ISD::NON_EXTLOAD:
4119         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4120           // We only need to handle vectors - computeKnownBits should handle
4121           // scalar cases.
4122           Type *CstTy = Cst->getType();
4123           if (CstTy->isVectorTy() &&
4124               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
4125             Tmp = VTBits;
4126             for (unsigned i = 0; i != NumElts; ++i) {
4127               if (!DemandedElts[i])
4128                 continue;
4129               if (Constant *Elt = Cst->getAggregateElement(i)) {
4130                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4131                   const APInt &Value = CInt->getValue();
4132                   Tmp = std::min(Tmp, Value.getNumSignBits());
4133                   continue;
4134                 }
4135                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4136                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4137                   Tmp = std::min(Tmp, Value.getNumSignBits());
4138                   continue;
4139                 }
4140               }
4141               // Unknown type. Conservatively assume no bits match sign bit.
4142               return 1;
4143             }
4144             return Tmp;
4145           }
4146         }
4147         break;
4148       }
4149     }
4150   }
4151 
4152   // Allow the target to implement this method for its nodes.
4153   if (Opcode >= ISD::BUILTIN_OP_END ||
4154       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4155       Opcode == ISD::INTRINSIC_W_CHAIN ||
4156       Opcode == ISD::INTRINSIC_VOID) {
4157     unsigned NumBits =
4158         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4159     if (NumBits > 1)
4160       FirstAnswer = std::max(FirstAnswer, NumBits);
4161   }
4162 
4163   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4164   // use this information.
4165   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4166 
4167   APInt Mask;
4168   if (Known.isNonNegative()) {        // sign bit is 0
4169     Mask = Known.Zero;
4170   } else if (Known.isNegative()) {  // sign bit is 1;
4171     Mask = Known.One;
4172   } else {
4173     // Nothing known.
4174     return FirstAnswer;
4175   }
4176 
4177   // Okay, we know that the sign bit in Mask is set.  Use CLO to determine
4178   // the number of identical bits in the top of the input value.
4179   Mask <<= Mask.getBitWidth()-VTBits;
4180   return std::max(FirstAnswer, Mask.countLeadingOnes());
4181 }
4182 
4183 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4184   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4185       !isa<ConstantSDNode>(Op.getOperand(1)))
4186     return false;
4187 
4188   if (Op.getOpcode() == ISD::OR &&
4189       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4190     return false;
4191 
4192   return true;
4193 }
4194 
4195 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4196   // If we're told that NaNs won't happen, assume they won't.
4197   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4198     return true;
4199 
4200   if (Depth >= MaxRecursionDepth)
4201     return false; // Limit search depth.
4202 
4203   // TODO: Handle vectors.
4204   // If the value is a constant, we can obviously see if it is a NaN or not.
4205   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4206     return !C->getValueAPF().isNaN() ||
4207            (SNaN && !C->getValueAPF().isSignaling());
4208   }
4209 
4210   unsigned Opcode = Op.getOpcode();
4211   switch (Opcode) {
4212   case ISD::FADD:
4213   case ISD::FSUB:
4214   case ISD::FMUL:
4215   case ISD::FDIV:
4216   case ISD::FREM:
4217   case ISD::FSIN:
4218   case ISD::FCOS: {
4219     if (SNaN)
4220       return true;
4221     // TODO: Need isKnownNeverInfinity
4222     return false;
4223   }
4224   case ISD::FCANONICALIZE:
4225   case ISD::FEXP:
4226   case ISD::FEXP2:
4227   case ISD::FTRUNC:
4228   case ISD::FFLOOR:
4229   case ISD::FCEIL:
4230   case ISD::FROUND:
4231   case ISD::FROUNDEVEN:
4232   case ISD::FRINT:
4233   case ISD::FNEARBYINT: {
4234     if (SNaN)
4235       return true;
4236     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4237   }
4238   case ISD::FABS:
4239   case ISD::FNEG:
4240   case ISD::FCOPYSIGN: {
4241     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4242   }
4243   case ISD::SELECT:
4244     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4245            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4246   case ISD::FP_EXTEND:
4247   case ISD::FP_ROUND: {
4248     if (SNaN)
4249       return true;
4250     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4251   }
4252   case ISD::SINT_TO_FP:
4253   case ISD::UINT_TO_FP:
4254     return true;
4255   case ISD::FMA:
4256   case ISD::FMAD: {
4257     if (SNaN)
4258       return true;
4259     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4260            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4261            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4262   }
4263   case ISD::FSQRT: // Need is known positive
4264   case ISD::FLOG:
4265   case ISD::FLOG2:
4266   case ISD::FLOG10:
4267   case ISD::FPOWI:
4268   case ISD::FPOW: {
4269     if (SNaN)
4270       return true;
4271     // TODO: Refine on operand
4272     return false;
4273   }
4274   case ISD::FMINNUM:
4275   case ISD::FMAXNUM: {
4276     // Only one needs to be known not-nan, since it will be returned if the
4277     // other ends up being one.
4278     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4279            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4280   }
4281   case ISD::FMINNUM_IEEE:
4282   case ISD::FMAXNUM_IEEE: {
4283     if (SNaN)
4284       return true;
4285     // This can return a NaN if either operand is an sNaN, or if both operands
4286     // are NaN.
4287     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4288             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4289            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4290             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4291   }
4292   case ISD::FMINIMUM:
4293   case ISD::FMAXIMUM: {
4294     // TODO: Does this quiet or return the origina NaN as-is?
4295     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4296            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4297   }
4298   case ISD::EXTRACT_VECTOR_ELT: {
4299     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4300   }
4301   default:
4302     if (Opcode >= ISD::BUILTIN_OP_END ||
4303         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4304         Opcode == ISD::INTRINSIC_W_CHAIN ||
4305         Opcode == ISD::INTRINSIC_VOID) {
4306       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4307     }
4308 
4309     return false;
4310   }
4311 }
4312 
4313 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4314   assert(Op.getValueType().isFloatingPoint() &&
4315          "Floating point type expected");
4316 
4317   // If the value is a constant, we can obviously see if it is a zero or not.
4318   // TODO: Add BuildVector support.
4319   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4320     return !C->isZero();
4321   return false;
4322 }
4323 
4324 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4325   assert(!Op.getValueType().isFloatingPoint() &&
4326          "Floating point types unsupported - use isKnownNeverZeroFloat");
4327 
4328   // If the value is a constant, we can obviously see if it is a zero or not.
4329   if (ISD::matchUnaryPredicate(
4330           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4331     return true;
4332 
4333   // TODO: Recognize more cases here.
4334   switch (Op.getOpcode()) {
4335   default: break;
4336   case ISD::OR:
4337     if (isKnownNeverZero(Op.getOperand(1)) ||
4338         isKnownNeverZero(Op.getOperand(0)))
4339       return true;
4340     break;
4341   }
4342 
4343   return false;
4344 }
4345 
4346 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4347   // Check the obvious case.
4348   if (A == B) return true;
4349 
4350   // For for negative and positive zero.
4351   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4352     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4353       if (CA->isZero() && CB->isZero()) return true;
4354 
4355   // Otherwise they may not be equal.
4356   return false;
4357 }
4358 
4359 // FIXME: unify with llvm::haveNoCommonBitsSet.
4360 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4361 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4362   assert(A.getValueType() == B.getValueType() &&
4363          "Values must have the same type");
4364   return KnownBits::haveNoCommonBitsSet(computeKnownBits(A),
4365                                         computeKnownBits(B));
4366 }
4367 
4368 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
4369                                SelectionDAG &DAG) {
4370   if (cast<ConstantSDNode>(Step)->isNullValue())
4371     return DAG.getConstant(0, DL, VT);
4372 
4373   return SDValue();
4374 }
4375 
4376 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4377                                 ArrayRef<SDValue> Ops,
4378                                 SelectionDAG &DAG) {
4379   int NumOps = Ops.size();
4380   assert(NumOps != 0 && "Can't build an empty vector!");
4381   assert(!VT.isScalableVector() &&
4382          "BUILD_VECTOR cannot be used with scalable types");
4383   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4384          "Incorrect element count in BUILD_VECTOR!");
4385 
4386   // BUILD_VECTOR of UNDEFs is UNDEF.
4387   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4388     return DAG.getUNDEF(VT);
4389 
4390   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4391   SDValue IdentitySrc;
4392   bool IsIdentity = true;
4393   for (int i = 0; i != NumOps; ++i) {
4394     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4395         Ops[i].getOperand(0).getValueType() != VT ||
4396         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4397         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4398         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4399       IsIdentity = false;
4400       break;
4401     }
4402     IdentitySrc = Ops[i].getOperand(0);
4403   }
4404   if (IsIdentity)
4405     return IdentitySrc;
4406 
4407   return SDValue();
4408 }
4409 
4410 /// Try to simplify vector concatenation to an input value, undef, or build
4411 /// vector.
4412 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4413                                   ArrayRef<SDValue> Ops,
4414                                   SelectionDAG &DAG) {
4415   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4416   assert(llvm::all_of(Ops,
4417                       [Ops](SDValue Op) {
4418                         return Ops[0].getValueType() == Op.getValueType();
4419                       }) &&
4420          "Concatenation of vectors with inconsistent value types!");
4421   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4422              VT.getVectorElementCount() &&
4423          "Incorrect element count in vector concatenation!");
4424 
4425   if (Ops.size() == 1)
4426     return Ops[0];
4427 
4428   // Concat of UNDEFs is UNDEF.
4429   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4430     return DAG.getUNDEF(VT);
4431 
4432   // Scan the operands and look for extract operations from a single source
4433   // that correspond to insertion at the same location via this concatenation:
4434   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4435   SDValue IdentitySrc;
4436   bool IsIdentity = true;
4437   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4438     SDValue Op = Ops[i];
4439     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4440     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4441         Op.getOperand(0).getValueType() != VT ||
4442         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4443         Op.getConstantOperandVal(1) != IdentityIndex) {
4444       IsIdentity = false;
4445       break;
4446     }
4447     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4448            "Unexpected identity source vector for concat of extracts");
4449     IdentitySrc = Op.getOperand(0);
4450   }
4451   if (IsIdentity) {
4452     assert(IdentitySrc && "Failed to set source vector of extracts");
4453     return IdentitySrc;
4454   }
4455 
4456   // The code below this point is only designed to work for fixed width
4457   // vectors, so we bail out for now.
4458   if (VT.isScalableVector())
4459     return SDValue();
4460 
4461   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4462   // simplified to one big BUILD_VECTOR.
4463   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4464   EVT SVT = VT.getScalarType();
4465   SmallVector<SDValue, 16> Elts;
4466   for (SDValue Op : Ops) {
4467     EVT OpVT = Op.getValueType();
4468     if (Op.isUndef())
4469       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4470     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4471       Elts.append(Op->op_begin(), Op->op_end());
4472     else
4473       return SDValue();
4474   }
4475 
4476   // BUILD_VECTOR requires all inputs to be of the same type, find the
4477   // maximum type and extend them all.
4478   for (SDValue Op : Elts)
4479     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4480 
4481   if (SVT.bitsGT(VT.getScalarType())) {
4482     for (SDValue &Op : Elts) {
4483       if (Op.isUndef())
4484         Op = DAG.getUNDEF(SVT);
4485       else
4486         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4487                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4488                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4489     }
4490   }
4491 
4492   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4493   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4494   return V;
4495 }
4496 
4497 /// Gets or creates the specified node.
4498 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4499   FoldingSetNodeID ID;
4500   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4501   void *IP = nullptr;
4502   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4503     return SDValue(E, 0);
4504 
4505   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4506                               getVTList(VT));
4507   CSEMap.InsertNode(N, IP);
4508 
4509   InsertNode(N);
4510   SDValue V = SDValue(N, 0);
4511   NewSDValueDbgMsg(V, "Creating new node: ", this);
4512   return V;
4513 }
4514 
4515 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4516                               SDValue Operand) {
4517   SDNodeFlags Flags;
4518   if (Inserter)
4519     Flags = Inserter->getFlags();
4520   return getNode(Opcode, DL, VT, Operand, Flags);
4521 }
4522 
4523 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4524                               SDValue Operand, const SDNodeFlags Flags) {
4525   assert(Operand.getOpcode() != ISD::DELETED_NODE &&
4526          "Operand is DELETED_NODE!");
4527   // Constant fold unary operations with an integer constant operand. Even
4528   // opaque constant will be folded, because the folding of unary operations
4529   // doesn't create new constants with different values. Nevertheless, the
4530   // opaque flag is preserved during folding to prevent future folding with
4531   // other constants.
4532   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4533     const APInt &Val = C->getAPIntValue();
4534     switch (Opcode) {
4535     default: break;
4536     case ISD::SIGN_EXTEND:
4537       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4538                          C->isTargetOpcode(), C->isOpaque());
4539     case ISD::TRUNCATE:
4540       if (C->isOpaque())
4541         break;
4542       LLVM_FALLTHROUGH;
4543     case ISD::ANY_EXTEND:
4544     case ISD::ZERO_EXTEND:
4545       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4546                          C->isTargetOpcode(), C->isOpaque());
4547     case ISD::UINT_TO_FP:
4548     case ISD::SINT_TO_FP: {
4549       APFloat apf(EVTToAPFloatSemantics(VT),
4550                   APInt::getNullValue(VT.getSizeInBits()));
4551       (void)apf.convertFromAPInt(Val,
4552                                  Opcode==ISD::SINT_TO_FP,
4553                                  APFloat::rmNearestTiesToEven);
4554       return getConstantFP(apf, DL, VT);
4555     }
4556     case ISD::BITCAST:
4557       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4558         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4559       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4560         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4561       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4562         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4563       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4564         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4565       break;
4566     case ISD::ABS:
4567       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4568                          C->isOpaque());
4569     case ISD::BITREVERSE:
4570       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4571                          C->isOpaque());
4572     case ISD::BSWAP:
4573       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4574                          C->isOpaque());
4575     case ISD::CTPOP:
4576       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4577                          C->isOpaque());
4578     case ISD::CTLZ:
4579     case ISD::CTLZ_ZERO_UNDEF:
4580       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4581                          C->isOpaque());
4582     case ISD::CTTZ:
4583     case ISD::CTTZ_ZERO_UNDEF:
4584       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4585                          C->isOpaque());
4586     case ISD::FP16_TO_FP: {
4587       bool Ignored;
4588       APFloat FPV(APFloat::IEEEhalf(),
4589                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4590 
4591       // This can return overflow, underflow, or inexact; we don't care.
4592       // FIXME need to be more flexible about rounding mode.
4593       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4594                         APFloat::rmNearestTiesToEven, &Ignored);
4595       return getConstantFP(FPV, DL, VT);
4596     }
4597     case ISD::STEP_VECTOR: {
4598       if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this))
4599         return V;
4600       break;
4601     }
4602     }
4603   }
4604 
4605   // Constant fold unary operations with a floating point constant operand.
4606   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4607     APFloat V = C->getValueAPF();    // make copy
4608     switch (Opcode) {
4609     case ISD::FNEG:
4610       V.changeSign();
4611       return getConstantFP(V, DL, VT);
4612     case ISD::FABS:
4613       V.clearSign();
4614       return getConstantFP(V, DL, VT);
4615     case ISD::FCEIL: {
4616       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4617       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4618         return getConstantFP(V, DL, VT);
4619       break;
4620     }
4621     case ISD::FTRUNC: {
4622       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4623       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4624         return getConstantFP(V, DL, VT);
4625       break;
4626     }
4627     case ISD::FFLOOR: {
4628       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4629       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4630         return getConstantFP(V, DL, VT);
4631       break;
4632     }
4633     case ISD::FP_EXTEND: {
4634       bool ignored;
4635       // This can return overflow, underflow, or inexact; we don't care.
4636       // FIXME need to be more flexible about rounding mode.
4637       (void)V.convert(EVTToAPFloatSemantics(VT),
4638                       APFloat::rmNearestTiesToEven, &ignored);
4639       return getConstantFP(V, DL, VT);
4640     }
4641     case ISD::FP_TO_SINT:
4642     case ISD::FP_TO_UINT: {
4643       bool ignored;
4644       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4645       // FIXME need to be more flexible about rounding mode.
4646       APFloat::opStatus s =
4647           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4648       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4649         break;
4650       return getConstant(IntVal, DL, VT);
4651     }
4652     case ISD::BITCAST:
4653       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4654         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4655       if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
4656         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4657       if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4658         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4659       if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4660         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4661       break;
4662     case ISD::FP_TO_FP16: {
4663       bool Ignored;
4664       // This can return overflow, underflow, or inexact; we don't care.
4665       // FIXME need to be more flexible about rounding mode.
4666       (void)V.convert(APFloat::IEEEhalf(),
4667                       APFloat::rmNearestTiesToEven, &Ignored);
4668       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4669     }
4670     }
4671   }
4672 
4673   // Constant fold unary operations with a vector integer or float operand.
4674   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4675     if (BV->isConstant()) {
4676       switch (Opcode) {
4677       default:
4678         // FIXME: Entirely reasonable to perform folding of other unary
4679         // operations here as the need arises.
4680         break;
4681       case ISD::FNEG:
4682       case ISD::FABS:
4683       case ISD::FCEIL:
4684       case ISD::FTRUNC:
4685       case ISD::FFLOOR:
4686       case ISD::FP_EXTEND:
4687       case ISD::FP_TO_SINT:
4688       case ISD::FP_TO_UINT:
4689       case ISD::TRUNCATE:
4690       case ISD::ANY_EXTEND:
4691       case ISD::ZERO_EXTEND:
4692       case ISD::SIGN_EXTEND:
4693       case ISD::UINT_TO_FP:
4694       case ISD::SINT_TO_FP:
4695       case ISD::ABS:
4696       case ISD::BITREVERSE:
4697       case ISD::BSWAP:
4698       case ISD::CTLZ:
4699       case ISD::CTLZ_ZERO_UNDEF:
4700       case ISD::CTTZ:
4701       case ISD::CTTZ_ZERO_UNDEF:
4702       case ISD::CTPOP: {
4703         SDValue Ops = { Operand };
4704         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4705           return Fold;
4706       }
4707       }
4708     }
4709   }
4710 
4711   unsigned OpOpcode = Operand.getNode()->getOpcode();
4712   switch (Opcode) {
4713   case ISD::STEP_VECTOR:
4714     assert(VT.isScalableVector() &&
4715            "STEP_VECTOR can only be used with scalable types");
4716     assert(VT.getScalarSizeInBits() >= 8 &&
4717            "STEP_VECTOR can only be used with vectors of integers that are at "
4718            "least 8 bits wide");
4719     assert(isa<ConstantSDNode>(Operand) &&
4720            cast<ConstantSDNode>(Operand)->getAPIntValue().isNonNegative() &&
4721            cast<ConstantSDNode>(Operand)->getAPIntValue().isSignedIntN(
4722                VT.getScalarSizeInBits()) &&
4723            "Expected STEP_VECTOR integer constant to be positive and fit in "
4724            "the vector element type");
4725     break;
4726   case ISD::FREEZE:
4727     assert(VT == Operand.getValueType() && "Unexpected VT!");
4728     break;
4729   case ISD::TokenFactor:
4730   case ISD::MERGE_VALUES:
4731   case ISD::CONCAT_VECTORS:
4732     return Operand;         // Factor, merge or concat of one node?  No need.
4733   case ISD::BUILD_VECTOR: {
4734     // Attempt to simplify BUILD_VECTOR.
4735     SDValue Ops[] = {Operand};
4736     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4737       return V;
4738     break;
4739   }
4740   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4741   case ISD::FP_EXTEND:
4742     assert(VT.isFloatingPoint() &&
4743            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4744     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4745     assert((!VT.isVector() ||
4746             VT.getVectorElementCount() ==
4747             Operand.getValueType().getVectorElementCount()) &&
4748            "Vector element count mismatch!");
4749     assert(Operand.getValueType().bitsLT(VT) &&
4750            "Invalid fpext node, dst < src!");
4751     if (Operand.isUndef())
4752       return getUNDEF(VT);
4753     break;
4754   case ISD::FP_TO_SINT:
4755   case ISD::FP_TO_UINT:
4756     if (Operand.isUndef())
4757       return getUNDEF(VT);
4758     break;
4759   case ISD::SINT_TO_FP:
4760   case ISD::UINT_TO_FP:
4761     // [us]itofp(undef) = 0, because the result value is bounded.
4762     if (Operand.isUndef())
4763       return getConstantFP(0.0, DL, VT);
4764     break;
4765   case ISD::SIGN_EXTEND:
4766     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4767            "Invalid SIGN_EXTEND!");
4768     assert(VT.isVector() == Operand.getValueType().isVector() &&
4769            "SIGN_EXTEND result type type should be vector iff the operand "
4770            "type is vector!");
4771     if (Operand.getValueType() == VT) return Operand;   // noop extension
4772     assert((!VT.isVector() ||
4773             VT.getVectorElementCount() ==
4774                 Operand.getValueType().getVectorElementCount()) &&
4775            "Vector element count mismatch!");
4776     assert(Operand.getValueType().bitsLT(VT) &&
4777            "Invalid sext node, dst < src!");
4778     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4779       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4780     if (OpOpcode == ISD::UNDEF)
4781       // sext(undef) = 0, because the top bits will all be the same.
4782       return getConstant(0, DL, VT);
4783     break;
4784   case ISD::ZERO_EXTEND:
4785     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4786            "Invalid ZERO_EXTEND!");
4787     assert(VT.isVector() == Operand.getValueType().isVector() &&
4788            "ZERO_EXTEND result type type should be vector iff the operand "
4789            "type is vector!");
4790     if (Operand.getValueType() == VT) return Operand;   // noop extension
4791     assert((!VT.isVector() ||
4792             VT.getVectorElementCount() ==
4793                 Operand.getValueType().getVectorElementCount()) &&
4794            "Vector element count mismatch!");
4795     assert(Operand.getValueType().bitsLT(VT) &&
4796            "Invalid zext node, dst < src!");
4797     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4798       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4799     if (OpOpcode == ISD::UNDEF)
4800       // zext(undef) = 0, because the top bits will be zero.
4801       return getConstant(0, DL, VT);
4802     break;
4803   case ISD::ANY_EXTEND:
4804     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4805            "Invalid ANY_EXTEND!");
4806     assert(VT.isVector() == Operand.getValueType().isVector() &&
4807            "ANY_EXTEND result type type should be vector iff the operand "
4808            "type is vector!");
4809     if (Operand.getValueType() == VT) return Operand;   // noop extension
4810     assert((!VT.isVector() ||
4811             VT.getVectorElementCount() ==
4812                 Operand.getValueType().getVectorElementCount()) &&
4813            "Vector element count mismatch!");
4814     assert(Operand.getValueType().bitsLT(VT) &&
4815            "Invalid anyext node, dst < src!");
4816 
4817     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4818         OpOpcode == ISD::ANY_EXTEND)
4819       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4820       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4821     if (OpOpcode == ISD::UNDEF)
4822       return getUNDEF(VT);
4823 
4824     // (ext (trunc x)) -> x
4825     if (OpOpcode == ISD::TRUNCATE) {
4826       SDValue OpOp = Operand.getOperand(0);
4827       if (OpOp.getValueType() == VT) {
4828         transferDbgValues(Operand, OpOp);
4829         return OpOp;
4830       }
4831     }
4832     break;
4833   case ISD::TRUNCATE:
4834     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4835            "Invalid TRUNCATE!");
4836     assert(VT.isVector() == Operand.getValueType().isVector() &&
4837            "TRUNCATE result type type should be vector iff the operand "
4838            "type is vector!");
4839     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4840     assert((!VT.isVector() ||
4841             VT.getVectorElementCount() ==
4842                 Operand.getValueType().getVectorElementCount()) &&
4843            "Vector element count mismatch!");
4844     assert(Operand.getValueType().bitsGT(VT) &&
4845            "Invalid truncate node, src < dst!");
4846     if (OpOpcode == ISD::TRUNCATE)
4847       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4848     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4849         OpOpcode == ISD::ANY_EXTEND) {
4850       // If the source is smaller than the dest, we still need an extend.
4851       if (Operand.getOperand(0).getValueType().getScalarType()
4852             .bitsLT(VT.getScalarType()))
4853         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4854       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4855         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4856       return Operand.getOperand(0);
4857     }
4858     if (OpOpcode == ISD::UNDEF)
4859       return getUNDEF(VT);
4860     break;
4861   case ISD::ANY_EXTEND_VECTOR_INREG:
4862   case ISD::ZERO_EXTEND_VECTOR_INREG:
4863   case ISD::SIGN_EXTEND_VECTOR_INREG:
4864     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4865     assert(Operand.getValueType().bitsLE(VT) &&
4866            "The input must be the same size or smaller than the result.");
4867     assert(VT.getVectorMinNumElements() <
4868                Operand.getValueType().getVectorMinNumElements() &&
4869            "The destination vector type must have fewer lanes than the input.");
4870     break;
4871   case ISD::ABS:
4872     assert(VT.isInteger() && VT == Operand.getValueType() &&
4873            "Invalid ABS!");
4874     if (OpOpcode == ISD::UNDEF)
4875       return getUNDEF(VT);
4876     break;
4877   case ISD::BSWAP:
4878     assert(VT.isInteger() && VT == Operand.getValueType() &&
4879            "Invalid BSWAP!");
4880     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4881            "BSWAP types must be a multiple of 16 bits!");
4882     if (OpOpcode == ISD::UNDEF)
4883       return getUNDEF(VT);
4884     break;
4885   case ISD::BITREVERSE:
4886     assert(VT.isInteger() && VT == Operand.getValueType() &&
4887            "Invalid BITREVERSE!");
4888     if (OpOpcode == ISD::UNDEF)
4889       return getUNDEF(VT);
4890     break;
4891   case ISD::BITCAST:
4892     // Basic sanity checking.
4893     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4894            "Cannot BITCAST between types of different sizes!");
4895     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4896     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4897       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4898     if (OpOpcode == ISD::UNDEF)
4899       return getUNDEF(VT);
4900     break;
4901   case ISD::SCALAR_TO_VECTOR:
4902     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4903            (VT.getVectorElementType() == Operand.getValueType() ||
4904             (VT.getVectorElementType().isInteger() &&
4905              Operand.getValueType().isInteger() &&
4906              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4907            "Illegal SCALAR_TO_VECTOR node!");
4908     if (OpOpcode == ISD::UNDEF)
4909       return getUNDEF(VT);
4910     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4911     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4912         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4913         Operand.getConstantOperandVal(1) == 0 &&
4914         Operand.getOperand(0).getValueType() == VT)
4915       return Operand.getOperand(0);
4916     break;
4917   case ISD::FNEG:
4918     // Negation of an unknown bag of bits is still completely undefined.
4919     if (OpOpcode == ISD::UNDEF)
4920       return getUNDEF(VT);
4921 
4922     if (OpOpcode == ISD::FNEG)  // --X -> X
4923       return Operand.getOperand(0);
4924     break;
4925   case ISD::FABS:
4926     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4927       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4928     break;
4929   case ISD::VSCALE:
4930     assert(VT == Operand.getValueType() && "Unexpected VT!");
4931     break;
4932   case ISD::CTPOP:
4933     if (Operand.getValueType().getScalarType() == MVT::i1)
4934       return Operand;
4935     break;
4936   case ISD::CTLZ:
4937   case ISD::CTTZ:
4938     if (Operand.getValueType().getScalarType() == MVT::i1)
4939       return getNOT(DL, Operand, Operand.getValueType());
4940     break;
4941   case ISD::VECREDUCE_SMIN:
4942   case ISD::VECREDUCE_UMAX:
4943     if (Operand.getValueType().getScalarType() == MVT::i1)
4944       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
4945     break;
4946   case ISD::VECREDUCE_SMAX:
4947   case ISD::VECREDUCE_UMIN:
4948     if (Operand.getValueType().getScalarType() == MVT::i1)
4949       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
4950     break;
4951   }
4952 
4953   SDNode *N;
4954   SDVTList VTs = getVTList(VT);
4955   SDValue Ops[] = {Operand};
4956   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4957     FoldingSetNodeID ID;
4958     AddNodeIDNode(ID, Opcode, VTs, Ops);
4959     void *IP = nullptr;
4960     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4961       E->intersectFlagsWith(Flags);
4962       return SDValue(E, 0);
4963     }
4964 
4965     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4966     N->setFlags(Flags);
4967     createOperands(N, Ops);
4968     CSEMap.InsertNode(N, IP);
4969   } else {
4970     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4971     createOperands(N, Ops);
4972   }
4973 
4974   InsertNode(N);
4975   SDValue V = SDValue(N, 0);
4976   NewSDValueDbgMsg(V, "Creating new node: ", this);
4977   return V;
4978 }
4979 
4980 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
4981                                        const APInt &C2) {
4982   switch (Opcode) {
4983   case ISD::ADD:  return C1 + C2;
4984   case ISD::SUB:  return C1 - C2;
4985   case ISD::MUL:  return C1 * C2;
4986   case ISD::AND:  return C1 & C2;
4987   case ISD::OR:   return C1 | C2;
4988   case ISD::XOR:  return C1 ^ C2;
4989   case ISD::SHL:  return C1 << C2;
4990   case ISD::SRL:  return C1.lshr(C2);
4991   case ISD::SRA:  return C1.ashr(C2);
4992   case ISD::ROTL: return C1.rotl(C2);
4993   case ISD::ROTR: return C1.rotr(C2);
4994   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
4995   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
4996   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
4997   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
4998   case ISD::SADDSAT: return C1.sadd_sat(C2);
4999   case ISD::UADDSAT: return C1.uadd_sat(C2);
5000   case ISD::SSUBSAT: return C1.ssub_sat(C2);
5001   case ISD::USUBSAT: return C1.usub_sat(C2);
5002   case ISD::UDIV:
5003     if (!C2.getBoolValue())
5004       break;
5005     return C1.udiv(C2);
5006   case ISD::UREM:
5007     if (!C2.getBoolValue())
5008       break;
5009     return C1.urem(C2);
5010   case ISD::SDIV:
5011     if (!C2.getBoolValue())
5012       break;
5013     return C1.sdiv(C2);
5014   case ISD::SREM:
5015     if (!C2.getBoolValue())
5016       break;
5017     return C1.srem(C2);
5018   }
5019   return llvm::None;
5020 }
5021 
5022 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
5023                                        const GlobalAddressSDNode *GA,
5024                                        const SDNode *N2) {
5025   if (GA->getOpcode() != ISD::GlobalAddress)
5026     return SDValue();
5027   if (!TLI->isOffsetFoldingLegal(GA))
5028     return SDValue();
5029   auto *C2 = dyn_cast<ConstantSDNode>(N2);
5030   if (!C2)
5031     return SDValue();
5032   int64_t Offset = C2->getSExtValue();
5033   switch (Opcode) {
5034   case ISD::ADD: break;
5035   case ISD::SUB: Offset = -uint64_t(Offset); break;
5036   default: return SDValue();
5037   }
5038   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
5039                           GA->getOffset() + uint64_t(Offset));
5040 }
5041 
5042 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
5043   switch (Opcode) {
5044   case ISD::SDIV:
5045   case ISD::UDIV:
5046   case ISD::SREM:
5047   case ISD::UREM: {
5048     // If a divisor is zero/undef or any element of a divisor vector is
5049     // zero/undef, the whole op is undef.
5050     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
5051     SDValue Divisor = Ops[1];
5052     if (Divisor.isUndef() || isNullConstant(Divisor))
5053       return true;
5054 
5055     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
5056            llvm::any_of(Divisor->op_values(),
5057                         [](SDValue V) { return V.isUndef() ||
5058                                         isNullConstant(V); });
5059     // TODO: Handle signed overflow.
5060   }
5061   // TODO: Handle oversized shifts.
5062   default:
5063     return false;
5064   }
5065 }
5066 
5067 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
5068                                              EVT VT, ArrayRef<SDValue> Ops) {
5069   // If the opcode is a target-specific ISD node, there's nothing we can
5070   // do here and the operand rules may not line up with the below, so
5071   // bail early.
5072   // We can't create a scalar CONCAT_VECTORS so skip it. It will break
5073   // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
5074   // foldCONCAT_VECTORS in getNode before this is called.
5075   if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
5076     return SDValue();
5077 
5078   // For now, the array Ops should only contain two values.
5079   // This enforcement will be removed once this function is merged with
5080   // FoldConstantVectorArithmetic
5081   if (Ops.size() != 2)
5082     return SDValue();
5083 
5084   if (isUndef(Opcode, Ops))
5085     return getUNDEF(VT);
5086 
5087   SDNode *N1 = Ops[0].getNode();
5088   SDNode *N2 = Ops[1].getNode();
5089 
5090   // Handle the case of two scalars.
5091   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
5092     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
5093       if (C1->isOpaque() || C2->isOpaque())
5094         return SDValue();
5095 
5096       Optional<APInt> FoldAttempt =
5097           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
5098       if (!FoldAttempt)
5099         return SDValue();
5100 
5101       SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
5102       assert((!Folded || !VT.isVector()) &&
5103              "Can't fold vectors ops with scalar operands");
5104       return Folded;
5105     }
5106   }
5107 
5108   // fold (add Sym, c) -> Sym+c
5109   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
5110     return FoldSymbolOffset(Opcode, VT, GA, N2);
5111   if (TLI->isCommutativeBinOp(Opcode))
5112     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
5113       return FoldSymbolOffset(Opcode, VT, GA, N1);
5114 
5115   // For fixed width vectors, extract each constant element and fold them
5116   // individually. Either input may be an undef value.
5117   bool IsBVOrSV1 = N1->getOpcode() == ISD::BUILD_VECTOR ||
5118                    N1->getOpcode() == ISD::SPLAT_VECTOR;
5119   if (!IsBVOrSV1 && !N1->isUndef())
5120     return SDValue();
5121   bool IsBVOrSV2 = N2->getOpcode() == ISD::BUILD_VECTOR ||
5122                    N2->getOpcode() == ISD::SPLAT_VECTOR;
5123   if (!IsBVOrSV2 && !N2->isUndef())
5124     return SDValue();
5125   // If both operands are undef, that's handled the same way as scalars.
5126   if (!IsBVOrSV1 && !IsBVOrSV2)
5127     return SDValue();
5128 
5129   EVT SVT = VT.getScalarType();
5130   EVT LegalSVT = SVT;
5131   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5132     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5133     if (LegalSVT.bitsLT(SVT))
5134       return SDValue();
5135   }
5136 
5137   SmallVector<SDValue, 4> Outputs;
5138   unsigned NumOps = 0;
5139   if (IsBVOrSV1)
5140     NumOps = std::max(NumOps, N1->getNumOperands());
5141   if (IsBVOrSV2)
5142     NumOps = std::max(NumOps, N2->getNumOperands());
5143   assert(NumOps != 0 && "Expected non-zero operands");
5144   // Scalable vectors should only be SPLAT_VECTOR or UNDEF here. We only need
5145   // one iteration for that.
5146   assert((!VT.isScalableVector() || NumOps == 1) &&
5147          "Scalar vector should only have one scalar");
5148 
5149   for (unsigned I = 0; I != NumOps; ++I) {
5150     // We can have a fixed length SPLAT_VECTOR and a BUILD_VECTOR so we need
5151     // to use operand 0 of the SPLAT_VECTOR for each fixed element.
5152     SDValue V1;
5153     if (N1->getOpcode() == ISD::BUILD_VECTOR)
5154       V1 = N1->getOperand(I);
5155     else if (N1->getOpcode() == ISD::SPLAT_VECTOR)
5156       V1 = N1->getOperand(0);
5157     else
5158       V1 = getUNDEF(SVT);
5159 
5160     SDValue V2;
5161     if (N2->getOpcode() == ISD::BUILD_VECTOR)
5162       V2 = N2->getOperand(I);
5163     else if (N2->getOpcode() == ISD::SPLAT_VECTOR)
5164       V2 = N2->getOperand(0);
5165     else
5166       V2 = getUNDEF(SVT);
5167 
5168     if (SVT.isInteger()) {
5169       if (V1.getValueType().bitsGT(SVT))
5170         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
5171       if (V2.getValueType().bitsGT(SVT))
5172         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
5173     }
5174 
5175     if (V1.getValueType() != SVT || V2.getValueType() != SVT)
5176       return SDValue();
5177 
5178     // Fold one vector element.
5179     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
5180     if (LegalSVT != SVT)
5181       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5182 
5183     // Scalar folding only succeeded if the result is a constant or UNDEF.
5184     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5185         ScalarResult.getOpcode() != ISD::ConstantFP)
5186       return SDValue();
5187     Outputs.push_back(ScalarResult);
5188   }
5189 
5190   if (N1->getOpcode() == ISD::BUILD_VECTOR ||
5191       N2->getOpcode() == ISD::BUILD_VECTOR) {
5192     assert(VT.getVectorNumElements() == Outputs.size() &&
5193            "Vector size mismatch!");
5194 
5195     // Build a big vector out of the scalar elements we generated.
5196     return getBuildVector(VT, SDLoc(), Outputs);
5197   }
5198 
5199   assert((N1->getOpcode() == ISD::SPLAT_VECTOR ||
5200           N2->getOpcode() == ISD::SPLAT_VECTOR) &&
5201          "One operand should be a splat vector");
5202 
5203   assert(Outputs.size() == 1 && "Vector size mismatch!");
5204   return getSplatVector(VT, SDLoc(), Outputs[0]);
5205 }
5206 
5207 // TODO: Merge with FoldConstantArithmetic
5208 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
5209                                                    const SDLoc &DL, EVT VT,
5210                                                    ArrayRef<SDValue> Ops,
5211                                                    const SDNodeFlags Flags) {
5212   // If the opcode is a target-specific ISD node, there's nothing we can
5213   // do here and the operand rules may not line up with the below, so
5214   // bail early.
5215   if (Opcode >= ISD::BUILTIN_OP_END)
5216     return SDValue();
5217 
5218   if (isUndef(Opcode, Ops))
5219     return getUNDEF(VT);
5220 
5221   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
5222   if (!VT.isVector())
5223     return SDValue();
5224 
5225   // TODO: All the folds below are performed lane-by-lane and assume a fixed
5226   // vector width, however we should be able to do constant folds involving
5227   // splat vector nodes too.
5228   if (VT.isScalableVector())
5229     return SDValue();
5230 
5231   // From this point onwards all vectors are assumed to be fixed width.
5232   unsigned NumElts = VT.getVectorNumElements();
5233 
5234   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
5235     return !Op.getValueType().isVector() ||
5236            Op.getValueType().getVectorNumElements() == NumElts;
5237   };
5238 
5239   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
5240     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
5241     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
5242            (BV && BV->isConstant());
5243   };
5244 
5245   // All operands must be vector types with the same number of elements as
5246   // the result type and must be either UNDEF or a build vector of constant
5247   // or UNDEF scalars.
5248   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
5249       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5250     return SDValue();
5251 
5252   // If we are comparing vectors, then the result needs to be a i1 boolean
5253   // that is then sign-extended back to the legal result type.
5254   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5255 
5256   // Find legal integer scalar type for constant promotion and
5257   // ensure that its scalar size is at least as large as source.
5258   EVT LegalSVT = VT.getScalarType();
5259   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5260     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5261     if (LegalSVT.bitsLT(VT.getScalarType()))
5262       return SDValue();
5263   }
5264 
5265   // Constant fold each scalar lane separately.
5266   SmallVector<SDValue, 4> ScalarResults;
5267   for (unsigned i = 0; i != NumElts; i++) {
5268     SmallVector<SDValue, 4> ScalarOps;
5269     for (SDValue Op : Ops) {
5270       EVT InSVT = Op.getValueType().getScalarType();
5271       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
5272       if (!InBV) {
5273         // We've checked that this is UNDEF or a constant of some kind.
5274         if (Op.isUndef())
5275           ScalarOps.push_back(getUNDEF(InSVT));
5276         else
5277           ScalarOps.push_back(Op);
5278         continue;
5279       }
5280 
5281       SDValue ScalarOp = InBV->getOperand(i);
5282       EVT ScalarVT = ScalarOp.getValueType();
5283 
5284       // Build vector (integer) scalar operands may need implicit
5285       // truncation - do this before constant folding.
5286       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5287         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5288 
5289       ScalarOps.push_back(ScalarOp);
5290     }
5291 
5292     // Constant fold the scalar operands.
5293     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5294 
5295     // Legalize the (integer) scalar constant if necessary.
5296     if (LegalSVT != SVT)
5297       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5298 
5299     // Scalar folding only succeeded if the result is a constant or UNDEF.
5300     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5301         ScalarResult.getOpcode() != ISD::ConstantFP)
5302       return SDValue();
5303     ScalarResults.push_back(ScalarResult);
5304   }
5305 
5306   SDValue V = getBuildVector(VT, DL, ScalarResults);
5307   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5308   return V;
5309 }
5310 
5311 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5312                                          EVT VT, SDValue N1, SDValue N2) {
5313   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5314   //       should. That will require dealing with a potentially non-default
5315   //       rounding mode, checking the "opStatus" return value from the APFloat
5316   //       math calculations, and possibly other variations.
5317   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5318   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5319   if (N1CFP && N2CFP) {
5320     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5321     switch (Opcode) {
5322     case ISD::FADD:
5323       C1.add(C2, APFloat::rmNearestTiesToEven);
5324       return getConstantFP(C1, DL, VT);
5325     case ISD::FSUB:
5326       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5327       return getConstantFP(C1, DL, VT);
5328     case ISD::FMUL:
5329       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5330       return getConstantFP(C1, DL, VT);
5331     case ISD::FDIV:
5332       C1.divide(C2, APFloat::rmNearestTiesToEven);
5333       return getConstantFP(C1, DL, VT);
5334     case ISD::FREM:
5335       C1.mod(C2);
5336       return getConstantFP(C1, DL, VT);
5337     case ISD::FCOPYSIGN:
5338       C1.copySign(C2);
5339       return getConstantFP(C1, DL, VT);
5340     default: break;
5341     }
5342   }
5343   if (N1CFP && Opcode == ISD::FP_ROUND) {
5344     APFloat C1 = N1CFP->getValueAPF();    // make copy
5345     bool Unused;
5346     // This can return overflow, underflow, or inexact; we don't care.
5347     // FIXME need to be more flexible about rounding mode.
5348     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5349                       &Unused);
5350     return getConstantFP(C1, DL, VT);
5351   }
5352 
5353   switch (Opcode) {
5354   case ISD::FSUB:
5355     // -0.0 - undef --> undef (consistent with "fneg undef")
5356     if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef())
5357       return getUNDEF(VT);
5358     LLVM_FALLTHROUGH;
5359 
5360   case ISD::FADD:
5361   case ISD::FMUL:
5362   case ISD::FDIV:
5363   case ISD::FREM:
5364     // If both operands are undef, the result is undef. If 1 operand is undef,
5365     // the result is NaN. This should match the behavior of the IR optimizer.
5366     if (N1.isUndef() && N2.isUndef())
5367       return getUNDEF(VT);
5368     if (N1.isUndef() || N2.isUndef())
5369       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5370   }
5371   return SDValue();
5372 }
5373 
5374 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5375   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5376 
5377   // There's no need to assert on a byte-aligned pointer. All pointers are at
5378   // least byte aligned.
5379   if (A == Align(1))
5380     return Val;
5381 
5382   FoldingSetNodeID ID;
5383   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5384   ID.AddInteger(A.value());
5385 
5386   void *IP = nullptr;
5387   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5388     return SDValue(E, 0);
5389 
5390   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5391                                          Val.getValueType(), A);
5392   createOperands(N, {Val});
5393 
5394   CSEMap.InsertNode(N, IP);
5395   InsertNode(N);
5396 
5397   SDValue V(N, 0);
5398   NewSDValueDbgMsg(V, "Creating new node: ", this);
5399   return V;
5400 }
5401 
5402 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5403                               SDValue N1, SDValue N2) {
5404   SDNodeFlags Flags;
5405   if (Inserter)
5406     Flags = Inserter->getFlags();
5407   return getNode(Opcode, DL, VT, N1, N2, Flags);
5408 }
5409 
5410 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5411                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5412   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5413          N2.getOpcode() != ISD::DELETED_NODE &&
5414          "Operand is DELETED_NODE!");
5415   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5416   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5417   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5418   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5419 
5420   // Canonicalize constant to RHS if commutative.
5421   if (TLI->isCommutativeBinOp(Opcode)) {
5422     if (N1C && !N2C) {
5423       std::swap(N1C, N2C);
5424       std::swap(N1, N2);
5425     } else if (N1CFP && !N2CFP) {
5426       std::swap(N1CFP, N2CFP);
5427       std::swap(N1, N2);
5428     }
5429   }
5430 
5431   switch (Opcode) {
5432   default: break;
5433   case ISD::TokenFactor:
5434     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5435            N2.getValueType() == MVT::Other && "Invalid token factor!");
5436     // Fold trivial token factors.
5437     if (N1.getOpcode() == ISD::EntryToken) return N2;
5438     if (N2.getOpcode() == ISD::EntryToken) return N1;
5439     if (N1 == N2) return N1;
5440     break;
5441   case ISD::BUILD_VECTOR: {
5442     // Attempt to simplify BUILD_VECTOR.
5443     SDValue Ops[] = {N1, N2};
5444     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5445       return V;
5446     break;
5447   }
5448   case ISD::CONCAT_VECTORS: {
5449     SDValue Ops[] = {N1, N2};
5450     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5451       return V;
5452     break;
5453   }
5454   case ISD::AND:
5455     assert(VT.isInteger() && "This operator does not apply to FP types!");
5456     assert(N1.getValueType() == N2.getValueType() &&
5457            N1.getValueType() == VT && "Binary operator types must match!");
5458     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5459     // worth handling here.
5460     if (N2C && N2C->isNullValue())
5461       return N2;
5462     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5463       return N1;
5464     break;
5465   case ISD::OR:
5466   case ISD::XOR:
5467   case ISD::ADD:
5468   case ISD::SUB:
5469     assert(VT.isInteger() && "This operator does not apply to FP types!");
5470     assert(N1.getValueType() == N2.getValueType() &&
5471            N1.getValueType() == VT && "Binary operator types must match!");
5472     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5473     // it's worth handling here.
5474     if (N2C && N2C->isNullValue())
5475       return N1;
5476     if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
5477         VT.getVectorElementType() == MVT::i1)
5478       return getNode(ISD::XOR, DL, VT, N1, N2);
5479     break;
5480   case ISD::MUL:
5481     assert(VT.isInteger() && "This operator does not apply to FP types!");
5482     assert(N1.getValueType() == N2.getValueType() &&
5483            N1.getValueType() == VT && "Binary operator types must match!");
5484     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5485       return getNode(ISD::AND, DL, VT, N1, N2);
5486     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5487       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5488       const APInt &N2CImm = N2C->getAPIntValue();
5489       return getVScale(DL, VT, MulImm * N2CImm);
5490     }
5491     break;
5492   case ISD::UDIV:
5493   case ISD::UREM:
5494   case ISD::MULHU:
5495   case ISD::MULHS:
5496   case ISD::SDIV:
5497   case ISD::SREM:
5498   case ISD::SADDSAT:
5499   case ISD::SSUBSAT:
5500   case ISD::UADDSAT:
5501   case ISD::USUBSAT:
5502     assert(VT.isInteger() && "This operator does not apply to FP types!");
5503     assert(N1.getValueType() == N2.getValueType() &&
5504            N1.getValueType() == VT && "Binary operator types must match!");
5505     if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
5506       // fold (add_sat x, y) -> (or x, y) for bool types.
5507       if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
5508         return getNode(ISD::OR, DL, VT, N1, N2);
5509       // fold (sub_sat x, y) -> (and x, ~y) for bool types.
5510       if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
5511         return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
5512     }
5513     break;
5514   case ISD::SMIN:
5515   case ISD::UMAX:
5516     assert(VT.isInteger() && "This operator does not apply to FP types!");
5517     assert(N1.getValueType() == N2.getValueType() &&
5518            N1.getValueType() == VT && "Binary operator types must match!");
5519     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5520       return getNode(ISD::OR, DL, VT, N1, N2);
5521     break;
5522   case ISD::SMAX:
5523   case ISD::UMIN:
5524     assert(VT.isInteger() && "This operator does not apply to FP types!");
5525     assert(N1.getValueType() == N2.getValueType() &&
5526            N1.getValueType() == VT && "Binary operator types must match!");
5527     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5528       return getNode(ISD::AND, DL, VT, N1, N2);
5529     break;
5530   case ISD::FADD:
5531   case ISD::FSUB:
5532   case ISD::FMUL:
5533   case ISD::FDIV:
5534   case ISD::FREM:
5535     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5536     assert(N1.getValueType() == N2.getValueType() &&
5537            N1.getValueType() == VT && "Binary operator types must match!");
5538     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5539       return V;
5540     break;
5541   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5542     assert(N1.getValueType() == VT &&
5543            N1.getValueType().isFloatingPoint() &&
5544            N2.getValueType().isFloatingPoint() &&
5545            "Invalid FCOPYSIGN!");
5546     break;
5547   case ISD::SHL:
5548     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5549       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5550       const APInt &ShiftImm = N2C->getAPIntValue();
5551       return getVScale(DL, VT, MulImm << ShiftImm);
5552     }
5553     LLVM_FALLTHROUGH;
5554   case ISD::SRA:
5555   case ISD::SRL:
5556     if (SDValue V = simplifyShift(N1, N2))
5557       return V;
5558     LLVM_FALLTHROUGH;
5559   case ISD::ROTL:
5560   case ISD::ROTR:
5561     assert(VT == N1.getValueType() &&
5562            "Shift operators return type must be the same as their first arg");
5563     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5564            "Shifts only work on integers");
5565     assert((!VT.isVector() || VT == N2.getValueType()) &&
5566            "Vector shift amounts must be in the same as their first arg");
5567     // Verify that the shift amount VT is big enough to hold valid shift
5568     // amounts.  This catches things like trying to shift an i1024 value by an
5569     // i8, which is easy to fall into in generic code that uses
5570     // TLI.getShiftAmount().
5571     assert(N2.getValueType().getScalarSizeInBits() >=
5572                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5573            "Invalid use of small shift amount with oversized value!");
5574 
5575     // Always fold shifts of i1 values so the code generator doesn't need to
5576     // handle them.  Since we know the size of the shift has to be less than the
5577     // size of the value, the shift/rotate count is guaranteed to be zero.
5578     if (VT == MVT::i1)
5579       return N1;
5580     if (N2C && N2C->isNullValue())
5581       return N1;
5582     break;
5583   case ISD::FP_ROUND:
5584     assert(VT.isFloatingPoint() &&
5585            N1.getValueType().isFloatingPoint() &&
5586            VT.bitsLE(N1.getValueType()) &&
5587            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5588            "Invalid FP_ROUND!");
5589     if (N1.getValueType() == VT) return N1;  // noop conversion.
5590     break;
5591   case ISD::AssertSext:
5592   case ISD::AssertZext: {
5593     EVT EVT = cast<VTSDNode>(N2)->getVT();
5594     assert(VT == N1.getValueType() && "Not an inreg extend!");
5595     assert(VT.isInteger() && EVT.isInteger() &&
5596            "Cannot *_EXTEND_INREG FP types");
5597     assert(!EVT.isVector() &&
5598            "AssertSExt/AssertZExt type should be the vector element type "
5599            "rather than the vector type!");
5600     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5601     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5602     break;
5603   }
5604   case ISD::SIGN_EXTEND_INREG: {
5605     EVT EVT = cast<VTSDNode>(N2)->getVT();
5606     assert(VT == N1.getValueType() && "Not an inreg extend!");
5607     assert(VT.isInteger() && EVT.isInteger() &&
5608            "Cannot *_EXTEND_INREG FP types");
5609     assert(EVT.isVector() == VT.isVector() &&
5610            "SIGN_EXTEND_INREG type should be vector iff the operand "
5611            "type is vector!");
5612     assert((!EVT.isVector() ||
5613             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5614            "Vector element counts must match in SIGN_EXTEND_INREG");
5615     assert(EVT.bitsLE(VT) && "Not extending!");
5616     if (EVT == VT) return N1;  // Not actually extending
5617 
5618     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5619       unsigned FromBits = EVT.getScalarSizeInBits();
5620       Val <<= Val.getBitWidth() - FromBits;
5621       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5622       return getConstant(Val, DL, ConstantVT);
5623     };
5624 
5625     if (N1C) {
5626       const APInt &Val = N1C->getAPIntValue();
5627       return SignExtendInReg(Val, VT);
5628     }
5629     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5630       SmallVector<SDValue, 8> Ops;
5631       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5632       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5633         SDValue Op = N1.getOperand(i);
5634         if (Op.isUndef()) {
5635           Ops.push_back(getUNDEF(OpVT));
5636           continue;
5637         }
5638         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5639         APInt Val = C->getAPIntValue();
5640         Ops.push_back(SignExtendInReg(Val, OpVT));
5641       }
5642       return getBuildVector(VT, DL, Ops);
5643     }
5644     break;
5645   }
5646   case ISD::EXTRACT_VECTOR_ELT:
5647     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5648            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5649              element type of the vector.");
5650 
5651     // Extract from an undefined value or using an undefined index is undefined.
5652     if (N1.isUndef() || N2.isUndef())
5653       return getUNDEF(VT);
5654 
5655     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5656     // vectors. For scalable vectors we will provide appropriate support for
5657     // dealing with arbitrary indices.
5658     if (N2C && N1.getValueType().isFixedLengthVector() &&
5659         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5660       return getUNDEF(VT);
5661 
5662     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5663     // expanding copies of large vectors from registers. This only works for
5664     // fixed length vectors, since we need to know the exact number of
5665     // elements.
5666     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5667         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5668       unsigned Factor =
5669         N1.getOperand(0).getValueType().getVectorNumElements();
5670       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5671                      N1.getOperand(N2C->getZExtValue() / Factor),
5672                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5673     }
5674 
5675     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5676     // lowering is expanding large vector constants.
5677     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5678                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5679       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5680               N1.getValueType().isFixedLengthVector()) &&
5681              "BUILD_VECTOR used for scalable vectors");
5682       unsigned Index =
5683           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5684       SDValue Elt = N1.getOperand(Index);
5685 
5686       if (VT != Elt.getValueType())
5687         // If the vector element type is not legal, the BUILD_VECTOR operands
5688         // are promoted and implicitly truncated, and the result implicitly
5689         // extended. Make that explicit here.
5690         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5691 
5692       return Elt;
5693     }
5694 
5695     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5696     // operations are lowered to scalars.
5697     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5698       // If the indices are the same, return the inserted element else
5699       // if the indices are known different, extract the element from
5700       // the original vector.
5701       SDValue N1Op2 = N1.getOperand(2);
5702       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5703 
5704       if (N1Op2C && N2C) {
5705         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5706           if (VT == N1.getOperand(1).getValueType())
5707             return N1.getOperand(1);
5708           return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5709         }
5710         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5711       }
5712     }
5713 
5714     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5715     // when vector types are scalarized and v1iX is legal.
5716     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5717     // Here we are completely ignoring the extract element index (N2),
5718     // which is fine for fixed width vectors, since any index other than 0
5719     // is undefined anyway. However, this cannot be ignored for scalable
5720     // vectors - in theory we could support this, but we don't want to do this
5721     // without a profitability check.
5722     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5723         N1.getValueType().isFixedLengthVector() &&
5724         N1.getValueType().getVectorNumElements() == 1) {
5725       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5726                      N1.getOperand(1));
5727     }
5728     break;
5729   case ISD::EXTRACT_ELEMENT:
5730     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5731     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5732            (N1.getValueType().isInteger() == VT.isInteger()) &&
5733            N1.getValueType() != VT &&
5734            "Wrong types for EXTRACT_ELEMENT!");
5735 
5736     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5737     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5738     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5739     if (N1.getOpcode() == ISD::BUILD_PAIR)
5740       return N1.getOperand(N2C->getZExtValue());
5741 
5742     // EXTRACT_ELEMENT of a constant int is also very common.
5743     if (N1C) {
5744       unsigned ElementSize = VT.getSizeInBits();
5745       unsigned Shift = ElementSize * N2C->getZExtValue();
5746       const APInt &Val = N1C->getAPIntValue();
5747       return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
5748     }
5749     break;
5750   case ISD::EXTRACT_SUBVECTOR:
5751     EVT N1VT = N1.getValueType();
5752     assert(VT.isVector() && N1VT.isVector() &&
5753            "Extract subvector VTs must be vectors!");
5754     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
5755            "Extract subvector VTs must have the same element type!");
5756     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
5757            "Cannot extract a scalable vector from a fixed length vector!");
5758     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5759             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
5760            "Extract subvector must be from larger vector to smaller vector!");
5761     assert(N2C && "Extract subvector index must be a constant");
5762     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5763             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
5764                 N1VT.getVectorMinNumElements()) &&
5765            "Extract subvector overflow!");
5766     assert(N2C->getAPIntValue().getBitWidth() ==
5767                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
5768            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
5769 
5770     // Trivial extraction.
5771     if (VT == N1VT)
5772       return N1;
5773 
5774     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5775     if (N1.isUndef())
5776       return getUNDEF(VT);
5777 
5778     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5779     // the concat have the same type as the extract.
5780     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
5781         VT == N1.getOperand(0).getValueType()) {
5782       unsigned Factor = VT.getVectorMinNumElements();
5783       return N1.getOperand(N2C->getZExtValue() / Factor);
5784     }
5785 
5786     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5787     // during shuffle legalization.
5788     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5789         VT == N1.getOperand(1).getValueType())
5790       return N1.getOperand(1);
5791     break;
5792   }
5793 
5794   // Perform trivial constant folding.
5795   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
5796     return SV;
5797 
5798   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5799     return V;
5800 
5801   // Canonicalize an UNDEF to the RHS, even over a constant.
5802   if (N1.isUndef()) {
5803     if (TLI->isCommutativeBinOp(Opcode)) {
5804       std::swap(N1, N2);
5805     } else {
5806       switch (Opcode) {
5807       case ISD::SIGN_EXTEND_INREG:
5808       case ISD::SUB:
5809         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5810       case ISD::UDIV:
5811       case ISD::SDIV:
5812       case ISD::UREM:
5813       case ISD::SREM:
5814       case ISD::SSUBSAT:
5815       case ISD::USUBSAT:
5816         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5817       }
5818     }
5819   }
5820 
5821   // Fold a bunch of operators when the RHS is undef.
5822   if (N2.isUndef()) {
5823     switch (Opcode) {
5824     case ISD::XOR:
5825       if (N1.isUndef())
5826         // Handle undef ^ undef -> 0 special case. This is a common
5827         // idiom (misuse).
5828         return getConstant(0, DL, VT);
5829       LLVM_FALLTHROUGH;
5830     case ISD::ADD:
5831     case ISD::SUB:
5832     case ISD::UDIV:
5833     case ISD::SDIV:
5834     case ISD::UREM:
5835     case ISD::SREM:
5836       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5837     case ISD::MUL:
5838     case ISD::AND:
5839     case ISD::SSUBSAT:
5840     case ISD::USUBSAT:
5841       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5842     case ISD::OR:
5843     case ISD::SADDSAT:
5844     case ISD::UADDSAT:
5845       return getAllOnesConstant(DL, VT);
5846     }
5847   }
5848 
5849   // Memoize this node if possible.
5850   SDNode *N;
5851   SDVTList VTs = getVTList(VT);
5852   SDValue Ops[] = {N1, N2};
5853   if (VT != MVT::Glue) {
5854     FoldingSetNodeID ID;
5855     AddNodeIDNode(ID, Opcode, VTs, Ops);
5856     void *IP = nullptr;
5857     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5858       E->intersectFlagsWith(Flags);
5859       return SDValue(E, 0);
5860     }
5861 
5862     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5863     N->setFlags(Flags);
5864     createOperands(N, Ops);
5865     CSEMap.InsertNode(N, IP);
5866   } else {
5867     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5868     createOperands(N, Ops);
5869   }
5870 
5871   InsertNode(N);
5872   SDValue V = SDValue(N, 0);
5873   NewSDValueDbgMsg(V, "Creating new node: ", this);
5874   return V;
5875 }
5876 
5877 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5878                               SDValue N1, SDValue N2, SDValue N3) {
5879   SDNodeFlags Flags;
5880   if (Inserter)
5881     Flags = Inserter->getFlags();
5882   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
5883 }
5884 
5885 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5886                               SDValue N1, SDValue N2, SDValue N3,
5887                               const SDNodeFlags Flags) {
5888   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5889          N2.getOpcode() != ISD::DELETED_NODE &&
5890          N3.getOpcode() != ISD::DELETED_NODE &&
5891          "Operand is DELETED_NODE!");
5892   // Perform various simplifications.
5893   switch (Opcode) {
5894   case ISD::FMA: {
5895     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5896     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5897            N3.getValueType() == VT && "FMA types must match!");
5898     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5899     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5900     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5901     if (N1CFP && N2CFP && N3CFP) {
5902       APFloat  V1 = N1CFP->getValueAPF();
5903       const APFloat &V2 = N2CFP->getValueAPF();
5904       const APFloat &V3 = N3CFP->getValueAPF();
5905       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5906       return getConstantFP(V1, DL, VT);
5907     }
5908     break;
5909   }
5910   case ISD::BUILD_VECTOR: {
5911     // Attempt to simplify BUILD_VECTOR.
5912     SDValue Ops[] = {N1, N2, N3};
5913     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5914       return V;
5915     break;
5916   }
5917   case ISD::CONCAT_VECTORS: {
5918     SDValue Ops[] = {N1, N2, N3};
5919     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5920       return V;
5921     break;
5922   }
5923   case ISD::SETCC: {
5924     assert(VT.isInteger() && "SETCC result type must be an integer!");
5925     assert(N1.getValueType() == N2.getValueType() &&
5926            "SETCC operands must have the same type!");
5927     assert(VT.isVector() == N1.getValueType().isVector() &&
5928            "SETCC type should be vector iff the operand type is vector!");
5929     assert((!VT.isVector() || VT.getVectorElementCount() ==
5930                                   N1.getValueType().getVectorElementCount()) &&
5931            "SETCC vector element counts must match!");
5932     // Use FoldSetCC to simplify SETCC's.
5933     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5934       return V;
5935     // Vector constant folding.
5936     SDValue Ops[] = {N1, N2, N3};
5937     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5938       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5939       return V;
5940     }
5941     break;
5942   }
5943   case ISD::SELECT:
5944   case ISD::VSELECT:
5945     if (SDValue V = simplifySelect(N1, N2, N3))
5946       return V;
5947     break;
5948   case ISD::VECTOR_SHUFFLE:
5949     llvm_unreachable("should use getVectorShuffle constructor!");
5950   case ISD::INSERT_VECTOR_ELT: {
5951     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5952     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
5953     // for scalable vectors where we will generate appropriate code to
5954     // deal with out-of-bounds cases correctly.
5955     if (N3C && N1.getValueType().isFixedLengthVector() &&
5956         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5957       return getUNDEF(VT);
5958 
5959     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
5960     if (N3.isUndef())
5961       return getUNDEF(VT);
5962 
5963     // If the inserted element is an UNDEF, just use the input vector.
5964     if (N2.isUndef())
5965       return N1;
5966 
5967     break;
5968   }
5969   case ISD::INSERT_SUBVECTOR: {
5970     // Inserting undef into undef is still undef.
5971     if (N1.isUndef() && N2.isUndef())
5972       return getUNDEF(VT);
5973 
5974     EVT N2VT = N2.getValueType();
5975     assert(VT == N1.getValueType() &&
5976            "Dest and insert subvector source types must match!");
5977     assert(VT.isVector() && N2VT.isVector() &&
5978            "Insert subvector VTs must be vectors!");
5979     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
5980            "Cannot insert a scalable vector into a fixed length vector!");
5981     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5982             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
5983            "Insert subvector must be from smaller vector to larger vector!");
5984     assert(isa<ConstantSDNode>(N3) &&
5985            "Insert subvector index must be constant");
5986     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5987             (N2VT.getVectorMinNumElements() +
5988              cast<ConstantSDNode>(N3)->getZExtValue()) <=
5989                 VT.getVectorMinNumElements()) &&
5990            "Insert subvector overflow!");
5991     assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() ==
5992                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
5993            "Constant index for INSERT_SUBVECTOR has an invalid size");
5994 
5995     // Trivial insertion.
5996     if (VT == N2VT)
5997       return N2;
5998 
5999     // If this is an insert of an extracted vector into an undef vector, we
6000     // can just use the input to the extract.
6001     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6002         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
6003       return N2.getOperand(0);
6004     break;
6005   }
6006   case ISD::BITCAST:
6007     // Fold bit_convert nodes from a type to themselves.
6008     if (N1.getValueType() == VT)
6009       return N1;
6010     break;
6011   }
6012 
6013   // Memoize node if it doesn't produce a flag.
6014   SDNode *N;
6015   SDVTList VTs = getVTList(VT);
6016   SDValue Ops[] = {N1, N2, N3};
6017   if (VT != MVT::Glue) {
6018     FoldingSetNodeID ID;
6019     AddNodeIDNode(ID, Opcode, VTs, Ops);
6020     void *IP = nullptr;
6021     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6022       E->intersectFlagsWith(Flags);
6023       return SDValue(E, 0);
6024     }
6025 
6026     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6027     N->setFlags(Flags);
6028     createOperands(N, Ops);
6029     CSEMap.InsertNode(N, IP);
6030   } else {
6031     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6032     createOperands(N, Ops);
6033   }
6034 
6035   InsertNode(N);
6036   SDValue V = SDValue(N, 0);
6037   NewSDValueDbgMsg(V, "Creating new node: ", this);
6038   return V;
6039 }
6040 
6041 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6042                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6043   SDValue Ops[] = { N1, N2, N3, N4 };
6044   return getNode(Opcode, DL, VT, Ops);
6045 }
6046 
6047 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6048                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6049                               SDValue N5) {
6050   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6051   return getNode(Opcode, DL, VT, Ops);
6052 }
6053 
6054 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
6055 /// the incoming stack arguments to be loaded from the stack.
6056 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
6057   SmallVector<SDValue, 8> ArgChains;
6058 
6059   // Include the original chain at the beginning of the list. When this is
6060   // used by target LowerCall hooks, this helps legalize find the
6061   // CALLSEQ_BEGIN node.
6062   ArgChains.push_back(Chain);
6063 
6064   // Add a chain value for each stack argument.
6065   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
6066        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
6067     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
6068       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
6069         if (FI->getIndex() < 0)
6070           ArgChains.push_back(SDValue(L, 1));
6071 
6072   // Build a tokenfactor for all the chains.
6073   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
6074 }
6075 
6076 /// getMemsetValue - Vectorized representation of the memset value
6077 /// operand.
6078 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
6079                               const SDLoc &dl) {
6080   assert(!Value.isUndef());
6081 
6082   unsigned NumBits = VT.getScalarSizeInBits();
6083   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
6084     assert(C->getAPIntValue().getBitWidth() == 8);
6085     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
6086     if (VT.isInteger()) {
6087       bool IsOpaque = VT.getSizeInBits() > 64 ||
6088           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
6089       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
6090     }
6091     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
6092                              VT);
6093   }
6094 
6095   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
6096   EVT IntVT = VT.getScalarType();
6097   if (!IntVT.isInteger())
6098     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
6099 
6100   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
6101   if (NumBits > 8) {
6102     // Use a multiplication with 0x010101... to extend the input to the
6103     // required length.
6104     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
6105     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
6106                         DAG.getConstant(Magic, dl, IntVT));
6107   }
6108 
6109   if (VT != Value.getValueType() && !VT.isInteger())
6110     Value = DAG.getBitcast(VT.getScalarType(), Value);
6111   if (VT != Value.getValueType())
6112     Value = DAG.getSplatBuildVector(VT, dl, Value);
6113 
6114   return Value;
6115 }
6116 
6117 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
6118 /// used when a memcpy is turned into a memset when the source is a constant
6119 /// string ptr.
6120 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
6121                                   const TargetLowering &TLI,
6122                                   const ConstantDataArraySlice &Slice) {
6123   // Handle vector with all elements zero.
6124   if (Slice.Array == nullptr) {
6125     if (VT.isInteger())
6126       return DAG.getConstant(0, dl, VT);
6127     if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
6128       return DAG.getConstantFP(0.0, dl, VT);
6129     if (VT.isVector()) {
6130       unsigned NumElts = VT.getVectorNumElements();
6131       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
6132       return DAG.getNode(ISD::BITCAST, dl, VT,
6133                          DAG.getConstant(0, dl,
6134                                          EVT::getVectorVT(*DAG.getContext(),
6135                                                           EltVT, NumElts)));
6136     }
6137     llvm_unreachable("Expected type!");
6138   }
6139 
6140   assert(!VT.isVector() && "Can't handle vector type here!");
6141   unsigned NumVTBits = VT.getSizeInBits();
6142   unsigned NumVTBytes = NumVTBits / 8;
6143   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
6144 
6145   APInt Val(NumVTBits, 0);
6146   if (DAG.getDataLayout().isLittleEndian()) {
6147     for (unsigned i = 0; i != NumBytes; ++i)
6148       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
6149   } else {
6150     for (unsigned i = 0; i != NumBytes; ++i)
6151       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
6152   }
6153 
6154   // If the "cost" of materializing the integer immediate is less than the cost
6155   // of a load, then it is cost effective to turn the load into the immediate.
6156   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
6157   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
6158     return DAG.getConstant(Val, dl, VT);
6159   return SDValue(nullptr, 0);
6160 }
6161 
6162 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
6163                                            const SDLoc &DL,
6164                                            const SDNodeFlags Flags) {
6165   EVT VT = Base.getValueType();
6166   SDValue Index;
6167 
6168   if (Offset.isScalable())
6169     Index = getVScale(DL, Base.getValueType(),
6170                       APInt(Base.getValueSizeInBits().getFixedSize(),
6171                             Offset.getKnownMinSize()));
6172   else
6173     Index = getConstant(Offset.getFixedSize(), DL, VT);
6174 
6175   return getMemBasePlusOffset(Base, Index, DL, Flags);
6176 }
6177 
6178 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
6179                                            const SDLoc &DL,
6180                                            const SDNodeFlags Flags) {
6181   assert(Offset.getValueType().isInteger());
6182   EVT BasePtrVT = Ptr.getValueType();
6183   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6184 }
6185 
6186 /// Returns true if memcpy source is constant data.
6187 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6188   uint64_t SrcDelta = 0;
6189   GlobalAddressSDNode *G = nullptr;
6190   if (Src.getOpcode() == ISD::GlobalAddress)
6191     G = cast<GlobalAddressSDNode>(Src);
6192   else if (Src.getOpcode() == ISD::ADD &&
6193            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6194            Src.getOperand(1).getOpcode() == ISD::Constant) {
6195     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6196     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6197   }
6198   if (!G)
6199     return false;
6200 
6201   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6202                                   SrcDelta + G->getOffset());
6203 }
6204 
6205 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6206                                       SelectionDAG &DAG) {
6207   // On Darwin, -Os means optimize for size without hurting performance, so
6208   // only really optimize for size when -Oz (MinSize) is used.
6209   if (MF.getTarget().getTargetTriple().isOSDarwin())
6210     return MF.getFunction().hasMinSize();
6211   return DAG.shouldOptForSize();
6212 }
6213 
6214 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6215                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6216                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6217                           SmallVector<SDValue, 16> &OutStoreChains) {
6218   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6219   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6220   SmallVector<SDValue, 16> GluedLoadChains;
6221   for (unsigned i = From; i < To; ++i) {
6222     OutChains.push_back(OutLoadChains[i]);
6223     GluedLoadChains.push_back(OutLoadChains[i]);
6224   }
6225 
6226   // Chain for all loads.
6227   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6228                                   GluedLoadChains);
6229 
6230   for (unsigned i = From; i < To; ++i) {
6231     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6232     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6233                                   ST->getBasePtr(), ST->getMemoryVT(),
6234                                   ST->getMemOperand());
6235     OutChains.push_back(NewStore);
6236   }
6237 }
6238 
6239 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6240                                        SDValue Chain, SDValue Dst, SDValue Src,
6241                                        uint64_t Size, Align Alignment,
6242                                        bool isVol, bool AlwaysInline,
6243                                        MachinePointerInfo DstPtrInfo,
6244                                        MachinePointerInfo SrcPtrInfo) {
6245   // Turn a memcpy of undef to nop.
6246   // FIXME: We need to honor volatile even is Src is undef.
6247   if (Src.isUndef())
6248     return Chain;
6249 
6250   // Expand memcpy to a series of load and store ops if the size operand falls
6251   // below a certain threshold.
6252   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6253   // rather than maybe a humongous number of loads and stores.
6254   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6255   const DataLayout &DL = DAG.getDataLayout();
6256   LLVMContext &C = *DAG.getContext();
6257   std::vector<EVT> MemOps;
6258   bool DstAlignCanChange = false;
6259   MachineFunction &MF = DAG.getMachineFunction();
6260   MachineFrameInfo &MFI = MF.getFrameInfo();
6261   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6262   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6263   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6264     DstAlignCanChange = true;
6265   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6266   if (!SrcAlign || Alignment > *SrcAlign)
6267     SrcAlign = Alignment;
6268   assert(SrcAlign && "SrcAlign must be set");
6269   ConstantDataArraySlice Slice;
6270   // If marked as volatile, perform a copy even when marked as constant.
6271   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6272   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6273   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6274   const MemOp Op = isZeroConstant
6275                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6276                                     /*IsZeroMemset*/ true, isVol)
6277                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6278                                      *SrcAlign, isVol, CopyFromConstant);
6279   if (!TLI.findOptimalMemOpLowering(
6280           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6281           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6282     return SDValue();
6283 
6284   if (DstAlignCanChange) {
6285     Type *Ty = MemOps[0].getTypeForEVT(C);
6286     Align NewAlign = DL.getABITypeAlign(Ty);
6287 
6288     // Don't promote to an alignment that would require dynamic stack
6289     // realignment.
6290     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6291     if (!TRI->hasStackRealignment(MF))
6292       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6293         NewAlign = NewAlign / 2;
6294 
6295     if (NewAlign > Alignment) {
6296       // Give the stack frame object a larger alignment if needed.
6297       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6298         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6299       Alignment = NewAlign;
6300     }
6301   }
6302 
6303   MachineMemOperand::Flags MMOFlags =
6304       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6305   SmallVector<SDValue, 16> OutLoadChains;
6306   SmallVector<SDValue, 16> OutStoreChains;
6307   SmallVector<SDValue, 32> OutChains;
6308   unsigned NumMemOps = MemOps.size();
6309   uint64_t SrcOff = 0, DstOff = 0;
6310   for (unsigned i = 0; i != NumMemOps; ++i) {
6311     EVT VT = MemOps[i];
6312     unsigned VTSize = VT.getSizeInBits() / 8;
6313     SDValue Value, Store;
6314 
6315     if (VTSize > Size) {
6316       // Issuing an unaligned load / store pair  that overlaps with the previous
6317       // pair. Adjust the offset accordingly.
6318       assert(i == NumMemOps-1 && i != 0);
6319       SrcOff -= VTSize - Size;
6320       DstOff -= VTSize - Size;
6321     }
6322 
6323     if (CopyFromConstant &&
6324         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6325       // It's unlikely a store of a vector immediate can be done in a single
6326       // instruction. It would require a load from a constantpool first.
6327       // We only handle zero vectors here.
6328       // FIXME: Handle other cases where store of vector immediate is done in
6329       // a single instruction.
6330       ConstantDataArraySlice SubSlice;
6331       if (SrcOff < Slice.Length) {
6332         SubSlice = Slice;
6333         SubSlice.move(SrcOff);
6334       } else {
6335         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6336         SubSlice.Array = nullptr;
6337         SubSlice.Offset = 0;
6338         SubSlice.Length = VTSize;
6339       }
6340       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6341       if (Value.getNode()) {
6342         Store = DAG.getStore(
6343             Chain, dl, Value,
6344             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6345             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6346         OutChains.push_back(Store);
6347       }
6348     }
6349 
6350     if (!Store.getNode()) {
6351       // The type might not be legal for the target.  This should only happen
6352       // if the type is smaller than a legal type, as on PPC, so the right
6353       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6354       // to Load/Store if NVT==VT.
6355       // FIXME does the case above also need this?
6356       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6357       assert(NVT.bitsGE(VT));
6358 
6359       bool isDereferenceable =
6360         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6361       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6362       if (isDereferenceable)
6363         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6364 
6365       Value = DAG.getExtLoad(
6366           ISD::EXTLOAD, dl, NVT, Chain,
6367           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6368           SrcPtrInfo.getWithOffset(SrcOff), VT,
6369           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags);
6370       OutLoadChains.push_back(Value.getValue(1));
6371 
6372       Store = DAG.getTruncStore(
6373           Chain, dl, Value,
6374           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6375           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags);
6376       OutStoreChains.push_back(Store);
6377     }
6378     SrcOff += VTSize;
6379     DstOff += VTSize;
6380     Size -= VTSize;
6381   }
6382 
6383   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6384                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6385   unsigned NumLdStInMemcpy = OutStoreChains.size();
6386 
6387   if (NumLdStInMemcpy) {
6388     // It may be that memcpy might be converted to memset if it's memcpy
6389     // of constants. In such a case, we won't have loads and stores, but
6390     // just stores. In the absence of loads, there is nothing to gang up.
6391     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6392       // If target does not care, just leave as it.
6393       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6394         OutChains.push_back(OutLoadChains[i]);
6395         OutChains.push_back(OutStoreChains[i]);
6396       }
6397     } else {
6398       // Ld/St less than/equal limit set by target.
6399       if (NumLdStInMemcpy <= GluedLdStLimit) {
6400           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6401                                         NumLdStInMemcpy, OutLoadChains,
6402                                         OutStoreChains);
6403       } else {
6404         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6405         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6406         unsigned GlueIter = 0;
6407 
6408         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6409           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6410           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6411 
6412           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6413                                        OutLoadChains, OutStoreChains);
6414           GlueIter += GluedLdStLimit;
6415         }
6416 
6417         // Residual ld/st.
6418         if (RemainingLdStInMemcpy) {
6419           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6420                                         RemainingLdStInMemcpy, OutLoadChains,
6421                                         OutStoreChains);
6422         }
6423       }
6424     }
6425   }
6426   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6427 }
6428 
6429 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6430                                         SDValue Chain, SDValue Dst, SDValue Src,
6431                                         uint64_t Size, Align Alignment,
6432                                         bool isVol, bool AlwaysInline,
6433                                         MachinePointerInfo DstPtrInfo,
6434                                         MachinePointerInfo SrcPtrInfo) {
6435   // Turn a memmove of undef to nop.
6436   // FIXME: We need to honor volatile even is Src is undef.
6437   if (Src.isUndef())
6438     return Chain;
6439 
6440   // Expand memmove to a series of load and store ops if the size operand falls
6441   // below a certain threshold.
6442   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6443   const DataLayout &DL = DAG.getDataLayout();
6444   LLVMContext &C = *DAG.getContext();
6445   std::vector<EVT> MemOps;
6446   bool DstAlignCanChange = false;
6447   MachineFunction &MF = DAG.getMachineFunction();
6448   MachineFrameInfo &MFI = MF.getFrameInfo();
6449   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6450   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6451   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6452     DstAlignCanChange = true;
6453   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6454   if (!SrcAlign || Alignment > *SrcAlign)
6455     SrcAlign = Alignment;
6456   assert(SrcAlign && "SrcAlign must be set");
6457   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6458   if (!TLI.findOptimalMemOpLowering(
6459           MemOps, Limit,
6460           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6461                       /*IsVolatile*/ true),
6462           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6463           MF.getFunction().getAttributes()))
6464     return SDValue();
6465 
6466   if (DstAlignCanChange) {
6467     Type *Ty = MemOps[0].getTypeForEVT(C);
6468     Align NewAlign = DL.getABITypeAlign(Ty);
6469     if (NewAlign > Alignment) {
6470       // Give the stack frame object a larger alignment if needed.
6471       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6472         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6473       Alignment = NewAlign;
6474     }
6475   }
6476 
6477   MachineMemOperand::Flags MMOFlags =
6478       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6479   uint64_t SrcOff = 0, DstOff = 0;
6480   SmallVector<SDValue, 8> LoadValues;
6481   SmallVector<SDValue, 8> LoadChains;
6482   SmallVector<SDValue, 8> OutChains;
6483   unsigned NumMemOps = MemOps.size();
6484   for (unsigned i = 0; i < NumMemOps; i++) {
6485     EVT VT = MemOps[i];
6486     unsigned VTSize = VT.getSizeInBits() / 8;
6487     SDValue Value;
6488 
6489     bool isDereferenceable =
6490       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6491     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6492     if (isDereferenceable)
6493       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6494 
6495     Value =
6496         DAG.getLoad(VT, dl, Chain,
6497                     DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6498                     SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags);
6499     LoadValues.push_back(Value);
6500     LoadChains.push_back(Value.getValue(1));
6501     SrcOff += VTSize;
6502   }
6503   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6504   OutChains.clear();
6505   for (unsigned i = 0; i < NumMemOps; i++) {
6506     EVT VT = MemOps[i];
6507     unsigned VTSize = VT.getSizeInBits() / 8;
6508     SDValue Store;
6509 
6510     Store =
6511         DAG.getStore(Chain, dl, LoadValues[i],
6512                      DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6513                      DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6514     OutChains.push_back(Store);
6515     DstOff += VTSize;
6516   }
6517 
6518   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6519 }
6520 
6521 /// Lower the call to 'memset' intrinsic function into a series of store
6522 /// operations.
6523 ///
6524 /// \param DAG Selection DAG where lowered code is placed.
6525 /// \param dl Link to corresponding IR location.
6526 /// \param Chain Control flow dependency.
6527 /// \param Dst Pointer to destination memory location.
6528 /// \param Src Value of byte to write into the memory.
6529 /// \param Size Number of bytes to write.
6530 /// \param Alignment Alignment of the destination in bytes.
6531 /// \param isVol True if destination is volatile.
6532 /// \param DstPtrInfo IR information on the memory pointer.
6533 /// \returns New head in the control flow, if lowering was successful, empty
6534 /// SDValue otherwise.
6535 ///
6536 /// The function tries to replace 'llvm.memset' intrinsic with several store
6537 /// operations and value calculation code. This is usually profitable for small
6538 /// memory size.
6539 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6540                                SDValue Chain, SDValue Dst, SDValue Src,
6541                                uint64_t Size, Align Alignment, bool isVol,
6542                                MachinePointerInfo DstPtrInfo) {
6543   // Turn a memset of undef to nop.
6544   // FIXME: We need to honor volatile even is Src is undef.
6545   if (Src.isUndef())
6546     return Chain;
6547 
6548   // Expand memset to a series of load/store ops if the size operand
6549   // falls below a certain threshold.
6550   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6551   std::vector<EVT> MemOps;
6552   bool DstAlignCanChange = false;
6553   MachineFunction &MF = DAG.getMachineFunction();
6554   MachineFrameInfo &MFI = MF.getFrameInfo();
6555   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6556   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6557   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6558     DstAlignCanChange = true;
6559   bool IsZeroVal =
6560     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6561   if (!TLI.findOptimalMemOpLowering(
6562           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6563           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6564           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6565     return SDValue();
6566 
6567   if (DstAlignCanChange) {
6568     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6569     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6570     if (NewAlign > Alignment) {
6571       // Give the stack frame object a larger alignment if needed.
6572       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6573         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6574       Alignment = NewAlign;
6575     }
6576   }
6577 
6578   SmallVector<SDValue, 8> OutChains;
6579   uint64_t DstOff = 0;
6580   unsigned NumMemOps = MemOps.size();
6581 
6582   // Find the largest store and generate the bit pattern for it.
6583   EVT LargestVT = MemOps[0];
6584   for (unsigned i = 1; i < NumMemOps; i++)
6585     if (MemOps[i].bitsGT(LargestVT))
6586       LargestVT = MemOps[i];
6587   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6588 
6589   for (unsigned i = 0; i < NumMemOps; i++) {
6590     EVT VT = MemOps[i];
6591     unsigned VTSize = VT.getSizeInBits() / 8;
6592     if (VTSize > Size) {
6593       // Issuing an unaligned load / store pair  that overlaps with the previous
6594       // pair. Adjust the offset accordingly.
6595       assert(i == NumMemOps-1 && i != 0);
6596       DstOff -= VTSize - Size;
6597     }
6598 
6599     // If this store is smaller than the largest store see whether we can get
6600     // the smaller value for free with a truncate.
6601     SDValue Value = MemSetValue;
6602     if (VT.bitsLT(LargestVT)) {
6603       if (!LargestVT.isVector() && !VT.isVector() &&
6604           TLI.isTruncateFree(LargestVT, VT))
6605         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6606       else
6607         Value = getMemsetValue(Src, VT, DAG, dl);
6608     }
6609     assert(Value.getValueType() == VT && "Value with wrong type.");
6610     SDValue Store = DAG.getStore(
6611         Chain, dl, Value,
6612         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6613         DstPtrInfo.getWithOffset(DstOff), Alignment,
6614         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6615     OutChains.push_back(Store);
6616     DstOff += VT.getSizeInBits() / 8;
6617     Size -= VTSize;
6618   }
6619 
6620   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6621 }
6622 
6623 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6624                                             unsigned AS) {
6625   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6626   // pointer operands can be losslessly bitcasted to pointers of address space 0
6627   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
6628     report_fatal_error("cannot lower memory intrinsic in address space " +
6629                        Twine(AS));
6630   }
6631 }
6632 
6633 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6634                                 SDValue Src, SDValue Size, Align Alignment,
6635                                 bool isVol, bool AlwaysInline, bool isTailCall,
6636                                 MachinePointerInfo DstPtrInfo,
6637                                 MachinePointerInfo SrcPtrInfo) {
6638   // Check to see if we should lower the memcpy to loads and stores first.
6639   // For cases within the target-specified limits, this is the best choice.
6640   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6641   if (ConstantSize) {
6642     // Memcpy with size zero? Just return the original chain.
6643     if (ConstantSize->isNullValue())
6644       return Chain;
6645 
6646     SDValue Result = getMemcpyLoadsAndStores(
6647         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6648         isVol, false, DstPtrInfo, SrcPtrInfo);
6649     if (Result.getNode())
6650       return Result;
6651   }
6652 
6653   // Then check to see if we should lower the memcpy with target-specific
6654   // code. If the target chooses to do this, this is the next best.
6655   if (TSI) {
6656     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6657         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
6658         DstPtrInfo, SrcPtrInfo);
6659     if (Result.getNode())
6660       return Result;
6661   }
6662 
6663   // If we really need inline code and the target declined to provide it,
6664   // use a (potentially long) sequence of loads and stores.
6665   if (AlwaysInline) {
6666     assert(ConstantSize && "AlwaysInline requires a constant size!");
6667     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6668                                    ConstantSize->getZExtValue(), Alignment,
6669                                    isVol, true, DstPtrInfo, SrcPtrInfo);
6670   }
6671 
6672   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6673   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6674 
6675   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6676   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6677   // respect volatile, so they may do things like read or write memory
6678   // beyond the given memory regions. But fixing this isn't easy, and most
6679   // people don't care.
6680 
6681   // Emit a library call.
6682   TargetLowering::ArgListTy Args;
6683   TargetLowering::ArgListEntry Entry;
6684   Entry.Ty = Type::getInt8PtrTy(*getContext());
6685   Entry.Node = Dst; Args.push_back(Entry);
6686   Entry.Node = Src; Args.push_back(Entry);
6687 
6688   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6689   Entry.Node = Size; Args.push_back(Entry);
6690   // FIXME: pass in SDLoc
6691   TargetLowering::CallLoweringInfo CLI(*this);
6692   CLI.setDebugLoc(dl)
6693       .setChain(Chain)
6694       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6695                     Dst.getValueType().getTypeForEVT(*getContext()),
6696                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6697                                       TLI->getPointerTy(getDataLayout())),
6698                     std::move(Args))
6699       .setDiscardResult()
6700       .setTailCall(isTailCall);
6701 
6702   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6703   return CallResult.second;
6704 }
6705 
6706 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6707                                       SDValue Dst, unsigned DstAlign,
6708                                       SDValue Src, unsigned SrcAlign,
6709                                       SDValue Size, Type *SizeTy,
6710                                       unsigned ElemSz, bool isTailCall,
6711                                       MachinePointerInfo DstPtrInfo,
6712                                       MachinePointerInfo SrcPtrInfo) {
6713   // Emit a library call.
6714   TargetLowering::ArgListTy Args;
6715   TargetLowering::ArgListEntry Entry;
6716   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6717   Entry.Node = Dst;
6718   Args.push_back(Entry);
6719 
6720   Entry.Node = Src;
6721   Args.push_back(Entry);
6722 
6723   Entry.Ty = SizeTy;
6724   Entry.Node = Size;
6725   Args.push_back(Entry);
6726 
6727   RTLIB::Libcall LibraryCall =
6728       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6729   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6730     report_fatal_error("Unsupported element size");
6731 
6732   TargetLowering::CallLoweringInfo CLI(*this);
6733   CLI.setDebugLoc(dl)
6734       .setChain(Chain)
6735       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6736                     Type::getVoidTy(*getContext()),
6737                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6738                                       TLI->getPointerTy(getDataLayout())),
6739                     std::move(Args))
6740       .setDiscardResult()
6741       .setTailCall(isTailCall);
6742 
6743   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6744   return CallResult.second;
6745 }
6746 
6747 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6748                                  SDValue Src, SDValue Size, Align Alignment,
6749                                  bool isVol, bool isTailCall,
6750                                  MachinePointerInfo DstPtrInfo,
6751                                  MachinePointerInfo SrcPtrInfo) {
6752   // Check to see if we should lower the memmove to loads and stores first.
6753   // For cases within the target-specified limits, this is the best choice.
6754   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6755   if (ConstantSize) {
6756     // Memmove with size zero? Just return the original chain.
6757     if (ConstantSize->isNullValue())
6758       return Chain;
6759 
6760     SDValue Result = getMemmoveLoadsAndStores(
6761         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6762         isVol, false, DstPtrInfo, SrcPtrInfo);
6763     if (Result.getNode())
6764       return Result;
6765   }
6766 
6767   // Then check to see if we should lower the memmove with target-specific
6768   // code. If the target chooses to do this, this is the next best.
6769   if (TSI) {
6770     SDValue Result =
6771         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
6772                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
6773     if (Result.getNode())
6774       return Result;
6775   }
6776 
6777   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6778   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6779 
6780   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6781   // not be safe.  See memcpy above for more details.
6782 
6783   // Emit a library call.
6784   TargetLowering::ArgListTy Args;
6785   TargetLowering::ArgListEntry Entry;
6786   Entry.Ty = Type::getInt8PtrTy(*getContext());
6787   Entry.Node = Dst; Args.push_back(Entry);
6788   Entry.Node = Src; Args.push_back(Entry);
6789 
6790   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6791   Entry.Node = Size; Args.push_back(Entry);
6792   // FIXME:  pass in SDLoc
6793   TargetLowering::CallLoweringInfo CLI(*this);
6794   CLI.setDebugLoc(dl)
6795       .setChain(Chain)
6796       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6797                     Dst.getValueType().getTypeForEVT(*getContext()),
6798                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6799                                       TLI->getPointerTy(getDataLayout())),
6800                     std::move(Args))
6801       .setDiscardResult()
6802       .setTailCall(isTailCall);
6803 
6804   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6805   return CallResult.second;
6806 }
6807 
6808 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6809                                        SDValue Dst, unsigned DstAlign,
6810                                        SDValue Src, unsigned SrcAlign,
6811                                        SDValue Size, Type *SizeTy,
6812                                        unsigned ElemSz, bool isTailCall,
6813                                        MachinePointerInfo DstPtrInfo,
6814                                        MachinePointerInfo SrcPtrInfo) {
6815   // Emit a library call.
6816   TargetLowering::ArgListTy Args;
6817   TargetLowering::ArgListEntry Entry;
6818   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6819   Entry.Node = Dst;
6820   Args.push_back(Entry);
6821 
6822   Entry.Node = Src;
6823   Args.push_back(Entry);
6824 
6825   Entry.Ty = SizeTy;
6826   Entry.Node = Size;
6827   Args.push_back(Entry);
6828 
6829   RTLIB::Libcall LibraryCall =
6830       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6831   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6832     report_fatal_error("Unsupported element size");
6833 
6834   TargetLowering::CallLoweringInfo CLI(*this);
6835   CLI.setDebugLoc(dl)
6836       .setChain(Chain)
6837       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6838                     Type::getVoidTy(*getContext()),
6839                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6840                                       TLI->getPointerTy(getDataLayout())),
6841                     std::move(Args))
6842       .setDiscardResult()
6843       .setTailCall(isTailCall);
6844 
6845   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6846   return CallResult.second;
6847 }
6848 
6849 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6850                                 SDValue Src, SDValue Size, Align Alignment,
6851                                 bool isVol, bool isTailCall,
6852                                 MachinePointerInfo DstPtrInfo) {
6853   // Check to see if we should lower the memset to stores first.
6854   // For cases within the target-specified limits, this is the best choice.
6855   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6856   if (ConstantSize) {
6857     // Memset with size zero? Just return the original chain.
6858     if (ConstantSize->isNullValue())
6859       return Chain;
6860 
6861     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
6862                                      ConstantSize->getZExtValue(), Alignment,
6863                                      isVol, DstPtrInfo);
6864 
6865     if (Result.getNode())
6866       return Result;
6867   }
6868 
6869   // Then check to see if we should lower the memset with target-specific
6870   // code. If the target chooses to do this, this is the next best.
6871   if (TSI) {
6872     SDValue Result = TSI->EmitTargetCodeForMemset(
6873         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
6874     if (Result.getNode())
6875       return Result;
6876   }
6877 
6878   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6879 
6880   // Emit a library call.
6881   TargetLowering::ArgListTy Args;
6882   TargetLowering::ArgListEntry Entry;
6883   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6884   Args.push_back(Entry);
6885   Entry.Node = Src;
6886   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6887   Args.push_back(Entry);
6888   Entry.Node = Size;
6889   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6890   Args.push_back(Entry);
6891 
6892   // FIXME: pass in SDLoc
6893   TargetLowering::CallLoweringInfo CLI(*this);
6894   CLI.setDebugLoc(dl)
6895       .setChain(Chain)
6896       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6897                     Dst.getValueType().getTypeForEVT(*getContext()),
6898                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6899                                       TLI->getPointerTy(getDataLayout())),
6900                     std::move(Args))
6901       .setDiscardResult()
6902       .setTailCall(isTailCall);
6903 
6904   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6905   return CallResult.second;
6906 }
6907 
6908 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6909                                       SDValue Dst, unsigned DstAlign,
6910                                       SDValue Value, SDValue Size, Type *SizeTy,
6911                                       unsigned ElemSz, bool isTailCall,
6912                                       MachinePointerInfo DstPtrInfo) {
6913   // Emit a library call.
6914   TargetLowering::ArgListTy Args;
6915   TargetLowering::ArgListEntry Entry;
6916   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6917   Entry.Node = Dst;
6918   Args.push_back(Entry);
6919 
6920   Entry.Ty = Type::getInt8Ty(*getContext());
6921   Entry.Node = Value;
6922   Args.push_back(Entry);
6923 
6924   Entry.Ty = SizeTy;
6925   Entry.Node = Size;
6926   Args.push_back(Entry);
6927 
6928   RTLIB::Libcall LibraryCall =
6929       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6930   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6931     report_fatal_error("Unsupported element size");
6932 
6933   TargetLowering::CallLoweringInfo CLI(*this);
6934   CLI.setDebugLoc(dl)
6935       .setChain(Chain)
6936       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6937                     Type::getVoidTy(*getContext()),
6938                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6939                                       TLI->getPointerTy(getDataLayout())),
6940                     std::move(Args))
6941       .setDiscardResult()
6942       .setTailCall(isTailCall);
6943 
6944   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6945   return CallResult.second;
6946 }
6947 
6948 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6949                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6950                                 MachineMemOperand *MMO) {
6951   FoldingSetNodeID ID;
6952   ID.AddInteger(MemVT.getRawBits());
6953   AddNodeIDNode(ID, Opcode, VTList, Ops);
6954   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6955   void* IP = nullptr;
6956   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6957     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6958     return SDValue(E, 0);
6959   }
6960 
6961   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6962                                     VTList, MemVT, MMO);
6963   createOperands(N, Ops);
6964 
6965   CSEMap.InsertNode(N, IP);
6966   InsertNode(N);
6967   return SDValue(N, 0);
6968 }
6969 
6970 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6971                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6972                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6973                                        MachineMemOperand *MMO) {
6974   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6975          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6976   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6977 
6978   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6979   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6980 }
6981 
6982 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6983                                 SDValue Chain, SDValue Ptr, SDValue Val,
6984                                 MachineMemOperand *MMO) {
6985   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6986           Opcode == ISD::ATOMIC_LOAD_SUB ||
6987           Opcode == ISD::ATOMIC_LOAD_AND ||
6988           Opcode == ISD::ATOMIC_LOAD_CLR ||
6989           Opcode == ISD::ATOMIC_LOAD_OR ||
6990           Opcode == ISD::ATOMIC_LOAD_XOR ||
6991           Opcode == ISD::ATOMIC_LOAD_NAND ||
6992           Opcode == ISD::ATOMIC_LOAD_MIN ||
6993           Opcode == ISD::ATOMIC_LOAD_MAX ||
6994           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6995           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6996           Opcode == ISD::ATOMIC_LOAD_FADD ||
6997           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6998           Opcode == ISD::ATOMIC_SWAP ||
6999           Opcode == ISD::ATOMIC_STORE) &&
7000          "Invalid Atomic Op");
7001 
7002   EVT VT = Val.getValueType();
7003 
7004   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
7005                                                getVTList(VT, MVT::Other);
7006   SDValue Ops[] = {Chain, Ptr, Val};
7007   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7008 }
7009 
7010 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7011                                 EVT VT, SDValue Chain, SDValue Ptr,
7012                                 MachineMemOperand *MMO) {
7013   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
7014 
7015   SDVTList VTs = getVTList(VT, MVT::Other);
7016   SDValue Ops[] = {Chain, Ptr};
7017   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7018 }
7019 
7020 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
7021 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
7022   if (Ops.size() == 1)
7023     return Ops[0];
7024 
7025   SmallVector<EVT, 4> VTs;
7026   VTs.reserve(Ops.size());
7027   for (const SDValue &Op : Ops)
7028     VTs.push_back(Op.getValueType());
7029   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
7030 }
7031 
7032 SDValue SelectionDAG::getMemIntrinsicNode(
7033     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
7034     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
7035     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
7036   if (!Size && MemVT.isScalableVector())
7037     Size = MemoryLocation::UnknownSize;
7038   else if (!Size)
7039     Size = MemVT.getStoreSize();
7040 
7041   MachineFunction &MF = getMachineFunction();
7042   MachineMemOperand *MMO =
7043       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
7044 
7045   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
7046 }
7047 
7048 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
7049                                           SDVTList VTList,
7050                                           ArrayRef<SDValue> Ops, EVT MemVT,
7051                                           MachineMemOperand *MMO) {
7052   assert((Opcode == ISD::INTRINSIC_VOID ||
7053           Opcode == ISD::INTRINSIC_W_CHAIN ||
7054           Opcode == ISD::PREFETCH ||
7055           ((int)Opcode <= std::numeric_limits<int>::max() &&
7056            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
7057          "Opcode is not a memory-accessing opcode!");
7058 
7059   // Memoize the node unless it returns a flag.
7060   MemIntrinsicSDNode *N;
7061   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7062     FoldingSetNodeID ID;
7063     AddNodeIDNode(ID, Opcode, VTList, Ops);
7064     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
7065         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
7066     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7067     void *IP = nullptr;
7068     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7069       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
7070       return SDValue(E, 0);
7071     }
7072 
7073     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7074                                       VTList, MemVT, MMO);
7075     createOperands(N, Ops);
7076 
7077   CSEMap.InsertNode(N, IP);
7078   } else {
7079     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7080                                       VTList, MemVT, MMO);
7081     createOperands(N, Ops);
7082   }
7083   InsertNode(N);
7084   SDValue V(N, 0);
7085   NewSDValueDbgMsg(V, "Creating new node: ", this);
7086   return V;
7087 }
7088 
7089 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
7090                                       SDValue Chain, int FrameIndex,
7091                                       int64_t Size, int64_t Offset) {
7092   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
7093   const auto VTs = getVTList(MVT::Other);
7094   SDValue Ops[2] = {
7095       Chain,
7096       getFrameIndex(FrameIndex,
7097                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
7098                     true)};
7099 
7100   FoldingSetNodeID ID;
7101   AddNodeIDNode(ID, Opcode, VTs, Ops);
7102   ID.AddInteger(FrameIndex);
7103   ID.AddInteger(Size);
7104   ID.AddInteger(Offset);
7105   void *IP = nullptr;
7106   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7107     return SDValue(E, 0);
7108 
7109   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
7110       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
7111   createOperands(N, Ops);
7112   CSEMap.InsertNode(N, IP);
7113   InsertNode(N);
7114   SDValue V(N, 0);
7115   NewSDValueDbgMsg(V, "Creating new node: ", this);
7116   return V;
7117 }
7118 
7119 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
7120                                          uint64_t Guid, uint64_t Index,
7121                                          uint32_t Attr) {
7122   const unsigned Opcode = ISD::PSEUDO_PROBE;
7123   const auto VTs = getVTList(MVT::Other);
7124   SDValue Ops[] = {Chain};
7125   FoldingSetNodeID ID;
7126   AddNodeIDNode(ID, Opcode, VTs, Ops);
7127   ID.AddInteger(Guid);
7128   ID.AddInteger(Index);
7129   void *IP = nullptr;
7130   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
7131     return SDValue(E, 0);
7132 
7133   auto *N = newSDNode<PseudoProbeSDNode>(
7134       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
7135   createOperands(N, Ops);
7136   CSEMap.InsertNode(N, IP);
7137   InsertNode(N);
7138   SDValue V(N, 0);
7139   NewSDValueDbgMsg(V, "Creating new node: ", this);
7140   return V;
7141 }
7142 
7143 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7144 /// MachinePointerInfo record from it.  This is particularly useful because the
7145 /// code generator has many cases where it doesn't bother passing in a
7146 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7147 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7148                                            SelectionDAG &DAG, SDValue Ptr,
7149                                            int64_t Offset = 0) {
7150   // If this is FI+Offset, we can model it.
7151   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
7152     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
7153                                              FI->getIndex(), Offset);
7154 
7155   // If this is (FI+Offset1)+Offset2, we can model it.
7156   if (Ptr.getOpcode() != ISD::ADD ||
7157       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
7158       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
7159     return Info;
7160 
7161   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7162   return MachinePointerInfo::getFixedStack(
7163       DAG.getMachineFunction(), FI,
7164       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
7165 }
7166 
7167 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7168 /// MachinePointerInfo record from it.  This is particularly useful because the
7169 /// code generator has many cases where it doesn't bother passing in a
7170 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7171 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7172                                            SelectionDAG &DAG, SDValue Ptr,
7173                                            SDValue OffsetOp) {
7174   // If the 'Offset' value isn't a constant, we can't handle this.
7175   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
7176     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
7177   if (OffsetOp.isUndef())
7178     return InferPointerInfo(Info, DAG, Ptr);
7179   return Info;
7180 }
7181 
7182 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7183                               EVT VT, const SDLoc &dl, SDValue Chain,
7184                               SDValue Ptr, SDValue Offset,
7185                               MachinePointerInfo PtrInfo, EVT MemVT,
7186                               Align Alignment,
7187                               MachineMemOperand::Flags MMOFlags,
7188                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7189   assert(Chain.getValueType() == MVT::Other &&
7190         "Invalid chain type");
7191 
7192   MMOFlags |= MachineMemOperand::MOLoad;
7193   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7194   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7195   // clients.
7196   if (PtrInfo.V.isNull())
7197     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7198 
7199   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7200   MachineFunction &MF = getMachineFunction();
7201   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7202                                                    Alignment, AAInfo, Ranges);
7203   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7204 }
7205 
7206 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7207                               EVT VT, const SDLoc &dl, SDValue Chain,
7208                               SDValue Ptr, SDValue Offset, EVT MemVT,
7209                               MachineMemOperand *MMO) {
7210   if (VT == MemVT) {
7211     ExtType = ISD::NON_EXTLOAD;
7212   } else if (ExtType == ISD::NON_EXTLOAD) {
7213     assert(VT == MemVT && "Non-extending load from different memory type!");
7214   } else {
7215     // Extending load.
7216     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7217            "Should only be an extending load, not truncating!");
7218     assert(VT.isInteger() == MemVT.isInteger() &&
7219            "Cannot convert from FP to Int or Int -> FP!");
7220     assert(VT.isVector() == MemVT.isVector() &&
7221            "Cannot use an ext load to convert to or from a vector!");
7222     assert((!VT.isVector() ||
7223             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7224            "Cannot use an ext load to change the number of vector elements!");
7225   }
7226 
7227   bool Indexed = AM != ISD::UNINDEXED;
7228   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7229 
7230   SDVTList VTs = Indexed ?
7231     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7232   SDValue Ops[] = { Chain, Ptr, Offset };
7233   FoldingSetNodeID ID;
7234   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7235   ID.AddInteger(MemVT.getRawBits());
7236   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7237       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7238   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7239   void *IP = nullptr;
7240   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7241     cast<LoadSDNode>(E)->refineAlignment(MMO);
7242     return SDValue(E, 0);
7243   }
7244   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7245                                   ExtType, MemVT, MMO);
7246   createOperands(N, Ops);
7247 
7248   CSEMap.InsertNode(N, IP);
7249   InsertNode(N);
7250   SDValue V(N, 0);
7251   NewSDValueDbgMsg(V, "Creating new node: ", this);
7252   return V;
7253 }
7254 
7255 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7256                               SDValue Ptr, MachinePointerInfo PtrInfo,
7257                               MaybeAlign Alignment,
7258                               MachineMemOperand::Flags MMOFlags,
7259                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7260   SDValue Undef = getUNDEF(Ptr.getValueType());
7261   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7262                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7263 }
7264 
7265 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7266                               SDValue Ptr, MachineMemOperand *MMO) {
7267   SDValue Undef = getUNDEF(Ptr.getValueType());
7268   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7269                  VT, MMO);
7270 }
7271 
7272 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7273                                  EVT VT, SDValue Chain, SDValue Ptr,
7274                                  MachinePointerInfo PtrInfo, EVT MemVT,
7275                                  MaybeAlign Alignment,
7276                                  MachineMemOperand::Flags MMOFlags,
7277                                  const AAMDNodes &AAInfo) {
7278   SDValue Undef = getUNDEF(Ptr.getValueType());
7279   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7280                  MemVT, Alignment, MMOFlags, AAInfo);
7281 }
7282 
7283 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7284                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7285                                  MachineMemOperand *MMO) {
7286   SDValue Undef = getUNDEF(Ptr.getValueType());
7287   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7288                  MemVT, MMO);
7289 }
7290 
7291 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7292                                      SDValue Base, SDValue Offset,
7293                                      ISD::MemIndexedMode AM) {
7294   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7295   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7296   // Don't propagate the invariant or dereferenceable flags.
7297   auto MMOFlags =
7298       LD->getMemOperand()->getFlags() &
7299       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7300   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7301                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7302                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7303 }
7304 
7305 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7306                                SDValue Ptr, MachinePointerInfo PtrInfo,
7307                                Align Alignment,
7308                                MachineMemOperand::Flags MMOFlags,
7309                                const AAMDNodes &AAInfo) {
7310   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7311 
7312   MMOFlags |= MachineMemOperand::MOStore;
7313   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7314 
7315   if (PtrInfo.V.isNull())
7316     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7317 
7318   MachineFunction &MF = getMachineFunction();
7319   uint64_t Size =
7320       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7321   MachineMemOperand *MMO =
7322       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7323   return getStore(Chain, dl, Val, Ptr, MMO);
7324 }
7325 
7326 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7327                                SDValue Ptr, MachineMemOperand *MMO) {
7328   assert(Chain.getValueType() == MVT::Other &&
7329         "Invalid chain type");
7330   EVT VT = Val.getValueType();
7331   SDVTList VTs = getVTList(MVT::Other);
7332   SDValue Undef = getUNDEF(Ptr.getValueType());
7333   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7334   FoldingSetNodeID ID;
7335   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7336   ID.AddInteger(VT.getRawBits());
7337   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7338       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7339   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7340   void *IP = nullptr;
7341   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7342     cast<StoreSDNode>(E)->refineAlignment(MMO);
7343     return SDValue(E, 0);
7344   }
7345   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7346                                    ISD::UNINDEXED, false, VT, MMO);
7347   createOperands(N, Ops);
7348 
7349   CSEMap.InsertNode(N, IP);
7350   InsertNode(N);
7351   SDValue V(N, 0);
7352   NewSDValueDbgMsg(V, "Creating new node: ", this);
7353   return V;
7354 }
7355 
7356 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7357                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7358                                     EVT SVT, Align Alignment,
7359                                     MachineMemOperand::Flags MMOFlags,
7360                                     const AAMDNodes &AAInfo) {
7361   assert(Chain.getValueType() == MVT::Other &&
7362         "Invalid chain type");
7363 
7364   MMOFlags |= MachineMemOperand::MOStore;
7365   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7366 
7367   if (PtrInfo.V.isNull())
7368     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7369 
7370   MachineFunction &MF = getMachineFunction();
7371   MachineMemOperand *MMO = MF.getMachineMemOperand(
7372       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7373       Alignment, AAInfo);
7374   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7375 }
7376 
7377 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7378                                     SDValue Ptr, EVT SVT,
7379                                     MachineMemOperand *MMO) {
7380   EVT VT = Val.getValueType();
7381 
7382   assert(Chain.getValueType() == MVT::Other &&
7383         "Invalid chain type");
7384   if (VT == SVT)
7385     return getStore(Chain, dl, Val, Ptr, MMO);
7386 
7387   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7388          "Should only be a truncating store, not extending!");
7389   assert(VT.isInteger() == SVT.isInteger() &&
7390          "Can't do FP-INT conversion!");
7391   assert(VT.isVector() == SVT.isVector() &&
7392          "Cannot use trunc store to convert to or from a vector!");
7393   assert((!VT.isVector() ||
7394           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7395          "Cannot use trunc store to change the number of vector elements!");
7396 
7397   SDVTList VTs = getVTList(MVT::Other);
7398   SDValue Undef = getUNDEF(Ptr.getValueType());
7399   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7400   FoldingSetNodeID ID;
7401   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7402   ID.AddInteger(SVT.getRawBits());
7403   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7404       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7405   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7406   void *IP = nullptr;
7407   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7408     cast<StoreSDNode>(E)->refineAlignment(MMO);
7409     return SDValue(E, 0);
7410   }
7411   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7412                                    ISD::UNINDEXED, true, SVT, MMO);
7413   createOperands(N, Ops);
7414 
7415   CSEMap.InsertNode(N, IP);
7416   InsertNode(N);
7417   SDValue V(N, 0);
7418   NewSDValueDbgMsg(V, "Creating new node: ", this);
7419   return V;
7420 }
7421 
7422 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7423                                       SDValue Base, SDValue Offset,
7424                                       ISD::MemIndexedMode AM) {
7425   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7426   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7427   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7428   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7429   FoldingSetNodeID ID;
7430   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7431   ID.AddInteger(ST->getMemoryVT().getRawBits());
7432   ID.AddInteger(ST->getRawSubclassData());
7433   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7434   void *IP = nullptr;
7435   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7436     return SDValue(E, 0);
7437 
7438   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7439                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7440                                    ST->getMemOperand());
7441   createOperands(N, Ops);
7442 
7443   CSEMap.InsertNode(N, IP);
7444   InsertNode(N);
7445   SDValue V(N, 0);
7446   NewSDValueDbgMsg(V, "Creating new node: ", this);
7447   return V;
7448 }
7449 
7450 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7451                                     SDValue Base, SDValue Offset, SDValue Mask,
7452                                     SDValue PassThru, EVT MemVT,
7453                                     MachineMemOperand *MMO,
7454                                     ISD::MemIndexedMode AM,
7455                                     ISD::LoadExtType ExtTy, bool isExpanding) {
7456   bool Indexed = AM != ISD::UNINDEXED;
7457   assert((Indexed || Offset.isUndef()) &&
7458          "Unindexed masked load with an offset!");
7459   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7460                          : getVTList(VT, MVT::Other);
7461   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7462   FoldingSetNodeID ID;
7463   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7464   ID.AddInteger(MemVT.getRawBits());
7465   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7466       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7467   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7468   void *IP = nullptr;
7469   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7470     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7471     return SDValue(E, 0);
7472   }
7473   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7474                                         AM, ExtTy, isExpanding, MemVT, MMO);
7475   createOperands(N, Ops);
7476 
7477   CSEMap.InsertNode(N, IP);
7478   InsertNode(N);
7479   SDValue V(N, 0);
7480   NewSDValueDbgMsg(V, "Creating new node: ", this);
7481   return V;
7482 }
7483 
7484 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7485                                            SDValue Base, SDValue Offset,
7486                                            ISD::MemIndexedMode AM) {
7487   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7488   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7489   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7490                        Offset, LD->getMask(), LD->getPassThru(),
7491                        LD->getMemoryVT(), LD->getMemOperand(), AM,
7492                        LD->getExtensionType(), LD->isExpandingLoad());
7493 }
7494 
7495 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7496                                      SDValue Val, SDValue Base, SDValue Offset,
7497                                      SDValue Mask, EVT MemVT,
7498                                      MachineMemOperand *MMO,
7499                                      ISD::MemIndexedMode AM, bool IsTruncating,
7500                                      bool IsCompressing) {
7501   assert(Chain.getValueType() == MVT::Other &&
7502         "Invalid chain type");
7503   bool Indexed = AM != ISD::UNINDEXED;
7504   assert((Indexed || Offset.isUndef()) &&
7505          "Unindexed masked store with an offset!");
7506   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7507                          : getVTList(MVT::Other);
7508   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7509   FoldingSetNodeID ID;
7510   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7511   ID.AddInteger(MemVT.getRawBits());
7512   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7513       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7514   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7515   void *IP = nullptr;
7516   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7517     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7518     return SDValue(E, 0);
7519   }
7520   auto *N =
7521       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7522                                    IsTruncating, IsCompressing, MemVT, MMO);
7523   createOperands(N, Ops);
7524 
7525   CSEMap.InsertNode(N, IP);
7526   InsertNode(N);
7527   SDValue V(N, 0);
7528   NewSDValueDbgMsg(V, "Creating new node: ", this);
7529   return V;
7530 }
7531 
7532 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7533                                             SDValue Base, SDValue Offset,
7534                                             ISD::MemIndexedMode AM) {
7535   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7536   assert(ST->getOffset().isUndef() &&
7537          "Masked store is already a indexed store!");
7538   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7539                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7540                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
7541 }
7542 
7543 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7544                                       ArrayRef<SDValue> Ops,
7545                                       MachineMemOperand *MMO,
7546                                       ISD::MemIndexType IndexType,
7547                                       ISD::LoadExtType ExtTy) {
7548   assert(Ops.size() == 6 && "Incompatible number of operands");
7549 
7550   FoldingSetNodeID ID;
7551   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7552   ID.AddInteger(VT.getRawBits());
7553   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7554       dl.getIROrder(), VTs, VT, MMO, IndexType, ExtTy));
7555   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7556   void *IP = nullptr;
7557   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7558     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7559     return SDValue(E, 0);
7560   }
7561 
7562   IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]);
7563   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7564                                           VTs, VT, MMO, IndexType, ExtTy);
7565   createOperands(N, Ops);
7566 
7567   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7568          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7569   assert(N->getMask().getValueType().getVectorElementCount() ==
7570              N->getValueType(0).getVectorElementCount() &&
7571          "Vector width mismatch between mask and data");
7572   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7573              N->getValueType(0).getVectorElementCount().isScalable() &&
7574          "Scalable flags of index and data do not match");
7575   assert(ElementCount::isKnownGE(
7576              N->getIndex().getValueType().getVectorElementCount(),
7577              N->getValueType(0).getVectorElementCount()) &&
7578          "Vector width mismatch between index and data");
7579   assert(isa<ConstantSDNode>(N->getScale()) &&
7580          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7581          "Scale should be a constant power of 2");
7582 
7583   CSEMap.InsertNode(N, IP);
7584   InsertNode(N);
7585   SDValue V(N, 0);
7586   NewSDValueDbgMsg(V, "Creating new node: ", this);
7587   return V;
7588 }
7589 
7590 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7591                                        ArrayRef<SDValue> Ops,
7592                                        MachineMemOperand *MMO,
7593                                        ISD::MemIndexType IndexType,
7594                                        bool IsTrunc) {
7595   assert(Ops.size() == 6 && "Incompatible number of operands");
7596 
7597   FoldingSetNodeID ID;
7598   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7599   ID.AddInteger(VT.getRawBits());
7600   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7601       dl.getIROrder(), VTs, VT, MMO, IndexType, IsTrunc));
7602   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7603   void *IP = nullptr;
7604   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7605     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7606     return SDValue(E, 0);
7607   }
7608 
7609   IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]);
7610   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7611                                            VTs, VT, MMO, IndexType, IsTrunc);
7612   createOperands(N, Ops);
7613 
7614   assert(N->getMask().getValueType().getVectorElementCount() ==
7615              N->getValue().getValueType().getVectorElementCount() &&
7616          "Vector width mismatch between mask and data");
7617   assert(
7618       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7619           N->getValue().getValueType().getVectorElementCount().isScalable() &&
7620       "Scalable flags of index and data do not match");
7621   assert(ElementCount::isKnownGE(
7622              N->getIndex().getValueType().getVectorElementCount(),
7623              N->getValue().getValueType().getVectorElementCount()) &&
7624          "Vector width mismatch between index and data");
7625   assert(isa<ConstantSDNode>(N->getScale()) &&
7626          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7627          "Scale should be a constant power of 2");
7628 
7629   CSEMap.InsertNode(N, IP);
7630   InsertNode(N);
7631   SDValue V(N, 0);
7632   NewSDValueDbgMsg(V, "Creating new node: ", this);
7633   return V;
7634 }
7635 
7636 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7637   // select undef, T, F --> T (if T is a constant), otherwise F
7638   // select, ?, undef, F --> F
7639   // select, ?, T, undef --> T
7640   if (Cond.isUndef())
7641     return isConstantValueOfAnyType(T) ? T : F;
7642   if (T.isUndef())
7643     return F;
7644   if (F.isUndef())
7645     return T;
7646 
7647   // select true, T, F --> T
7648   // select false, T, F --> F
7649   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7650     return CondC->isNullValue() ? F : T;
7651 
7652   // TODO: This should simplify VSELECT with constant condition using something
7653   // like this (but check boolean contents to be complete?):
7654   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7655   //    return T;
7656   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7657   //    return F;
7658 
7659   // select ?, T, T --> T
7660   if (T == F)
7661     return T;
7662 
7663   return SDValue();
7664 }
7665 
7666 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7667   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7668   if (X.isUndef())
7669     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7670   // shift X, undef --> undef (because it may shift by the bitwidth)
7671   if (Y.isUndef())
7672     return getUNDEF(X.getValueType());
7673 
7674   // shift 0, Y --> 0
7675   // shift X, 0 --> X
7676   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7677     return X;
7678 
7679   // shift X, C >= bitwidth(X) --> undef
7680   // All vector elements must be too big (or undef) to avoid partial undefs.
7681   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7682     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7683   };
7684   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7685     return getUNDEF(X.getValueType());
7686 
7687   return SDValue();
7688 }
7689 
7690 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
7691                                       SDNodeFlags Flags) {
7692   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
7693   // (an undef operand can be chosen to be Nan/Inf), then the result of this
7694   // operation is poison. That result can be relaxed to undef.
7695   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
7696   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7697   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
7698                 (YC && YC->getValueAPF().isNaN());
7699   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
7700                 (YC && YC->getValueAPF().isInfinity());
7701 
7702   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
7703     return getUNDEF(X.getValueType());
7704 
7705   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
7706     return getUNDEF(X.getValueType());
7707 
7708   if (!YC)
7709     return SDValue();
7710 
7711   // X + -0.0 --> X
7712   if (Opcode == ISD::FADD)
7713     if (YC->getValueAPF().isNegZero())
7714       return X;
7715 
7716   // X - +0.0 --> X
7717   if (Opcode == ISD::FSUB)
7718     if (YC->getValueAPF().isPosZero())
7719       return X;
7720 
7721   // X * 1.0 --> X
7722   // X / 1.0 --> X
7723   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7724     if (YC->getValueAPF().isExactlyValue(1.0))
7725       return X;
7726 
7727   // X * 0.0 --> 0.0
7728   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
7729     if (YC->getValueAPF().isZero())
7730       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
7731 
7732   return SDValue();
7733 }
7734 
7735 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7736                                SDValue Ptr, SDValue SV, unsigned Align) {
7737   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7738   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7739 }
7740 
7741 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7742                               ArrayRef<SDUse> Ops) {
7743   switch (Ops.size()) {
7744   case 0: return getNode(Opcode, DL, VT);
7745   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7746   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7747   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7748   default: break;
7749   }
7750 
7751   // Copy from an SDUse array into an SDValue array for use with
7752   // the regular getNode logic.
7753   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7754   return getNode(Opcode, DL, VT, NewOps);
7755 }
7756 
7757 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7758                               ArrayRef<SDValue> Ops) {
7759   SDNodeFlags Flags;
7760   if (Inserter)
7761     Flags = Inserter->getFlags();
7762   return getNode(Opcode, DL, VT, Ops, Flags);
7763 }
7764 
7765 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7766                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7767   unsigned NumOps = Ops.size();
7768   switch (NumOps) {
7769   case 0: return getNode(Opcode, DL, VT);
7770   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7771   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7772   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7773   default: break;
7774   }
7775 
7776 #ifndef NDEBUG
7777   for (auto &Op : Ops)
7778     assert(Op.getOpcode() != ISD::DELETED_NODE &&
7779            "Operand is DELETED_NODE!");
7780 #endif
7781 
7782   switch (Opcode) {
7783   default: break;
7784   case ISD::BUILD_VECTOR:
7785     // Attempt to simplify BUILD_VECTOR.
7786     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7787       return V;
7788     break;
7789   case ISD::CONCAT_VECTORS:
7790     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7791       return V;
7792     break;
7793   case ISD::SELECT_CC:
7794     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7795     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7796            "LHS and RHS of condition must have same type!");
7797     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7798            "True and False arms of SelectCC must have same type!");
7799     assert(Ops[2].getValueType() == VT &&
7800            "select_cc node must be of same type as true and false value!");
7801     break;
7802   case ISD::BR_CC:
7803     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7804     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7805            "LHS/RHS of comparison should match types!");
7806     break;
7807   }
7808 
7809   // Memoize nodes.
7810   SDNode *N;
7811   SDVTList VTs = getVTList(VT);
7812 
7813   if (VT != MVT::Glue) {
7814     FoldingSetNodeID ID;
7815     AddNodeIDNode(ID, Opcode, VTs, Ops);
7816     void *IP = nullptr;
7817 
7818     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7819       return SDValue(E, 0);
7820 
7821     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7822     createOperands(N, Ops);
7823 
7824     CSEMap.InsertNode(N, IP);
7825   } else {
7826     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7827     createOperands(N, Ops);
7828   }
7829 
7830   N->setFlags(Flags);
7831   InsertNode(N);
7832   SDValue V(N, 0);
7833   NewSDValueDbgMsg(V, "Creating new node: ", this);
7834   return V;
7835 }
7836 
7837 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7838                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7839   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7840 }
7841 
7842 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7843                               ArrayRef<SDValue> Ops) {
7844   SDNodeFlags Flags;
7845   if (Inserter)
7846     Flags = Inserter->getFlags();
7847   return getNode(Opcode, DL, VTList, Ops, Flags);
7848 }
7849 
7850 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7851                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7852   if (VTList.NumVTs == 1)
7853     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7854 
7855 #ifndef NDEBUG
7856   for (auto &Op : Ops)
7857     assert(Op.getOpcode() != ISD::DELETED_NODE &&
7858            "Operand is DELETED_NODE!");
7859 #endif
7860 
7861   switch (Opcode) {
7862   case ISD::STRICT_FP_EXTEND:
7863     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
7864            "Invalid STRICT_FP_EXTEND!");
7865     assert(VTList.VTs[0].isFloatingPoint() &&
7866            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
7867     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7868            "STRICT_FP_EXTEND result type should be vector iff the operand "
7869            "type is vector!");
7870     assert((!VTList.VTs[0].isVector() ||
7871             VTList.VTs[0].getVectorNumElements() ==
7872             Ops[1].getValueType().getVectorNumElements()) &&
7873            "Vector element count mismatch!");
7874     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
7875            "Invalid fpext node, dst <= src!");
7876     break;
7877   case ISD::STRICT_FP_ROUND:
7878     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
7879     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7880            "STRICT_FP_ROUND result type should be vector iff the operand "
7881            "type is vector!");
7882     assert((!VTList.VTs[0].isVector() ||
7883             VTList.VTs[0].getVectorNumElements() ==
7884             Ops[1].getValueType().getVectorNumElements()) &&
7885            "Vector element count mismatch!");
7886     assert(VTList.VTs[0].isFloatingPoint() &&
7887            Ops[1].getValueType().isFloatingPoint() &&
7888            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
7889            isa<ConstantSDNode>(Ops[2]) &&
7890            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
7891             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
7892            "Invalid STRICT_FP_ROUND!");
7893     break;
7894 #if 0
7895   // FIXME: figure out how to safely handle things like
7896   // int foo(int x) { return 1 << (x & 255); }
7897   // int bar() { return foo(256); }
7898   case ISD::SRA_PARTS:
7899   case ISD::SRL_PARTS:
7900   case ISD::SHL_PARTS:
7901     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7902         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7903       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7904     else if (N3.getOpcode() == ISD::AND)
7905       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7906         // If the and is only masking out bits that cannot effect the shift,
7907         // eliminate the and.
7908         unsigned NumBits = VT.getScalarSizeInBits()*2;
7909         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7910           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7911       }
7912     break;
7913 #endif
7914   }
7915 
7916   // Memoize the node unless it returns a flag.
7917   SDNode *N;
7918   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7919     FoldingSetNodeID ID;
7920     AddNodeIDNode(ID, Opcode, VTList, Ops);
7921     void *IP = nullptr;
7922     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7923       return SDValue(E, 0);
7924 
7925     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7926     createOperands(N, Ops);
7927     CSEMap.InsertNode(N, IP);
7928   } else {
7929     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7930     createOperands(N, Ops);
7931   }
7932 
7933   N->setFlags(Flags);
7934   InsertNode(N);
7935   SDValue V(N, 0);
7936   NewSDValueDbgMsg(V, "Creating new node: ", this);
7937   return V;
7938 }
7939 
7940 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7941                               SDVTList VTList) {
7942   return getNode(Opcode, DL, VTList, None);
7943 }
7944 
7945 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7946                               SDValue N1) {
7947   SDValue Ops[] = { N1 };
7948   return getNode(Opcode, DL, VTList, Ops);
7949 }
7950 
7951 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7952                               SDValue N1, SDValue N2) {
7953   SDValue Ops[] = { N1, N2 };
7954   return getNode(Opcode, DL, VTList, Ops);
7955 }
7956 
7957 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7958                               SDValue N1, SDValue N2, SDValue N3) {
7959   SDValue Ops[] = { N1, N2, N3 };
7960   return getNode(Opcode, DL, VTList, Ops);
7961 }
7962 
7963 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7964                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7965   SDValue Ops[] = { N1, N2, N3, N4 };
7966   return getNode(Opcode, DL, VTList, Ops);
7967 }
7968 
7969 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7970                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7971                               SDValue N5) {
7972   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7973   return getNode(Opcode, DL, VTList, Ops);
7974 }
7975 
7976 SDVTList SelectionDAG::getVTList(EVT VT) {
7977   return makeVTList(SDNode::getValueTypeList(VT), 1);
7978 }
7979 
7980 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7981   FoldingSetNodeID ID;
7982   ID.AddInteger(2U);
7983   ID.AddInteger(VT1.getRawBits());
7984   ID.AddInteger(VT2.getRawBits());
7985 
7986   void *IP = nullptr;
7987   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7988   if (!Result) {
7989     EVT *Array = Allocator.Allocate<EVT>(2);
7990     Array[0] = VT1;
7991     Array[1] = VT2;
7992     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7993     VTListMap.InsertNode(Result, IP);
7994   }
7995   return Result->getSDVTList();
7996 }
7997 
7998 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7999   FoldingSetNodeID ID;
8000   ID.AddInteger(3U);
8001   ID.AddInteger(VT1.getRawBits());
8002   ID.AddInteger(VT2.getRawBits());
8003   ID.AddInteger(VT3.getRawBits());
8004 
8005   void *IP = nullptr;
8006   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8007   if (!Result) {
8008     EVT *Array = Allocator.Allocate<EVT>(3);
8009     Array[0] = VT1;
8010     Array[1] = VT2;
8011     Array[2] = VT3;
8012     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
8013     VTListMap.InsertNode(Result, IP);
8014   }
8015   return Result->getSDVTList();
8016 }
8017 
8018 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
8019   FoldingSetNodeID ID;
8020   ID.AddInteger(4U);
8021   ID.AddInteger(VT1.getRawBits());
8022   ID.AddInteger(VT2.getRawBits());
8023   ID.AddInteger(VT3.getRawBits());
8024   ID.AddInteger(VT4.getRawBits());
8025 
8026   void *IP = nullptr;
8027   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8028   if (!Result) {
8029     EVT *Array = Allocator.Allocate<EVT>(4);
8030     Array[0] = VT1;
8031     Array[1] = VT2;
8032     Array[2] = VT3;
8033     Array[3] = VT4;
8034     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
8035     VTListMap.InsertNode(Result, IP);
8036   }
8037   return Result->getSDVTList();
8038 }
8039 
8040 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
8041   unsigned NumVTs = VTs.size();
8042   FoldingSetNodeID ID;
8043   ID.AddInteger(NumVTs);
8044   for (unsigned index = 0; index < NumVTs; index++) {
8045     ID.AddInteger(VTs[index].getRawBits());
8046   }
8047 
8048   void *IP = nullptr;
8049   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8050   if (!Result) {
8051     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
8052     llvm::copy(VTs, Array);
8053     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
8054     VTListMap.InsertNode(Result, IP);
8055   }
8056   return Result->getSDVTList();
8057 }
8058 
8059 
8060 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
8061 /// specified operands.  If the resultant node already exists in the DAG,
8062 /// this does not modify the specified node, instead it returns the node that
8063 /// already exists.  If the resultant node does not exist in the DAG, the
8064 /// input node is returned.  As a degenerate case, if you specify the same
8065 /// input operands as the node already has, the input node is returned.
8066 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
8067   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
8068 
8069   // Check to see if there is no change.
8070   if (Op == N->getOperand(0)) return N;
8071 
8072   // See if the modified node already exists.
8073   void *InsertPos = nullptr;
8074   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
8075     return Existing;
8076 
8077   // Nope it doesn't.  Remove the node from its current place in the maps.
8078   if (InsertPos)
8079     if (!RemoveNodeFromCSEMaps(N))
8080       InsertPos = nullptr;
8081 
8082   // Now we update the operands.
8083   N->OperandList[0].set(Op);
8084 
8085   updateDivergence(N);
8086   // If this gets put into a CSE map, add it.
8087   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8088   return N;
8089 }
8090 
8091 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
8092   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
8093 
8094   // Check to see if there is no change.
8095   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
8096     return N;   // No operands changed, just return the input node.
8097 
8098   // See if the modified node already exists.
8099   void *InsertPos = nullptr;
8100   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
8101     return Existing;
8102 
8103   // Nope it doesn't.  Remove the node from its current place in the maps.
8104   if (InsertPos)
8105     if (!RemoveNodeFromCSEMaps(N))
8106       InsertPos = nullptr;
8107 
8108   // Now we update the operands.
8109   if (N->OperandList[0] != Op1)
8110     N->OperandList[0].set(Op1);
8111   if (N->OperandList[1] != Op2)
8112     N->OperandList[1].set(Op2);
8113 
8114   updateDivergence(N);
8115   // If this gets put into a CSE map, add it.
8116   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8117   return N;
8118 }
8119 
8120 SDNode *SelectionDAG::
8121 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
8122   SDValue Ops[] = { Op1, Op2, Op3 };
8123   return UpdateNodeOperands(N, Ops);
8124 }
8125 
8126 SDNode *SelectionDAG::
8127 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8128                    SDValue Op3, SDValue Op4) {
8129   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
8130   return UpdateNodeOperands(N, Ops);
8131 }
8132 
8133 SDNode *SelectionDAG::
8134 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8135                    SDValue Op3, SDValue Op4, SDValue Op5) {
8136   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
8137   return UpdateNodeOperands(N, Ops);
8138 }
8139 
8140 SDNode *SelectionDAG::
8141 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
8142   unsigned NumOps = Ops.size();
8143   assert(N->getNumOperands() == NumOps &&
8144          "Update with wrong number of operands");
8145 
8146   // If no operands changed just return the input node.
8147   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
8148     return N;
8149 
8150   // See if the modified node already exists.
8151   void *InsertPos = nullptr;
8152   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
8153     return Existing;
8154 
8155   // Nope it doesn't.  Remove the node from its current place in the maps.
8156   if (InsertPos)
8157     if (!RemoveNodeFromCSEMaps(N))
8158       InsertPos = nullptr;
8159 
8160   // Now we update the operands.
8161   for (unsigned i = 0; i != NumOps; ++i)
8162     if (N->OperandList[i] != Ops[i])
8163       N->OperandList[i].set(Ops[i]);
8164 
8165   updateDivergence(N);
8166   // If this gets put into a CSE map, add it.
8167   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8168   return N;
8169 }
8170 
8171 /// DropOperands - Release the operands and set this node to have
8172 /// zero operands.
8173 void SDNode::DropOperands() {
8174   // Unlike the code in MorphNodeTo that does this, we don't need to
8175   // watch for dead nodes here.
8176   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
8177     SDUse &Use = *I++;
8178     Use.set(SDValue());
8179   }
8180 }
8181 
8182 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
8183                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
8184   if (NewMemRefs.empty()) {
8185     N->clearMemRefs();
8186     return;
8187   }
8188 
8189   // Check if we can avoid allocating by storing a single reference directly.
8190   if (NewMemRefs.size() == 1) {
8191     N->MemRefs = NewMemRefs[0];
8192     N->NumMemRefs = 1;
8193     return;
8194   }
8195 
8196   MachineMemOperand **MemRefsBuffer =
8197       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
8198   llvm::copy(NewMemRefs, MemRefsBuffer);
8199   N->MemRefs = MemRefsBuffer;
8200   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
8201 }
8202 
8203 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
8204 /// machine opcode.
8205 ///
8206 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8207                                    EVT VT) {
8208   SDVTList VTs = getVTList(VT);
8209   return SelectNodeTo(N, MachineOpc, VTs, None);
8210 }
8211 
8212 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8213                                    EVT VT, SDValue Op1) {
8214   SDVTList VTs = getVTList(VT);
8215   SDValue Ops[] = { Op1 };
8216   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8217 }
8218 
8219 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8220                                    EVT VT, SDValue Op1,
8221                                    SDValue Op2) {
8222   SDVTList VTs = getVTList(VT);
8223   SDValue Ops[] = { Op1, Op2 };
8224   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8225 }
8226 
8227 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8228                                    EVT VT, SDValue Op1,
8229                                    SDValue Op2, SDValue Op3) {
8230   SDVTList VTs = getVTList(VT);
8231   SDValue Ops[] = { Op1, Op2, Op3 };
8232   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8233 }
8234 
8235 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8236                                    EVT VT, ArrayRef<SDValue> Ops) {
8237   SDVTList VTs = getVTList(VT);
8238   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8239 }
8240 
8241 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8242                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
8243   SDVTList VTs = getVTList(VT1, VT2);
8244   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8245 }
8246 
8247 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8248                                    EVT VT1, EVT VT2) {
8249   SDVTList VTs = getVTList(VT1, VT2);
8250   return SelectNodeTo(N, MachineOpc, VTs, None);
8251 }
8252 
8253 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8254                                    EVT VT1, EVT VT2, EVT VT3,
8255                                    ArrayRef<SDValue> Ops) {
8256   SDVTList VTs = getVTList(VT1, VT2, VT3);
8257   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8258 }
8259 
8260 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8261                                    EVT VT1, EVT VT2,
8262                                    SDValue Op1, SDValue Op2) {
8263   SDVTList VTs = getVTList(VT1, VT2);
8264   SDValue Ops[] = { Op1, Op2 };
8265   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8266 }
8267 
8268 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8269                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
8270   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
8271   // Reset the NodeID to -1.
8272   New->setNodeId(-1);
8273   if (New != N) {
8274     ReplaceAllUsesWith(N, New);
8275     RemoveDeadNode(N);
8276   }
8277   return New;
8278 }
8279 
8280 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
8281 /// the line number information on the merged node since it is not possible to
8282 /// preserve the information that operation is associated with multiple lines.
8283 /// This will make the debugger working better at -O0, were there is a higher
8284 /// probability having other instructions associated with that line.
8285 ///
8286 /// For IROrder, we keep the smaller of the two
8287 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
8288   DebugLoc NLoc = N->getDebugLoc();
8289   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
8290     N->setDebugLoc(DebugLoc());
8291   }
8292   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
8293   N->setIROrder(Order);
8294   return N;
8295 }
8296 
8297 /// MorphNodeTo - This *mutates* the specified node to have the specified
8298 /// return type, opcode, and operands.
8299 ///
8300 /// Note that MorphNodeTo returns the resultant node.  If there is already a
8301 /// node of the specified opcode and operands, it returns that node instead of
8302 /// the current one.  Note that the SDLoc need not be the same.
8303 ///
8304 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8305 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8306 /// node, and because it doesn't require CSE recalculation for any of
8307 /// the node's users.
8308 ///
8309 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8310 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8311 /// the legalizer which maintain worklists that would need to be updated when
8312 /// deleting things.
8313 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8314                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8315   // If an identical node already exists, use it.
8316   void *IP = nullptr;
8317   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8318     FoldingSetNodeID ID;
8319     AddNodeIDNode(ID, Opc, VTs, Ops);
8320     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8321       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8322   }
8323 
8324   if (!RemoveNodeFromCSEMaps(N))
8325     IP = nullptr;
8326 
8327   // Start the morphing.
8328   N->NodeType = Opc;
8329   N->ValueList = VTs.VTs;
8330   N->NumValues = VTs.NumVTs;
8331 
8332   // Clear the operands list, updating used nodes to remove this from their
8333   // use list.  Keep track of any operands that become dead as a result.
8334   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8335   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8336     SDUse &Use = *I++;
8337     SDNode *Used = Use.getNode();
8338     Use.set(SDValue());
8339     if (Used->use_empty())
8340       DeadNodeSet.insert(Used);
8341   }
8342 
8343   // For MachineNode, initialize the memory references information.
8344   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8345     MN->clearMemRefs();
8346 
8347   // Swap for an appropriately sized array from the recycler.
8348   removeOperands(N);
8349   createOperands(N, Ops);
8350 
8351   // Delete any nodes that are still dead after adding the uses for the
8352   // new operands.
8353   if (!DeadNodeSet.empty()) {
8354     SmallVector<SDNode *, 16> DeadNodes;
8355     for (SDNode *N : DeadNodeSet)
8356       if (N->use_empty())
8357         DeadNodes.push_back(N);
8358     RemoveDeadNodes(DeadNodes);
8359   }
8360 
8361   if (IP)
8362     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8363   return N;
8364 }
8365 
8366 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8367   unsigned OrigOpc = Node->getOpcode();
8368   unsigned NewOpc;
8369   switch (OrigOpc) {
8370   default:
8371     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8372 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8373   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8374 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8375   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8376 #include "llvm/IR/ConstrainedOps.def"
8377   }
8378 
8379   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8380 
8381   // We're taking this node out of the chain, so we need to re-link things.
8382   SDValue InputChain = Node->getOperand(0);
8383   SDValue OutputChain = SDValue(Node, 1);
8384   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8385 
8386   SmallVector<SDValue, 3> Ops;
8387   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8388     Ops.push_back(Node->getOperand(i));
8389 
8390   SDVTList VTs = getVTList(Node->getValueType(0));
8391   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
8392 
8393   // MorphNodeTo can operate in two ways: if an existing node with the
8394   // specified operands exists, it can just return it.  Otherwise, it
8395   // updates the node in place to have the requested operands.
8396   if (Res == Node) {
8397     // If we updated the node in place, reset the node ID.  To the isel,
8398     // this should be just like a newly allocated machine node.
8399     Res->setNodeId(-1);
8400   } else {
8401     ReplaceAllUsesWith(Node, Res);
8402     RemoveDeadNode(Node);
8403   }
8404 
8405   return Res;
8406 }
8407 
8408 /// getMachineNode - These are used for target selectors to create a new node
8409 /// with specified return type(s), MachineInstr opcode, and operands.
8410 ///
8411 /// Note that getMachineNode returns the resultant node.  If there is already a
8412 /// node of the specified opcode and operands, it returns that node instead of
8413 /// the current one.
8414 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8415                                             EVT VT) {
8416   SDVTList VTs = getVTList(VT);
8417   return getMachineNode(Opcode, dl, VTs, None);
8418 }
8419 
8420 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8421                                             EVT VT, SDValue Op1) {
8422   SDVTList VTs = getVTList(VT);
8423   SDValue Ops[] = { Op1 };
8424   return getMachineNode(Opcode, dl, VTs, Ops);
8425 }
8426 
8427 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8428                                             EVT VT, SDValue Op1, SDValue Op2) {
8429   SDVTList VTs = getVTList(VT);
8430   SDValue Ops[] = { Op1, Op2 };
8431   return getMachineNode(Opcode, dl, VTs, Ops);
8432 }
8433 
8434 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8435                                             EVT VT, SDValue Op1, SDValue Op2,
8436                                             SDValue Op3) {
8437   SDVTList VTs = getVTList(VT);
8438   SDValue Ops[] = { Op1, Op2, Op3 };
8439   return getMachineNode(Opcode, dl, VTs, Ops);
8440 }
8441 
8442 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8443                                             EVT VT, ArrayRef<SDValue> Ops) {
8444   SDVTList VTs = getVTList(VT);
8445   return getMachineNode(Opcode, dl, VTs, Ops);
8446 }
8447 
8448 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8449                                             EVT VT1, EVT VT2, SDValue Op1,
8450                                             SDValue Op2) {
8451   SDVTList VTs = getVTList(VT1, VT2);
8452   SDValue Ops[] = { Op1, Op2 };
8453   return getMachineNode(Opcode, dl, VTs, Ops);
8454 }
8455 
8456 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8457                                             EVT VT1, EVT VT2, SDValue Op1,
8458                                             SDValue Op2, SDValue Op3) {
8459   SDVTList VTs = getVTList(VT1, VT2);
8460   SDValue Ops[] = { Op1, Op2, Op3 };
8461   return getMachineNode(Opcode, dl, VTs, Ops);
8462 }
8463 
8464 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8465                                             EVT VT1, EVT VT2,
8466                                             ArrayRef<SDValue> Ops) {
8467   SDVTList VTs = getVTList(VT1, VT2);
8468   return getMachineNode(Opcode, dl, VTs, Ops);
8469 }
8470 
8471 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8472                                             EVT VT1, EVT VT2, EVT VT3,
8473                                             SDValue Op1, SDValue Op2) {
8474   SDVTList VTs = getVTList(VT1, VT2, VT3);
8475   SDValue Ops[] = { Op1, Op2 };
8476   return getMachineNode(Opcode, dl, VTs, Ops);
8477 }
8478 
8479 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8480                                             EVT VT1, EVT VT2, EVT VT3,
8481                                             SDValue Op1, SDValue Op2,
8482                                             SDValue Op3) {
8483   SDVTList VTs = getVTList(VT1, VT2, VT3);
8484   SDValue Ops[] = { Op1, Op2, Op3 };
8485   return getMachineNode(Opcode, dl, VTs, Ops);
8486 }
8487 
8488 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8489                                             EVT VT1, EVT VT2, EVT VT3,
8490                                             ArrayRef<SDValue> Ops) {
8491   SDVTList VTs = getVTList(VT1, VT2, VT3);
8492   return getMachineNode(Opcode, dl, VTs, Ops);
8493 }
8494 
8495 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8496                                             ArrayRef<EVT> ResultTys,
8497                                             ArrayRef<SDValue> Ops) {
8498   SDVTList VTs = getVTList(ResultTys);
8499   return getMachineNode(Opcode, dl, VTs, Ops);
8500 }
8501 
8502 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8503                                             SDVTList VTs,
8504                                             ArrayRef<SDValue> Ops) {
8505   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8506   MachineSDNode *N;
8507   void *IP = nullptr;
8508 
8509   if (DoCSE) {
8510     FoldingSetNodeID ID;
8511     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8512     IP = nullptr;
8513     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8514       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8515     }
8516   }
8517 
8518   // Allocate a new MachineSDNode.
8519   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8520   createOperands(N, Ops);
8521 
8522   if (DoCSE)
8523     CSEMap.InsertNode(N, IP);
8524 
8525   InsertNode(N);
8526   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8527   return N;
8528 }
8529 
8530 /// getTargetExtractSubreg - A convenience function for creating
8531 /// TargetOpcode::EXTRACT_SUBREG nodes.
8532 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8533                                              SDValue Operand) {
8534   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8535   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8536                                   VT, Operand, SRIdxVal);
8537   return SDValue(Subreg, 0);
8538 }
8539 
8540 /// getTargetInsertSubreg - A convenience function for creating
8541 /// TargetOpcode::INSERT_SUBREG nodes.
8542 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8543                                             SDValue Operand, SDValue Subreg) {
8544   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8545   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8546                                   VT, Operand, Subreg, SRIdxVal);
8547   return SDValue(Result, 0);
8548 }
8549 
8550 /// getNodeIfExists - Get the specified node if it's already available, or
8551 /// else return NULL.
8552 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8553                                       ArrayRef<SDValue> Ops) {
8554   SDNodeFlags Flags;
8555   if (Inserter)
8556     Flags = Inserter->getFlags();
8557   return getNodeIfExists(Opcode, VTList, Ops, Flags);
8558 }
8559 
8560 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8561                                       ArrayRef<SDValue> Ops,
8562                                       const SDNodeFlags Flags) {
8563   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8564     FoldingSetNodeID ID;
8565     AddNodeIDNode(ID, Opcode, VTList, Ops);
8566     void *IP = nullptr;
8567     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8568       E->intersectFlagsWith(Flags);
8569       return E;
8570     }
8571   }
8572   return nullptr;
8573 }
8574 
8575 /// doesNodeExist - Check if a node exists without modifying its flags.
8576 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
8577                                  ArrayRef<SDValue> Ops) {
8578   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8579     FoldingSetNodeID ID;
8580     AddNodeIDNode(ID, Opcode, VTList, Ops);
8581     void *IP = nullptr;
8582     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
8583       return true;
8584   }
8585   return false;
8586 }
8587 
8588 /// getDbgValue - Creates a SDDbgValue node.
8589 ///
8590 /// SDNode
8591 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8592                                       SDNode *N, unsigned R, bool IsIndirect,
8593                                       const DebugLoc &DL, unsigned O) {
8594   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8595          "Expected inlined-at fields to agree");
8596   return new (DbgInfo->getAlloc())
8597       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
8598                  {}, IsIndirect, DL, O,
8599                  /*IsVariadic=*/false);
8600 }
8601 
8602 /// Constant
8603 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8604                                               DIExpression *Expr,
8605                                               const Value *C,
8606                                               const DebugLoc &DL, unsigned O) {
8607   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8608          "Expected inlined-at fields to agree");
8609   return new (DbgInfo->getAlloc())
8610       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
8611                  /*IsIndirect=*/false, DL, O,
8612                  /*IsVariadic=*/false);
8613 }
8614 
8615 /// FrameIndex
8616 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8617                                                 DIExpression *Expr, unsigned FI,
8618                                                 bool IsIndirect,
8619                                                 const DebugLoc &DL,
8620                                                 unsigned O) {
8621   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8622          "Expected inlined-at fields to agree");
8623   return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
8624 }
8625 
8626 /// FrameIndex with dependencies
8627 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8628                                                 DIExpression *Expr, unsigned FI,
8629                                                 ArrayRef<SDNode *> Dependencies,
8630                                                 bool IsIndirect,
8631                                                 const DebugLoc &DL,
8632                                                 unsigned O) {
8633   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8634          "Expected inlined-at fields to agree");
8635   return new (DbgInfo->getAlloc())
8636       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
8637                  Dependencies, IsIndirect, DL, O,
8638                  /*IsVariadic=*/false);
8639 }
8640 
8641 /// VReg
8642 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
8643                                           unsigned VReg, bool IsIndirect,
8644                                           const DebugLoc &DL, unsigned O) {
8645   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8646          "Expected inlined-at fields to agree");
8647   return new (DbgInfo->getAlloc())
8648       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
8649                  {}, IsIndirect, DL, O,
8650                  /*IsVariadic=*/false);
8651 }
8652 
8653 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
8654                                           ArrayRef<SDDbgOperand> Locs,
8655                                           ArrayRef<SDNode *> Dependencies,
8656                                           bool IsIndirect, const DebugLoc &DL,
8657                                           unsigned O, bool IsVariadic) {
8658   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8659          "Expected inlined-at fields to agree");
8660   return new (DbgInfo->getAlloc())
8661       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
8662                  DL, O, IsVariadic);
8663 }
8664 
8665 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8666                                      unsigned OffsetInBits, unsigned SizeInBits,
8667                                      bool InvalidateDbg) {
8668   SDNode *FromNode = From.getNode();
8669   SDNode *ToNode = To.getNode();
8670   assert(FromNode && ToNode && "Can't modify dbg values");
8671 
8672   // PR35338
8673   // TODO: assert(From != To && "Redundant dbg value transfer");
8674   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8675   if (From == To || FromNode == ToNode)
8676     return;
8677 
8678   if (!FromNode->getHasDebugValue())
8679     return;
8680 
8681   SDDbgOperand FromLocOp =
8682       SDDbgOperand::fromNode(From.getNode(), From.getResNo());
8683   SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
8684 
8685   SmallVector<SDDbgValue *, 2> ClonedDVs;
8686   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8687     if (Dbg->isInvalidated())
8688       continue;
8689 
8690     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8691 
8692     // Create a new location ops vector that is equal to the old vector, but
8693     // with each instance of FromLocOp replaced with ToLocOp.
8694     bool Changed = false;
8695     auto NewLocOps = Dbg->copyLocationOps();
8696     std::replace_if(
8697         NewLocOps.begin(), NewLocOps.end(),
8698         [&Changed, FromLocOp](const SDDbgOperand &Op) {
8699           bool Match = Op == FromLocOp;
8700           Changed |= Match;
8701           return Match;
8702         },
8703         ToLocOp);
8704     // Ignore this SDDbgValue if we didn't find a matching location.
8705     if (!Changed)
8706       continue;
8707 
8708     DIVariable *Var = Dbg->getVariable();
8709     auto *Expr = Dbg->getExpression();
8710     // If a fragment is requested, update the expression.
8711     if (SizeInBits) {
8712       // When splitting a larger (e.g., sign-extended) value whose
8713       // lower bits are described with an SDDbgValue, do not attempt
8714       // to transfer the SDDbgValue to the upper bits.
8715       if (auto FI = Expr->getFragmentInfo())
8716         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8717           continue;
8718       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8719                                                              SizeInBits);
8720       if (!Fragment)
8721         continue;
8722       Expr = *Fragment;
8723     }
8724 
8725     auto AdditionalDependencies = Dbg->getAdditionalDependencies();
8726     // Clone the SDDbgValue and move it to To.
8727     SDDbgValue *Clone = getDbgValueList(
8728         Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
8729         Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
8730         Dbg->isVariadic());
8731     ClonedDVs.push_back(Clone);
8732 
8733     if (InvalidateDbg) {
8734       // Invalidate value and indicate the SDDbgValue should not be emitted.
8735       Dbg->setIsInvalidated();
8736       Dbg->setIsEmitted();
8737     }
8738   }
8739 
8740   for (SDDbgValue *Dbg : ClonedDVs) {
8741     assert(is_contained(Dbg->getSDNodes(), ToNode) &&
8742            "Transferred DbgValues should depend on the new SDNode");
8743     AddDbgValue(Dbg, false);
8744   }
8745 }
8746 
8747 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8748   if (!N.getHasDebugValue())
8749     return;
8750 
8751   SmallVector<SDDbgValue *, 2> ClonedDVs;
8752   for (auto DV : GetDbgValues(&N)) {
8753     if (DV->isInvalidated())
8754       continue;
8755     switch (N.getOpcode()) {
8756     default:
8757       break;
8758     case ISD::ADD:
8759       SDValue N0 = N.getOperand(0);
8760       SDValue N1 = N.getOperand(1);
8761       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8762           isConstantIntBuildVectorOrConstantInt(N1)) {
8763         uint64_t Offset = N.getConstantOperandVal(1);
8764 
8765         // Rewrite an ADD constant node into a DIExpression. Since we are
8766         // performing arithmetic to compute the variable's *value* in the
8767         // DIExpression, we need to mark the expression with a
8768         // DW_OP_stack_value.
8769         auto *DIExpr = DV->getExpression();
8770         auto NewLocOps = DV->copyLocationOps();
8771         bool Changed = false;
8772         for (size_t i = 0; i < NewLocOps.size(); ++i) {
8773           // We're not given a ResNo to compare against because the whole
8774           // node is going away. We know that any ISD::ADD only has one
8775           // result, so we can assume any node match is using the result.
8776           if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
8777               NewLocOps[i].getSDNode() != &N)
8778             continue;
8779           NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
8780           SmallVector<uint64_t, 3> ExprOps;
8781           DIExpression::appendOffset(ExprOps, Offset);
8782           DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
8783           Changed = true;
8784         }
8785         (void)Changed;
8786         assert(Changed && "Salvage target doesn't use N");
8787 
8788         auto AdditionalDependencies = DV->getAdditionalDependencies();
8789         SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr,
8790                                             NewLocOps, AdditionalDependencies,
8791                                             DV->isIndirect(), DV->getDebugLoc(),
8792                                             DV->getOrder(), DV->isVariadic());
8793         ClonedDVs.push_back(Clone);
8794         DV->setIsInvalidated();
8795         DV->setIsEmitted();
8796         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8797                    N0.getNode()->dumprFull(this);
8798                    dbgs() << " into " << *DIExpr << '\n');
8799       }
8800     }
8801   }
8802 
8803   for (SDDbgValue *Dbg : ClonedDVs) {
8804     assert(!Dbg->getSDNodes().empty() &&
8805            "Salvaged DbgValue should depend on a new SDNode");
8806     AddDbgValue(Dbg, false);
8807   }
8808 }
8809 
8810 /// Creates a SDDbgLabel node.
8811 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8812                                       const DebugLoc &DL, unsigned O) {
8813   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8814          "Expected inlined-at fields to agree");
8815   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8816 }
8817 
8818 namespace {
8819 
8820 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8821 /// pointed to by a use iterator is deleted, increment the use iterator
8822 /// so that it doesn't dangle.
8823 ///
8824 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8825   SDNode::use_iterator &UI;
8826   SDNode::use_iterator &UE;
8827 
8828   void NodeDeleted(SDNode *N, SDNode *E) override {
8829     // Increment the iterator as needed.
8830     while (UI != UE && N == *UI)
8831       ++UI;
8832   }
8833 
8834 public:
8835   RAUWUpdateListener(SelectionDAG &d,
8836                      SDNode::use_iterator &ui,
8837                      SDNode::use_iterator &ue)
8838     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8839 };
8840 
8841 } // end anonymous namespace
8842 
8843 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8844 /// This can cause recursive merging of nodes in the DAG.
8845 ///
8846 /// This version assumes From has a single result value.
8847 ///
8848 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8849   SDNode *From = FromN.getNode();
8850   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8851          "Cannot replace with this method!");
8852   assert(From != To.getNode() && "Cannot replace uses of with self");
8853 
8854   // Preserve Debug Values
8855   transferDbgValues(FromN, To);
8856 
8857   // Iterate over all the existing uses of From. New uses will be added
8858   // to the beginning of the use list, which we avoid visiting.
8859   // This specifically avoids visiting uses of From that arise while the
8860   // replacement is happening, because any such uses would be the result
8861   // of CSE: If an existing node looks like From after one of its operands
8862   // is replaced by To, we don't want to replace of all its users with To
8863   // too. See PR3018 for more info.
8864   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8865   RAUWUpdateListener Listener(*this, UI, UE);
8866   while (UI != UE) {
8867     SDNode *User = *UI;
8868 
8869     // This node is about to morph, remove its old self from the CSE maps.
8870     RemoveNodeFromCSEMaps(User);
8871 
8872     // A user can appear in a use list multiple times, and when this
8873     // happens the uses are usually next to each other in the list.
8874     // To help reduce the number of CSE recomputations, process all
8875     // the uses of this user that we can find this way.
8876     do {
8877       SDUse &Use = UI.getUse();
8878       ++UI;
8879       Use.set(To);
8880       if (To->isDivergent() != From->isDivergent())
8881         updateDivergence(User);
8882     } while (UI != UE && *UI == User);
8883     // Now that we have modified User, add it back to the CSE maps.  If it
8884     // already exists there, recursively merge the results together.
8885     AddModifiedNodeToCSEMaps(User);
8886   }
8887 
8888   // If we just RAUW'd the root, take note.
8889   if (FromN == getRoot())
8890     setRoot(To);
8891 }
8892 
8893 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8894 /// This can cause recursive merging of nodes in the DAG.
8895 ///
8896 /// This version assumes that for each value of From, there is a
8897 /// corresponding value in To in the same position with the same type.
8898 ///
8899 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8900 #ifndef NDEBUG
8901   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8902     assert((!From->hasAnyUseOfValue(i) ||
8903             From->getValueType(i) == To->getValueType(i)) &&
8904            "Cannot use this version of ReplaceAllUsesWith!");
8905 #endif
8906 
8907   // Handle the trivial case.
8908   if (From == To)
8909     return;
8910 
8911   // Preserve Debug Info. Only do this if there's a use.
8912   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8913     if (From->hasAnyUseOfValue(i)) {
8914       assert((i < To->getNumValues()) && "Invalid To location");
8915       transferDbgValues(SDValue(From, i), SDValue(To, i));
8916     }
8917 
8918   // Iterate over just the existing users of From. See the comments in
8919   // the ReplaceAllUsesWith above.
8920   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8921   RAUWUpdateListener Listener(*this, UI, UE);
8922   while (UI != UE) {
8923     SDNode *User = *UI;
8924 
8925     // This node is about to morph, remove its old self from the CSE maps.
8926     RemoveNodeFromCSEMaps(User);
8927 
8928     // A user can appear in a use list multiple times, and when this
8929     // happens the uses are usually next to each other in the list.
8930     // To help reduce the number of CSE recomputations, process all
8931     // the uses of this user that we can find this way.
8932     do {
8933       SDUse &Use = UI.getUse();
8934       ++UI;
8935       Use.setNode(To);
8936       if (To->isDivergent() != From->isDivergent())
8937         updateDivergence(User);
8938     } while (UI != UE && *UI == User);
8939 
8940     // Now that we have modified User, add it back to the CSE maps.  If it
8941     // already exists there, recursively merge the results together.
8942     AddModifiedNodeToCSEMaps(User);
8943   }
8944 
8945   // If we just RAUW'd the root, take note.
8946   if (From == getRoot().getNode())
8947     setRoot(SDValue(To, getRoot().getResNo()));
8948 }
8949 
8950 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8951 /// This can cause recursive merging of nodes in the DAG.
8952 ///
8953 /// This version can replace From with any result values.  To must match the
8954 /// number and types of values returned by From.
8955 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8956   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8957     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8958 
8959   // Preserve Debug Info.
8960   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8961     transferDbgValues(SDValue(From, i), To[i]);
8962 
8963   // Iterate over just the existing users of From. See the comments in
8964   // the ReplaceAllUsesWith above.
8965   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8966   RAUWUpdateListener Listener(*this, UI, UE);
8967   while (UI != UE) {
8968     SDNode *User = *UI;
8969 
8970     // This node is about to morph, remove its old self from the CSE maps.
8971     RemoveNodeFromCSEMaps(User);
8972 
8973     // A user can appear in a use list multiple times, and when this happens the
8974     // uses are usually next to each other in the list.  To help reduce the
8975     // number of CSE and divergence recomputations, process all the uses of this
8976     // user that we can find this way.
8977     bool To_IsDivergent = false;
8978     do {
8979       SDUse &Use = UI.getUse();
8980       const SDValue &ToOp = To[Use.getResNo()];
8981       ++UI;
8982       Use.set(ToOp);
8983       To_IsDivergent |= ToOp->isDivergent();
8984     } while (UI != UE && *UI == User);
8985 
8986     if (To_IsDivergent != From->isDivergent())
8987       updateDivergence(User);
8988 
8989     // Now that we have modified User, add it back to the CSE maps.  If it
8990     // already exists there, recursively merge the results together.
8991     AddModifiedNodeToCSEMaps(User);
8992   }
8993 
8994   // If we just RAUW'd the root, take note.
8995   if (From == getRoot().getNode())
8996     setRoot(SDValue(To[getRoot().getResNo()]));
8997 }
8998 
8999 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
9000 /// uses of other values produced by From.getNode() alone.  The Deleted
9001 /// vector is handled the same way as for ReplaceAllUsesWith.
9002 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
9003   // Handle the really simple, really trivial case efficiently.
9004   if (From == To) return;
9005 
9006   // Handle the simple, trivial, case efficiently.
9007   if (From.getNode()->getNumValues() == 1) {
9008     ReplaceAllUsesWith(From, To);
9009     return;
9010   }
9011 
9012   // Preserve Debug Info.
9013   transferDbgValues(From, To);
9014 
9015   // Iterate over just the existing users of From. See the comments in
9016   // the ReplaceAllUsesWith above.
9017   SDNode::use_iterator UI = From.getNode()->use_begin(),
9018                        UE = From.getNode()->use_end();
9019   RAUWUpdateListener Listener(*this, UI, UE);
9020   while (UI != UE) {
9021     SDNode *User = *UI;
9022     bool UserRemovedFromCSEMaps = false;
9023 
9024     // A user can appear in a use list multiple times, and when this
9025     // happens the uses are usually next to each other in the list.
9026     // To help reduce the number of CSE recomputations, process all
9027     // the uses of this user that we can find this way.
9028     do {
9029       SDUse &Use = UI.getUse();
9030 
9031       // Skip uses of different values from the same node.
9032       if (Use.getResNo() != From.getResNo()) {
9033         ++UI;
9034         continue;
9035       }
9036 
9037       // If this node hasn't been modified yet, it's still in the CSE maps,
9038       // so remove its old self from the CSE maps.
9039       if (!UserRemovedFromCSEMaps) {
9040         RemoveNodeFromCSEMaps(User);
9041         UserRemovedFromCSEMaps = true;
9042       }
9043 
9044       ++UI;
9045       Use.set(To);
9046       if (To->isDivergent() != From->isDivergent())
9047         updateDivergence(User);
9048     } while (UI != UE && *UI == User);
9049     // We are iterating over all uses of the From node, so if a use
9050     // doesn't use the specific value, no changes are made.
9051     if (!UserRemovedFromCSEMaps)
9052       continue;
9053 
9054     // Now that we have modified User, add it back to the CSE maps.  If it
9055     // already exists there, recursively merge the results together.
9056     AddModifiedNodeToCSEMaps(User);
9057   }
9058 
9059   // If we just RAUW'd the root, take note.
9060   if (From == getRoot())
9061     setRoot(To);
9062 }
9063 
9064 namespace {
9065 
9066   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
9067   /// to record information about a use.
9068   struct UseMemo {
9069     SDNode *User;
9070     unsigned Index;
9071     SDUse *Use;
9072   };
9073 
9074   /// operator< - Sort Memos by User.
9075   bool operator<(const UseMemo &L, const UseMemo &R) {
9076     return (intptr_t)L.User < (intptr_t)R.User;
9077   }
9078 
9079 } // end anonymous namespace
9080 
9081 bool SelectionDAG::calculateDivergence(SDNode *N) {
9082   if (TLI->isSDNodeAlwaysUniform(N)) {
9083     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
9084            "Conflicting divergence information!");
9085     return false;
9086   }
9087   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
9088     return true;
9089   for (auto &Op : N->ops()) {
9090     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
9091       return true;
9092   }
9093   return false;
9094 }
9095 
9096 void SelectionDAG::updateDivergence(SDNode *N) {
9097   SmallVector<SDNode *, 16> Worklist(1, N);
9098   do {
9099     N = Worklist.pop_back_val();
9100     bool IsDivergent = calculateDivergence(N);
9101     if (N->SDNodeBits.IsDivergent != IsDivergent) {
9102       N->SDNodeBits.IsDivergent = IsDivergent;
9103       llvm::append_range(Worklist, N->uses());
9104     }
9105   } while (!Worklist.empty());
9106 }
9107 
9108 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
9109   DenseMap<SDNode *, unsigned> Degree;
9110   Order.reserve(AllNodes.size());
9111   for (auto &N : allnodes()) {
9112     unsigned NOps = N.getNumOperands();
9113     Degree[&N] = NOps;
9114     if (0 == NOps)
9115       Order.push_back(&N);
9116   }
9117   for (size_t I = 0; I != Order.size(); ++I) {
9118     SDNode *N = Order[I];
9119     for (auto U : N->uses()) {
9120       unsigned &UnsortedOps = Degree[U];
9121       if (0 == --UnsortedOps)
9122         Order.push_back(U);
9123     }
9124   }
9125 }
9126 
9127 #ifndef NDEBUG
9128 void SelectionDAG::VerifyDAGDiverence() {
9129   std::vector<SDNode *> TopoOrder;
9130   CreateTopologicalOrder(TopoOrder);
9131   for (auto *N : TopoOrder) {
9132     assert(calculateDivergence(N) == N->isDivergent() &&
9133            "Divergence bit inconsistency detected");
9134   }
9135 }
9136 #endif
9137 
9138 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
9139 /// uses of other values produced by From.getNode() alone.  The same value
9140 /// may appear in both the From and To list.  The Deleted vector is
9141 /// handled the same way as for ReplaceAllUsesWith.
9142 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
9143                                               const SDValue *To,
9144                                               unsigned Num){
9145   // Handle the simple, trivial case efficiently.
9146   if (Num == 1)
9147     return ReplaceAllUsesOfValueWith(*From, *To);
9148 
9149   transferDbgValues(*From, *To);
9150 
9151   // Read up all the uses and make records of them. This helps
9152   // processing new uses that are introduced during the
9153   // replacement process.
9154   SmallVector<UseMemo, 4> Uses;
9155   for (unsigned i = 0; i != Num; ++i) {
9156     unsigned FromResNo = From[i].getResNo();
9157     SDNode *FromNode = From[i].getNode();
9158     for (SDNode::use_iterator UI = FromNode->use_begin(),
9159          E = FromNode->use_end(); UI != E; ++UI) {
9160       SDUse &Use = UI.getUse();
9161       if (Use.getResNo() == FromResNo) {
9162         UseMemo Memo = { *UI, i, &Use };
9163         Uses.push_back(Memo);
9164       }
9165     }
9166   }
9167 
9168   // Sort the uses, so that all the uses from a given User are together.
9169   llvm::sort(Uses);
9170 
9171   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
9172        UseIndex != UseIndexEnd; ) {
9173     // We know that this user uses some value of From.  If it is the right
9174     // value, update it.
9175     SDNode *User = Uses[UseIndex].User;
9176 
9177     // This node is about to morph, remove its old self from the CSE maps.
9178     RemoveNodeFromCSEMaps(User);
9179 
9180     // The Uses array is sorted, so all the uses for a given User
9181     // are next to each other in the list.
9182     // To help reduce the number of CSE recomputations, process all
9183     // the uses of this user that we can find this way.
9184     do {
9185       unsigned i = Uses[UseIndex].Index;
9186       SDUse &Use = *Uses[UseIndex].Use;
9187       ++UseIndex;
9188 
9189       Use.set(To[i]);
9190     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
9191 
9192     // Now that we have modified User, add it back to the CSE maps.  If it
9193     // already exists there, recursively merge the results together.
9194     AddModifiedNodeToCSEMaps(User);
9195   }
9196 }
9197 
9198 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
9199 /// based on their topological order. It returns the maximum id and a vector
9200 /// of the SDNodes* in assigned order by reference.
9201 unsigned SelectionDAG::AssignTopologicalOrder() {
9202   unsigned DAGSize = 0;
9203 
9204   // SortedPos tracks the progress of the algorithm. Nodes before it are
9205   // sorted, nodes after it are unsorted. When the algorithm completes
9206   // it is at the end of the list.
9207   allnodes_iterator SortedPos = allnodes_begin();
9208 
9209   // Visit all the nodes. Move nodes with no operands to the front of
9210   // the list immediately. Annotate nodes that do have operands with their
9211   // operand count. Before we do this, the Node Id fields of the nodes
9212   // may contain arbitrary values. After, the Node Id fields for nodes
9213   // before SortedPos will contain the topological sort index, and the
9214   // Node Id fields for nodes At SortedPos and after will contain the
9215   // count of outstanding operands.
9216   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
9217     SDNode *N = &*I++;
9218     checkForCycles(N, this);
9219     unsigned Degree = N->getNumOperands();
9220     if (Degree == 0) {
9221       // A node with no uses, add it to the result array immediately.
9222       N->setNodeId(DAGSize++);
9223       allnodes_iterator Q(N);
9224       if (Q != SortedPos)
9225         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
9226       assert(SortedPos != AllNodes.end() && "Overran node list");
9227       ++SortedPos;
9228     } else {
9229       // Temporarily use the Node Id as scratch space for the degree count.
9230       N->setNodeId(Degree);
9231     }
9232   }
9233 
9234   // Visit all the nodes. As we iterate, move nodes into sorted order,
9235   // such that by the time the end is reached all nodes will be sorted.
9236   for (SDNode &Node : allnodes()) {
9237     SDNode *N = &Node;
9238     checkForCycles(N, this);
9239     // N is in sorted position, so all its uses have one less operand
9240     // that needs to be sorted.
9241     for (SDNode *P : N->uses()) {
9242       unsigned Degree = P->getNodeId();
9243       assert(Degree != 0 && "Invalid node degree");
9244       --Degree;
9245       if (Degree == 0) {
9246         // All of P's operands are sorted, so P may sorted now.
9247         P->setNodeId(DAGSize++);
9248         if (P->getIterator() != SortedPos)
9249           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
9250         assert(SortedPos != AllNodes.end() && "Overran node list");
9251         ++SortedPos;
9252       } else {
9253         // Update P's outstanding operand count.
9254         P->setNodeId(Degree);
9255       }
9256     }
9257     if (Node.getIterator() == SortedPos) {
9258 #ifndef NDEBUG
9259       allnodes_iterator I(N);
9260       SDNode *S = &*++I;
9261       dbgs() << "Overran sorted position:\n";
9262       S->dumprFull(this); dbgs() << "\n";
9263       dbgs() << "Checking if this is due to cycles\n";
9264       checkForCycles(this, true);
9265 #endif
9266       llvm_unreachable(nullptr);
9267     }
9268   }
9269 
9270   assert(SortedPos == AllNodes.end() &&
9271          "Topological sort incomplete!");
9272   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
9273          "First node in topological sort is not the entry token!");
9274   assert(AllNodes.front().getNodeId() == 0 &&
9275          "First node in topological sort has non-zero id!");
9276   assert(AllNodes.front().getNumOperands() == 0 &&
9277          "First node in topological sort has operands!");
9278   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
9279          "Last node in topologic sort has unexpected id!");
9280   assert(AllNodes.back().use_empty() &&
9281          "Last node in topologic sort has users!");
9282   assert(DAGSize == allnodes_size() && "Node count mismatch!");
9283   return DAGSize;
9284 }
9285 
9286 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
9287 /// value is produced by SD.
9288 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
9289   for (SDNode *SD : DB->getSDNodes()) {
9290     if (!SD)
9291       continue;
9292     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
9293     SD->setHasDebugValue(true);
9294   }
9295   DbgInfo->add(DB, isParameter);
9296 }
9297 
9298 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
9299 
9300 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
9301                                                    SDValue NewMemOpChain) {
9302   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
9303   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
9304   // The new memory operation must have the same position as the old load in
9305   // terms of memory dependency. Create a TokenFactor for the old load and new
9306   // memory operation and update uses of the old load's output chain to use that
9307   // TokenFactor.
9308   if (OldChain == NewMemOpChain || OldChain.use_empty())
9309     return NewMemOpChain;
9310 
9311   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
9312                                 OldChain, NewMemOpChain);
9313   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
9314   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
9315   return TokenFactor;
9316 }
9317 
9318 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
9319                                                    SDValue NewMemOp) {
9320   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
9321   SDValue OldChain = SDValue(OldLoad, 1);
9322   SDValue NewMemOpChain = NewMemOp.getValue(1);
9323   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
9324 }
9325 
9326 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
9327                                                      Function **OutFunction) {
9328   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
9329 
9330   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
9331   auto *Module = MF->getFunction().getParent();
9332   auto *Function = Module->getFunction(Symbol);
9333 
9334   if (OutFunction != nullptr)
9335       *OutFunction = Function;
9336 
9337   if (Function != nullptr) {
9338     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
9339     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
9340   }
9341 
9342   std::string ErrorStr;
9343   raw_string_ostream ErrorFormatter(ErrorStr);
9344 
9345   ErrorFormatter << "Undefined external symbol ";
9346   ErrorFormatter << '"' << Symbol << '"';
9347   ErrorFormatter.flush();
9348 
9349   report_fatal_error(ErrorStr);
9350 }
9351 
9352 //===----------------------------------------------------------------------===//
9353 //                              SDNode Class
9354 //===----------------------------------------------------------------------===//
9355 
9356 bool llvm::isNullConstant(SDValue V) {
9357   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9358   return Const != nullptr && Const->isNullValue();
9359 }
9360 
9361 bool llvm::isNullFPConstant(SDValue V) {
9362   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
9363   return Const != nullptr && Const->isZero() && !Const->isNegative();
9364 }
9365 
9366 bool llvm::isAllOnesConstant(SDValue V) {
9367   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9368   return Const != nullptr && Const->isAllOnesValue();
9369 }
9370 
9371 bool llvm::isOneConstant(SDValue V) {
9372   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9373   return Const != nullptr && Const->isOne();
9374 }
9375 
9376 SDValue llvm::peekThroughBitcasts(SDValue V) {
9377   while (V.getOpcode() == ISD::BITCAST)
9378     V = V.getOperand(0);
9379   return V;
9380 }
9381 
9382 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
9383   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
9384     V = V.getOperand(0);
9385   return V;
9386 }
9387 
9388 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
9389   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9390     V = V.getOperand(0);
9391   return V;
9392 }
9393 
9394 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
9395   if (V.getOpcode() != ISD::XOR)
9396     return false;
9397   V = peekThroughBitcasts(V.getOperand(1));
9398   unsigned NumBits = V.getScalarValueSizeInBits();
9399   ConstantSDNode *C =
9400       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
9401   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
9402 }
9403 
9404 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
9405                                           bool AllowTruncation) {
9406   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9407     return CN;
9408 
9409   // SplatVectors can truncate their operands. Ignore that case here unless
9410   // AllowTruncation is set.
9411   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
9412     EVT VecEltVT = N->getValueType(0).getVectorElementType();
9413     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9414       EVT CVT = CN->getValueType(0);
9415       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
9416       if (AllowTruncation || CVT == VecEltVT)
9417         return CN;
9418     }
9419   }
9420 
9421   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9422     BitVector UndefElements;
9423     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
9424 
9425     // BuildVectors can truncate their operands. Ignore that case here unless
9426     // AllowTruncation is set.
9427     if (CN && (UndefElements.none() || AllowUndefs)) {
9428       EVT CVT = CN->getValueType(0);
9429       EVT NSVT = N.getValueType().getScalarType();
9430       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9431       if (AllowTruncation || (CVT == NSVT))
9432         return CN;
9433     }
9434   }
9435 
9436   return nullptr;
9437 }
9438 
9439 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
9440                                           bool AllowUndefs,
9441                                           bool AllowTruncation) {
9442   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9443     return CN;
9444 
9445   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9446     BitVector UndefElements;
9447     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
9448 
9449     // BuildVectors can truncate their operands. Ignore that case here unless
9450     // AllowTruncation is set.
9451     if (CN && (UndefElements.none() || AllowUndefs)) {
9452       EVT CVT = CN->getValueType(0);
9453       EVT NSVT = N.getValueType().getScalarType();
9454       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9455       if (AllowTruncation || (CVT == NSVT))
9456         return CN;
9457     }
9458   }
9459 
9460   return nullptr;
9461 }
9462 
9463 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
9464   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9465     return CN;
9466 
9467   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9468     BitVector UndefElements;
9469     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
9470     if (CN && (UndefElements.none() || AllowUndefs))
9471       return CN;
9472   }
9473 
9474   if (N.getOpcode() == ISD::SPLAT_VECTOR)
9475     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
9476       return CN;
9477 
9478   return nullptr;
9479 }
9480 
9481 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
9482                                               const APInt &DemandedElts,
9483                                               bool AllowUndefs) {
9484   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9485     return CN;
9486 
9487   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9488     BitVector UndefElements;
9489     ConstantFPSDNode *CN =
9490         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
9491     if (CN && (UndefElements.none() || AllowUndefs))
9492       return CN;
9493   }
9494 
9495   return nullptr;
9496 }
9497 
9498 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
9499   // TODO: may want to use peekThroughBitcast() here.
9500   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9501   return C && C->isNullValue();
9502 }
9503 
9504 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
9505   // TODO: may want to use peekThroughBitcast() here.
9506   unsigned BitWidth = N.getScalarValueSizeInBits();
9507   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9508   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
9509 }
9510 
9511 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
9512   N = peekThroughBitcasts(N);
9513   unsigned BitWidth = N.getScalarValueSizeInBits();
9514   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9515   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
9516 }
9517 
9518 HandleSDNode::~HandleSDNode() {
9519   DropOperands();
9520 }
9521 
9522 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
9523                                          const DebugLoc &DL,
9524                                          const GlobalValue *GA, EVT VT,
9525                                          int64_t o, unsigned TF)
9526     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
9527   TheGlobal = GA;
9528 }
9529 
9530 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
9531                                          EVT VT, unsigned SrcAS,
9532                                          unsigned DestAS)
9533     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
9534       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
9535 
9536 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
9537                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
9538     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
9539   MemSDNodeBits.IsVolatile = MMO->isVolatile();
9540   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
9541   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
9542   MemSDNodeBits.IsInvariant = MMO->isInvariant();
9543 
9544   // We check here that the size of the memory operand fits within the size of
9545   // the MMO. This is because the MMO might indicate only a possible address
9546   // range instead of specifying the affected memory addresses precisely.
9547   // TODO: Make MachineMemOperands aware of scalable vectors.
9548   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
9549          "Size mismatch!");
9550 }
9551 
9552 /// Profile - Gather unique data for the node.
9553 ///
9554 void SDNode::Profile(FoldingSetNodeID &ID) const {
9555   AddNodeIDNode(ID, this);
9556 }
9557 
9558 namespace {
9559 
9560   struct EVTArray {
9561     std::vector<EVT> VTs;
9562 
9563     EVTArray() {
9564       VTs.reserve(MVT::LAST_VALUETYPE);
9565       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
9566         VTs.push_back(MVT((MVT::SimpleValueType)i));
9567     }
9568   };
9569 
9570 } // end anonymous namespace
9571 
9572 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9573 static ManagedStatic<EVTArray> SimpleVTArray;
9574 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9575 
9576 /// getValueTypeList - Return a pointer to the specified value type.
9577 ///
9578 const EVT *SDNode::getValueTypeList(EVT VT) {
9579   if (VT.isExtended()) {
9580     sys::SmartScopedLock<true> Lock(*VTMutex);
9581     return &(*EVTs->insert(VT).first);
9582   }
9583   assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && "Value type out of range!");
9584   return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9585 }
9586 
9587 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9588 /// indicated value.  This method ignores uses of other values defined by this
9589 /// operation.
9590 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9591   assert(Value < getNumValues() && "Bad value!");
9592 
9593   // TODO: Only iterate over uses of a given value of the node
9594   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9595     if (UI.getUse().getResNo() == Value) {
9596       if (NUses == 0)
9597         return false;
9598       --NUses;
9599     }
9600   }
9601 
9602   // Found exactly the right number of uses?
9603   return NUses == 0;
9604 }
9605 
9606 /// hasAnyUseOfValue - Return true if there are any use of the indicated
9607 /// value. This method ignores uses of other values defined by this operation.
9608 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9609   assert(Value < getNumValues() && "Bad value!");
9610 
9611   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9612     if (UI.getUse().getResNo() == Value)
9613       return true;
9614 
9615   return false;
9616 }
9617 
9618 /// isOnlyUserOf - Return true if this node is the only use of N.
9619 bool SDNode::isOnlyUserOf(const SDNode *N) const {
9620   bool Seen = false;
9621   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9622     SDNode *User = *I;
9623     if (User == this)
9624       Seen = true;
9625     else
9626       return false;
9627   }
9628 
9629   return Seen;
9630 }
9631 
9632 /// Return true if the only users of N are contained in Nodes.
9633 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9634   bool Seen = false;
9635   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9636     SDNode *User = *I;
9637     if (llvm::is_contained(Nodes, User))
9638       Seen = true;
9639     else
9640       return false;
9641   }
9642 
9643   return Seen;
9644 }
9645 
9646 /// isOperand - Return true if this node is an operand of N.
9647 bool SDValue::isOperandOf(const SDNode *N) const {
9648   return is_contained(N->op_values(), *this);
9649 }
9650 
9651 bool SDNode::isOperandOf(const SDNode *N) const {
9652   return any_of(N->op_values(),
9653                 [this](SDValue Op) { return this == Op.getNode(); });
9654 }
9655 
9656 /// reachesChainWithoutSideEffects - Return true if this operand (which must
9657 /// be a chain) reaches the specified operand without crossing any
9658 /// side-effecting instructions on any chain path.  In practice, this looks
9659 /// through token factors and non-volatile loads.  In order to remain efficient,
9660 /// this only looks a couple of nodes in, it does not do an exhaustive search.
9661 ///
9662 /// Note that we only need to examine chains when we're searching for
9663 /// side-effects; SelectionDAG requires that all side-effects are represented
9664 /// by chains, even if another operand would force a specific ordering. This
9665 /// constraint is necessary to allow transformations like splitting loads.
9666 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9667                                              unsigned Depth) const {
9668   if (*this == Dest) return true;
9669 
9670   // Don't search too deeply, we just want to be able to see through
9671   // TokenFactor's etc.
9672   if (Depth == 0) return false;
9673 
9674   // If this is a token factor, all inputs to the TF happen in parallel.
9675   if (getOpcode() == ISD::TokenFactor) {
9676     // First, try a shallow search.
9677     if (is_contained((*this)->ops(), Dest)) {
9678       // We found the chain we want as an operand of this TokenFactor.
9679       // Essentially, we reach the chain without side-effects if we could
9680       // serialize the TokenFactor into a simple chain of operations with
9681       // Dest as the last operation. This is automatically true if the
9682       // chain has one use: there are no other ordering constraints.
9683       // If the chain has more than one use, we give up: some other
9684       // use of Dest might force a side-effect between Dest and the current
9685       // node.
9686       if (Dest.hasOneUse())
9687         return true;
9688     }
9689     // Next, try a deep search: check whether every operand of the TokenFactor
9690     // reaches Dest.
9691     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9692       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9693     });
9694   }
9695 
9696   // Loads don't have side effects, look through them.
9697   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9698     if (Ld->isUnordered())
9699       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9700   }
9701   return false;
9702 }
9703 
9704 bool SDNode::hasPredecessor(const SDNode *N) const {
9705   SmallPtrSet<const SDNode *, 32> Visited;
9706   SmallVector<const SDNode *, 16> Worklist;
9707   Worklist.push_back(this);
9708   return hasPredecessorHelper(N, Visited, Worklist);
9709 }
9710 
9711 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9712   this->Flags.intersectWith(Flags);
9713 }
9714 
9715 SDValue
9716 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9717                                   ArrayRef<ISD::NodeType> CandidateBinOps,
9718                                   bool AllowPartials) {
9719   // The pattern must end in an extract from index 0.
9720   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9721       !isNullConstant(Extract->getOperand(1)))
9722     return SDValue();
9723 
9724   // Match against one of the candidate binary ops.
9725   SDValue Op = Extract->getOperand(0);
9726   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9727         return Op.getOpcode() == unsigned(BinOp);
9728       }))
9729     return SDValue();
9730 
9731   // Floating-point reductions may require relaxed constraints on the final step
9732   // of the reduction because they may reorder intermediate operations.
9733   unsigned CandidateBinOp = Op.getOpcode();
9734   if (Op.getValueType().isFloatingPoint()) {
9735     SDNodeFlags Flags = Op->getFlags();
9736     switch (CandidateBinOp) {
9737     case ISD::FADD:
9738       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9739         return SDValue();
9740       break;
9741     default:
9742       llvm_unreachable("Unhandled FP opcode for binop reduction");
9743     }
9744   }
9745 
9746   // Matching failed - attempt to see if we did enough stages that a partial
9747   // reduction from a subvector is possible.
9748   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9749     if (!AllowPartials || !Op)
9750       return SDValue();
9751     EVT OpVT = Op.getValueType();
9752     EVT OpSVT = OpVT.getScalarType();
9753     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9754     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9755       return SDValue();
9756     BinOp = (ISD::NodeType)CandidateBinOp;
9757     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9758                    getVectorIdxConstant(0, SDLoc(Op)));
9759   };
9760 
9761   // At each stage, we're looking for something that looks like:
9762   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9763   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9764   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9765   // %a = binop <8 x i32> %op, %s
9766   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9767   // we expect something like:
9768   // <4,5,6,7,u,u,u,u>
9769   // <2,3,u,u,u,u,u,u>
9770   // <1,u,u,u,u,u,u,u>
9771   // While a partial reduction match would be:
9772   // <2,3,u,u,u,u,u,u>
9773   // <1,u,u,u,u,u,u,u>
9774   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9775   SDValue PrevOp;
9776   for (unsigned i = 0; i < Stages; ++i) {
9777     unsigned MaskEnd = (1 << i);
9778 
9779     if (Op.getOpcode() != CandidateBinOp)
9780       return PartialReduction(PrevOp, MaskEnd);
9781 
9782     SDValue Op0 = Op.getOperand(0);
9783     SDValue Op1 = Op.getOperand(1);
9784 
9785     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9786     if (Shuffle) {
9787       Op = Op1;
9788     } else {
9789       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9790       Op = Op0;
9791     }
9792 
9793     // The first operand of the shuffle should be the same as the other operand
9794     // of the binop.
9795     if (!Shuffle || Shuffle->getOperand(0) != Op)
9796       return PartialReduction(PrevOp, MaskEnd);
9797 
9798     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9799     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9800       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9801         return PartialReduction(PrevOp, MaskEnd);
9802 
9803     PrevOp = Op;
9804   }
9805 
9806   // Handle subvector reductions, which tend to appear after the shuffle
9807   // reduction stages.
9808   while (Op.getOpcode() == CandidateBinOp) {
9809     unsigned NumElts = Op.getValueType().getVectorNumElements();
9810     SDValue Op0 = Op.getOperand(0);
9811     SDValue Op1 = Op.getOperand(1);
9812     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9813         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9814         Op0.getOperand(0) != Op1.getOperand(0))
9815       break;
9816     SDValue Src = Op0.getOperand(0);
9817     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
9818     if (NumSrcElts != (2 * NumElts))
9819       break;
9820     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
9821           Op1.getConstantOperandAPInt(1) == NumElts) &&
9822         !(Op1.getConstantOperandAPInt(1) == 0 &&
9823           Op0.getConstantOperandAPInt(1) == NumElts))
9824       break;
9825     Op = Src;
9826   }
9827 
9828   BinOp = (ISD::NodeType)CandidateBinOp;
9829   return Op;
9830 }
9831 
9832 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9833   assert(N->getNumValues() == 1 &&
9834          "Can't unroll a vector with multiple results!");
9835 
9836   EVT VT = N->getValueType(0);
9837   unsigned NE = VT.getVectorNumElements();
9838   EVT EltVT = VT.getVectorElementType();
9839   SDLoc dl(N);
9840 
9841   SmallVector<SDValue, 8> Scalars;
9842   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9843 
9844   // If ResNE is 0, fully unroll the vector op.
9845   if (ResNE == 0)
9846     ResNE = NE;
9847   else if (NE > ResNE)
9848     NE = ResNE;
9849 
9850   unsigned i;
9851   for (i= 0; i != NE; ++i) {
9852     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9853       SDValue Operand = N->getOperand(j);
9854       EVT OperandVT = Operand.getValueType();
9855       if (OperandVT.isVector()) {
9856         // A vector operand; extract a single element.
9857         EVT OperandEltVT = OperandVT.getVectorElementType();
9858         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
9859                               Operand, getVectorIdxConstant(i, dl));
9860       } else {
9861         // A scalar operand; just use it as is.
9862         Operands[j] = Operand;
9863       }
9864     }
9865 
9866     switch (N->getOpcode()) {
9867     default: {
9868       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9869                                 N->getFlags()));
9870       break;
9871     }
9872     case ISD::VSELECT:
9873       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9874       break;
9875     case ISD::SHL:
9876     case ISD::SRA:
9877     case ISD::SRL:
9878     case ISD::ROTL:
9879     case ISD::ROTR:
9880       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9881                                getShiftAmountOperand(Operands[0].getValueType(),
9882                                                      Operands[1])));
9883       break;
9884     case ISD::SIGN_EXTEND_INREG: {
9885       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9886       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9887                                 Operands[0],
9888                                 getValueType(ExtVT)));
9889     }
9890     }
9891   }
9892 
9893   for (; i < ResNE; ++i)
9894     Scalars.push_back(getUNDEF(EltVT));
9895 
9896   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9897   return getBuildVector(VecVT, dl, Scalars);
9898 }
9899 
9900 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9901     SDNode *N, unsigned ResNE) {
9902   unsigned Opcode = N->getOpcode();
9903   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9904           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9905           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9906          "Expected an overflow opcode");
9907 
9908   EVT ResVT = N->getValueType(0);
9909   EVT OvVT = N->getValueType(1);
9910   EVT ResEltVT = ResVT.getVectorElementType();
9911   EVT OvEltVT = OvVT.getVectorElementType();
9912   SDLoc dl(N);
9913 
9914   // If ResNE is 0, fully unroll the vector op.
9915   unsigned NE = ResVT.getVectorNumElements();
9916   if (ResNE == 0)
9917     ResNE = NE;
9918   else if (NE > ResNE)
9919     NE = ResNE;
9920 
9921   SmallVector<SDValue, 8> LHSScalars;
9922   SmallVector<SDValue, 8> RHSScalars;
9923   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9924   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9925 
9926   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9927   SDVTList VTs = getVTList(ResEltVT, SVT);
9928   SmallVector<SDValue, 8> ResScalars;
9929   SmallVector<SDValue, 8> OvScalars;
9930   for (unsigned i = 0; i < NE; ++i) {
9931     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9932     SDValue Ov =
9933         getSelect(dl, OvEltVT, Res.getValue(1),
9934                   getBoolConstant(true, dl, OvEltVT, ResVT),
9935                   getConstant(0, dl, OvEltVT));
9936 
9937     ResScalars.push_back(Res);
9938     OvScalars.push_back(Ov);
9939   }
9940 
9941   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9942   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9943 
9944   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9945   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9946   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9947                         getBuildVector(NewOvVT, dl, OvScalars));
9948 }
9949 
9950 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9951                                                   LoadSDNode *Base,
9952                                                   unsigned Bytes,
9953                                                   int Dist) const {
9954   if (LD->isVolatile() || Base->isVolatile())
9955     return false;
9956   // TODO: probably too restrictive for atomics, revisit
9957   if (!LD->isSimple())
9958     return false;
9959   if (LD->isIndexed() || Base->isIndexed())
9960     return false;
9961   if (LD->getChain() != Base->getChain())
9962     return false;
9963   EVT VT = LD->getValueType(0);
9964   if (VT.getSizeInBits() / 8 != Bytes)
9965     return false;
9966 
9967   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9968   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9969 
9970   int64_t Offset = 0;
9971   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9972     return (Dist * Bytes == Offset);
9973   return false;
9974 }
9975 
9976 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
9977 /// if it cannot be inferred.
9978 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
9979   // If this is a GlobalAddress + cst, return the alignment.
9980   const GlobalValue *GV = nullptr;
9981   int64_t GVOffset = 0;
9982   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9983     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
9984     KnownBits Known(PtrWidth);
9985     llvm::computeKnownBits(GV, Known, getDataLayout());
9986     unsigned AlignBits = Known.countMinTrailingZeros();
9987     if (AlignBits)
9988       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
9989   }
9990 
9991   // If this is a direct reference to a stack slot, use information about the
9992   // stack slot's alignment.
9993   int FrameIdx = INT_MIN;
9994   int64_t FrameOffset = 0;
9995   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9996     FrameIdx = FI->getIndex();
9997   } else if (isBaseWithConstantOffset(Ptr) &&
9998              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9999     // Handle FI+Cst
10000     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
10001     FrameOffset = Ptr.getConstantOperandVal(1);
10002   }
10003 
10004   if (FrameIdx != INT_MIN) {
10005     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
10006     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
10007   }
10008 
10009   return None;
10010 }
10011 
10012 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
10013 /// which is split (or expanded) into two not necessarily identical pieces.
10014 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
10015   // Currently all types are split in half.
10016   EVT LoVT, HiVT;
10017   if (!VT.isVector())
10018     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
10019   else
10020     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
10021 
10022   return std::make_pair(LoVT, HiVT);
10023 }
10024 
10025 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
10026 /// type, dependent on an enveloping VT that has been split into two identical
10027 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
10028 std::pair<EVT, EVT>
10029 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
10030                                        bool *HiIsEmpty) const {
10031   EVT EltTp = VT.getVectorElementType();
10032   // Examples:
10033   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
10034   //   custom VL=9  with enveloping VL=8/8 yields 8/1
10035   //   custom VL=10 with enveloping VL=8/8 yields 8/2
10036   //   etc.
10037   ElementCount VTNumElts = VT.getVectorElementCount();
10038   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
10039   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
10040          "Mixing fixed width and scalable vectors when enveloping a type");
10041   EVT LoVT, HiVT;
10042   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
10043     LoVT = EnvVT;
10044     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
10045     *HiIsEmpty = false;
10046   } else {
10047     // Flag that hi type has zero storage size, but return split envelop type
10048     // (this would be easier if vector types with zero elements were allowed).
10049     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
10050     HiVT = EnvVT;
10051     *HiIsEmpty = true;
10052   }
10053   return std::make_pair(LoVT, HiVT);
10054 }
10055 
10056 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
10057 /// low/high part.
10058 std::pair<SDValue, SDValue>
10059 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
10060                           const EVT &HiVT) {
10061   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
10062          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
10063          "Splitting vector with an invalid mixture of fixed and scalable "
10064          "vector types");
10065   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
10066              N.getValueType().getVectorMinNumElements() &&
10067          "More vector elements requested than available!");
10068   SDValue Lo, Hi;
10069   Lo =
10070       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
10071   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
10072   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
10073   // IDX with the runtime scaling factor of the result vector type. For
10074   // fixed-width result vectors, that runtime scaling factor is 1.
10075   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
10076                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
10077   return std::make_pair(Lo, Hi);
10078 }
10079 
10080 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
10081 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
10082   EVT VT = N.getValueType();
10083   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
10084                                 NextPowerOf2(VT.getVectorNumElements()));
10085   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
10086                  getVectorIdxConstant(0, DL));
10087 }
10088 
10089 void SelectionDAG::ExtractVectorElements(SDValue Op,
10090                                          SmallVectorImpl<SDValue> &Args,
10091                                          unsigned Start, unsigned Count,
10092                                          EVT EltVT) {
10093   EVT VT = Op.getValueType();
10094   if (Count == 0)
10095     Count = VT.getVectorNumElements();
10096   if (EltVT == EVT())
10097     EltVT = VT.getVectorElementType();
10098   SDLoc SL(Op);
10099   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
10100     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
10101                            getVectorIdxConstant(i, SL)));
10102   }
10103 }
10104 
10105 // getAddressSpace - Return the address space this GlobalAddress belongs to.
10106 unsigned GlobalAddressSDNode::getAddressSpace() const {
10107   return getGlobal()->getType()->getAddressSpace();
10108 }
10109 
10110 Type *ConstantPoolSDNode::getType() const {
10111   if (isMachineConstantPoolEntry())
10112     return Val.MachineCPVal->getType();
10113   return Val.ConstVal->getType();
10114 }
10115 
10116 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
10117                                         unsigned &SplatBitSize,
10118                                         bool &HasAnyUndefs,
10119                                         unsigned MinSplatBits,
10120                                         bool IsBigEndian) const {
10121   EVT VT = getValueType(0);
10122   assert(VT.isVector() && "Expected a vector type");
10123   unsigned VecWidth = VT.getSizeInBits();
10124   if (MinSplatBits > VecWidth)
10125     return false;
10126 
10127   // FIXME: The widths are based on this node's type, but build vectors can
10128   // truncate their operands.
10129   SplatValue = APInt(VecWidth, 0);
10130   SplatUndef = APInt(VecWidth, 0);
10131 
10132   // Get the bits. Bits with undefined values (when the corresponding element
10133   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
10134   // in SplatValue. If any of the values are not constant, give up and return
10135   // false.
10136   unsigned int NumOps = getNumOperands();
10137   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
10138   unsigned EltWidth = VT.getScalarSizeInBits();
10139 
10140   for (unsigned j = 0; j < NumOps; ++j) {
10141     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
10142     SDValue OpVal = getOperand(i);
10143     unsigned BitPos = j * EltWidth;
10144 
10145     if (OpVal.isUndef())
10146       SplatUndef.setBits(BitPos, BitPos + EltWidth);
10147     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
10148       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
10149     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
10150       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
10151     else
10152       return false;
10153   }
10154 
10155   // The build_vector is all constants or undefs. Find the smallest element
10156   // size that splats the vector.
10157   HasAnyUndefs = (SplatUndef != 0);
10158 
10159   // FIXME: This does not work for vectors with elements less than 8 bits.
10160   while (VecWidth > 8) {
10161     unsigned HalfSize = VecWidth / 2;
10162     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
10163     APInt LowValue = SplatValue.trunc(HalfSize);
10164     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
10165     APInt LowUndef = SplatUndef.trunc(HalfSize);
10166 
10167     // If the two halves do not match (ignoring undef bits), stop here.
10168     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
10169         MinSplatBits > HalfSize)
10170       break;
10171 
10172     SplatValue = HighValue | LowValue;
10173     SplatUndef = HighUndef & LowUndef;
10174 
10175     VecWidth = HalfSize;
10176   }
10177 
10178   SplatBitSize = VecWidth;
10179   return true;
10180 }
10181 
10182 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
10183                                          BitVector *UndefElements) const {
10184   unsigned NumOps = getNumOperands();
10185   if (UndefElements) {
10186     UndefElements->clear();
10187     UndefElements->resize(NumOps);
10188   }
10189   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10190   if (!DemandedElts)
10191     return SDValue();
10192   SDValue Splatted;
10193   for (unsigned i = 0; i != NumOps; ++i) {
10194     if (!DemandedElts[i])
10195       continue;
10196     SDValue Op = getOperand(i);
10197     if (Op.isUndef()) {
10198       if (UndefElements)
10199         (*UndefElements)[i] = true;
10200     } else if (!Splatted) {
10201       Splatted = Op;
10202     } else if (Splatted != Op) {
10203       return SDValue();
10204     }
10205   }
10206 
10207   if (!Splatted) {
10208     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
10209     assert(getOperand(FirstDemandedIdx).isUndef() &&
10210            "Can only have a splat without a constant for all undefs.");
10211     return getOperand(FirstDemandedIdx);
10212   }
10213 
10214   return Splatted;
10215 }
10216 
10217 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
10218   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
10219   return getSplatValue(DemandedElts, UndefElements);
10220 }
10221 
10222 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
10223                                             SmallVectorImpl<SDValue> &Sequence,
10224                                             BitVector *UndefElements) const {
10225   unsigned NumOps = getNumOperands();
10226   Sequence.clear();
10227   if (UndefElements) {
10228     UndefElements->clear();
10229     UndefElements->resize(NumOps);
10230   }
10231   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10232   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
10233     return false;
10234 
10235   // Set the undefs even if we don't find a sequence (like getSplatValue).
10236   if (UndefElements)
10237     for (unsigned I = 0; I != NumOps; ++I)
10238       if (DemandedElts[I] && getOperand(I).isUndef())
10239         (*UndefElements)[I] = true;
10240 
10241   // Iteratively widen the sequence length looking for repetitions.
10242   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
10243     Sequence.append(SeqLen, SDValue());
10244     for (unsigned I = 0; I != NumOps; ++I) {
10245       if (!DemandedElts[I])
10246         continue;
10247       SDValue &SeqOp = Sequence[I % SeqLen];
10248       SDValue Op = getOperand(I);
10249       if (Op.isUndef()) {
10250         if (!SeqOp)
10251           SeqOp = Op;
10252         continue;
10253       }
10254       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
10255         Sequence.clear();
10256         break;
10257       }
10258       SeqOp = Op;
10259     }
10260     if (!Sequence.empty())
10261       return true;
10262   }
10263 
10264   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
10265   return false;
10266 }
10267 
10268 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
10269                                             BitVector *UndefElements) const {
10270   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
10271   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
10272 }
10273 
10274 ConstantSDNode *
10275 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
10276                                         BitVector *UndefElements) const {
10277   return dyn_cast_or_null<ConstantSDNode>(
10278       getSplatValue(DemandedElts, UndefElements));
10279 }
10280 
10281 ConstantSDNode *
10282 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
10283   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
10284 }
10285 
10286 ConstantFPSDNode *
10287 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
10288                                           BitVector *UndefElements) const {
10289   return dyn_cast_or_null<ConstantFPSDNode>(
10290       getSplatValue(DemandedElts, UndefElements));
10291 }
10292 
10293 ConstantFPSDNode *
10294 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
10295   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
10296 }
10297 
10298 int32_t
10299 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
10300                                                    uint32_t BitWidth) const {
10301   if (ConstantFPSDNode *CN =
10302           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
10303     bool IsExact;
10304     APSInt IntVal(BitWidth);
10305     const APFloat &APF = CN->getValueAPF();
10306     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
10307             APFloat::opOK ||
10308         !IsExact)
10309       return -1;
10310 
10311     return IntVal.exactLogBase2();
10312   }
10313   return -1;
10314 }
10315 
10316 bool BuildVectorSDNode::isConstant() const {
10317   for (const SDValue &Op : op_values()) {
10318     unsigned Opc = Op.getOpcode();
10319     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
10320       return false;
10321   }
10322   return true;
10323 }
10324 
10325 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
10326   // Find the first non-undef value in the shuffle mask.
10327   unsigned i, e;
10328   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
10329     /* search */;
10330 
10331   // If all elements are undefined, this shuffle can be considered a splat
10332   // (although it should eventually get simplified away completely).
10333   if (i == e)
10334     return true;
10335 
10336   // Make sure all remaining elements are either undef or the same as the first
10337   // non-undef value.
10338   for (int Idx = Mask[i]; i != e; ++i)
10339     if (Mask[i] >= 0 && Mask[i] != Idx)
10340       return false;
10341   return true;
10342 }
10343 
10344 // Returns the SDNode if it is a constant integer BuildVector
10345 // or constant integer.
10346 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
10347   if (isa<ConstantSDNode>(N))
10348     return N.getNode();
10349   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
10350     return N.getNode();
10351   // Treat a GlobalAddress supporting constant offset folding as a
10352   // constant integer.
10353   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
10354     if (GA->getOpcode() == ISD::GlobalAddress &&
10355         TLI->isOffsetFoldingLegal(GA))
10356       return GA;
10357   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
10358       isa<ConstantSDNode>(N.getOperand(0)))
10359     return N.getNode();
10360   return nullptr;
10361 }
10362 
10363 // Returns the SDNode if it is a constant float BuildVector
10364 // or constant float.
10365 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
10366   if (isa<ConstantFPSDNode>(N))
10367     return N.getNode();
10368 
10369   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
10370     return N.getNode();
10371 
10372   return nullptr;
10373 }
10374 
10375 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
10376   assert(!Node->OperandList && "Node already has operands");
10377   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
10378          "too many operands to fit into SDNode");
10379   SDUse *Ops = OperandRecycler.allocate(
10380       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
10381 
10382   bool IsDivergent = false;
10383   for (unsigned I = 0; I != Vals.size(); ++I) {
10384     Ops[I].setUser(Node);
10385     Ops[I].setInitial(Vals[I]);
10386     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
10387       IsDivergent |= Ops[I].getNode()->isDivergent();
10388   }
10389   Node->NumOperands = Vals.size();
10390   Node->OperandList = Ops;
10391   if (!TLI->isSDNodeAlwaysUniform(Node)) {
10392     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
10393     Node->SDNodeBits.IsDivergent = IsDivergent;
10394   }
10395   checkForCycles(Node);
10396 }
10397 
10398 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
10399                                      SmallVectorImpl<SDValue> &Vals) {
10400   size_t Limit = SDNode::getMaxNumOperands();
10401   while (Vals.size() > Limit) {
10402     unsigned SliceIdx = Vals.size() - Limit;
10403     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
10404     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
10405     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
10406     Vals.emplace_back(NewTF);
10407   }
10408   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
10409 }
10410 
10411 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
10412                                         EVT VT, SDNodeFlags Flags) {
10413   switch (Opcode) {
10414   default:
10415     return SDValue();
10416   case ISD::ADD:
10417   case ISD::OR:
10418   case ISD::XOR:
10419   case ISD::UMAX:
10420     return getConstant(0, DL, VT);
10421   case ISD::MUL:
10422     return getConstant(1, DL, VT);
10423   case ISD::AND:
10424   case ISD::UMIN:
10425     return getAllOnesConstant(DL, VT);
10426   case ISD::SMAX:
10427     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
10428   case ISD::SMIN:
10429     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
10430   case ISD::FADD:
10431     return getConstantFP(-0.0, DL, VT);
10432   case ISD::FMUL:
10433     return getConstantFP(1.0, DL, VT);
10434   case ISD::FMINNUM:
10435   case ISD::FMAXNUM: {
10436     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
10437     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
10438     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
10439                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
10440                         APFloat::getLargest(Semantics);
10441     if (Opcode == ISD::FMAXNUM)
10442       NeutralAF.changeSign();
10443 
10444     return getConstantFP(NeutralAF, DL, VT);
10445   }
10446   }
10447 }
10448 
10449 #ifndef NDEBUG
10450 static void checkForCyclesHelper(const SDNode *N,
10451                                  SmallPtrSetImpl<const SDNode*> &Visited,
10452                                  SmallPtrSetImpl<const SDNode*> &Checked,
10453                                  const llvm::SelectionDAG *DAG) {
10454   // If this node has already been checked, don't check it again.
10455   if (Checked.count(N))
10456     return;
10457 
10458   // If a node has already been visited on this depth-first walk, reject it as
10459   // a cycle.
10460   if (!Visited.insert(N).second) {
10461     errs() << "Detected cycle in SelectionDAG\n";
10462     dbgs() << "Offending node:\n";
10463     N->dumprFull(DAG); dbgs() << "\n";
10464     abort();
10465   }
10466 
10467   for (const SDValue &Op : N->op_values())
10468     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
10469 
10470   Checked.insert(N);
10471   Visited.erase(N);
10472 }
10473 #endif
10474 
10475 void llvm::checkForCycles(const llvm::SDNode *N,
10476                           const llvm::SelectionDAG *DAG,
10477                           bool force) {
10478 #ifndef NDEBUG
10479   bool check = force;
10480 #ifdef EXPENSIVE_CHECKS
10481   check = true;
10482 #endif  // EXPENSIVE_CHECKS
10483   if (check) {
10484     assert(N && "Checking nonexistent SDNode");
10485     SmallPtrSet<const SDNode*, 32> visited;
10486     SmallPtrSet<const SDNode*, 32> checked;
10487     checkForCyclesHelper(N, visited, checked, DAG);
10488   }
10489 #endif  // !NDEBUG
10490 }
10491 
10492 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
10493   checkForCycles(DAG->getRoot().getNode(), DAG, force);
10494 }
10495