1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/FunctionLoweringInfo.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineConstantPool.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/RuntimeLibcalls.h" 39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 40 #include "llvm/CodeGen/SelectionDAGNodes.h" 41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 42 #include "llvm/CodeGen/TargetFrameLowering.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/ValueTypes.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/KnownBits.h" 64 #include "llvm/Support/MachineValueType.h" 65 #include "llvm/Support/ManagedStatic.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/Mutex.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include "llvm/Target/TargetOptions.h" 71 #include "llvm/Transforms/Utils/SizeOpts.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <cstdlib> 76 #include <limits> 77 #include <set> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 /// makeVTList - Return an instance of the SDVTList struct initialized with the 85 /// specified members. 86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 87 SDVTList Res = {VTs, NumVTs}; 88 return Res; 89 } 90 91 // Default null implementations of the callbacks. 92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 95 96 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 97 98 #define DEBUG_TYPE "selectiondag" 99 100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 101 cl::Hidden, cl::init(true), 102 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 103 104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 105 cl::desc("Number limit for gluing ld/st of memcpy."), 106 cl::Hidden, cl::init(0)); 107 108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 109 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 110 } 111 112 //===----------------------------------------------------------------------===// 113 // ConstantFPSDNode Class 114 //===----------------------------------------------------------------------===// 115 116 /// isExactlyValue - We don't rely on operator== working on double values, as 117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 118 /// As such, this method can be used to do an exact bit-for-bit comparison of 119 /// two floating point values. 120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 121 return getValueAPF().bitwiseIsEqual(V); 122 } 123 124 bool ConstantFPSDNode::isValueValidForType(EVT VT, 125 const APFloat& Val) { 126 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 127 128 // convert modifies in place, so make a copy. 129 APFloat Val2 = APFloat(Val); 130 bool losesInfo; 131 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 132 APFloat::rmNearestTiesToEven, 133 &losesInfo); 134 return !losesInfo; 135 } 136 137 //===----------------------------------------------------------------------===// 138 // ISD Namespace 139 //===----------------------------------------------------------------------===// 140 141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 142 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 143 unsigned EltSize = 144 N->getValueType(0).getVectorElementType().getSizeInBits(); 145 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 146 SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize); 147 return true; 148 } 149 } 150 151 auto *BV = dyn_cast<BuildVectorSDNode>(N); 152 if (!BV) 153 return false; 154 155 APInt SplatUndef; 156 unsigned SplatBitSize; 157 bool HasUndefs; 158 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 159 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 160 EltSize) && 161 EltSize == SplatBitSize; 162 } 163 164 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 165 // specializations of the more general isConstantSplatVector()? 166 167 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 168 // Look through a bit convert. 169 while (N->getOpcode() == ISD::BITCAST) 170 N = N->getOperand(0).getNode(); 171 172 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 173 APInt SplatVal; 174 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnesValue(); 175 } 176 177 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 178 179 unsigned i = 0, e = N->getNumOperands(); 180 181 // Skip over all of the undef values. 182 while (i != e && N->getOperand(i).isUndef()) 183 ++i; 184 185 // Do not accept an all-undef vector. 186 if (i == e) return false; 187 188 // Do not accept build_vectors that aren't all constants or which have non-~0 189 // elements. We have to be a bit careful here, as the type of the constant 190 // may not be the same as the type of the vector elements due to type 191 // legalization (the elements are promoted to a legal type for the target and 192 // a vector of a type may be legal when the base element type is not). 193 // We only want to check enough bits to cover the vector elements, because 194 // we care if the resultant vector is all ones, not whether the individual 195 // constants are. 196 SDValue NotZero = N->getOperand(i); 197 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 198 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 199 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 200 return false; 201 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 202 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 203 return false; 204 } else 205 return false; 206 207 // Okay, we have at least one ~0 value, check to see if the rest match or are 208 // undefs. Even with the above element type twiddling, this should be OK, as 209 // the same type legalization should have applied to all the elements. 210 for (++i; i != e; ++i) 211 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 212 return false; 213 return true; 214 } 215 216 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 217 // Look through a bit convert. 218 while (N->getOpcode() == ISD::BITCAST) 219 N = N->getOperand(0).getNode(); 220 221 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 222 APInt SplatVal; 223 return isConstantSplatVector(N, SplatVal) && SplatVal.isNullValue(); 224 } 225 226 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 227 228 bool IsAllUndef = true; 229 for (const SDValue &Op : N->op_values()) { 230 if (Op.isUndef()) 231 continue; 232 IsAllUndef = false; 233 // Do not accept build_vectors that aren't all constants or which have non-0 234 // elements. We have to be a bit careful here, as the type of the constant 235 // may not be the same as the type of the vector elements due to type 236 // legalization (the elements are promoted to a legal type for the target 237 // and a vector of a type may be legal when the base element type is not). 238 // We only want to check enough bits to cover the vector elements, because 239 // we care if the resultant vector is all zeros, not whether the individual 240 // constants are. 241 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 242 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 243 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 244 return false; 245 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 246 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 247 return false; 248 } else 249 return false; 250 } 251 252 // Do not accept an all-undef vector. 253 if (IsAllUndef) 254 return false; 255 return true; 256 } 257 258 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 259 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 260 } 261 262 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 263 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 264 } 265 266 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 267 if (N->getOpcode() != ISD::BUILD_VECTOR) 268 return false; 269 270 for (const SDValue &Op : N->op_values()) { 271 if (Op.isUndef()) 272 continue; 273 if (!isa<ConstantSDNode>(Op)) 274 return false; 275 } 276 return true; 277 } 278 279 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 280 if (N->getOpcode() != ISD::BUILD_VECTOR) 281 return false; 282 283 for (const SDValue &Op : N->op_values()) { 284 if (Op.isUndef()) 285 continue; 286 if (!isa<ConstantFPSDNode>(Op)) 287 return false; 288 } 289 return true; 290 } 291 292 bool ISD::allOperandsUndef(const SDNode *N) { 293 // Return false if the node has no operands. 294 // This is "logically inconsistent" with the definition of "all" but 295 // is probably the desired behavior. 296 if (N->getNumOperands() == 0) 297 return false; 298 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 299 } 300 301 bool ISD::matchUnaryPredicate(SDValue Op, 302 std::function<bool(ConstantSDNode *)> Match, 303 bool AllowUndefs) { 304 // FIXME: Add support for scalar UNDEF cases? 305 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 306 return Match(Cst); 307 308 // FIXME: Add support for vector UNDEF cases? 309 if (ISD::BUILD_VECTOR != Op.getOpcode() && 310 ISD::SPLAT_VECTOR != Op.getOpcode()) 311 return false; 312 313 EVT SVT = Op.getValueType().getScalarType(); 314 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 315 if (AllowUndefs && Op.getOperand(i).isUndef()) { 316 if (!Match(nullptr)) 317 return false; 318 continue; 319 } 320 321 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 322 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 323 return false; 324 } 325 return true; 326 } 327 328 bool ISD::matchBinaryPredicate( 329 SDValue LHS, SDValue RHS, 330 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 331 bool AllowUndefs, bool AllowTypeMismatch) { 332 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 333 return false; 334 335 // TODO: Add support for scalar UNDEF cases? 336 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 337 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 338 return Match(LHSCst, RHSCst); 339 340 // TODO: Add support for vector UNDEF cases? 341 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 342 ISD::BUILD_VECTOR != RHS.getOpcode()) 343 return false; 344 345 EVT SVT = LHS.getValueType().getScalarType(); 346 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 347 SDValue LHSOp = LHS.getOperand(i); 348 SDValue RHSOp = RHS.getOperand(i); 349 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 350 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 351 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 352 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 353 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 354 return false; 355 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 356 LHSOp.getValueType() != RHSOp.getValueType())) 357 return false; 358 if (!Match(LHSCst, RHSCst)) 359 return false; 360 } 361 return true; 362 } 363 364 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 365 switch (VecReduceOpcode) { 366 default: 367 llvm_unreachable("Expected VECREDUCE opcode"); 368 case ISD::VECREDUCE_FADD: 369 case ISD::VECREDUCE_SEQ_FADD: 370 return ISD::FADD; 371 case ISD::VECREDUCE_FMUL: 372 case ISD::VECREDUCE_SEQ_FMUL: 373 return ISD::FMUL; 374 case ISD::VECREDUCE_ADD: 375 return ISD::ADD; 376 case ISD::VECREDUCE_MUL: 377 return ISD::MUL; 378 case ISD::VECREDUCE_AND: 379 return ISD::AND; 380 case ISD::VECREDUCE_OR: 381 return ISD::OR; 382 case ISD::VECREDUCE_XOR: 383 return ISD::XOR; 384 case ISD::VECREDUCE_SMAX: 385 return ISD::SMAX; 386 case ISD::VECREDUCE_SMIN: 387 return ISD::SMIN; 388 case ISD::VECREDUCE_UMAX: 389 return ISD::UMAX; 390 case ISD::VECREDUCE_UMIN: 391 return ISD::UMIN; 392 case ISD::VECREDUCE_FMAX: 393 return ISD::FMAXNUM; 394 case ISD::VECREDUCE_FMIN: 395 return ISD::FMINNUM; 396 } 397 } 398 399 bool ISD::isVPOpcode(unsigned Opcode) { 400 switch (Opcode) { 401 default: 402 return false; 403 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \ 404 case ISD::SDOPC: \ 405 return true; 406 #include "llvm/IR/VPIntrinsics.def" 407 } 408 } 409 410 /// The operand position of the vector mask. 411 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 412 switch (Opcode) { 413 default: 414 return None; 415 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, ...) \ 416 case ISD::SDOPC: \ 417 return MASKPOS; 418 #include "llvm/IR/VPIntrinsics.def" 419 } 420 } 421 422 /// The operand position of the explicit vector length parameter. 423 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 424 switch (Opcode) { 425 default: 426 return None; 427 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 428 case ISD::SDOPC: \ 429 return EVLPOS; 430 #include "llvm/IR/VPIntrinsics.def" 431 } 432 } 433 434 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 435 switch (ExtType) { 436 case ISD::EXTLOAD: 437 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 438 case ISD::SEXTLOAD: 439 return ISD::SIGN_EXTEND; 440 case ISD::ZEXTLOAD: 441 return ISD::ZERO_EXTEND; 442 default: 443 break; 444 } 445 446 llvm_unreachable("Invalid LoadExtType"); 447 } 448 449 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 450 // To perform this operation, we just need to swap the L and G bits of the 451 // operation. 452 unsigned OldL = (Operation >> 2) & 1; 453 unsigned OldG = (Operation >> 1) & 1; 454 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 455 (OldL << 1) | // New G bit 456 (OldG << 2)); // New L bit. 457 } 458 459 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 460 unsigned Operation = Op; 461 if (isIntegerLike) 462 Operation ^= 7; // Flip L, G, E bits, but not U. 463 else 464 Operation ^= 15; // Flip all of the condition bits. 465 466 if (Operation > ISD::SETTRUE2) 467 Operation &= ~8; // Don't let N and U bits get set. 468 469 return ISD::CondCode(Operation); 470 } 471 472 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 473 return getSetCCInverseImpl(Op, Type.isInteger()); 474 } 475 476 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 477 bool isIntegerLike) { 478 return getSetCCInverseImpl(Op, isIntegerLike); 479 } 480 481 /// For an integer comparison, return 1 if the comparison is a signed operation 482 /// and 2 if the result is an unsigned comparison. Return zero if the operation 483 /// does not depend on the sign of the input (setne and seteq). 484 static int isSignedOp(ISD::CondCode Opcode) { 485 switch (Opcode) { 486 default: llvm_unreachable("Illegal integer setcc operation!"); 487 case ISD::SETEQ: 488 case ISD::SETNE: return 0; 489 case ISD::SETLT: 490 case ISD::SETLE: 491 case ISD::SETGT: 492 case ISD::SETGE: return 1; 493 case ISD::SETULT: 494 case ISD::SETULE: 495 case ISD::SETUGT: 496 case ISD::SETUGE: return 2; 497 } 498 } 499 500 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 501 EVT Type) { 502 bool IsInteger = Type.isInteger(); 503 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 504 // Cannot fold a signed integer setcc with an unsigned integer setcc. 505 return ISD::SETCC_INVALID; 506 507 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 508 509 // If the N and U bits get set, then the resultant comparison DOES suddenly 510 // care about orderedness, and it is true when ordered. 511 if (Op > ISD::SETTRUE2) 512 Op &= ~16; // Clear the U bit if the N bit is set. 513 514 // Canonicalize illegal integer setcc's. 515 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 516 Op = ISD::SETNE; 517 518 return ISD::CondCode(Op); 519 } 520 521 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 522 EVT Type) { 523 bool IsInteger = Type.isInteger(); 524 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 525 // Cannot fold a signed setcc with an unsigned setcc. 526 return ISD::SETCC_INVALID; 527 528 // Combine all of the condition bits. 529 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 530 531 // Canonicalize illegal integer setcc's. 532 if (IsInteger) { 533 switch (Result) { 534 default: break; 535 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 536 case ISD::SETOEQ: // SETEQ & SETU[LG]E 537 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 538 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 539 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 540 } 541 } 542 543 return Result; 544 } 545 546 //===----------------------------------------------------------------------===// 547 // SDNode Profile Support 548 //===----------------------------------------------------------------------===// 549 550 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 551 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 552 ID.AddInteger(OpC); 553 } 554 555 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 556 /// solely with their pointer. 557 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 558 ID.AddPointer(VTList.VTs); 559 } 560 561 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 562 static void AddNodeIDOperands(FoldingSetNodeID &ID, 563 ArrayRef<SDValue> Ops) { 564 for (auto& Op : Ops) { 565 ID.AddPointer(Op.getNode()); 566 ID.AddInteger(Op.getResNo()); 567 } 568 } 569 570 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 571 static void AddNodeIDOperands(FoldingSetNodeID &ID, 572 ArrayRef<SDUse> Ops) { 573 for (auto& Op : Ops) { 574 ID.AddPointer(Op.getNode()); 575 ID.AddInteger(Op.getResNo()); 576 } 577 } 578 579 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 580 SDVTList VTList, ArrayRef<SDValue> OpList) { 581 AddNodeIDOpcode(ID, OpC); 582 AddNodeIDValueTypes(ID, VTList); 583 AddNodeIDOperands(ID, OpList); 584 } 585 586 /// If this is an SDNode with special info, add this info to the NodeID data. 587 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 588 switch (N->getOpcode()) { 589 case ISD::TargetExternalSymbol: 590 case ISD::ExternalSymbol: 591 case ISD::MCSymbol: 592 llvm_unreachable("Should only be used on nodes with operands"); 593 default: break; // Normal nodes don't need extra info. 594 case ISD::TargetConstant: 595 case ISD::Constant: { 596 const ConstantSDNode *C = cast<ConstantSDNode>(N); 597 ID.AddPointer(C->getConstantIntValue()); 598 ID.AddBoolean(C->isOpaque()); 599 break; 600 } 601 case ISD::TargetConstantFP: 602 case ISD::ConstantFP: 603 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 604 break; 605 case ISD::TargetGlobalAddress: 606 case ISD::GlobalAddress: 607 case ISD::TargetGlobalTLSAddress: 608 case ISD::GlobalTLSAddress: { 609 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 610 ID.AddPointer(GA->getGlobal()); 611 ID.AddInteger(GA->getOffset()); 612 ID.AddInteger(GA->getTargetFlags()); 613 break; 614 } 615 case ISD::BasicBlock: 616 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 617 break; 618 case ISD::Register: 619 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 620 break; 621 case ISD::RegisterMask: 622 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 623 break; 624 case ISD::SRCVALUE: 625 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 626 break; 627 case ISD::FrameIndex: 628 case ISD::TargetFrameIndex: 629 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 630 break; 631 case ISD::LIFETIME_START: 632 case ISD::LIFETIME_END: 633 if (cast<LifetimeSDNode>(N)->hasOffset()) { 634 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 635 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 636 } 637 break; 638 case ISD::PSEUDO_PROBE: 639 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 640 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 641 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 642 break; 643 case ISD::JumpTable: 644 case ISD::TargetJumpTable: 645 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 646 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 647 break; 648 case ISD::ConstantPool: 649 case ISD::TargetConstantPool: { 650 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 651 ID.AddInteger(CP->getAlign().value()); 652 ID.AddInteger(CP->getOffset()); 653 if (CP->isMachineConstantPoolEntry()) 654 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 655 else 656 ID.AddPointer(CP->getConstVal()); 657 ID.AddInteger(CP->getTargetFlags()); 658 break; 659 } 660 case ISD::TargetIndex: { 661 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 662 ID.AddInteger(TI->getIndex()); 663 ID.AddInteger(TI->getOffset()); 664 ID.AddInteger(TI->getTargetFlags()); 665 break; 666 } 667 case ISD::LOAD: { 668 const LoadSDNode *LD = cast<LoadSDNode>(N); 669 ID.AddInteger(LD->getMemoryVT().getRawBits()); 670 ID.AddInteger(LD->getRawSubclassData()); 671 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 672 break; 673 } 674 case ISD::STORE: { 675 const StoreSDNode *ST = cast<StoreSDNode>(N); 676 ID.AddInteger(ST->getMemoryVT().getRawBits()); 677 ID.AddInteger(ST->getRawSubclassData()); 678 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 679 break; 680 } 681 case ISD::MLOAD: { 682 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 683 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 684 ID.AddInteger(MLD->getRawSubclassData()); 685 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 686 break; 687 } 688 case ISD::MSTORE: { 689 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 690 ID.AddInteger(MST->getMemoryVT().getRawBits()); 691 ID.AddInteger(MST->getRawSubclassData()); 692 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 693 break; 694 } 695 case ISD::MGATHER: { 696 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 697 ID.AddInteger(MG->getMemoryVT().getRawBits()); 698 ID.AddInteger(MG->getRawSubclassData()); 699 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 700 break; 701 } 702 case ISD::MSCATTER: { 703 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 704 ID.AddInteger(MS->getMemoryVT().getRawBits()); 705 ID.AddInteger(MS->getRawSubclassData()); 706 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 707 break; 708 } 709 case ISD::ATOMIC_CMP_SWAP: 710 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 711 case ISD::ATOMIC_SWAP: 712 case ISD::ATOMIC_LOAD_ADD: 713 case ISD::ATOMIC_LOAD_SUB: 714 case ISD::ATOMIC_LOAD_AND: 715 case ISD::ATOMIC_LOAD_CLR: 716 case ISD::ATOMIC_LOAD_OR: 717 case ISD::ATOMIC_LOAD_XOR: 718 case ISD::ATOMIC_LOAD_NAND: 719 case ISD::ATOMIC_LOAD_MIN: 720 case ISD::ATOMIC_LOAD_MAX: 721 case ISD::ATOMIC_LOAD_UMIN: 722 case ISD::ATOMIC_LOAD_UMAX: 723 case ISD::ATOMIC_LOAD: 724 case ISD::ATOMIC_STORE: { 725 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 726 ID.AddInteger(AT->getMemoryVT().getRawBits()); 727 ID.AddInteger(AT->getRawSubclassData()); 728 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 729 break; 730 } 731 case ISD::PREFETCH: { 732 const MemSDNode *PF = cast<MemSDNode>(N); 733 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 734 break; 735 } 736 case ISD::VECTOR_SHUFFLE: { 737 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 738 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 739 i != e; ++i) 740 ID.AddInteger(SVN->getMaskElt(i)); 741 break; 742 } 743 case ISD::TargetBlockAddress: 744 case ISD::BlockAddress: { 745 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 746 ID.AddPointer(BA->getBlockAddress()); 747 ID.AddInteger(BA->getOffset()); 748 ID.AddInteger(BA->getTargetFlags()); 749 break; 750 } 751 } // end switch (N->getOpcode()) 752 753 // Target specific memory nodes could also have address spaces to check. 754 if (N->isTargetMemoryOpcode()) 755 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 756 } 757 758 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 759 /// data. 760 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 761 AddNodeIDOpcode(ID, N->getOpcode()); 762 // Add the return value info. 763 AddNodeIDValueTypes(ID, N->getVTList()); 764 // Add the operand info. 765 AddNodeIDOperands(ID, N->ops()); 766 767 // Handle SDNode leafs with special info. 768 AddNodeIDCustom(ID, N); 769 } 770 771 //===----------------------------------------------------------------------===// 772 // SelectionDAG Class 773 //===----------------------------------------------------------------------===// 774 775 /// doNotCSE - Return true if CSE should not be performed for this node. 776 static bool doNotCSE(SDNode *N) { 777 if (N->getValueType(0) == MVT::Glue) 778 return true; // Never CSE anything that produces a flag. 779 780 switch (N->getOpcode()) { 781 default: break; 782 case ISD::HANDLENODE: 783 case ISD::EH_LABEL: 784 return true; // Never CSE these nodes. 785 } 786 787 // Check that remaining values produced are not flags. 788 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 789 if (N->getValueType(i) == MVT::Glue) 790 return true; // Never CSE anything that produces a flag. 791 792 return false; 793 } 794 795 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 796 /// SelectionDAG. 797 void SelectionDAG::RemoveDeadNodes() { 798 // Create a dummy node (which is not added to allnodes), that adds a reference 799 // to the root node, preventing it from being deleted. 800 HandleSDNode Dummy(getRoot()); 801 802 SmallVector<SDNode*, 128> DeadNodes; 803 804 // Add all obviously-dead nodes to the DeadNodes worklist. 805 for (SDNode &Node : allnodes()) 806 if (Node.use_empty()) 807 DeadNodes.push_back(&Node); 808 809 RemoveDeadNodes(DeadNodes); 810 811 // If the root changed (e.g. it was a dead load, update the root). 812 setRoot(Dummy.getValue()); 813 } 814 815 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 816 /// given list, and any nodes that become unreachable as a result. 817 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 818 819 // Process the worklist, deleting the nodes and adding their uses to the 820 // worklist. 821 while (!DeadNodes.empty()) { 822 SDNode *N = DeadNodes.pop_back_val(); 823 // Skip to next node if we've already managed to delete the node. This could 824 // happen if replacing a node causes a node previously added to the node to 825 // be deleted. 826 if (N->getOpcode() == ISD::DELETED_NODE) 827 continue; 828 829 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 830 DUL->NodeDeleted(N, nullptr); 831 832 // Take the node out of the appropriate CSE map. 833 RemoveNodeFromCSEMaps(N); 834 835 // Next, brutally remove the operand list. This is safe to do, as there are 836 // no cycles in the graph. 837 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 838 SDUse &Use = *I++; 839 SDNode *Operand = Use.getNode(); 840 Use.set(SDValue()); 841 842 // Now that we removed this operand, see if there are no uses of it left. 843 if (Operand->use_empty()) 844 DeadNodes.push_back(Operand); 845 } 846 847 DeallocateNode(N); 848 } 849 } 850 851 void SelectionDAG::RemoveDeadNode(SDNode *N){ 852 SmallVector<SDNode*, 16> DeadNodes(1, N); 853 854 // Create a dummy node that adds a reference to the root node, preventing 855 // it from being deleted. (This matters if the root is an operand of the 856 // dead node.) 857 HandleSDNode Dummy(getRoot()); 858 859 RemoveDeadNodes(DeadNodes); 860 } 861 862 void SelectionDAG::DeleteNode(SDNode *N) { 863 // First take this out of the appropriate CSE map. 864 RemoveNodeFromCSEMaps(N); 865 866 // Finally, remove uses due to operands of this node, remove from the 867 // AllNodes list, and delete the node. 868 DeleteNodeNotInCSEMaps(N); 869 } 870 871 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 872 assert(N->getIterator() != AllNodes.begin() && 873 "Cannot delete the entry node!"); 874 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 875 876 // Drop all of the operands and decrement used node's use counts. 877 N->DropOperands(); 878 879 DeallocateNode(N); 880 } 881 882 void SDDbgInfo::erase(const SDNode *Node) { 883 DbgValMapType::iterator I = DbgValMap.find(Node); 884 if (I == DbgValMap.end()) 885 return; 886 for (auto &Val: I->second) 887 Val->setIsInvalidated(); 888 DbgValMap.erase(I); 889 } 890 891 void SelectionDAG::DeallocateNode(SDNode *N) { 892 // If we have operands, deallocate them. 893 removeOperands(N); 894 895 NodeAllocator.Deallocate(AllNodes.remove(N)); 896 897 // Set the opcode to DELETED_NODE to help catch bugs when node 898 // memory is reallocated. 899 // FIXME: There are places in SDag that have grown a dependency on the opcode 900 // value in the released node. 901 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 902 N->NodeType = ISD::DELETED_NODE; 903 904 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 905 // them and forget about that node. 906 DbgInfo->erase(N); 907 } 908 909 #ifndef NDEBUG 910 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 911 static void VerifySDNode(SDNode *N) { 912 switch (N->getOpcode()) { 913 default: 914 break; 915 case ISD::BUILD_PAIR: { 916 EVT VT = N->getValueType(0); 917 assert(N->getNumValues() == 1 && "Too many results!"); 918 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 919 "Wrong return type!"); 920 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 921 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 922 "Mismatched operand types!"); 923 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 924 "Wrong operand type!"); 925 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 926 "Wrong return type size"); 927 break; 928 } 929 case ISD::BUILD_VECTOR: { 930 assert(N->getNumValues() == 1 && "Too many results!"); 931 assert(N->getValueType(0).isVector() && "Wrong return type!"); 932 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 933 "Wrong number of operands!"); 934 EVT EltVT = N->getValueType(0).getVectorElementType(); 935 for (const SDUse &Op : N->ops()) { 936 assert((Op.getValueType() == EltVT || 937 (EltVT.isInteger() && Op.getValueType().isInteger() && 938 EltVT.bitsLE(Op.getValueType()))) && 939 "Wrong operand type!"); 940 assert(Op.getValueType() == N->getOperand(0).getValueType() && 941 "Operands must all have the same type"); 942 } 943 break; 944 } 945 } 946 } 947 #endif // NDEBUG 948 949 /// Insert a newly allocated node into the DAG. 950 /// 951 /// Handles insertion into the all nodes list and CSE map, as well as 952 /// verification and other common operations when a new node is allocated. 953 void SelectionDAG::InsertNode(SDNode *N) { 954 AllNodes.push_back(N); 955 #ifndef NDEBUG 956 N->PersistentId = NextPersistentId++; 957 VerifySDNode(N); 958 #endif 959 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 960 DUL->NodeInserted(N); 961 } 962 963 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 964 /// correspond to it. This is useful when we're about to delete or repurpose 965 /// the node. We don't want future request for structurally identical nodes 966 /// to return N anymore. 967 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 968 bool Erased = false; 969 switch (N->getOpcode()) { 970 case ISD::HANDLENODE: return false; // noop. 971 case ISD::CONDCODE: 972 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 973 "Cond code doesn't exist!"); 974 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 975 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 976 break; 977 case ISD::ExternalSymbol: 978 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 979 break; 980 case ISD::TargetExternalSymbol: { 981 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 982 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 983 ESN->getSymbol(), ESN->getTargetFlags())); 984 break; 985 } 986 case ISD::MCSymbol: { 987 auto *MCSN = cast<MCSymbolSDNode>(N); 988 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 989 break; 990 } 991 case ISD::VALUETYPE: { 992 EVT VT = cast<VTSDNode>(N)->getVT(); 993 if (VT.isExtended()) { 994 Erased = ExtendedValueTypeNodes.erase(VT); 995 } else { 996 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 997 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 998 } 999 break; 1000 } 1001 default: 1002 // Remove it from the CSE Map. 1003 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1004 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1005 Erased = CSEMap.RemoveNode(N); 1006 break; 1007 } 1008 #ifndef NDEBUG 1009 // Verify that the node was actually in one of the CSE maps, unless it has a 1010 // flag result (which cannot be CSE'd) or is one of the special cases that are 1011 // not subject to CSE. 1012 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1013 !N->isMachineOpcode() && !doNotCSE(N)) { 1014 N->dump(this); 1015 dbgs() << "\n"; 1016 llvm_unreachable("Node is not in map!"); 1017 } 1018 #endif 1019 return Erased; 1020 } 1021 1022 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1023 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1024 /// node already exists, in which case transfer all its users to the existing 1025 /// node. This transfer can potentially trigger recursive merging. 1026 void 1027 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1028 // For node types that aren't CSE'd, just act as if no identical node 1029 // already exists. 1030 if (!doNotCSE(N)) { 1031 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1032 if (Existing != N) { 1033 // If there was already an existing matching node, use ReplaceAllUsesWith 1034 // to replace the dead one with the existing one. This can cause 1035 // recursive merging of other unrelated nodes down the line. 1036 ReplaceAllUsesWith(N, Existing); 1037 1038 // N is now dead. Inform the listeners and delete it. 1039 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1040 DUL->NodeDeleted(N, Existing); 1041 DeleteNodeNotInCSEMaps(N); 1042 return; 1043 } 1044 } 1045 1046 // If the node doesn't already exist, we updated it. Inform listeners. 1047 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1048 DUL->NodeUpdated(N); 1049 } 1050 1051 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1052 /// were replaced with those specified. If this node is never memoized, 1053 /// return null, otherwise return a pointer to the slot it would take. If a 1054 /// node already exists with these operands, the slot will be non-null. 1055 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1056 void *&InsertPos) { 1057 if (doNotCSE(N)) 1058 return nullptr; 1059 1060 SDValue Ops[] = { Op }; 1061 FoldingSetNodeID ID; 1062 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1063 AddNodeIDCustom(ID, N); 1064 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1065 if (Node) 1066 Node->intersectFlagsWith(N->getFlags()); 1067 return Node; 1068 } 1069 1070 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1071 /// were replaced with those specified. If this node is never memoized, 1072 /// return null, otherwise return a pointer to the slot it would take. If a 1073 /// node already exists with these operands, the slot will be non-null. 1074 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1075 SDValue Op1, SDValue Op2, 1076 void *&InsertPos) { 1077 if (doNotCSE(N)) 1078 return nullptr; 1079 1080 SDValue Ops[] = { Op1, Op2 }; 1081 FoldingSetNodeID ID; 1082 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1083 AddNodeIDCustom(ID, N); 1084 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1085 if (Node) 1086 Node->intersectFlagsWith(N->getFlags()); 1087 return Node; 1088 } 1089 1090 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1091 /// were replaced with those specified. If this node is never memoized, 1092 /// return null, otherwise return a pointer to the slot it would take. If a 1093 /// node already exists with these operands, the slot will be non-null. 1094 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1095 void *&InsertPos) { 1096 if (doNotCSE(N)) 1097 return nullptr; 1098 1099 FoldingSetNodeID ID; 1100 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1101 AddNodeIDCustom(ID, N); 1102 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1103 if (Node) 1104 Node->intersectFlagsWith(N->getFlags()); 1105 return Node; 1106 } 1107 1108 Align SelectionDAG::getEVTAlign(EVT VT) const { 1109 Type *Ty = VT == MVT::iPTR ? 1110 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1111 VT.getTypeForEVT(*getContext()); 1112 1113 return getDataLayout().getABITypeAlign(Ty); 1114 } 1115 1116 // EntryNode could meaningfully have debug info if we can find it... 1117 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1118 : TM(tm), OptLevel(OL), 1119 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1120 Root(getEntryNode()) { 1121 InsertNode(&EntryNode); 1122 DbgInfo = new SDDbgInfo(); 1123 } 1124 1125 void SelectionDAG::init(MachineFunction &NewMF, 1126 OptimizationRemarkEmitter &NewORE, 1127 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1128 LegacyDivergenceAnalysis * Divergence, 1129 ProfileSummaryInfo *PSIin, 1130 BlockFrequencyInfo *BFIin) { 1131 MF = &NewMF; 1132 SDAGISelPass = PassPtr; 1133 ORE = &NewORE; 1134 TLI = getSubtarget().getTargetLowering(); 1135 TSI = getSubtarget().getSelectionDAGInfo(); 1136 LibInfo = LibraryInfo; 1137 Context = &MF->getFunction().getContext(); 1138 DA = Divergence; 1139 PSI = PSIin; 1140 BFI = BFIin; 1141 } 1142 1143 SelectionDAG::~SelectionDAG() { 1144 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1145 allnodes_clear(); 1146 OperandRecycler.clear(OperandAllocator); 1147 delete DbgInfo; 1148 } 1149 1150 bool SelectionDAG::shouldOptForSize() const { 1151 return MF->getFunction().hasOptSize() || 1152 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1153 } 1154 1155 void SelectionDAG::allnodes_clear() { 1156 assert(&*AllNodes.begin() == &EntryNode); 1157 AllNodes.remove(AllNodes.begin()); 1158 while (!AllNodes.empty()) 1159 DeallocateNode(&AllNodes.front()); 1160 #ifndef NDEBUG 1161 NextPersistentId = 0; 1162 #endif 1163 } 1164 1165 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1166 void *&InsertPos) { 1167 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1168 if (N) { 1169 switch (N->getOpcode()) { 1170 default: break; 1171 case ISD::Constant: 1172 case ISD::ConstantFP: 1173 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1174 "debug location. Use another overload."); 1175 } 1176 } 1177 return N; 1178 } 1179 1180 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1181 const SDLoc &DL, void *&InsertPos) { 1182 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1183 if (N) { 1184 switch (N->getOpcode()) { 1185 case ISD::Constant: 1186 case ISD::ConstantFP: 1187 // Erase debug location from the node if the node is used at several 1188 // different places. Do not propagate one location to all uses as it 1189 // will cause a worse single stepping debugging experience. 1190 if (N->getDebugLoc() != DL.getDebugLoc()) 1191 N->setDebugLoc(DebugLoc()); 1192 break; 1193 default: 1194 // When the node's point of use is located earlier in the instruction 1195 // sequence than its prior point of use, update its debug info to the 1196 // earlier location. 1197 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1198 N->setDebugLoc(DL.getDebugLoc()); 1199 break; 1200 } 1201 } 1202 return N; 1203 } 1204 1205 void SelectionDAG::clear() { 1206 allnodes_clear(); 1207 OperandRecycler.clear(OperandAllocator); 1208 OperandAllocator.Reset(); 1209 CSEMap.clear(); 1210 1211 ExtendedValueTypeNodes.clear(); 1212 ExternalSymbols.clear(); 1213 TargetExternalSymbols.clear(); 1214 MCSymbols.clear(); 1215 SDCallSiteDbgInfo.clear(); 1216 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1217 static_cast<CondCodeSDNode*>(nullptr)); 1218 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1219 static_cast<SDNode*>(nullptr)); 1220 1221 EntryNode.UseList = nullptr; 1222 InsertNode(&EntryNode); 1223 Root = getEntryNode(); 1224 DbgInfo->clear(); 1225 } 1226 1227 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1228 return VT.bitsGT(Op.getValueType()) 1229 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1230 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1231 } 1232 1233 std::pair<SDValue, SDValue> 1234 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1235 const SDLoc &DL, EVT VT) { 1236 assert(!VT.bitsEq(Op.getValueType()) && 1237 "Strict no-op FP extend/round not allowed."); 1238 SDValue Res = 1239 VT.bitsGT(Op.getValueType()) 1240 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1241 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1242 {Chain, Op, getIntPtrConstant(0, DL)}); 1243 1244 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1245 } 1246 1247 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1248 return VT.bitsGT(Op.getValueType()) ? 1249 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1250 getNode(ISD::TRUNCATE, DL, VT, Op); 1251 } 1252 1253 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1254 return VT.bitsGT(Op.getValueType()) ? 1255 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1256 getNode(ISD::TRUNCATE, DL, VT, Op); 1257 } 1258 1259 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1260 return VT.bitsGT(Op.getValueType()) ? 1261 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1262 getNode(ISD::TRUNCATE, DL, VT, Op); 1263 } 1264 1265 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1266 EVT OpVT) { 1267 if (VT.bitsLE(Op.getValueType())) 1268 return getNode(ISD::TRUNCATE, SL, VT, Op); 1269 1270 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1271 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1272 } 1273 1274 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1275 EVT OpVT = Op.getValueType(); 1276 assert(VT.isInteger() && OpVT.isInteger() && 1277 "Cannot getZeroExtendInReg FP types"); 1278 assert(VT.isVector() == OpVT.isVector() && 1279 "getZeroExtendInReg type should be vector iff the operand " 1280 "type is vector!"); 1281 assert((!VT.isVector() || 1282 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1283 "Vector element counts must match in getZeroExtendInReg"); 1284 assert(VT.bitsLE(OpVT) && "Not extending!"); 1285 if (OpVT == VT) 1286 return Op; 1287 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1288 VT.getScalarSizeInBits()); 1289 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1290 } 1291 1292 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1293 // Only unsigned pointer semantics are supported right now. In the future this 1294 // might delegate to TLI to check pointer signedness. 1295 return getZExtOrTrunc(Op, DL, VT); 1296 } 1297 1298 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1299 // Only unsigned pointer semantics are supported right now. In the future this 1300 // might delegate to TLI to check pointer signedness. 1301 return getZeroExtendInReg(Op, DL, VT); 1302 } 1303 1304 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1305 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1306 EVT EltVT = VT.getScalarType(); 1307 SDValue NegOne = 1308 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1309 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1310 } 1311 1312 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1313 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1314 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1315 } 1316 1317 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1318 EVT OpVT) { 1319 if (!V) 1320 return getConstant(0, DL, VT); 1321 1322 switch (TLI->getBooleanContents(OpVT)) { 1323 case TargetLowering::ZeroOrOneBooleanContent: 1324 case TargetLowering::UndefinedBooleanContent: 1325 return getConstant(1, DL, VT); 1326 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1327 return getAllOnesConstant(DL, VT); 1328 } 1329 llvm_unreachable("Unexpected boolean content enum!"); 1330 } 1331 1332 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1333 bool isT, bool isO) { 1334 EVT EltVT = VT.getScalarType(); 1335 assert((EltVT.getSizeInBits() >= 64 || 1336 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1337 "getConstant with a uint64_t value that doesn't fit in the type!"); 1338 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1339 } 1340 1341 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1342 bool isT, bool isO) { 1343 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1344 } 1345 1346 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1347 EVT VT, bool isT, bool isO) { 1348 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1349 1350 EVT EltVT = VT.getScalarType(); 1351 const ConstantInt *Elt = &Val; 1352 1353 // In some cases the vector type is legal but the element type is illegal and 1354 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1355 // inserted value (the type does not need to match the vector element type). 1356 // Any extra bits introduced will be truncated away. 1357 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1358 TargetLowering::TypePromoteInteger) { 1359 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1360 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1361 Elt = ConstantInt::get(*getContext(), NewVal); 1362 } 1363 // In other cases the element type is illegal and needs to be expanded, for 1364 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1365 // the value into n parts and use a vector type with n-times the elements. 1366 // Then bitcast to the type requested. 1367 // Legalizing constants too early makes the DAGCombiner's job harder so we 1368 // only legalize if the DAG tells us we must produce legal types. 1369 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1370 TLI->getTypeAction(*getContext(), EltVT) == 1371 TargetLowering::TypeExpandInteger) { 1372 const APInt &NewVal = Elt->getValue(); 1373 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1374 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1375 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1376 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1377 1378 // Check the temporary vector is the correct size. If this fails then 1379 // getTypeToTransformTo() probably returned a type whose size (in bits) 1380 // isn't a power-of-2 factor of the requested type size. 1381 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1382 1383 SmallVector<SDValue, 2> EltParts; 1384 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1385 EltParts.push_back(getConstant( 1386 NewVal.lshr(i * ViaEltSizeInBits).zextOrTrunc(ViaEltSizeInBits), DL, 1387 ViaEltVT, isT, isO)); 1388 } 1389 1390 // EltParts is currently in little endian order. If we actually want 1391 // big-endian order then reverse it now. 1392 if (getDataLayout().isBigEndian()) 1393 std::reverse(EltParts.begin(), EltParts.end()); 1394 1395 // The elements must be reversed when the element order is different 1396 // to the endianness of the elements (because the BITCAST is itself a 1397 // vector shuffle in this situation). However, we do not need any code to 1398 // perform this reversal because getConstant() is producing a vector 1399 // splat. 1400 // This situation occurs in MIPS MSA. 1401 1402 SmallVector<SDValue, 8> Ops; 1403 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1404 llvm::append_range(Ops, EltParts); 1405 1406 SDValue V = 1407 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1408 return V; 1409 } 1410 1411 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1412 "APInt size does not match type size!"); 1413 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1414 FoldingSetNodeID ID; 1415 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1416 ID.AddPointer(Elt); 1417 ID.AddBoolean(isO); 1418 void *IP = nullptr; 1419 SDNode *N = nullptr; 1420 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1421 if (!VT.isVector()) 1422 return SDValue(N, 0); 1423 1424 if (!N) { 1425 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1426 CSEMap.InsertNode(N, IP); 1427 InsertNode(N); 1428 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1429 } 1430 1431 SDValue Result(N, 0); 1432 if (VT.isScalableVector()) 1433 Result = getSplatVector(VT, DL, Result); 1434 else if (VT.isVector()) 1435 Result = getSplatBuildVector(VT, DL, Result); 1436 1437 return Result; 1438 } 1439 1440 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1441 bool isTarget) { 1442 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1443 } 1444 1445 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1446 const SDLoc &DL, bool LegalTypes) { 1447 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1448 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1449 return getConstant(Val, DL, ShiftVT); 1450 } 1451 1452 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1453 bool isTarget) { 1454 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1455 } 1456 1457 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1458 bool isTarget) { 1459 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1460 } 1461 1462 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1463 EVT VT, bool isTarget) { 1464 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1465 1466 EVT EltVT = VT.getScalarType(); 1467 1468 // Do the map lookup using the actual bit pattern for the floating point 1469 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1470 // we don't have issues with SNANs. 1471 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1472 FoldingSetNodeID ID; 1473 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1474 ID.AddPointer(&V); 1475 void *IP = nullptr; 1476 SDNode *N = nullptr; 1477 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1478 if (!VT.isVector()) 1479 return SDValue(N, 0); 1480 1481 if (!N) { 1482 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1483 CSEMap.InsertNode(N, IP); 1484 InsertNode(N); 1485 } 1486 1487 SDValue Result(N, 0); 1488 if (VT.isScalableVector()) 1489 Result = getSplatVector(VT, DL, Result); 1490 else if (VT.isVector()) 1491 Result = getSplatBuildVector(VT, DL, Result); 1492 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1493 return Result; 1494 } 1495 1496 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1497 bool isTarget) { 1498 EVT EltVT = VT.getScalarType(); 1499 if (EltVT == MVT::f32) 1500 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1501 else if (EltVT == MVT::f64) 1502 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1503 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1504 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1505 bool Ignored; 1506 APFloat APF = APFloat(Val); 1507 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1508 &Ignored); 1509 return getConstantFP(APF, DL, VT, isTarget); 1510 } else 1511 llvm_unreachable("Unsupported type in getConstantFP"); 1512 } 1513 1514 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1515 EVT VT, int64_t Offset, bool isTargetGA, 1516 unsigned TargetFlags) { 1517 assert((TargetFlags == 0 || isTargetGA) && 1518 "Cannot set target flags on target-independent globals"); 1519 1520 // Truncate (with sign-extension) the offset value to the pointer size. 1521 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1522 if (BitWidth < 64) 1523 Offset = SignExtend64(Offset, BitWidth); 1524 1525 unsigned Opc; 1526 if (GV->isThreadLocal()) 1527 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1528 else 1529 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1530 1531 FoldingSetNodeID ID; 1532 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1533 ID.AddPointer(GV); 1534 ID.AddInteger(Offset); 1535 ID.AddInteger(TargetFlags); 1536 void *IP = nullptr; 1537 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1538 return SDValue(E, 0); 1539 1540 auto *N = newSDNode<GlobalAddressSDNode>( 1541 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1542 CSEMap.InsertNode(N, IP); 1543 InsertNode(N); 1544 return SDValue(N, 0); 1545 } 1546 1547 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1548 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1549 FoldingSetNodeID ID; 1550 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1551 ID.AddInteger(FI); 1552 void *IP = nullptr; 1553 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1554 return SDValue(E, 0); 1555 1556 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1557 CSEMap.InsertNode(N, IP); 1558 InsertNode(N); 1559 return SDValue(N, 0); 1560 } 1561 1562 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1563 unsigned TargetFlags) { 1564 assert((TargetFlags == 0 || isTarget) && 1565 "Cannot set target flags on target-independent jump tables"); 1566 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1567 FoldingSetNodeID ID; 1568 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1569 ID.AddInteger(JTI); 1570 ID.AddInteger(TargetFlags); 1571 void *IP = nullptr; 1572 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1573 return SDValue(E, 0); 1574 1575 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1576 CSEMap.InsertNode(N, IP); 1577 InsertNode(N); 1578 return SDValue(N, 0); 1579 } 1580 1581 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1582 MaybeAlign Alignment, int Offset, 1583 bool isTarget, unsigned TargetFlags) { 1584 assert((TargetFlags == 0 || isTarget) && 1585 "Cannot set target flags on target-independent globals"); 1586 if (!Alignment) 1587 Alignment = shouldOptForSize() 1588 ? getDataLayout().getABITypeAlign(C->getType()) 1589 : getDataLayout().getPrefTypeAlign(C->getType()); 1590 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1591 FoldingSetNodeID ID; 1592 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1593 ID.AddInteger(Alignment->value()); 1594 ID.AddInteger(Offset); 1595 ID.AddPointer(C); 1596 ID.AddInteger(TargetFlags); 1597 void *IP = nullptr; 1598 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1599 return SDValue(E, 0); 1600 1601 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1602 TargetFlags); 1603 CSEMap.InsertNode(N, IP); 1604 InsertNode(N); 1605 SDValue V = SDValue(N, 0); 1606 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1607 return V; 1608 } 1609 1610 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1611 MaybeAlign Alignment, int Offset, 1612 bool isTarget, unsigned TargetFlags) { 1613 assert((TargetFlags == 0 || isTarget) && 1614 "Cannot set target flags on target-independent globals"); 1615 if (!Alignment) 1616 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1617 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1618 FoldingSetNodeID ID; 1619 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1620 ID.AddInteger(Alignment->value()); 1621 ID.AddInteger(Offset); 1622 C->addSelectionDAGCSEId(ID); 1623 ID.AddInteger(TargetFlags); 1624 void *IP = nullptr; 1625 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1626 return SDValue(E, 0); 1627 1628 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1629 TargetFlags); 1630 CSEMap.InsertNode(N, IP); 1631 InsertNode(N); 1632 return SDValue(N, 0); 1633 } 1634 1635 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1636 unsigned TargetFlags) { 1637 FoldingSetNodeID ID; 1638 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1639 ID.AddInteger(Index); 1640 ID.AddInteger(Offset); 1641 ID.AddInteger(TargetFlags); 1642 void *IP = nullptr; 1643 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1644 return SDValue(E, 0); 1645 1646 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1647 CSEMap.InsertNode(N, IP); 1648 InsertNode(N); 1649 return SDValue(N, 0); 1650 } 1651 1652 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1653 FoldingSetNodeID ID; 1654 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1655 ID.AddPointer(MBB); 1656 void *IP = nullptr; 1657 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1658 return SDValue(E, 0); 1659 1660 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1661 CSEMap.InsertNode(N, IP); 1662 InsertNode(N); 1663 return SDValue(N, 0); 1664 } 1665 1666 SDValue SelectionDAG::getValueType(EVT VT) { 1667 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1668 ValueTypeNodes.size()) 1669 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1670 1671 SDNode *&N = VT.isExtended() ? 1672 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1673 1674 if (N) return SDValue(N, 0); 1675 N = newSDNode<VTSDNode>(VT); 1676 InsertNode(N); 1677 return SDValue(N, 0); 1678 } 1679 1680 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1681 SDNode *&N = ExternalSymbols[Sym]; 1682 if (N) return SDValue(N, 0); 1683 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1684 InsertNode(N); 1685 return SDValue(N, 0); 1686 } 1687 1688 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1689 SDNode *&N = MCSymbols[Sym]; 1690 if (N) 1691 return SDValue(N, 0); 1692 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1693 InsertNode(N); 1694 return SDValue(N, 0); 1695 } 1696 1697 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1698 unsigned TargetFlags) { 1699 SDNode *&N = 1700 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1701 if (N) return SDValue(N, 0); 1702 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1703 InsertNode(N); 1704 return SDValue(N, 0); 1705 } 1706 1707 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1708 if ((unsigned)Cond >= CondCodeNodes.size()) 1709 CondCodeNodes.resize(Cond+1); 1710 1711 if (!CondCodeNodes[Cond]) { 1712 auto *N = newSDNode<CondCodeSDNode>(Cond); 1713 CondCodeNodes[Cond] = N; 1714 InsertNode(N); 1715 } 1716 1717 return SDValue(CondCodeNodes[Cond], 0); 1718 } 1719 1720 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1721 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1722 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1723 std::swap(N1, N2); 1724 ShuffleVectorSDNode::commuteMask(M); 1725 } 1726 1727 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1728 SDValue N2, ArrayRef<int> Mask) { 1729 assert(VT.getVectorNumElements() == Mask.size() && 1730 "Must have the same number of vector elements as mask elements!"); 1731 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1732 "Invalid VECTOR_SHUFFLE"); 1733 1734 // Canonicalize shuffle undef, undef -> undef 1735 if (N1.isUndef() && N2.isUndef()) 1736 return getUNDEF(VT); 1737 1738 // Validate that all indices in Mask are within the range of the elements 1739 // input to the shuffle. 1740 int NElts = Mask.size(); 1741 assert(llvm::all_of(Mask, 1742 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1743 "Index out of range"); 1744 1745 // Copy the mask so we can do any needed cleanup. 1746 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1747 1748 // Canonicalize shuffle v, v -> v, undef 1749 if (N1 == N2) { 1750 N2 = getUNDEF(VT); 1751 for (int i = 0; i != NElts; ++i) 1752 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1753 } 1754 1755 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1756 if (N1.isUndef()) 1757 commuteShuffle(N1, N2, MaskVec); 1758 1759 if (TLI->hasVectorBlend()) { 1760 // If shuffling a splat, try to blend the splat instead. We do this here so 1761 // that even when this arises during lowering we don't have to re-handle it. 1762 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1763 BitVector UndefElements; 1764 SDValue Splat = BV->getSplatValue(&UndefElements); 1765 if (!Splat) 1766 return; 1767 1768 for (int i = 0; i < NElts; ++i) { 1769 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1770 continue; 1771 1772 // If this input comes from undef, mark it as such. 1773 if (UndefElements[MaskVec[i] - Offset]) { 1774 MaskVec[i] = -1; 1775 continue; 1776 } 1777 1778 // If we can blend a non-undef lane, use that instead. 1779 if (!UndefElements[i]) 1780 MaskVec[i] = i + Offset; 1781 } 1782 }; 1783 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1784 BlendSplat(N1BV, 0); 1785 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1786 BlendSplat(N2BV, NElts); 1787 } 1788 1789 // Canonicalize all index into lhs, -> shuffle lhs, undef 1790 // Canonicalize all index into rhs, -> shuffle rhs, undef 1791 bool AllLHS = true, AllRHS = true; 1792 bool N2Undef = N2.isUndef(); 1793 for (int i = 0; i != NElts; ++i) { 1794 if (MaskVec[i] >= NElts) { 1795 if (N2Undef) 1796 MaskVec[i] = -1; 1797 else 1798 AllLHS = false; 1799 } else if (MaskVec[i] >= 0) { 1800 AllRHS = false; 1801 } 1802 } 1803 if (AllLHS && AllRHS) 1804 return getUNDEF(VT); 1805 if (AllLHS && !N2Undef) 1806 N2 = getUNDEF(VT); 1807 if (AllRHS) { 1808 N1 = getUNDEF(VT); 1809 commuteShuffle(N1, N2, MaskVec); 1810 } 1811 // Reset our undef status after accounting for the mask. 1812 N2Undef = N2.isUndef(); 1813 // Re-check whether both sides ended up undef. 1814 if (N1.isUndef() && N2Undef) 1815 return getUNDEF(VT); 1816 1817 // If Identity shuffle return that node. 1818 bool Identity = true, AllSame = true; 1819 for (int i = 0; i != NElts; ++i) { 1820 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1821 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1822 } 1823 if (Identity && NElts) 1824 return N1; 1825 1826 // Shuffling a constant splat doesn't change the result. 1827 if (N2Undef) { 1828 SDValue V = N1; 1829 1830 // Look through any bitcasts. We check that these don't change the number 1831 // (and size) of elements and just changes their types. 1832 while (V.getOpcode() == ISD::BITCAST) 1833 V = V->getOperand(0); 1834 1835 // A splat should always show up as a build vector node. 1836 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1837 BitVector UndefElements; 1838 SDValue Splat = BV->getSplatValue(&UndefElements); 1839 // If this is a splat of an undef, shuffling it is also undef. 1840 if (Splat && Splat.isUndef()) 1841 return getUNDEF(VT); 1842 1843 bool SameNumElts = 1844 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1845 1846 // We only have a splat which can skip shuffles if there is a splatted 1847 // value and no undef lanes rearranged by the shuffle. 1848 if (Splat && UndefElements.none()) { 1849 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1850 // number of elements match or the value splatted is a zero constant. 1851 if (SameNumElts) 1852 return N1; 1853 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1854 if (C->isNullValue()) 1855 return N1; 1856 } 1857 1858 // If the shuffle itself creates a splat, build the vector directly. 1859 if (AllSame && SameNumElts) { 1860 EVT BuildVT = BV->getValueType(0); 1861 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1862 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1863 1864 // We may have jumped through bitcasts, so the type of the 1865 // BUILD_VECTOR may not match the type of the shuffle. 1866 if (BuildVT != VT) 1867 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1868 return NewBV; 1869 } 1870 } 1871 } 1872 1873 FoldingSetNodeID ID; 1874 SDValue Ops[2] = { N1, N2 }; 1875 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1876 for (int i = 0; i != NElts; ++i) 1877 ID.AddInteger(MaskVec[i]); 1878 1879 void* IP = nullptr; 1880 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1881 return SDValue(E, 0); 1882 1883 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1884 // SDNode doesn't have access to it. This memory will be "leaked" when 1885 // the node is deallocated, but recovered when the NodeAllocator is released. 1886 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1887 llvm::copy(MaskVec, MaskAlloc); 1888 1889 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1890 dl.getDebugLoc(), MaskAlloc); 1891 createOperands(N, Ops); 1892 1893 CSEMap.InsertNode(N, IP); 1894 InsertNode(N); 1895 SDValue V = SDValue(N, 0); 1896 NewSDValueDbgMsg(V, "Creating new node: ", this); 1897 return V; 1898 } 1899 1900 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1901 EVT VT = SV.getValueType(0); 1902 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1903 ShuffleVectorSDNode::commuteMask(MaskVec); 1904 1905 SDValue Op0 = SV.getOperand(0); 1906 SDValue Op1 = SV.getOperand(1); 1907 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1908 } 1909 1910 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1911 FoldingSetNodeID ID; 1912 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1913 ID.AddInteger(RegNo); 1914 void *IP = nullptr; 1915 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1916 return SDValue(E, 0); 1917 1918 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1919 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1920 CSEMap.InsertNode(N, IP); 1921 InsertNode(N); 1922 return SDValue(N, 0); 1923 } 1924 1925 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1926 FoldingSetNodeID ID; 1927 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1928 ID.AddPointer(RegMask); 1929 void *IP = nullptr; 1930 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1931 return SDValue(E, 0); 1932 1933 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1934 CSEMap.InsertNode(N, IP); 1935 InsertNode(N); 1936 return SDValue(N, 0); 1937 } 1938 1939 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1940 MCSymbol *Label) { 1941 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1942 } 1943 1944 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1945 SDValue Root, MCSymbol *Label) { 1946 FoldingSetNodeID ID; 1947 SDValue Ops[] = { Root }; 1948 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1949 ID.AddPointer(Label); 1950 void *IP = nullptr; 1951 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1952 return SDValue(E, 0); 1953 1954 auto *N = 1955 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1956 createOperands(N, Ops); 1957 1958 CSEMap.InsertNode(N, IP); 1959 InsertNode(N); 1960 return SDValue(N, 0); 1961 } 1962 1963 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1964 int64_t Offset, bool isTarget, 1965 unsigned TargetFlags) { 1966 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1967 1968 FoldingSetNodeID ID; 1969 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1970 ID.AddPointer(BA); 1971 ID.AddInteger(Offset); 1972 ID.AddInteger(TargetFlags); 1973 void *IP = nullptr; 1974 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1975 return SDValue(E, 0); 1976 1977 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1978 CSEMap.InsertNode(N, IP); 1979 InsertNode(N); 1980 return SDValue(N, 0); 1981 } 1982 1983 SDValue SelectionDAG::getSrcValue(const Value *V) { 1984 FoldingSetNodeID ID; 1985 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1986 ID.AddPointer(V); 1987 1988 void *IP = nullptr; 1989 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1990 return SDValue(E, 0); 1991 1992 auto *N = newSDNode<SrcValueSDNode>(V); 1993 CSEMap.InsertNode(N, IP); 1994 InsertNode(N); 1995 return SDValue(N, 0); 1996 } 1997 1998 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1999 FoldingSetNodeID ID; 2000 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2001 ID.AddPointer(MD); 2002 2003 void *IP = nullptr; 2004 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2005 return SDValue(E, 0); 2006 2007 auto *N = newSDNode<MDNodeSDNode>(MD); 2008 CSEMap.InsertNode(N, IP); 2009 InsertNode(N); 2010 return SDValue(N, 0); 2011 } 2012 2013 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2014 if (VT == V.getValueType()) 2015 return V; 2016 2017 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2018 } 2019 2020 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2021 unsigned SrcAS, unsigned DestAS) { 2022 SDValue Ops[] = {Ptr}; 2023 FoldingSetNodeID ID; 2024 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2025 ID.AddInteger(SrcAS); 2026 ID.AddInteger(DestAS); 2027 2028 void *IP = nullptr; 2029 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2030 return SDValue(E, 0); 2031 2032 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2033 VT, SrcAS, DestAS); 2034 createOperands(N, Ops); 2035 2036 CSEMap.InsertNode(N, IP); 2037 InsertNode(N); 2038 return SDValue(N, 0); 2039 } 2040 2041 SDValue SelectionDAG::getFreeze(SDValue V) { 2042 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2043 } 2044 2045 /// getShiftAmountOperand - Return the specified value casted to 2046 /// the target's desired shift amount type. 2047 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2048 EVT OpTy = Op.getValueType(); 2049 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2050 if (OpTy == ShTy || OpTy.isVector()) return Op; 2051 2052 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2053 } 2054 2055 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2056 SDLoc dl(Node); 2057 const TargetLowering &TLI = getTargetLoweringInfo(); 2058 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2059 EVT VT = Node->getValueType(0); 2060 SDValue Tmp1 = Node->getOperand(0); 2061 SDValue Tmp2 = Node->getOperand(1); 2062 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2063 2064 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2065 Tmp2, MachinePointerInfo(V)); 2066 SDValue VAList = VAListLoad; 2067 2068 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2069 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2070 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2071 2072 VAList = 2073 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2074 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2075 } 2076 2077 // Increment the pointer, VAList, to the next vaarg 2078 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2079 getConstant(getDataLayout().getTypeAllocSize( 2080 VT.getTypeForEVT(*getContext())), 2081 dl, VAList.getValueType())); 2082 // Store the incremented VAList to the legalized pointer 2083 Tmp1 = 2084 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2085 // Load the actual argument out of the pointer VAList 2086 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2087 } 2088 2089 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2090 SDLoc dl(Node); 2091 const TargetLowering &TLI = getTargetLoweringInfo(); 2092 // This defaults to loading a pointer from the input and storing it to the 2093 // output, returning the chain. 2094 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2095 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2096 SDValue Tmp1 = 2097 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2098 Node->getOperand(2), MachinePointerInfo(VS)); 2099 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2100 MachinePointerInfo(VD)); 2101 } 2102 2103 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2104 const DataLayout &DL = getDataLayout(); 2105 Type *Ty = VT.getTypeForEVT(*getContext()); 2106 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2107 2108 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2109 return RedAlign; 2110 2111 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2112 const Align StackAlign = TFI->getStackAlign(); 2113 2114 // See if we can choose a smaller ABI alignment in cases where it's an 2115 // illegal vector type that will get broken down. 2116 if (RedAlign > StackAlign) { 2117 EVT IntermediateVT; 2118 MVT RegisterVT; 2119 unsigned NumIntermediates; 2120 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2121 NumIntermediates, RegisterVT); 2122 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2123 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2124 if (RedAlign2 < RedAlign) 2125 RedAlign = RedAlign2; 2126 } 2127 2128 return RedAlign; 2129 } 2130 2131 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2132 MachineFrameInfo &MFI = MF->getFrameInfo(); 2133 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2134 int StackID = 0; 2135 if (Bytes.isScalable()) 2136 StackID = TFI->getStackIDForScalableVectors(); 2137 // The stack id gives an indication of whether the object is scalable or 2138 // not, so it's safe to pass in the minimum size here. 2139 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2140 false, nullptr, StackID); 2141 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2142 } 2143 2144 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2145 Type *Ty = VT.getTypeForEVT(*getContext()); 2146 Align StackAlign = 2147 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2148 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2149 } 2150 2151 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2152 TypeSize VT1Size = VT1.getStoreSize(); 2153 TypeSize VT2Size = VT2.getStoreSize(); 2154 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2155 "Don't know how to choose the maximum size when creating a stack " 2156 "temporary"); 2157 TypeSize Bytes = 2158 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2159 2160 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2161 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2162 const DataLayout &DL = getDataLayout(); 2163 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2164 return CreateStackTemporary(Bytes, Align); 2165 } 2166 2167 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2168 ISD::CondCode Cond, const SDLoc &dl) { 2169 EVT OpVT = N1.getValueType(); 2170 2171 // These setcc operations always fold. 2172 switch (Cond) { 2173 default: break; 2174 case ISD::SETFALSE: 2175 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2176 case ISD::SETTRUE: 2177 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2178 2179 case ISD::SETOEQ: 2180 case ISD::SETOGT: 2181 case ISD::SETOGE: 2182 case ISD::SETOLT: 2183 case ISD::SETOLE: 2184 case ISD::SETONE: 2185 case ISD::SETO: 2186 case ISD::SETUO: 2187 case ISD::SETUEQ: 2188 case ISD::SETUNE: 2189 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2190 break; 2191 } 2192 2193 if (OpVT.isInteger()) { 2194 // For EQ and NE, we can always pick a value for the undef to make the 2195 // predicate pass or fail, so we can return undef. 2196 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2197 // icmp eq/ne X, undef -> undef. 2198 if ((N1.isUndef() || N2.isUndef()) && 2199 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2200 return getUNDEF(VT); 2201 2202 // If both operands are undef, we can return undef for int comparison. 2203 // icmp undef, undef -> undef. 2204 if (N1.isUndef() && N2.isUndef()) 2205 return getUNDEF(VT); 2206 2207 // icmp X, X -> true/false 2208 // icmp X, undef -> true/false because undef could be X. 2209 if (N1 == N2) 2210 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2211 } 2212 2213 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2214 const APInt &C2 = N2C->getAPIntValue(); 2215 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2216 const APInt &C1 = N1C->getAPIntValue(); 2217 2218 switch (Cond) { 2219 default: llvm_unreachable("Unknown integer setcc!"); 2220 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2221 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2222 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2223 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2224 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2225 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2226 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2227 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2228 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2229 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2230 } 2231 } 2232 } 2233 2234 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2235 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2236 2237 if (N1CFP && N2CFP) { 2238 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2239 switch (Cond) { 2240 default: break; 2241 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2242 return getUNDEF(VT); 2243 LLVM_FALLTHROUGH; 2244 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2245 OpVT); 2246 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2247 return getUNDEF(VT); 2248 LLVM_FALLTHROUGH; 2249 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2250 R==APFloat::cmpLessThan, dl, VT, 2251 OpVT); 2252 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2253 return getUNDEF(VT); 2254 LLVM_FALLTHROUGH; 2255 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2256 OpVT); 2257 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2258 return getUNDEF(VT); 2259 LLVM_FALLTHROUGH; 2260 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2261 VT, OpVT); 2262 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2263 return getUNDEF(VT); 2264 LLVM_FALLTHROUGH; 2265 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2266 R==APFloat::cmpEqual, dl, VT, 2267 OpVT); 2268 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2269 return getUNDEF(VT); 2270 LLVM_FALLTHROUGH; 2271 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2272 R==APFloat::cmpEqual, dl, VT, OpVT); 2273 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2274 OpVT); 2275 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2276 OpVT); 2277 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2278 R==APFloat::cmpEqual, dl, VT, 2279 OpVT); 2280 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2281 OpVT); 2282 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2283 R==APFloat::cmpLessThan, dl, VT, 2284 OpVT); 2285 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2286 R==APFloat::cmpUnordered, dl, VT, 2287 OpVT); 2288 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2289 VT, OpVT); 2290 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2291 OpVT); 2292 } 2293 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2294 // Ensure that the constant occurs on the RHS. 2295 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2296 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2297 return SDValue(); 2298 return getSetCC(dl, VT, N2, N1, SwappedCond); 2299 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2300 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2301 // If an operand is known to be a nan (or undef that could be a nan), we can 2302 // fold it. 2303 // Choosing NaN for the undef will always make unordered comparison succeed 2304 // and ordered comparison fails. 2305 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2306 switch (ISD::getUnorderedFlavor(Cond)) { 2307 default: 2308 llvm_unreachable("Unknown flavor!"); 2309 case 0: // Known false. 2310 return getBoolConstant(false, dl, VT, OpVT); 2311 case 1: // Known true. 2312 return getBoolConstant(true, dl, VT, OpVT); 2313 case 2: // Undefined. 2314 return getUNDEF(VT); 2315 } 2316 } 2317 2318 // Could not fold it. 2319 return SDValue(); 2320 } 2321 2322 /// See if the specified operand can be simplified with the knowledge that only 2323 /// the bits specified by DemandedBits are used. 2324 /// TODO: really we should be making this into the DAG equivalent of 2325 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2326 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2327 EVT VT = V.getValueType(); 2328 2329 if (VT.isScalableVector()) 2330 return SDValue(); 2331 2332 APInt DemandedElts = VT.isVector() 2333 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2334 : APInt(1, 1); 2335 return GetDemandedBits(V, DemandedBits, DemandedElts); 2336 } 2337 2338 /// See if the specified operand can be simplified with the knowledge that only 2339 /// the bits specified by DemandedBits are used in the elements specified by 2340 /// DemandedElts. 2341 /// TODO: really we should be making this into the DAG equivalent of 2342 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2343 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2344 const APInt &DemandedElts) { 2345 switch (V.getOpcode()) { 2346 default: 2347 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2348 *this, 0); 2349 case ISD::Constant: { 2350 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2351 APInt NewVal = CVal & DemandedBits; 2352 if (NewVal != CVal) 2353 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2354 break; 2355 } 2356 case ISD::SRL: 2357 // Only look at single-use SRLs. 2358 if (!V.getNode()->hasOneUse()) 2359 break; 2360 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2361 // See if we can recursively simplify the LHS. 2362 unsigned Amt = RHSC->getZExtValue(); 2363 2364 // Watch out for shift count overflow though. 2365 if (Amt >= DemandedBits.getBitWidth()) 2366 break; 2367 APInt SrcDemandedBits = DemandedBits << Amt; 2368 if (SDValue SimplifyLHS = 2369 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2370 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2371 V.getOperand(1)); 2372 } 2373 break; 2374 } 2375 return SDValue(); 2376 } 2377 2378 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2379 /// use this predicate to simplify operations downstream. 2380 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2381 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2382 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2383 } 2384 2385 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2386 /// this predicate to simplify operations downstream. Mask is known to be zero 2387 /// for bits that V cannot have. 2388 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2389 unsigned Depth) const { 2390 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2391 } 2392 2393 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2394 /// DemandedElts. We use this predicate to simplify operations downstream. 2395 /// Mask is known to be zero for bits that V cannot have. 2396 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2397 const APInt &DemandedElts, 2398 unsigned Depth) const { 2399 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2400 } 2401 2402 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2403 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2404 unsigned Depth) const { 2405 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2406 } 2407 2408 /// isSplatValue - Return true if the vector V has the same value 2409 /// across all DemandedElts. For scalable vectors it does not make 2410 /// sense to specify which elements are demanded or undefined, therefore 2411 /// they are simply ignored. 2412 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2413 APInt &UndefElts, unsigned Depth) { 2414 EVT VT = V.getValueType(); 2415 assert(VT.isVector() && "Vector type expected"); 2416 2417 if (!VT.isScalableVector() && !DemandedElts) 2418 return false; // No demanded elts, better to assume we don't know anything. 2419 2420 if (Depth >= MaxRecursionDepth) 2421 return false; // Limit search depth. 2422 2423 // Deal with some common cases here that work for both fixed and scalable 2424 // vector types. 2425 switch (V.getOpcode()) { 2426 case ISD::SPLAT_VECTOR: 2427 UndefElts = V.getOperand(0).isUndef() 2428 ? APInt::getAllOnesValue(DemandedElts.getBitWidth()) 2429 : APInt(DemandedElts.getBitWidth(), 0); 2430 return true; 2431 case ISD::ADD: 2432 case ISD::SUB: 2433 case ISD::AND: 2434 case ISD::XOR: 2435 case ISD::OR: { 2436 APInt UndefLHS, UndefRHS; 2437 SDValue LHS = V.getOperand(0); 2438 SDValue RHS = V.getOperand(1); 2439 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2440 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2441 UndefElts = UndefLHS | UndefRHS; 2442 return true; 2443 } 2444 break; 2445 } 2446 case ISD::TRUNCATE: 2447 case ISD::SIGN_EXTEND: 2448 case ISD::ZERO_EXTEND: 2449 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2450 } 2451 2452 // We don't support other cases than those above for scalable vectors at 2453 // the moment. 2454 if (VT.isScalableVector()) 2455 return false; 2456 2457 unsigned NumElts = VT.getVectorNumElements(); 2458 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2459 UndefElts = APInt::getNullValue(NumElts); 2460 2461 switch (V.getOpcode()) { 2462 case ISD::BUILD_VECTOR: { 2463 SDValue Scl; 2464 for (unsigned i = 0; i != NumElts; ++i) { 2465 SDValue Op = V.getOperand(i); 2466 if (Op.isUndef()) { 2467 UndefElts.setBit(i); 2468 continue; 2469 } 2470 if (!DemandedElts[i]) 2471 continue; 2472 if (Scl && Scl != Op) 2473 return false; 2474 Scl = Op; 2475 } 2476 return true; 2477 } 2478 case ISD::VECTOR_SHUFFLE: { 2479 // Check if this is a shuffle node doing a splat. 2480 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2481 int SplatIndex = -1; 2482 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2483 for (int i = 0; i != (int)NumElts; ++i) { 2484 int M = Mask[i]; 2485 if (M < 0) { 2486 UndefElts.setBit(i); 2487 continue; 2488 } 2489 if (!DemandedElts[i]) 2490 continue; 2491 if (0 <= SplatIndex && SplatIndex != M) 2492 return false; 2493 SplatIndex = M; 2494 } 2495 return true; 2496 } 2497 case ISD::EXTRACT_SUBVECTOR: { 2498 // Offset the demanded elts by the subvector index. 2499 SDValue Src = V.getOperand(0); 2500 uint64_t Idx = V.getConstantOperandVal(1); 2501 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2502 APInt UndefSrcElts; 2503 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2504 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2505 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2506 return true; 2507 } 2508 break; 2509 } 2510 } 2511 2512 return false; 2513 } 2514 2515 /// Helper wrapper to main isSplatValue function. 2516 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2517 EVT VT = V.getValueType(); 2518 assert(VT.isVector() && "Vector type expected"); 2519 2520 APInt UndefElts; 2521 APInt DemandedElts; 2522 2523 // For now we don't support this with scalable vectors. 2524 if (!VT.isScalableVector()) 2525 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2526 return isSplatValue(V, DemandedElts, UndefElts) && 2527 (AllowUndefs || !UndefElts); 2528 } 2529 2530 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2531 V = peekThroughExtractSubvectors(V); 2532 2533 EVT VT = V.getValueType(); 2534 unsigned Opcode = V.getOpcode(); 2535 switch (Opcode) { 2536 default: { 2537 APInt UndefElts; 2538 APInt DemandedElts; 2539 2540 if (!VT.isScalableVector()) 2541 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2542 2543 if (isSplatValue(V, DemandedElts, UndefElts)) { 2544 if (VT.isScalableVector()) { 2545 // DemandedElts and UndefElts are ignored for scalable vectors, since 2546 // the only supported cases are SPLAT_VECTOR nodes. 2547 SplatIdx = 0; 2548 } else { 2549 // Handle case where all demanded elements are UNDEF. 2550 if (DemandedElts.isSubsetOf(UndefElts)) { 2551 SplatIdx = 0; 2552 return getUNDEF(VT); 2553 } 2554 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2555 } 2556 return V; 2557 } 2558 break; 2559 } 2560 case ISD::SPLAT_VECTOR: 2561 SplatIdx = 0; 2562 return V; 2563 case ISD::VECTOR_SHUFFLE: { 2564 if (VT.isScalableVector()) 2565 return SDValue(); 2566 2567 // Check if this is a shuffle node doing a splat. 2568 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2569 // getTargetVShiftNode currently struggles without the splat source. 2570 auto *SVN = cast<ShuffleVectorSDNode>(V); 2571 if (!SVN->isSplat()) 2572 break; 2573 int Idx = SVN->getSplatIndex(); 2574 int NumElts = V.getValueType().getVectorNumElements(); 2575 SplatIdx = Idx % NumElts; 2576 return V.getOperand(Idx / NumElts); 2577 } 2578 } 2579 2580 return SDValue(); 2581 } 2582 2583 SDValue SelectionDAG::getSplatValue(SDValue V) { 2584 int SplatIdx; 2585 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2586 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2587 SrcVector.getValueType().getScalarType(), SrcVector, 2588 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2589 return SDValue(); 2590 } 2591 2592 const APInt * 2593 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2594 const APInt &DemandedElts) const { 2595 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2596 V.getOpcode() == ISD::SRA) && 2597 "Unknown shift node"); 2598 unsigned BitWidth = V.getScalarValueSizeInBits(); 2599 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2600 // Shifting more than the bitwidth is not valid. 2601 const APInt &ShAmt = SA->getAPIntValue(); 2602 if (ShAmt.ult(BitWidth)) 2603 return &ShAmt; 2604 } 2605 return nullptr; 2606 } 2607 2608 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2609 SDValue V, const APInt &DemandedElts) const { 2610 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2611 V.getOpcode() == ISD::SRA) && 2612 "Unknown shift node"); 2613 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2614 return ValidAmt; 2615 unsigned BitWidth = V.getScalarValueSizeInBits(); 2616 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2617 if (!BV) 2618 return nullptr; 2619 const APInt *MinShAmt = nullptr; 2620 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2621 if (!DemandedElts[i]) 2622 continue; 2623 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2624 if (!SA) 2625 return nullptr; 2626 // Shifting more than the bitwidth is not valid. 2627 const APInt &ShAmt = SA->getAPIntValue(); 2628 if (ShAmt.uge(BitWidth)) 2629 return nullptr; 2630 if (MinShAmt && MinShAmt->ule(ShAmt)) 2631 continue; 2632 MinShAmt = &ShAmt; 2633 } 2634 return MinShAmt; 2635 } 2636 2637 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2638 SDValue V, const APInt &DemandedElts) const { 2639 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2640 V.getOpcode() == ISD::SRA) && 2641 "Unknown shift node"); 2642 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2643 return ValidAmt; 2644 unsigned BitWidth = V.getScalarValueSizeInBits(); 2645 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2646 if (!BV) 2647 return nullptr; 2648 const APInt *MaxShAmt = nullptr; 2649 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2650 if (!DemandedElts[i]) 2651 continue; 2652 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2653 if (!SA) 2654 return nullptr; 2655 // Shifting more than the bitwidth is not valid. 2656 const APInt &ShAmt = SA->getAPIntValue(); 2657 if (ShAmt.uge(BitWidth)) 2658 return nullptr; 2659 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2660 continue; 2661 MaxShAmt = &ShAmt; 2662 } 2663 return MaxShAmt; 2664 } 2665 2666 /// Determine which bits of Op are known to be either zero or one and return 2667 /// them in Known. For vectors, the known bits are those that are shared by 2668 /// every vector element. 2669 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2670 EVT VT = Op.getValueType(); 2671 2672 // TOOD: Until we have a plan for how to represent demanded elements for 2673 // scalable vectors, we can just bail out for now. 2674 if (Op.getValueType().isScalableVector()) { 2675 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2676 return KnownBits(BitWidth); 2677 } 2678 2679 APInt DemandedElts = VT.isVector() 2680 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2681 : APInt(1, 1); 2682 return computeKnownBits(Op, DemandedElts, Depth); 2683 } 2684 2685 /// Determine which bits of Op are known to be either zero or one and return 2686 /// them in Known. The DemandedElts argument allows us to only collect the known 2687 /// bits that are shared by the requested vector elements. 2688 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2689 unsigned Depth) const { 2690 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2691 2692 KnownBits Known(BitWidth); // Don't know anything. 2693 2694 // TOOD: Until we have a plan for how to represent demanded elements for 2695 // scalable vectors, we can just bail out for now. 2696 if (Op.getValueType().isScalableVector()) 2697 return Known; 2698 2699 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2700 // We know all of the bits for a constant! 2701 return KnownBits::makeConstant(C->getAPIntValue()); 2702 } 2703 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2704 // We know all of the bits for a constant fp! 2705 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2706 } 2707 2708 if (Depth >= MaxRecursionDepth) 2709 return Known; // Limit search depth. 2710 2711 KnownBits Known2; 2712 unsigned NumElts = DemandedElts.getBitWidth(); 2713 assert((!Op.getValueType().isVector() || 2714 NumElts == Op.getValueType().getVectorNumElements()) && 2715 "Unexpected vector size"); 2716 2717 if (!DemandedElts) 2718 return Known; // No demanded elts, better to assume we don't know anything. 2719 2720 unsigned Opcode = Op.getOpcode(); 2721 switch (Opcode) { 2722 case ISD::BUILD_VECTOR: 2723 // Collect the known bits that are shared by every demanded vector element. 2724 Known.Zero.setAllBits(); Known.One.setAllBits(); 2725 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2726 if (!DemandedElts[i]) 2727 continue; 2728 2729 SDValue SrcOp = Op.getOperand(i); 2730 Known2 = computeKnownBits(SrcOp, Depth + 1); 2731 2732 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2733 if (SrcOp.getValueSizeInBits() != BitWidth) { 2734 assert(SrcOp.getValueSizeInBits() > BitWidth && 2735 "Expected BUILD_VECTOR implicit truncation"); 2736 Known2 = Known2.trunc(BitWidth); 2737 } 2738 2739 // Known bits are the values that are shared by every demanded element. 2740 Known = KnownBits::commonBits(Known, Known2); 2741 2742 // If we don't know any bits, early out. 2743 if (Known.isUnknown()) 2744 break; 2745 } 2746 break; 2747 case ISD::VECTOR_SHUFFLE: { 2748 // Collect the known bits that are shared by every vector element referenced 2749 // by the shuffle. 2750 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2751 Known.Zero.setAllBits(); Known.One.setAllBits(); 2752 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2753 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2754 for (unsigned i = 0; i != NumElts; ++i) { 2755 if (!DemandedElts[i]) 2756 continue; 2757 2758 int M = SVN->getMaskElt(i); 2759 if (M < 0) { 2760 // For UNDEF elements, we don't know anything about the common state of 2761 // the shuffle result. 2762 Known.resetAll(); 2763 DemandedLHS.clearAllBits(); 2764 DemandedRHS.clearAllBits(); 2765 break; 2766 } 2767 2768 if ((unsigned)M < NumElts) 2769 DemandedLHS.setBit((unsigned)M % NumElts); 2770 else 2771 DemandedRHS.setBit((unsigned)M % NumElts); 2772 } 2773 // Known bits are the values that are shared by every demanded element. 2774 if (!!DemandedLHS) { 2775 SDValue LHS = Op.getOperand(0); 2776 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2777 Known = KnownBits::commonBits(Known, Known2); 2778 } 2779 // If we don't know any bits, early out. 2780 if (Known.isUnknown()) 2781 break; 2782 if (!!DemandedRHS) { 2783 SDValue RHS = Op.getOperand(1); 2784 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2785 Known = KnownBits::commonBits(Known, Known2); 2786 } 2787 break; 2788 } 2789 case ISD::CONCAT_VECTORS: { 2790 // Split DemandedElts and test each of the demanded subvectors. 2791 Known.Zero.setAllBits(); Known.One.setAllBits(); 2792 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2793 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2794 unsigned NumSubVectors = Op.getNumOperands(); 2795 for (unsigned i = 0; i != NumSubVectors; ++i) { 2796 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2797 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2798 if (!!DemandedSub) { 2799 SDValue Sub = Op.getOperand(i); 2800 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2801 Known = KnownBits::commonBits(Known, Known2); 2802 } 2803 // If we don't know any bits, early out. 2804 if (Known.isUnknown()) 2805 break; 2806 } 2807 break; 2808 } 2809 case ISD::INSERT_SUBVECTOR: { 2810 // Demand any elements from the subvector and the remainder from the src its 2811 // inserted into. 2812 SDValue Src = Op.getOperand(0); 2813 SDValue Sub = Op.getOperand(1); 2814 uint64_t Idx = Op.getConstantOperandVal(2); 2815 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2816 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2817 APInt DemandedSrcElts = DemandedElts; 2818 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2819 2820 Known.One.setAllBits(); 2821 Known.Zero.setAllBits(); 2822 if (!!DemandedSubElts) { 2823 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2824 if (Known.isUnknown()) 2825 break; // early-out. 2826 } 2827 if (!!DemandedSrcElts) { 2828 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2829 Known = KnownBits::commonBits(Known, Known2); 2830 } 2831 break; 2832 } 2833 case ISD::EXTRACT_SUBVECTOR: { 2834 // Offset the demanded elts by the subvector index. 2835 SDValue Src = Op.getOperand(0); 2836 // Bail until we can represent demanded elements for scalable vectors. 2837 if (Src.getValueType().isScalableVector()) 2838 break; 2839 uint64_t Idx = Op.getConstantOperandVal(1); 2840 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2841 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2842 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2843 break; 2844 } 2845 case ISD::SCALAR_TO_VECTOR: { 2846 // We know about scalar_to_vector as much as we know about it source, 2847 // which becomes the first element of otherwise unknown vector. 2848 if (DemandedElts != 1) 2849 break; 2850 2851 SDValue N0 = Op.getOperand(0); 2852 Known = computeKnownBits(N0, Depth + 1); 2853 if (N0.getValueSizeInBits() != BitWidth) 2854 Known = Known.trunc(BitWidth); 2855 2856 break; 2857 } 2858 case ISD::BITCAST: { 2859 SDValue N0 = Op.getOperand(0); 2860 EVT SubVT = N0.getValueType(); 2861 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2862 2863 // Ignore bitcasts from unsupported types. 2864 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2865 break; 2866 2867 // Fast handling of 'identity' bitcasts. 2868 if (BitWidth == SubBitWidth) { 2869 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2870 break; 2871 } 2872 2873 bool IsLE = getDataLayout().isLittleEndian(); 2874 2875 // Bitcast 'small element' vector to 'large element' scalar/vector. 2876 if ((BitWidth % SubBitWidth) == 0) { 2877 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2878 2879 // Collect known bits for the (larger) output by collecting the known 2880 // bits from each set of sub elements and shift these into place. 2881 // We need to separately call computeKnownBits for each set of 2882 // sub elements as the knownbits for each is likely to be different. 2883 unsigned SubScale = BitWidth / SubBitWidth; 2884 APInt SubDemandedElts(NumElts * SubScale, 0); 2885 for (unsigned i = 0; i != NumElts; ++i) 2886 if (DemandedElts[i]) 2887 SubDemandedElts.setBit(i * SubScale); 2888 2889 for (unsigned i = 0; i != SubScale; ++i) { 2890 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2891 Depth + 1); 2892 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2893 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2894 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2895 } 2896 } 2897 2898 // Bitcast 'large element' scalar/vector to 'small element' vector. 2899 if ((SubBitWidth % BitWidth) == 0) { 2900 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2901 2902 // Collect known bits for the (smaller) output by collecting the known 2903 // bits from the overlapping larger input elements and extracting the 2904 // sub sections we actually care about. 2905 unsigned SubScale = SubBitWidth / BitWidth; 2906 APInt SubDemandedElts(NumElts / SubScale, 0); 2907 for (unsigned i = 0; i != NumElts; ++i) 2908 if (DemandedElts[i]) 2909 SubDemandedElts.setBit(i / SubScale); 2910 2911 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2912 2913 Known.Zero.setAllBits(); Known.One.setAllBits(); 2914 for (unsigned i = 0; i != NumElts; ++i) 2915 if (DemandedElts[i]) { 2916 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2917 unsigned Offset = (Shifts % SubScale) * BitWidth; 2918 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2919 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2920 // If we don't know any bits, early out. 2921 if (Known.isUnknown()) 2922 break; 2923 } 2924 } 2925 break; 2926 } 2927 case ISD::AND: 2928 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2929 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2930 2931 Known &= Known2; 2932 break; 2933 case ISD::OR: 2934 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2935 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2936 2937 Known |= Known2; 2938 break; 2939 case ISD::XOR: 2940 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2941 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2942 2943 Known ^= Known2; 2944 break; 2945 case ISD::MUL: { 2946 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2947 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2948 Known = KnownBits::computeForMul(Known, Known2); 2949 break; 2950 } 2951 case ISD::UDIV: { 2952 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2953 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2954 Known = KnownBits::udiv(Known, Known2); 2955 break; 2956 } 2957 case ISD::SELECT: 2958 case ISD::VSELECT: 2959 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2960 // If we don't know any bits, early out. 2961 if (Known.isUnknown()) 2962 break; 2963 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2964 2965 // Only known if known in both the LHS and RHS. 2966 Known = KnownBits::commonBits(Known, Known2); 2967 break; 2968 case ISD::SELECT_CC: 2969 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2970 // If we don't know any bits, early out. 2971 if (Known.isUnknown()) 2972 break; 2973 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2974 2975 // Only known if known in both the LHS and RHS. 2976 Known = KnownBits::commonBits(Known, Known2); 2977 break; 2978 case ISD::SMULO: 2979 case ISD::UMULO: 2980 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2981 if (Op.getResNo() != 1) 2982 break; 2983 // The boolean result conforms to getBooleanContents. 2984 // If we know the result of a setcc has the top bits zero, use this info. 2985 // We know that we have an integer-based boolean since these operations 2986 // are only available for integer. 2987 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2988 TargetLowering::ZeroOrOneBooleanContent && 2989 BitWidth > 1) 2990 Known.Zero.setBitsFrom(1); 2991 break; 2992 case ISD::SETCC: 2993 case ISD::STRICT_FSETCC: 2994 case ISD::STRICT_FSETCCS: { 2995 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 2996 // If we know the result of a setcc has the top bits zero, use this info. 2997 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 2998 TargetLowering::ZeroOrOneBooleanContent && 2999 BitWidth > 1) 3000 Known.Zero.setBitsFrom(1); 3001 break; 3002 } 3003 case ISD::SHL: 3004 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3005 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3006 Known = KnownBits::shl(Known, Known2); 3007 3008 // Minimum shift low bits are known zero. 3009 if (const APInt *ShMinAmt = 3010 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3011 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3012 break; 3013 case ISD::SRL: 3014 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3015 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3016 Known = KnownBits::lshr(Known, Known2); 3017 3018 // Minimum shift high bits are known zero. 3019 if (const APInt *ShMinAmt = 3020 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3021 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3022 break; 3023 case ISD::SRA: 3024 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3025 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3026 Known = KnownBits::ashr(Known, Known2); 3027 // TODO: Add minimum shift high known sign bits. 3028 break; 3029 case ISD::FSHL: 3030 case ISD::FSHR: 3031 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3032 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3033 3034 // For fshl, 0-shift returns the 1st arg. 3035 // For fshr, 0-shift returns the 2nd arg. 3036 if (Amt == 0) { 3037 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3038 DemandedElts, Depth + 1); 3039 break; 3040 } 3041 3042 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3043 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3044 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3045 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3046 if (Opcode == ISD::FSHL) { 3047 Known.One <<= Amt; 3048 Known.Zero <<= Amt; 3049 Known2.One.lshrInPlace(BitWidth - Amt); 3050 Known2.Zero.lshrInPlace(BitWidth - Amt); 3051 } else { 3052 Known.One <<= BitWidth - Amt; 3053 Known.Zero <<= BitWidth - Amt; 3054 Known2.One.lshrInPlace(Amt); 3055 Known2.Zero.lshrInPlace(Amt); 3056 } 3057 Known.One |= Known2.One; 3058 Known.Zero |= Known2.Zero; 3059 } 3060 break; 3061 case ISD::SIGN_EXTEND_INREG: { 3062 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3063 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3064 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3065 break; 3066 } 3067 case ISD::CTTZ: 3068 case ISD::CTTZ_ZERO_UNDEF: { 3069 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3070 // If we have a known 1, its position is our upper bound. 3071 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3072 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3073 Known.Zero.setBitsFrom(LowBits); 3074 break; 3075 } 3076 case ISD::CTLZ: 3077 case ISD::CTLZ_ZERO_UNDEF: { 3078 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3079 // If we have a known 1, its position is our upper bound. 3080 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3081 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3082 Known.Zero.setBitsFrom(LowBits); 3083 break; 3084 } 3085 case ISD::CTPOP: { 3086 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3087 // If we know some of the bits are zero, they can't be one. 3088 unsigned PossibleOnes = Known2.countMaxPopulation(); 3089 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3090 break; 3091 } 3092 case ISD::PARITY: { 3093 // Parity returns 0 everywhere but the LSB. 3094 Known.Zero.setBitsFrom(1); 3095 break; 3096 } 3097 case ISD::LOAD: { 3098 LoadSDNode *LD = cast<LoadSDNode>(Op); 3099 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3100 if (ISD::isNON_EXTLoad(LD) && Cst) { 3101 // Determine any common known bits from the loaded constant pool value. 3102 Type *CstTy = Cst->getType(); 3103 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3104 // If its a vector splat, then we can (quickly) reuse the scalar path. 3105 // NOTE: We assume all elements match and none are UNDEF. 3106 if (CstTy->isVectorTy()) { 3107 if (const Constant *Splat = Cst->getSplatValue()) { 3108 Cst = Splat; 3109 CstTy = Cst->getType(); 3110 } 3111 } 3112 // TODO - do we need to handle different bitwidths? 3113 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3114 // Iterate across all vector elements finding common known bits. 3115 Known.One.setAllBits(); 3116 Known.Zero.setAllBits(); 3117 for (unsigned i = 0; i != NumElts; ++i) { 3118 if (!DemandedElts[i]) 3119 continue; 3120 if (Constant *Elt = Cst->getAggregateElement(i)) { 3121 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3122 const APInt &Value = CInt->getValue(); 3123 Known.One &= Value; 3124 Known.Zero &= ~Value; 3125 continue; 3126 } 3127 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3128 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3129 Known.One &= Value; 3130 Known.Zero &= ~Value; 3131 continue; 3132 } 3133 } 3134 Known.One.clearAllBits(); 3135 Known.Zero.clearAllBits(); 3136 break; 3137 } 3138 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3139 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3140 Known = KnownBits::makeConstant(CInt->getValue()); 3141 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3142 Known = 3143 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3144 } 3145 } 3146 } 3147 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3148 // If this is a ZEXTLoad and we are looking at the loaded value. 3149 EVT VT = LD->getMemoryVT(); 3150 unsigned MemBits = VT.getScalarSizeInBits(); 3151 Known.Zero.setBitsFrom(MemBits); 3152 } else if (const MDNode *Ranges = LD->getRanges()) { 3153 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3154 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3155 } 3156 break; 3157 } 3158 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3159 EVT InVT = Op.getOperand(0).getValueType(); 3160 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3161 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3162 Known = Known.zext(BitWidth); 3163 break; 3164 } 3165 case ISD::ZERO_EXTEND: { 3166 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3167 Known = Known.zext(BitWidth); 3168 break; 3169 } 3170 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3171 EVT InVT = Op.getOperand(0).getValueType(); 3172 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3173 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3174 // If the sign bit is known to be zero or one, then sext will extend 3175 // it to the top bits, else it will just zext. 3176 Known = Known.sext(BitWidth); 3177 break; 3178 } 3179 case ISD::SIGN_EXTEND: { 3180 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3181 // If the sign bit is known to be zero or one, then sext will extend 3182 // it to the top bits, else it will just zext. 3183 Known = Known.sext(BitWidth); 3184 break; 3185 } 3186 case ISD::ANY_EXTEND_VECTOR_INREG: { 3187 EVT InVT = Op.getOperand(0).getValueType(); 3188 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3189 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3190 Known = Known.anyext(BitWidth); 3191 break; 3192 } 3193 case ISD::ANY_EXTEND: { 3194 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3195 Known = Known.anyext(BitWidth); 3196 break; 3197 } 3198 case ISD::TRUNCATE: { 3199 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3200 Known = Known.trunc(BitWidth); 3201 break; 3202 } 3203 case ISD::AssertZext: { 3204 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3205 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3206 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3207 Known.Zero |= (~InMask); 3208 Known.One &= (~Known.Zero); 3209 break; 3210 } 3211 case ISD::AssertAlign: { 3212 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3213 assert(LogOfAlign != 0); 3214 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3215 // well as clearing one bits. 3216 Known.Zero.setLowBits(LogOfAlign); 3217 Known.One.clearLowBits(LogOfAlign); 3218 break; 3219 } 3220 case ISD::FGETSIGN: 3221 // All bits are zero except the low bit. 3222 Known.Zero.setBitsFrom(1); 3223 break; 3224 case ISD::USUBO: 3225 case ISD::SSUBO: 3226 if (Op.getResNo() == 1) { 3227 // If we know the result of a setcc has the top bits zero, use this info. 3228 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3229 TargetLowering::ZeroOrOneBooleanContent && 3230 BitWidth > 1) 3231 Known.Zero.setBitsFrom(1); 3232 break; 3233 } 3234 LLVM_FALLTHROUGH; 3235 case ISD::SUB: 3236 case ISD::SUBC: { 3237 assert(Op.getResNo() == 0 && 3238 "We only compute knownbits for the difference here."); 3239 3240 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3241 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3242 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3243 Known, Known2); 3244 break; 3245 } 3246 case ISD::UADDO: 3247 case ISD::SADDO: 3248 case ISD::ADDCARRY: 3249 if (Op.getResNo() == 1) { 3250 // If we know the result of a setcc has the top bits zero, use this info. 3251 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3252 TargetLowering::ZeroOrOneBooleanContent && 3253 BitWidth > 1) 3254 Known.Zero.setBitsFrom(1); 3255 break; 3256 } 3257 LLVM_FALLTHROUGH; 3258 case ISD::ADD: 3259 case ISD::ADDC: 3260 case ISD::ADDE: { 3261 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3262 3263 // With ADDE and ADDCARRY, a carry bit may be added in. 3264 KnownBits Carry(1); 3265 if (Opcode == ISD::ADDE) 3266 // Can't track carry from glue, set carry to unknown. 3267 Carry.resetAll(); 3268 else if (Opcode == ISD::ADDCARRY) 3269 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3270 // the trouble (how often will we find a known carry bit). And I haven't 3271 // tested this very much yet, but something like this might work: 3272 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3273 // Carry = Carry.zextOrTrunc(1, false); 3274 Carry.resetAll(); 3275 else 3276 Carry.setAllZero(); 3277 3278 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3279 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3280 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3281 break; 3282 } 3283 case ISD::SREM: { 3284 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3285 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3286 Known = KnownBits::srem(Known, Known2); 3287 break; 3288 } 3289 case ISD::UREM: { 3290 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3291 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3292 Known = KnownBits::urem(Known, Known2); 3293 break; 3294 } 3295 case ISD::EXTRACT_ELEMENT: { 3296 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3297 const unsigned Index = Op.getConstantOperandVal(1); 3298 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3299 3300 // Remove low part of known bits mask 3301 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3302 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3303 3304 // Remove high part of known bit mask 3305 Known = Known.trunc(EltBitWidth); 3306 break; 3307 } 3308 case ISD::EXTRACT_VECTOR_ELT: { 3309 SDValue InVec = Op.getOperand(0); 3310 SDValue EltNo = Op.getOperand(1); 3311 EVT VecVT = InVec.getValueType(); 3312 // computeKnownBits not yet implemented for scalable vectors. 3313 if (VecVT.isScalableVector()) 3314 break; 3315 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3316 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3317 3318 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3319 // anything about the extended bits. 3320 if (BitWidth > EltBitWidth) 3321 Known = Known.trunc(EltBitWidth); 3322 3323 // If we know the element index, just demand that vector element, else for 3324 // an unknown element index, ignore DemandedElts and demand them all. 3325 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3326 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3327 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3328 DemandedSrcElts = 3329 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3330 3331 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3332 if (BitWidth > EltBitWidth) 3333 Known = Known.anyext(BitWidth); 3334 break; 3335 } 3336 case ISD::INSERT_VECTOR_ELT: { 3337 // If we know the element index, split the demand between the 3338 // source vector and the inserted element, otherwise assume we need 3339 // the original demanded vector elements and the value. 3340 SDValue InVec = Op.getOperand(0); 3341 SDValue InVal = Op.getOperand(1); 3342 SDValue EltNo = Op.getOperand(2); 3343 bool DemandedVal = true; 3344 APInt DemandedVecElts = DemandedElts; 3345 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3346 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3347 unsigned EltIdx = CEltNo->getZExtValue(); 3348 DemandedVal = !!DemandedElts[EltIdx]; 3349 DemandedVecElts.clearBit(EltIdx); 3350 } 3351 Known.One.setAllBits(); 3352 Known.Zero.setAllBits(); 3353 if (DemandedVal) { 3354 Known2 = computeKnownBits(InVal, Depth + 1); 3355 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3356 } 3357 if (!!DemandedVecElts) { 3358 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3359 Known = KnownBits::commonBits(Known, Known2); 3360 } 3361 break; 3362 } 3363 case ISD::BITREVERSE: { 3364 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3365 Known = Known2.reverseBits(); 3366 break; 3367 } 3368 case ISD::BSWAP: { 3369 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3370 Known = Known2.byteSwap(); 3371 break; 3372 } 3373 case ISD::ABS: { 3374 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3375 Known = Known2.abs(); 3376 break; 3377 } 3378 case ISD::UMIN: { 3379 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3380 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3381 Known = KnownBits::umin(Known, Known2); 3382 break; 3383 } 3384 case ISD::UMAX: { 3385 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3386 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3387 Known = KnownBits::umax(Known, Known2); 3388 break; 3389 } 3390 case ISD::SMIN: 3391 case ISD::SMAX: { 3392 // If we have a clamp pattern, we know that the number of sign bits will be 3393 // the minimum of the clamp min/max range. 3394 bool IsMax = (Opcode == ISD::SMAX); 3395 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3396 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3397 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3398 CstHigh = 3399 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3400 if (CstLow && CstHigh) { 3401 if (!IsMax) 3402 std::swap(CstLow, CstHigh); 3403 3404 const APInt &ValueLow = CstLow->getAPIntValue(); 3405 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3406 if (ValueLow.sle(ValueHigh)) { 3407 unsigned LowSignBits = ValueLow.getNumSignBits(); 3408 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3409 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3410 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3411 Known.One.setHighBits(MinSignBits); 3412 break; 3413 } 3414 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3415 Known.Zero.setHighBits(MinSignBits); 3416 break; 3417 } 3418 } 3419 } 3420 3421 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3422 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3423 if (IsMax) 3424 Known = KnownBits::smax(Known, Known2); 3425 else 3426 Known = KnownBits::smin(Known, Known2); 3427 break; 3428 } 3429 case ISD::FrameIndex: 3430 case ISD::TargetFrameIndex: 3431 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3432 Known, getMachineFunction()); 3433 break; 3434 3435 default: 3436 if (Opcode < ISD::BUILTIN_OP_END) 3437 break; 3438 LLVM_FALLTHROUGH; 3439 case ISD::INTRINSIC_WO_CHAIN: 3440 case ISD::INTRINSIC_W_CHAIN: 3441 case ISD::INTRINSIC_VOID: 3442 // Allow the target to implement this method for its nodes. 3443 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3444 break; 3445 } 3446 3447 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3448 return Known; 3449 } 3450 3451 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3452 SDValue N1) const { 3453 // X + 0 never overflow 3454 if (isNullConstant(N1)) 3455 return OFK_Never; 3456 3457 KnownBits N1Known = computeKnownBits(N1); 3458 if (N1Known.Zero.getBoolValue()) { 3459 KnownBits N0Known = computeKnownBits(N0); 3460 3461 bool overflow; 3462 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3463 if (!overflow) 3464 return OFK_Never; 3465 } 3466 3467 // mulhi + 1 never overflow 3468 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3469 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3470 return OFK_Never; 3471 3472 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3473 KnownBits N0Known = computeKnownBits(N0); 3474 3475 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3476 return OFK_Never; 3477 } 3478 3479 return OFK_Sometime; 3480 } 3481 3482 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3483 EVT OpVT = Val.getValueType(); 3484 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3485 3486 // Is the constant a known power of 2? 3487 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3488 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3489 3490 // A left-shift of a constant one will have exactly one bit set because 3491 // shifting the bit off the end is undefined. 3492 if (Val.getOpcode() == ISD::SHL) { 3493 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3494 if (C && C->getAPIntValue() == 1) 3495 return true; 3496 } 3497 3498 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3499 // one bit set. 3500 if (Val.getOpcode() == ISD::SRL) { 3501 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3502 if (C && C->getAPIntValue().isSignMask()) 3503 return true; 3504 } 3505 3506 // Are all operands of a build vector constant powers of two? 3507 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3508 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3509 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3510 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3511 return false; 3512 })) 3513 return true; 3514 3515 // More could be done here, though the above checks are enough 3516 // to handle some common cases. 3517 3518 // Fall back to computeKnownBits to catch other known cases. 3519 KnownBits Known = computeKnownBits(Val); 3520 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3521 } 3522 3523 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3524 EVT VT = Op.getValueType(); 3525 3526 // TODO: Assume we don't know anything for now. 3527 if (VT.isScalableVector()) 3528 return 1; 3529 3530 APInt DemandedElts = VT.isVector() 3531 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3532 : APInt(1, 1); 3533 return ComputeNumSignBits(Op, DemandedElts, Depth); 3534 } 3535 3536 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3537 unsigned Depth) const { 3538 EVT VT = Op.getValueType(); 3539 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3540 unsigned VTBits = VT.getScalarSizeInBits(); 3541 unsigned NumElts = DemandedElts.getBitWidth(); 3542 unsigned Tmp, Tmp2; 3543 unsigned FirstAnswer = 1; 3544 3545 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3546 const APInt &Val = C->getAPIntValue(); 3547 return Val.getNumSignBits(); 3548 } 3549 3550 if (Depth >= MaxRecursionDepth) 3551 return 1; // Limit search depth. 3552 3553 if (!DemandedElts || VT.isScalableVector()) 3554 return 1; // No demanded elts, better to assume we don't know anything. 3555 3556 unsigned Opcode = Op.getOpcode(); 3557 switch (Opcode) { 3558 default: break; 3559 case ISD::AssertSext: 3560 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3561 return VTBits-Tmp+1; 3562 case ISD::AssertZext: 3563 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3564 return VTBits-Tmp; 3565 3566 case ISD::BUILD_VECTOR: 3567 Tmp = VTBits; 3568 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3569 if (!DemandedElts[i]) 3570 continue; 3571 3572 SDValue SrcOp = Op.getOperand(i); 3573 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3574 3575 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3576 if (SrcOp.getValueSizeInBits() != VTBits) { 3577 assert(SrcOp.getValueSizeInBits() > VTBits && 3578 "Expected BUILD_VECTOR implicit truncation"); 3579 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3580 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3581 } 3582 Tmp = std::min(Tmp, Tmp2); 3583 } 3584 return Tmp; 3585 3586 case ISD::VECTOR_SHUFFLE: { 3587 // Collect the minimum number of sign bits that are shared by every vector 3588 // element referenced by the shuffle. 3589 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3590 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3591 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3592 for (unsigned i = 0; i != NumElts; ++i) { 3593 int M = SVN->getMaskElt(i); 3594 if (!DemandedElts[i]) 3595 continue; 3596 // For UNDEF elements, we don't know anything about the common state of 3597 // the shuffle result. 3598 if (M < 0) 3599 return 1; 3600 if ((unsigned)M < NumElts) 3601 DemandedLHS.setBit((unsigned)M % NumElts); 3602 else 3603 DemandedRHS.setBit((unsigned)M % NumElts); 3604 } 3605 Tmp = std::numeric_limits<unsigned>::max(); 3606 if (!!DemandedLHS) 3607 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3608 if (!!DemandedRHS) { 3609 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3610 Tmp = std::min(Tmp, Tmp2); 3611 } 3612 // If we don't know anything, early out and try computeKnownBits fall-back. 3613 if (Tmp == 1) 3614 break; 3615 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3616 return Tmp; 3617 } 3618 3619 case ISD::BITCAST: { 3620 SDValue N0 = Op.getOperand(0); 3621 EVT SrcVT = N0.getValueType(); 3622 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3623 3624 // Ignore bitcasts from unsupported types.. 3625 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3626 break; 3627 3628 // Fast handling of 'identity' bitcasts. 3629 if (VTBits == SrcBits) 3630 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3631 3632 bool IsLE = getDataLayout().isLittleEndian(); 3633 3634 // Bitcast 'large element' scalar/vector to 'small element' vector. 3635 if ((SrcBits % VTBits) == 0) { 3636 assert(VT.isVector() && "Expected bitcast to vector"); 3637 3638 unsigned Scale = SrcBits / VTBits; 3639 APInt SrcDemandedElts(NumElts / Scale, 0); 3640 for (unsigned i = 0; i != NumElts; ++i) 3641 if (DemandedElts[i]) 3642 SrcDemandedElts.setBit(i / Scale); 3643 3644 // Fast case - sign splat can be simply split across the small elements. 3645 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3646 if (Tmp == SrcBits) 3647 return VTBits; 3648 3649 // Slow case - determine how far the sign extends into each sub-element. 3650 Tmp2 = VTBits; 3651 for (unsigned i = 0; i != NumElts; ++i) 3652 if (DemandedElts[i]) { 3653 unsigned SubOffset = i % Scale; 3654 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3655 SubOffset = SubOffset * VTBits; 3656 if (Tmp <= SubOffset) 3657 return 1; 3658 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3659 } 3660 return Tmp2; 3661 } 3662 break; 3663 } 3664 3665 case ISD::SIGN_EXTEND: 3666 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3667 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3668 case ISD::SIGN_EXTEND_INREG: 3669 // Max of the input and what this extends. 3670 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3671 Tmp = VTBits-Tmp+1; 3672 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3673 return std::max(Tmp, Tmp2); 3674 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3675 SDValue Src = Op.getOperand(0); 3676 EVT SrcVT = Src.getValueType(); 3677 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3678 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3679 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3680 } 3681 case ISD::SRA: 3682 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3683 // SRA X, C -> adds C sign bits. 3684 if (const APInt *ShAmt = 3685 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3686 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3687 return Tmp; 3688 case ISD::SHL: 3689 if (const APInt *ShAmt = 3690 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3691 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3692 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3693 if (ShAmt->ult(Tmp)) 3694 return Tmp - ShAmt->getZExtValue(); 3695 } 3696 break; 3697 case ISD::AND: 3698 case ISD::OR: 3699 case ISD::XOR: // NOT is handled here. 3700 // Logical binary ops preserve the number of sign bits at the worst. 3701 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3702 if (Tmp != 1) { 3703 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3704 FirstAnswer = std::min(Tmp, Tmp2); 3705 // We computed what we know about the sign bits as our first 3706 // answer. Now proceed to the generic code that uses 3707 // computeKnownBits, and pick whichever answer is better. 3708 } 3709 break; 3710 3711 case ISD::SELECT: 3712 case ISD::VSELECT: 3713 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3714 if (Tmp == 1) return 1; // Early out. 3715 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3716 return std::min(Tmp, Tmp2); 3717 case ISD::SELECT_CC: 3718 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3719 if (Tmp == 1) return 1; // Early out. 3720 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3721 return std::min(Tmp, Tmp2); 3722 3723 case ISD::SMIN: 3724 case ISD::SMAX: { 3725 // If we have a clamp pattern, we know that the number of sign bits will be 3726 // the minimum of the clamp min/max range. 3727 bool IsMax = (Opcode == ISD::SMAX); 3728 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3729 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3730 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3731 CstHigh = 3732 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3733 if (CstLow && CstHigh) { 3734 if (!IsMax) 3735 std::swap(CstLow, CstHigh); 3736 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3737 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3738 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3739 return std::min(Tmp, Tmp2); 3740 } 3741 } 3742 3743 // Fallback - just get the minimum number of sign bits of the operands. 3744 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3745 if (Tmp == 1) 3746 return 1; // Early out. 3747 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3748 return std::min(Tmp, Tmp2); 3749 } 3750 case ISD::UMIN: 3751 case ISD::UMAX: 3752 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3753 if (Tmp == 1) 3754 return 1; // Early out. 3755 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3756 return std::min(Tmp, Tmp2); 3757 case ISD::SADDO: 3758 case ISD::UADDO: 3759 case ISD::SSUBO: 3760 case ISD::USUBO: 3761 case ISD::SMULO: 3762 case ISD::UMULO: 3763 if (Op.getResNo() != 1) 3764 break; 3765 // The boolean result conforms to getBooleanContents. Fall through. 3766 // If setcc returns 0/-1, all bits are sign bits. 3767 // We know that we have an integer-based boolean since these operations 3768 // are only available for integer. 3769 if (TLI->getBooleanContents(VT.isVector(), false) == 3770 TargetLowering::ZeroOrNegativeOneBooleanContent) 3771 return VTBits; 3772 break; 3773 case ISD::SETCC: 3774 case ISD::STRICT_FSETCC: 3775 case ISD::STRICT_FSETCCS: { 3776 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3777 // If setcc returns 0/-1, all bits are sign bits. 3778 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3779 TargetLowering::ZeroOrNegativeOneBooleanContent) 3780 return VTBits; 3781 break; 3782 } 3783 case ISD::ROTL: 3784 case ISD::ROTR: 3785 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3786 3787 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3788 if (Tmp == VTBits) 3789 return VTBits; 3790 3791 if (ConstantSDNode *C = 3792 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3793 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3794 3795 // Handle rotate right by N like a rotate left by 32-N. 3796 if (Opcode == ISD::ROTR) 3797 RotAmt = (VTBits - RotAmt) % VTBits; 3798 3799 // If we aren't rotating out all of the known-in sign bits, return the 3800 // number that are left. This handles rotl(sext(x), 1) for example. 3801 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3802 } 3803 break; 3804 case ISD::ADD: 3805 case ISD::ADDC: 3806 // Add can have at most one carry bit. Thus we know that the output 3807 // is, at worst, one more bit than the inputs. 3808 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3809 if (Tmp == 1) return 1; // Early out. 3810 3811 // Special case decrementing a value (ADD X, -1): 3812 if (ConstantSDNode *CRHS = 3813 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3814 if (CRHS->isAllOnesValue()) { 3815 KnownBits Known = 3816 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3817 3818 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3819 // sign bits set. 3820 if ((Known.Zero | 1).isAllOnesValue()) 3821 return VTBits; 3822 3823 // If we are subtracting one from a positive number, there is no carry 3824 // out of the result. 3825 if (Known.isNonNegative()) 3826 return Tmp; 3827 } 3828 3829 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3830 if (Tmp2 == 1) return 1; // Early out. 3831 return std::min(Tmp, Tmp2) - 1; 3832 case ISD::SUB: 3833 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3834 if (Tmp2 == 1) return 1; // Early out. 3835 3836 // Handle NEG. 3837 if (ConstantSDNode *CLHS = 3838 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 3839 if (CLHS->isNullValue()) { 3840 KnownBits Known = 3841 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3842 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3843 // sign bits set. 3844 if ((Known.Zero | 1).isAllOnesValue()) 3845 return VTBits; 3846 3847 // If the input is known to be positive (the sign bit is known clear), 3848 // the output of the NEG has the same number of sign bits as the input. 3849 if (Known.isNonNegative()) 3850 return Tmp2; 3851 3852 // Otherwise, we treat this like a SUB. 3853 } 3854 3855 // Sub can have at most one carry bit. Thus we know that the output 3856 // is, at worst, one more bit than the inputs. 3857 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3858 if (Tmp == 1) return 1; // Early out. 3859 return std::min(Tmp, Tmp2) - 1; 3860 case ISD::MUL: { 3861 // The output of the Mul can be at most twice the valid bits in the inputs. 3862 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3863 if (SignBitsOp0 == 1) 3864 break; 3865 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3866 if (SignBitsOp1 == 1) 3867 break; 3868 unsigned OutValidBits = 3869 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3870 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3871 } 3872 case ISD::SREM: 3873 // The sign bit is the LHS's sign bit, except when the result of the 3874 // remainder is zero. The magnitude of the result should be less than or 3875 // equal to the magnitude of the LHS. Therefore, the result should have 3876 // at least as many sign bits as the left hand side. 3877 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3878 case ISD::TRUNCATE: { 3879 // Check if the sign bits of source go down as far as the truncated value. 3880 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3881 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3882 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3883 return NumSrcSignBits - (NumSrcBits - VTBits); 3884 break; 3885 } 3886 case ISD::EXTRACT_ELEMENT: { 3887 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3888 const int BitWidth = Op.getValueSizeInBits(); 3889 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3890 3891 // Get reverse index (starting from 1), Op1 value indexes elements from 3892 // little end. Sign starts at big end. 3893 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3894 3895 // If the sign portion ends in our element the subtraction gives correct 3896 // result. Otherwise it gives either negative or > bitwidth result 3897 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3898 } 3899 case ISD::INSERT_VECTOR_ELT: { 3900 // If we know the element index, split the demand between the 3901 // source vector and the inserted element, otherwise assume we need 3902 // the original demanded vector elements and the value. 3903 SDValue InVec = Op.getOperand(0); 3904 SDValue InVal = Op.getOperand(1); 3905 SDValue EltNo = Op.getOperand(2); 3906 bool DemandedVal = true; 3907 APInt DemandedVecElts = DemandedElts; 3908 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3909 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3910 unsigned EltIdx = CEltNo->getZExtValue(); 3911 DemandedVal = !!DemandedElts[EltIdx]; 3912 DemandedVecElts.clearBit(EltIdx); 3913 } 3914 Tmp = std::numeric_limits<unsigned>::max(); 3915 if (DemandedVal) { 3916 // TODO - handle implicit truncation of inserted elements. 3917 if (InVal.getScalarValueSizeInBits() != VTBits) 3918 break; 3919 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3920 Tmp = std::min(Tmp, Tmp2); 3921 } 3922 if (!!DemandedVecElts) { 3923 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 3924 Tmp = std::min(Tmp, Tmp2); 3925 } 3926 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3927 return Tmp; 3928 } 3929 case ISD::EXTRACT_VECTOR_ELT: { 3930 SDValue InVec = Op.getOperand(0); 3931 SDValue EltNo = Op.getOperand(1); 3932 EVT VecVT = InVec.getValueType(); 3933 // ComputeNumSignBits not yet implemented for scalable vectors. 3934 if (VecVT.isScalableVector()) 3935 break; 3936 const unsigned BitWidth = Op.getValueSizeInBits(); 3937 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3938 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3939 3940 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3941 // anything about sign bits. But if the sizes match we can derive knowledge 3942 // about sign bits from the vector operand. 3943 if (BitWidth != EltBitWidth) 3944 break; 3945 3946 // If we know the element index, just demand that vector element, else for 3947 // an unknown element index, ignore DemandedElts and demand them all. 3948 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3949 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3950 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3951 DemandedSrcElts = 3952 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3953 3954 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3955 } 3956 case ISD::EXTRACT_SUBVECTOR: { 3957 // Offset the demanded elts by the subvector index. 3958 SDValue Src = Op.getOperand(0); 3959 // Bail until we can represent demanded elements for scalable vectors. 3960 if (Src.getValueType().isScalableVector()) 3961 break; 3962 uint64_t Idx = Op.getConstantOperandVal(1); 3963 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3964 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3965 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3966 } 3967 case ISD::CONCAT_VECTORS: { 3968 // Determine the minimum number of sign bits across all demanded 3969 // elts of the input vectors. Early out if the result is already 1. 3970 Tmp = std::numeric_limits<unsigned>::max(); 3971 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3972 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3973 unsigned NumSubVectors = Op.getNumOperands(); 3974 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3975 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3976 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3977 if (!DemandedSub) 3978 continue; 3979 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3980 Tmp = std::min(Tmp, Tmp2); 3981 } 3982 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3983 return Tmp; 3984 } 3985 case ISD::INSERT_SUBVECTOR: { 3986 // Demand any elements from the subvector and the remainder from the src its 3987 // inserted into. 3988 SDValue Src = Op.getOperand(0); 3989 SDValue Sub = Op.getOperand(1); 3990 uint64_t Idx = Op.getConstantOperandVal(2); 3991 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3992 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3993 APInt DemandedSrcElts = DemandedElts; 3994 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 3995 3996 Tmp = std::numeric_limits<unsigned>::max(); 3997 if (!!DemandedSubElts) { 3998 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 3999 if (Tmp == 1) 4000 return 1; // early-out 4001 } 4002 if (!!DemandedSrcElts) { 4003 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4004 Tmp = std::min(Tmp, Tmp2); 4005 } 4006 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4007 return Tmp; 4008 } 4009 } 4010 4011 // If we are looking at the loaded value of the SDNode. 4012 if (Op.getResNo() == 0) { 4013 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4014 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4015 unsigned ExtType = LD->getExtensionType(); 4016 switch (ExtType) { 4017 default: break; 4018 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4019 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4020 return VTBits - Tmp + 1; 4021 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4022 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4023 return VTBits - Tmp; 4024 case ISD::NON_EXTLOAD: 4025 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4026 // We only need to handle vectors - computeKnownBits should handle 4027 // scalar cases. 4028 Type *CstTy = Cst->getType(); 4029 if (CstTy->isVectorTy() && 4030 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4031 Tmp = VTBits; 4032 for (unsigned i = 0; i != NumElts; ++i) { 4033 if (!DemandedElts[i]) 4034 continue; 4035 if (Constant *Elt = Cst->getAggregateElement(i)) { 4036 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4037 const APInt &Value = CInt->getValue(); 4038 Tmp = std::min(Tmp, Value.getNumSignBits()); 4039 continue; 4040 } 4041 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4042 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4043 Tmp = std::min(Tmp, Value.getNumSignBits()); 4044 continue; 4045 } 4046 } 4047 // Unknown type. Conservatively assume no bits match sign bit. 4048 return 1; 4049 } 4050 return Tmp; 4051 } 4052 } 4053 break; 4054 } 4055 } 4056 } 4057 4058 // Allow the target to implement this method for its nodes. 4059 if (Opcode >= ISD::BUILTIN_OP_END || 4060 Opcode == ISD::INTRINSIC_WO_CHAIN || 4061 Opcode == ISD::INTRINSIC_W_CHAIN || 4062 Opcode == ISD::INTRINSIC_VOID) { 4063 unsigned NumBits = 4064 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4065 if (NumBits > 1) 4066 FirstAnswer = std::max(FirstAnswer, NumBits); 4067 } 4068 4069 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4070 // use this information. 4071 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4072 4073 APInt Mask; 4074 if (Known.isNonNegative()) { // sign bit is 0 4075 Mask = Known.Zero; 4076 } else if (Known.isNegative()) { // sign bit is 1; 4077 Mask = Known.One; 4078 } else { 4079 // Nothing known. 4080 return FirstAnswer; 4081 } 4082 4083 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4084 // the number of identical bits in the top of the input value. 4085 Mask <<= Mask.getBitWidth()-VTBits; 4086 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4087 } 4088 4089 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4090 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4091 !isa<ConstantSDNode>(Op.getOperand(1))) 4092 return false; 4093 4094 if (Op.getOpcode() == ISD::OR && 4095 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4096 return false; 4097 4098 return true; 4099 } 4100 4101 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4102 // If we're told that NaNs won't happen, assume they won't. 4103 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4104 return true; 4105 4106 if (Depth >= MaxRecursionDepth) 4107 return false; // Limit search depth. 4108 4109 // TODO: Handle vectors. 4110 // If the value is a constant, we can obviously see if it is a NaN or not. 4111 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4112 return !C->getValueAPF().isNaN() || 4113 (SNaN && !C->getValueAPF().isSignaling()); 4114 } 4115 4116 unsigned Opcode = Op.getOpcode(); 4117 switch (Opcode) { 4118 case ISD::FADD: 4119 case ISD::FSUB: 4120 case ISD::FMUL: 4121 case ISD::FDIV: 4122 case ISD::FREM: 4123 case ISD::FSIN: 4124 case ISD::FCOS: { 4125 if (SNaN) 4126 return true; 4127 // TODO: Need isKnownNeverInfinity 4128 return false; 4129 } 4130 case ISD::FCANONICALIZE: 4131 case ISD::FEXP: 4132 case ISD::FEXP2: 4133 case ISD::FTRUNC: 4134 case ISD::FFLOOR: 4135 case ISD::FCEIL: 4136 case ISD::FROUND: 4137 case ISD::FROUNDEVEN: 4138 case ISD::FRINT: 4139 case ISD::FNEARBYINT: { 4140 if (SNaN) 4141 return true; 4142 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4143 } 4144 case ISD::FABS: 4145 case ISD::FNEG: 4146 case ISD::FCOPYSIGN: { 4147 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4148 } 4149 case ISD::SELECT: 4150 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4151 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4152 case ISD::FP_EXTEND: 4153 case ISD::FP_ROUND: { 4154 if (SNaN) 4155 return true; 4156 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4157 } 4158 case ISD::SINT_TO_FP: 4159 case ISD::UINT_TO_FP: 4160 return true; 4161 case ISD::FMA: 4162 case ISD::FMAD: { 4163 if (SNaN) 4164 return true; 4165 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4166 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4167 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4168 } 4169 case ISD::FSQRT: // Need is known positive 4170 case ISD::FLOG: 4171 case ISD::FLOG2: 4172 case ISD::FLOG10: 4173 case ISD::FPOWI: 4174 case ISD::FPOW: { 4175 if (SNaN) 4176 return true; 4177 // TODO: Refine on operand 4178 return false; 4179 } 4180 case ISD::FMINNUM: 4181 case ISD::FMAXNUM: { 4182 // Only one needs to be known not-nan, since it will be returned if the 4183 // other ends up being one. 4184 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4185 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4186 } 4187 case ISD::FMINNUM_IEEE: 4188 case ISD::FMAXNUM_IEEE: { 4189 if (SNaN) 4190 return true; 4191 // This can return a NaN if either operand is an sNaN, or if both operands 4192 // are NaN. 4193 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4194 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4195 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4196 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4197 } 4198 case ISD::FMINIMUM: 4199 case ISD::FMAXIMUM: { 4200 // TODO: Does this quiet or return the origina NaN as-is? 4201 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4202 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4203 } 4204 case ISD::EXTRACT_VECTOR_ELT: { 4205 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4206 } 4207 default: 4208 if (Opcode >= ISD::BUILTIN_OP_END || 4209 Opcode == ISD::INTRINSIC_WO_CHAIN || 4210 Opcode == ISD::INTRINSIC_W_CHAIN || 4211 Opcode == ISD::INTRINSIC_VOID) { 4212 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4213 } 4214 4215 return false; 4216 } 4217 } 4218 4219 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4220 assert(Op.getValueType().isFloatingPoint() && 4221 "Floating point type expected"); 4222 4223 // If the value is a constant, we can obviously see if it is a zero or not. 4224 // TODO: Add BuildVector support. 4225 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4226 return !C->isZero(); 4227 return false; 4228 } 4229 4230 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4231 assert(!Op.getValueType().isFloatingPoint() && 4232 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4233 4234 // If the value is a constant, we can obviously see if it is a zero or not. 4235 if (ISD::matchUnaryPredicate( 4236 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4237 return true; 4238 4239 // TODO: Recognize more cases here. 4240 switch (Op.getOpcode()) { 4241 default: break; 4242 case ISD::OR: 4243 if (isKnownNeverZero(Op.getOperand(1)) || 4244 isKnownNeverZero(Op.getOperand(0))) 4245 return true; 4246 break; 4247 } 4248 4249 return false; 4250 } 4251 4252 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4253 // Check the obvious case. 4254 if (A == B) return true; 4255 4256 // For for negative and positive zero. 4257 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4258 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4259 if (CA->isZero() && CB->isZero()) return true; 4260 4261 // Otherwise they may not be equal. 4262 return false; 4263 } 4264 4265 // FIXME: unify with llvm::haveNoCommonBitsSet. 4266 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4267 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4268 assert(A.getValueType() == B.getValueType() && 4269 "Values must have the same type"); 4270 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4271 } 4272 4273 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4274 ArrayRef<SDValue> Ops, 4275 SelectionDAG &DAG) { 4276 int NumOps = Ops.size(); 4277 assert(NumOps != 0 && "Can't build an empty vector!"); 4278 assert(!VT.isScalableVector() && 4279 "BUILD_VECTOR cannot be used with scalable types"); 4280 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4281 "Incorrect element count in BUILD_VECTOR!"); 4282 4283 // BUILD_VECTOR of UNDEFs is UNDEF. 4284 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4285 return DAG.getUNDEF(VT); 4286 4287 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4288 SDValue IdentitySrc; 4289 bool IsIdentity = true; 4290 for (int i = 0; i != NumOps; ++i) { 4291 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4292 Ops[i].getOperand(0).getValueType() != VT || 4293 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4294 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4295 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4296 IsIdentity = false; 4297 break; 4298 } 4299 IdentitySrc = Ops[i].getOperand(0); 4300 } 4301 if (IsIdentity) 4302 return IdentitySrc; 4303 4304 return SDValue(); 4305 } 4306 4307 /// Try to simplify vector concatenation to an input value, undef, or build 4308 /// vector. 4309 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4310 ArrayRef<SDValue> Ops, 4311 SelectionDAG &DAG) { 4312 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4313 assert(llvm::all_of(Ops, 4314 [Ops](SDValue Op) { 4315 return Ops[0].getValueType() == Op.getValueType(); 4316 }) && 4317 "Concatenation of vectors with inconsistent value types!"); 4318 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4319 VT.getVectorElementCount() && 4320 "Incorrect element count in vector concatenation!"); 4321 4322 if (Ops.size() == 1) 4323 return Ops[0]; 4324 4325 // Concat of UNDEFs is UNDEF. 4326 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4327 return DAG.getUNDEF(VT); 4328 4329 // Scan the operands and look for extract operations from a single source 4330 // that correspond to insertion at the same location via this concatenation: 4331 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4332 SDValue IdentitySrc; 4333 bool IsIdentity = true; 4334 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4335 SDValue Op = Ops[i]; 4336 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4337 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4338 Op.getOperand(0).getValueType() != VT || 4339 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4340 Op.getConstantOperandVal(1) != IdentityIndex) { 4341 IsIdentity = false; 4342 break; 4343 } 4344 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4345 "Unexpected identity source vector for concat of extracts"); 4346 IdentitySrc = Op.getOperand(0); 4347 } 4348 if (IsIdentity) { 4349 assert(IdentitySrc && "Failed to set source vector of extracts"); 4350 return IdentitySrc; 4351 } 4352 4353 // The code below this point is only designed to work for fixed width 4354 // vectors, so we bail out for now. 4355 if (VT.isScalableVector()) 4356 return SDValue(); 4357 4358 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4359 // simplified to one big BUILD_VECTOR. 4360 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4361 EVT SVT = VT.getScalarType(); 4362 SmallVector<SDValue, 16> Elts; 4363 for (SDValue Op : Ops) { 4364 EVT OpVT = Op.getValueType(); 4365 if (Op.isUndef()) 4366 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4367 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4368 Elts.append(Op->op_begin(), Op->op_end()); 4369 else 4370 return SDValue(); 4371 } 4372 4373 // BUILD_VECTOR requires all inputs to be of the same type, find the 4374 // maximum type and extend them all. 4375 for (SDValue Op : Elts) 4376 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4377 4378 if (SVT.bitsGT(VT.getScalarType())) { 4379 for (SDValue &Op : Elts) { 4380 if (Op.isUndef()) 4381 Op = DAG.getUNDEF(SVT); 4382 else 4383 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4384 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4385 : DAG.getSExtOrTrunc(Op, DL, SVT); 4386 } 4387 } 4388 4389 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4390 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4391 return V; 4392 } 4393 4394 /// Gets or creates the specified node. 4395 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4396 FoldingSetNodeID ID; 4397 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4398 void *IP = nullptr; 4399 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4400 return SDValue(E, 0); 4401 4402 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4403 getVTList(VT)); 4404 CSEMap.InsertNode(N, IP); 4405 4406 InsertNode(N); 4407 SDValue V = SDValue(N, 0); 4408 NewSDValueDbgMsg(V, "Creating new node: ", this); 4409 return V; 4410 } 4411 4412 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4413 SDValue Operand) { 4414 SDNodeFlags Flags; 4415 if (Inserter) 4416 Flags = Inserter->getFlags(); 4417 return getNode(Opcode, DL, VT, Operand, Flags); 4418 } 4419 4420 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4421 SDValue Operand, const SDNodeFlags Flags) { 4422 // Constant fold unary operations with an integer constant operand. Even 4423 // opaque constant will be folded, because the folding of unary operations 4424 // doesn't create new constants with different values. Nevertheless, the 4425 // opaque flag is preserved during folding to prevent future folding with 4426 // other constants. 4427 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4428 const APInt &Val = C->getAPIntValue(); 4429 switch (Opcode) { 4430 default: break; 4431 case ISD::SIGN_EXTEND: 4432 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4433 C->isTargetOpcode(), C->isOpaque()); 4434 case ISD::TRUNCATE: 4435 if (C->isOpaque()) 4436 break; 4437 LLVM_FALLTHROUGH; 4438 case ISD::ANY_EXTEND: 4439 case ISD::ZERO_EXTEND: 4440 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4441 C->isTargetOpcode(), C->isOpaque()); 4442 case ISD::UINT_TO_FP: 4443 case ISD::SINT_TO_FP: { 4444 APFloat apf(EVTToAPFloatSemantics(VT), 4445 APInt::getNullValue(VT.getSizeInBits())); 4446 (void)apf.convertFromAPInt(Val, 4447 Opcode==ISD::SINT_TO_FP, 4448 APFloat::rmNearestTiesToEven); 4449 return getConstantFP(apf, DL, VT); 4450 } 4451 case ISD::BITCAST: 4452 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4453 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4454 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4455 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4456 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4457 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4458 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4459 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4460 break; 4461 case ISD::ABS: 4462 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4463 C->isOpaque()); 4464 case ISD::BITREVERSE: 4465 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4466 C->isOpaque()); 4467 case ISD::BSWAP: 4468 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4469 C->isOpaque()); 4470 case ISD::CTPOP: 4471 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4472 C->isOpaque()); 4473 case ISD::CTLZ: 4474 case ISD::CTLZ_ZERO_UNDEF: 4475 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4476 C->isOpaque()); 4477 case ISD::CTTZ: 4478 case ISD::CTTZ_ZERO_UNDEF: 4479 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4480 C->isOpaque()); 4481 case ISD::FP16_TO_FP: { 4482 bool Ignored; 4483 APFloat FPV(APFloat::IEEEhalf(), 4484 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4485 4486 // This can return overflow, underflow, or inexact; we don't care. 4487 // FIXME need to be more flexible about rounding mode. 4488 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4489 APFloat::rmNearestTiesToEven, &Ignored); 4490 return getConstantFP(FPV, DL, VT); 4491 } 4492 } 4493 } 4494 4495 // Constant fold unary operations with a floating point constant operand. 4496 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4497 APFloat V = C->getValueAPF(); // make copy 4498 switch (Opcode) { 4499 case ISD::FNEG: 4500 V.changeSign(); 4501 return getConstantFP(V, DL, VT); 4502 case ISD::FABS: 4503 V.clearSign(); 4504 return getConstantFP(V, DL, VT); 4505 case ISD::FCEIL: { 4506 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4507 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4508 return getConstantFP(V, DL, VT); 4509 break; 4510 } 4511 case ISD::FTRUNC: { 4512 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4513 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4514 return getConstantFP(V, DL, VT); 4515 break; 4516 } 4517 case ISD::FFLOOR: { 4518 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4519 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4520 return getConstantFP(V, DL, VT); 4521 break; 4522 } 4523 case ISD::FP_EXTEND: { 4524 bool ignored; 4525 // This can return overflow, underflow, or inexact; we don't care. 4526 // FIXME need to be more flexible about rounding mode. 4527 (void)V.convert(EVTToAPFloatSemantics(VT), 4528 APFloat::rmNearestTiesToEven, &ignored); 4529 return getConstantFP(V, DL, VT); 4530 } 4531 case ISD::FP_TO_SINT: 4532 case ISD::FP_TO_UINT: { 4533 bool ignored; 4534 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4535 // FIXME need to be more flexible about rounding mode. 4536 APFloat::opStatus s = 4537 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4538 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4539 break; 4540 return getConstant(IntVal, DL, VT); 4541 } 4542 case ISD::BITCAST: 4543 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4544 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4545 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4546 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4547 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4548 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4549 break; 4550 case ISD::FP_TO_FP16: { 4551 bool Ignored; 4552 // This can return overflow, underflow, or inexact; we don't care. 4553 // FIXME need to be more flexible about rounding mode. 4554 (void)V.convert(APFloat::IEEEhalf(), 4555 APFloat::rmNearestTiesToEven, &Ignored); 4556 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4557 } 4558 } 4559 } 4560 4561 // Constant fold unary operations with a vector integer or float operand. 4562 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4563 if (BV->isConstant()) { 4564 switch (Opcode) { 4565 default: 4566 // FIXME: Entirely reasonable to perform folding of other unary 4567 // operations here as the need arises. 4568 break; 4569 case ISD::FNEG: 4570 case ISD::FABS: 4571 case ISD::FCEIL: 4572 case ISD::FTRUNC: 4573 case ISD::FFLOOR: 4574 case ISD::FP_EXTEND: 4575 case ISD::FP_TO_SINT: 4576 case ISD::FP_TO_UINT: 4577 case ISD::TRUNCATE: 4578 case ISD::ANY_EXTEND: 4579 case ISD::ZERO_EXTEND: 4580 case ISD::SIGN_EXTEND: 4581 case ISD::UINT_TO_FP: 4582 case ISD::SINT_TO_FP: 4583 case ISD::ABS: 4584 case ISD::BITREVERSE: 4585 case ISD::BSWAP: 4586 case ISD::CTLZ: 4587 case ISD::CTLZ_ZERO_UNDEF: 4588 case ISD::CTTZ: 4589 case ISD::CTTZ_ZERO_UNDEF: 4590 case ISD::CTPOP: { 4591 SDValue Ops = { Operand }; 4592 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4593 return Fold; 4594 } 4595 } 4596 } 4597 } 4598 4599 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4600 switch (Opcode) { 4601 case ISD::FREEZE: 4602 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4603 break; 4604 case ISD::TokenFactor: 4605 case ISD::MERGE_VALUES: 4606 case ISD::CONCAT_VECTORS: 4607 return Operand; // Factor, merge or concat of one node? No need. 4608 case ISD::BUILD_VECTOR: { 4609 // Attempt to simplify BUILD_VECTOR. 4610 SDValue Ops[] = {Operand}; 4611 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4612 return V; 4613 break; 4614 } 4615 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4616 case ISD::FP_EXTEND: 4617 assert(VT.isFloatingPoint() && 4618 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4619 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4620 assert((!VT.isVector() || 4621 VT.getVectorElementCount() == 4622 Operand.getValueType().getVectorElementCount()) && 4623 "Vector element count mismatch!"); 4624 assert(Operand.getValueType().bitsLT(VT) && 4625 "Invalid fpext node, dst < src!"); 4626 if (Operand.isUndef()) 4627 return getUNDEF(VT); 4628 break; 4629 case ISD::FP_TO_SINT: 4630 case ISD::FP_TO_UINT: 4631 if (Operand.isUndef()) 4632 return getUNDEF(VT); 4633 break; 4634 case ISD::SINT_TO_FP: 4635 case ISD::UINT_TO_FP: 4636 // [us]itofp(undef) = 0, because the result value is bounded. 4637 if (Operand.isUndef()) 4638 return getConstantFP(0.0, DL, VT); 4639 break; 4640 case ISD::SIGN_EXTEND: 4641 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4642 "Invalid SIGN_EXTEND!"); 4643 assert(VT.isVector() == Operand.getValueType().isVector() && 4644 "SIGN_EXTEND result type type should be vector iff the operand " 4645 "type is vector!"); 4646 if (Operand.getValueType() == VT) return Operand; // noop extension 4647 assert((!VT.isVector() || 4648 VT.getVectorElementCount() == 4649 Operand.getValueType().getVectorElementCount()) && 4650 "Vector element count mismatch!"); 4651 assert(Operand.getValueType().bitsLT(VT) && 4652 "Invalid sext node, dst < src!"); 4653 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4654 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4655 else if (OpOpcode == ISD::UNDEF) 4656 // sext(undef) = 0, because the top bits will all be the same. 4657 return getConstant(0, DL, VT); 4658 break; 4659 case ISD::ZERO_EXTEND: 4660 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4661 "Invalid ZERO_EXTEND!"); 4662 assert(VT.isVector() == Operand.getValueType().isVector() && 4663 "ZERO_EXTEND result type type should be vector iff the operand " 4664 "type is vector!"); 4665 if (Operand.getValueType() == VT) return Operand; // noop extension 4666 assert((!VT.isVector() || 4667 VT.getVectorElementCount() == 4668 Operand.getValueType().getVectorElementCount()) && 4669 "Vector element count mismatch!"); 4670 assert(Operand.getValueType().bitsLT(VT) && 4671 "Invalid zext node, dst < src!"); 4672 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4673 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4674 else if (OpOpcode == ISD::UNDEF) 4675 // zext(undef) = 0, because the top bits will be zero. 4676 return getConstant(0, DL, VT); 4677 break; 4678 case ISD::ANY_EXTEND: 4679 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4680 "Invalid ANY_EXTEND!"); 4681 assert(VT.isVector() == Operand.getValueType().isVector() && 4682 "ANY_EXTEND result type type should be vector iff the operand " 4683 "type is vector!"); 4684 if (Operand.getValueType() == VT) return Operand; // noop extension 4685 assert((!VT.isVector() || 4686 VT.getVectorElementCount() == 4687 Operand.getValueType().getVectorElementCount()) && 4688 "Vector element count mismatch!"); 4689 assert(Operand.getValueType().bitsLT(VT) && 4690 "Invalid anyext node, dst < src!"); 4691 4692 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4693 OpOpcode == ISD::ANY_EXTEND) 4694 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4695 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4696 else if (OpOpcode == ISD::UNDEF) 4697 return getUNDEF(VT); 4698 4699 // (ext (trunc x)) -> x 4700 if (OpOpcode == ISD::TRUNCATE) { 4701 SDValue OpOp = Operand.getOperand(0); 4702 if (OpOp.getValueType() == VT) { 4703 transferDbgValues(Operand, OpOp); 4704 return OpOp; 4705 } 4706 } 4707 break; 4708 case ISD::TRUNCATE: 4709 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4710 "Invalid TRUNCATE!"); 4711 assert(VT.isVector() == Operand.getValueType().isVector() && 4712 "TRUNCATE result type type should be vector iff the operand " 4713 "type is vector!"); 4714 if (Operand.getValueType() == VT) return Operand; // noop truncate 4715 assert((!VT.isVector() || 4716 VT.getVectorElementCount() == 4717 Operand.getValueType().getVectorElementCount()) && 4718 "Vector element count mismatch!"); 4719 assert(Operand.getValueType().bitsGT(VT) && 4720 "Invalid truncate node, src < dst!"); 4721 if (OpOpcode == ISD::TRUNCATE) 4722 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4723 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4724 OpOpcode == ISD::ANY_EXTEND) { 4725 // If the source is smaller than the dest, we still need an extend. 4726 if (Operand.getOperand(0).getValueType().getScalarType() 4727 .bitsLT(VT.getScalarType())) 4728 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4729 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4730 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4731 return Operand.getOperand(0); 4732 } 4733 if (OpOpcode == ISD::UNDEF) 4734 return getUNDEF(VT); 4735 break; 4736 case ISD::ANY_EXTEND_VECTOR_INREG: 4737 case ISD::ZERO_EXTEND_VECTOR_INREG: 4738 case ISD::SIGN_EXTEND_VECTOR_INREG: 4739 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4740 assert(Operand.getValueType().bitsLE(VT) && 4741 "The input must be the same size or smaller than the result."); 4742 assert(VT.getVectorNumElements() < 4743 Operand.getValueType().getVectorNumElements() && 4744 "The destination vector type must have fewer lanes than the input."); 4745 break; 4746 case ISD::ABS: 4747 assert(VT.isInteger() && VT == Operand.getValueType() && 4748 "Invalid ABS!"); 4749 if (OpOpcode == ISD::UNDEF) 4750 return getUNDEF(VT); 4751 break; 4752 case ISD::BSWAP: 4753 assert(VT.isInteger() && VT == Operand.getValueType() && 4754 "Invalid BSWAP!"); 4755 assert((VT.getScalarSizeInBits() % 16 == 0) && 4756 "BSWAP types must be a multiple of 16 bits!"); 4757 if (OpOpcode == ISD::UNDEF) 4758 return getUNDEF(VT); 4759 break; 4760 case ISD::BITREVERSE: 4761 assert(VT.isInteger() && VT == Operand.getValueType() && 4762 "Invalid BITREVERSE!"); 4763 if (OpOpcode == ISD::UNDEF) 4764 return getUNDEF(VT); 4765 break; 4766 case ISD::BITCAST: 4767 // Basic sanity checking. 4768 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4769 "Cannot BITCAST between types of different sizes!"); 4770 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4771 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4772 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4773 if (OpOpcode == ISD::UNDEF) 4774 return getUNDEF(VT); 4775 break; 4776 case ISD::SCALAR_TO_VECTOR: 4777 assert(VT.isVector() && !Operand.getValueType().isVector() && 4778 (VT.getVectorElementType() == Operand.getValueType() || 4779 (VT.getVectorElementType().isInteger() && 4780 Operand.getValueType().isInteger() && 4781 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4782 "Illegal SCALAR_TO_VECTOR node!"); 4783 if (OpOpcode == ISD::UNDEF) 4784 return getUNDEF(VT); 4785 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4786 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4787 isa<ConstantSDNode>(Operand.getOperand(1)) && 4788 Operand.getConstantOperandVal(1) == 0 && 4789 Operand.getOperand(0).getValueType() == VT) 4790 return Operand.getOperand(0); 4791 break; 4792 case ISD::FNEG: 4793 // Negation of an unknown bag of bits is still completely undefined. 4794 if (OpOpcode == ISD::UNDEF) 4795 return getUNDEF(VT); 4796 4797 if (OpOpcode == ISD::FNEG) // --X -> X 4798 return Operand.getOperand(0); 4799 break; 4800 case ISD::FABS: 4801 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4802 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4803 break; 4804 case ISD::VSCALE: 4805 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4806 break; 4807 case ISD::CTPOP: 4808 if (Operand.getValueType().getScalarType() == MVT::i1) 4809 return Operand; 4810 break; 4811 case ISD::CTLZ: 4812 case ISD::CTTZ: 4813 if (Operand.getValueType().getScalarType() == MVT::i1) 4814 return getNOT(DL, Operand, Operand.getValueType()); 4815 break; 4816 case ISD::VECREDUCE_SMIN: 4817 case ISD::VECREDUCE_UMAX: 4818 if (Operand.getValueType().getScalarType() == MVT::i1) 4819 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 4820 break; 4821 case ISD::VECREDUCE_SMAX: 4822 case ISD::VECREDUCE_UMIN: 4823 if (Operand.getValueType().getScalarType() == MVT::i1) 4824 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 4825 break; 4826 } 4827 4828 SDNode *N; 4829 SDVTList VTs = getVTList(VT); 4830 SDValue Ops[] = {Operand}; 4831 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4832 FoldingSetNodeID ID; 4833 AddNodeIDNode(ID, Opcode, VTs, Ops); 4834 void *IP = nullptr; 4835 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4836 E->intersectFlagsWith(Flags); 4837 return SDValue(E, 0); 4838 } 4839 4840 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4841 N->setFlags(Flags); 4842 createOperands(N, Ops); 4843 CSEMap.InsertNode(N, IP); 4844 } else { 4845 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4846 createOperands(N, Ops); 4847 } 4848 4849 InsertNode(N); 4850 SDValue V = SDValue(N, 0); 4851 NewSDValueDbgMsg(V, "Creating new node: ", this); 4852 return V; 4853 } 4854 4855 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 4856 const APInt &C2) { 4857 switch (Opcode) { 4858 case ISD::ADD: return C1 + C2; 4859 case ISD::SUB: return C1 - C2; 4860 case ISD::MUL: return C1 * C2; 4861 case ISD::AND: return C1 & C2; 4862 case ISD::OR: return C1 | C2; 4863 case ISD::XOR: return C1 ^ C2; 4864 case ISD::SHL: return C1 << C2; 4865 case ISD::SRL: return C1.lshr(C2); 4866 case ISD::SRA: return C1.ashr(C2); 4867 case ISD::ROTL: return C1.rotl(C2); 4868 case ISD::ROTR: return C1.rotr(C2); 4869 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 4870 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 4871 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 4872 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 4873 case ISD::SADDSAT: return C1.sadd_sat(C2); 4874 case ISD::UADDSAT: return C1.uadd_sat(C2); 4875 case ISD::SSUBSAT: return C1.ssub_sat(C2); 4876 case ISD::USUBSAT: return C1.usub_sat(C2); 4877 case ISD::UDIV: 4878 if (!C2.getBoolValue()) 4879 break; 4880 return C1.udiv(C2); 4881 case ISD::UREM: 4882 if (!C2.getBoolValue()) 4883 break; 4884 return C1.urem(C2); 4885 case ISD::SDIV: 4886 if (!C2.getBoolValue()) 4887 break; 4888 return C1.sdiv(C2); 4889 case ISD::SREM: 4890 if (!C2.getBoolValue()) 4891 break; 4892 return C1.srem(C2); 4893 } 4894 return llvm::None; 4895 } 4896 4897 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4898 const GlobalAddressSDNode *GA, 4899 const SDNode *N2) { 4900 if (GA->getOpcode() != ISD::GlobalAddress) 4901 return SDValue(); 4902 if (!TLI->isOffsetFoldingLegal(GA)) 4903 return SDValue(); 4904 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4905 if (!C2) 4906 return SDValue(); 4907 int64_t Offset = C2->getSExtValue(); 4908 switch (Opcode) { 4909 case ISD::ADD: break; 4910 case ISD::SUB: Offset = -uint64_t(Offset); break; 4911 default: return SDValue(); 4912 } 4913 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4914 GA->getOffset() + uint64_t(Offset)); 4915 } 4916 4917 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4918 switch (Opcode) { 4919 case ISD::SDIV: 4920 case ISD::UDIV: 4921 case ISD::SREM: 4922 case ISD::UREM: { 4923 // If a divisor is zero/undef or any element of a divisor vector is 4924 // zero/undef, the whole op is undef. 4925 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4926 SDValue Divisor = Ops[1]; 4927 if (Divisor.isUndef() || isNullConstant(Divisor)) 4928 return true; 4929 4930 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4931 llvm::any_of(Divisor->op_values(), 4932 [](SDValue V) { return V.isUndef() || 4933 isNullConstant(V); }); 4934 // TODO: Handle signed overflow. 4935 } 4936 // TODO: Handle oversized shifts. 4937 default: 4938 return false; 4939 } 4940 } 4941 4942 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4943 EVT VT, ArrayRef<SDValue> Ops) { 4944 // If the opcode is a target-specific ISD node, there's nothing we can 4945 // do here and the operand rules may not line up with the below, so 4946 // bail early. 4947 if (Opcode >= ISD::BUILTIN_OP_END) 4948 return SDValue(); 4949 4950 // For now, the array Ops should only contain two values. 4951 // This enforcement will be removed once this function is merged with 4952 // FoldConstantVectorArithmetic 4953 if (Ops.size() != 2) 4954 return SDValue(); 4955 4956 if (isUndef(Opcode, Ops)) 4957 return getUNDEF(VT); 4958 4959 SDNode *N1 = Ops[0].getNode(); 4960 SDNode *N2 = Ops[1].getNode(); 4961 4962 // Handle the case of two scalars. 4963 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4964 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4965 if (C1->isOpaque() || C2->isOpaque()) 4966 return SDValue(); 4967 4968 Optional<APInt> FoldAttempt = 4969 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 4970 if (!FoldAttempt) 4971 return SDValue(); 4972 4973 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 4974 assert((!Folded || !VT.isVector()) && 4975 "Can't fold vectors ops with scalar operands"); 4976 return Folded; 4977 } 4978 } 4979 4980 // fold (add Sym, c) -> Sym+c 4981 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 4982 return FoldSymbolOffset(Opcode, VT, GA, N2); 4983 if (TLI->isCommutativeBinOp(Opcode)) 4984 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 4985 return FoldSymbolOffset(Opcode, VT, GA, N1); 4986 4987 // TODO: All the folds below are performed lane-by-lane and assume a fixed 4988 // vector width, however we should be able to do constant folds involving 4989 // splat vector nodes too. 4990 if (VT.isScalableVector()) 4991 return SDValue(); 4992 4993 // For fixed width vectors, extract each constant element and fold them 4994 // individually. Either input may be an undef value. 4995 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 4996 if (!BV1 && !N1->isUndef()) 4997 return SDValue(); 4998 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 4999 if (!BV2 && !N2->isUndef()) 5000 return SDValue(); 5001 // If both operands are undef, that's handled the same way as scalars. 5002 if (!BV1 && !BV2) 5003 return SDValue(); 5004 5005 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 5006 "Vector binop with different number of elements in operands?"); 5007 5008 EVT SVT = VT.getScalarType(); 5009 EVT LegalSVT = SVT; 5010 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5011 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5012 if (LegalSVT.bitsLT(SVT)) 5013 return SDValue(); 5014 } 5015 SmallVector<SDValue, 4> Outputs; 5016 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 5017 for (unsigned I = 0; I != NumOps; ++I) { 5018 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 5019 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 5020 if (SVT.isInteger()) { 5021 if (V1->getValueType(0).bitsGT(SVT)) 5022 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 5023 if (V2->getValueType(0).bitsGT(SVT)) 5024 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 5025 } 5026 5027 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 5028 return SDValue(); 5029 5030 // Fold one vector element. 5031 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 5032 if (LegalSVT != SVT) 5033 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5034 5035 // Scalar folding only succeeded if the result is a constant or UNDEF. 5036 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5037 ScalarResult.getOpcode() != ISD::ConstantFP) 5038 return SDValue(); 5039 Outputs.push_back(ScalarResult); 5040 } 5041 5042 assert(VT.getVectorNumElements() == Outputs.size() && 5043 "Vector size mismatch!"); 5044 5045 // We may have a vector type but a scalar result. Create a splat. 5046 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 5047 5048 // Build a big vector out of the scalar elements we generated. 5049 return getBuildVector(VT, SDLoc(), Outputs); 5050 } 5051 5052 // TODO: Merge with FoldConstantArithmetic 5053 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 5054 const SDLoc &DL, EVT VT, 5055 ArrayRef<SDValue> Ops, 5056 const SDNodeFlags Flags) { 5057 // If the opcode is a target-specific ISD node, there's nothing we can 5058 // do here and the operand rules may not line up with the below, so 5059 // bail early. 5060 if (Opcode >= ISD::BUILTIN_OP_END) 5061 return SDValue(); 5062 5063 if (isUndef(Opcode, Ops)) 5064 return getUNDEF(VT); 5065 5066 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 5067 if (!VT.isVector()) 5068 return SDValue(); 5069 5070 // TODO: All the folds below are performed lane-by-lane and assume a fixed 5071 // vector width, however we should be able to do constant folds involving 5072 // splat vector nodes too. 5073 if (VT.isScalableVector()) 5074 return SDValue(); 5075 5076 // From this point onwards all vectors are assumed to be fixed width. 5077 unsigned NumElts = VT.getVectorNumElements(); 5078 5079 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 5080 return !Op.getValueType().isVector() || 5081 Op.getValueType().getVectorNumElements() == NumElts; 5082 }; 5083 5084 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 5085 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 5086 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 5087 (BV && BV->isConstant()); 5088 }; 5089 5090 // All operands must be vector types with the same number of elements as 5091 // the result type and must be either UNDEF or a build vector of constant 5092 // or UNDEF scalars. 5093 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 5094 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5095 return SDValue(); 5096 5097 // If we are comparing vectors, then the result needs to be a i1 boolean 5098 // that is then sign-extended back to the legal result type. 5099 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5100 5101 // Find legal integer scalar type for constant promotion and 5102 // ensure that its scalar size is at least as large as source. 5103 EVT LegalSVT = VT.getScalarType(); 5104 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5105 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5106 if (LegalSVT.bitsLT(VT.getScalarType())) 5107 return SDValue(); 5108 } 5109 5110 // Constant fold each scalar lane separately. 5111 SmallVector<SDValue, 4> ScalarResults; 5112 for (unsigned i = 0; i != NumElts; i++) { 5113 SmallVector<SDValue, 4> ScalarOps; 5114 for (SDValue Op : Ops) { 5115 EVT InSVT = Op.getValueType().getScalarType(); 5116 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 5117 if (!InBV) { 5118 // We've checked that this is UNDEF or a constant of some kind. 5119 if (Op.isUndef()) 5120 ScalarOps.push_back(getUNDEF(InSVT)); 5121 else 5122 ScalarOps.push_back(Op); 5123 continue; 5124 } 5125 5126 SDValue ScalarOp = InBV->getOperand(i); 5127 EVT ScalarVT = ScalarOp.getValueType(); 5128 5129 // Build vector (integer) scalar operands may need implicit 5130 // truncation - do this before constant folding. 5131 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5132 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5133 5134 ScalarOps.push_back(ScalarOp); 5135 } 5136 5137 // Constant fold the scalar operands. 5138 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5139 5140 // Legalize the (integer) scalar constant if necessary. 5141 if (LegalSVT != SVT) 5142 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5143 5144 // Scalar folding only succeeded if the result is a constant or UNDEF. 5145 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5146 ScalarResult.getOpcode() != ISD::ConstantFP) 5147 return SDValue(); 5148 ScalarResults.push_back(ScalarResult); 5149 } 5150 5151 SDValue V = getBuildVector(VT, DL, ScalarResults); 5152 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5153 return V; 5154 } 5155 5156 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5157 EVT VT, SDValue N1, SDValue N2) { 5158 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5159 // should. That will require dealing with a potentially non-default 5160 // rounding mode, checking the "opStatus" return value from the APFloat 5161 // math calculations, and possibly other variations. 5162 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5163 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5164 if (N1CFP && N2CFP) { 5165 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5166 switch (Opcode) { 5167 case ISD::FADD: 5168 C1.add(C2, APFloat::rmNearestTiesToEven); 5169 return getConstantFP(C1, DL, VT); 5170 case ISD::FSUB: 5171 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5172 return getConstantFP(C1, DL, VT); 5173 case ISD::FMUL: 5174 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5175 return getConstantFP(C1, DL, VT); 5176 case ISD::FDIV: 5177 C1.divide(C2, APFloat::rmNearestTiesToEven); 5178 return getConstantFP(C1, DL, VT); 5179 case ISD::FREM: 5180 C1.mod(C2); 5181 return getConstantFP(C1, DL, VT); 5182 case ISD::FCOPYSIGN: 5183 C1.copySign(C2); 5184 return getConstantFP(C1, DL, VT); 5185 default: break; 5186 } 5187 } 5188 if (N1CFP && Opcode == ISD::FP_ROUND) { 5189 APFloat C1 = N1CFP->getValueAPF(); // make copy 5190 bool Unused; 5191 // This can return overflow, underflow, or inexact; we don't care. 5192 // FIXME need to be more flexible about rounding mode. 5193 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5194 &Unused); 5195 return getConstantFP(C1, DL, VT); 5196 } 5197 5198 switch (Opcode) { 5199 case ISD::FSUB: 5200 // -0.0 - undef --> undef (consistent with "fneg undef") 5201 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5202 return getUNDEF(VT); 5203 LLVM_FALLTHROUGH; 5204 5205 case ISD::FADD: 5206 case ISD::FMUL: 5207 case ISD::FDIV: 5208 case ISD::FREM: 5209 // If both operands are undef, the result is undef. If 1 operand is undef, 5210 // the result is NaN. This should match the behavior of the IR optimizer. 5211 if (N1.isUndef() && N2.isUndef()) 5212 return getUNDEF(VT); 5213 if (N1.isUndef() || N2.isUndef()) 5214 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5215 } 5216 return SDValue(); 5217 } 5218 5219 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5220 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5221 5222 // There's no need to assert on a byte-aligned pointer. All pointers are at 5223 // least byte aligned. 5224 if (A == Align(1)) 5225 return Val; 5226 5227 FoldingSetNodeID ID; 5228 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5229 ID.AddInteger(A.value()); 5230 5231 void *IP = nullptr; 5232 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5233 return SDValue(E, 0); 5234 5235 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5236 Val.getValueType(), A); 5237 createOperands(N, {Val}); 5238 5239 CSEMap.InsertNode(N, IP); 5240 InsertNode(N); 5241 5242 SDValue V(N, 0); 5243 NewSDValueDbgMsg(V, "Creating new node: ", this); 5244 return V; 5245 } 5246 5247 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5248 SDValue N1, SDValue N2) { 5249 SDNodeFlags Flags; 5250 if (Inserter) 5251 Flags = Inserter->getFlags(); 5252 return getNode(Opcode, DL, VT, N1, N2, Flags); 5253 } 5254 5255 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5256 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5257 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5258 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5259 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5260 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5261 5262 // Canonicalize constant to RHS if commutative. 5263 if (TLI->isCommutativeBinOp(Opcode)) { 5264 if (N1C && !N2C) { 5265 std::swap(N1C, N2C); 5266 std::swap(N1, N2); 5267 } else if (N1CFP && !N2CFP) { 5268 std::swap(N1CFP, N2CFP); 5269 std::swap(N1, N2); 5270 } 5271 } 5272 5273 switch (Opcode) { 5274 default: break; 5275 case ISD::TokenFactor: 5276 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5277 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5278 // Fold trivial token factors. 5279 if (N1.getOpcode() == ISD::EntryToken) return N2; 5280 if (N2.getOpcode() == ISD::EntryToken) return N1; 5281 if (N1 == N2) return N1; 5282 break; 5283 case ISD::BUILD_VECTOR: { 5284 // Attempt to simplify BUILD_VECTOR. 5285 SDValue Ops[] = {N1, N2}; 5286 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5287 return V; 5288 break; 5289 } 5290 case ISD::CONCAT_VECTORS: { 5291 SDValue Ops[] = {N1, N2}; 5292 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5293 return V; 5294 break; 5295 } 5296 case ISD::AND: 5297 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5298 assert(N1.getValueType() == N2.getValueType() && 5299 N1.getValueType() == VT && "Binary operator types must match!"); 5300 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5301 // worth handling here. 5302 if (N2C && N2C->isNullValue()) 5303 return N2; 5304 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5305 return N1; 5306 break; 5307 case ISD::OR: 5308 case ISD::XOR: 5309 case ISD::ADD: 5310 case ISD::SUB: 5311 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5312 assert(N1.getValueType() == N2.getValueType() && 5313 N1.getValueType() == VT && "Binary operator types must match!"); 5314 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5315 // it's worth handling here. 5316 if (N2C && N2C->isNullValue()) 5317 return N1; 5318 break; 5319 case ISD::MUL: 5320 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5321 assert(N1.getValueType() == N2.getValueType() && 5322 N1.getValueType() == VT && "Binary operator types must match!"); 5323 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5324 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5325 const APInt &N2CImm = N2C->getAPIntValue(); 5326 return getVScale(DL, VT, MulImm * N2CImm); 5327 } 5328 break; 5329 case ISD::UDIV: 5330 case ISD::UREM: 5331 case ISD::MULHU: 5332 case ISD::MULHS: 5333 case ISD::SDIV: 5334 case ISD::SREM: 5335 case ISD::SADDSAT: 5336 case ISD::SSUBSAT: 5337 case ISD::UADDSAT: 5338 case ISD::USUBSAT: 5339 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5340 assert(N1.getValueType() == N2.getValueType() && 5341 N1.getValueType() == VT && "Binary operator types must match!"); 5342 break; 5343 case ISD::SMIN: 5344 case ISD::UMAX: 5345 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5346 assert(N1.getValueType() == N2.getValueType() && 5347 N1.getValueType() == VT && "Binary operator types must match!"); 5348 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5349 return getNode(ISD::OR, DL, VT, N1, N2); 5350 break; 5351 case ISD::SMAX: 5352 case ISD::UMIN: 5353 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5354 assert(N1.getValueType() == N2.getValueType() && 5355 N1.getValueType() == VT && "Binary operator types must match!"); 5356 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5357 return getNode(ISD::AND, DL, VT, N1, N2); 5358 break; 5359 case ISD::FADD: 5360 case ISD::FSUB: 5361 case ISD::FMUL: 5362 case ISD::FDIV: 5363 case ISD::FREM: 5364 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5365 assert(N1.getValueType() == N2.getValueType() && 5366 N1.getValueType() == VT && "Binary operator types must match!"); 5367 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5368 return V; 5369 break; 5370 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5371 assert(N1.getValueType() == VT && 5372 N1.getValueType().isFloatingPoint() && 5373 N2.getValueType().isFloatingPoint() && 5374 "Invalid FCOPYSIGN!"); 5375 break; 5376 case ISD::SHL: 5377 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5378 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5379 const APInt &ShiftImm = N2C->getAPIntValue(); 5380 return getVScale(DL, VT, MulImm << ShiftImm); 5381 } 5382 LLVM_FALLTHROUGH; 5383 case ISD::SRA: 5384 case ISD::SRL: 5385 if (SDValue V = simplifyShift(N1, N2)) 5386 return V; 5387 LLVM_FALLTHROUGH; 5388 case ISD::ROTL: 5389 case ISD::ROTR: 5390 assert(VT == N1.getValueType() && 5391 "Shift operators return type must be the same as their first arg"); 5392 assert(VT.isInteger() && N2.getValueType().isInteger() && 5393 "Shifts only work on integers"); 5394 assert((!VT.isVector() || VT == N2.getValueType()) && 5395 "Vector shift amounts must be in the same as their first arg"); 5396 // Verify that the shift amount VT is big enough to hold valid shift 5397 // amounts. This catches things like trying to shift an i1024 value by an 5398 // i8, which is easy to fall into in generic code that uses 5399 // TLI.getShiftAmount(). 5400 assert(N2.getValueType().getScalarSizeInBits() >= 5401 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5402 "Invalid use of small shift amount with oversized value!"); 5403 5404 // Always fold shifts of i1 values so the code generator doesn't need to 5405 // handle them. Since we know the size of the shift has to be less than the 5406 // size of the value, the shift/rotate count is guaranteed to be zero. 5407 if (VT == MVT::i1) 5408 return N1; 5409 if (N2C && N2C->isNullValue()) 5410 return N1; 5411 break; 5412 case ISD::FP_ROUND: 5413 assert(VT.isFloatingPoint() && 5414 N1.getValueType().isFloatingPoint() && 5415 VT.bitsLE(N1.getValueType()) && 5416 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5417 "Invalid FP_ROUND!"); 5418 if (N1.getValueType() == VT) return N1; // noop conversion. 5419 break; 5420 case ISD::AssertSext: 5421 case ISD::AssertZext: { 5422 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5423 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5424 assert(VT.isInteger() && EVT.isInteger() && 5425 "Cannot *_EXTEND_INREG FP types"); 5426 assert(!EVT.isVector() && 5427 "AssertSExt/AssertZExt type should be the vector element type " 5428 "rather than the vector type!"); 5429 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5430 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5431 break; 5432 } 5433 case ISD::SIGN_EXTEND_INREG: { 5434 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5435 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5436 assert(VT.isInteger() && EVT.isInteger() && 5437 "Cannot *_EXTEND_INREG FP types"); 5438 assert(EVT.isVector() == VT.isVector() && 5439 "SIGN_EXTEND_INREG type should be vector iff the operand " 5440 "type is vector!"); 5441 assert((!EVT.isVector() || 5442 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5443 "Vector element counts must match in SIGN_EXTEND_INREG"); 5444 assert(EVT.bitsLE(VT) && "Not extending!"); 5445 if (EVT == VT) return N1; // Not actually extending 5446 5447 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5448 unsigned FromBits = EVT.getScalarSizeInBits(); 5449 Val <<= Val.getBitWidth() - FromBits; 5450 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5451 return getConstant(Val, DL, ConstantVT); 5452 }; 5453 5454 if (N1C) { 5455 const APInt &Val = N1C->getAPIntValue(); 5456 return SignExtendInReg(Val, VT); 5457 } 5458 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5459 SmallVector<SDValue, 8> Ops; 5460 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5461 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5462 SDValue Op = N1.getOperand(i); 5463 if (Op.isUndef()) { 5464 Ops.push_back(getUNDEF(OpVT)); 5465 continue; 5466 } 5467 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5468 APInt Val = C->getAPIntValue(); 5469 Ops.push_back(SignExtendInReg(Val, OpVT)); 5470 } 5471 return getBuildVector(VT, DL, Ops); 5472 } 5473 break; 5474 } 5475 case ISD::EXTRACT_VECTOR_ELT: 5476 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5477 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5478 element type of the vector."); 5479 5480 // Extract from an undefined value or using an undefined index is undefined. 5481 if (N1.isUndef() || N2.isUndef()) 5482 return getUNDEF(VT); 5483 5484 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5485 // vectors. For scalable vectors we will provide appropriate support for 5486 // dealing with arbitrary indices. 5487 if (N2C && N1.getValueType().isFixedLengthVector() && 5488 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5489 return getUNDEF(VT); 5490 5491 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5492 // expanding copies of large vectors from registers. This only works for 5493 // fixed length vectors, since we need to know the exact number of 5494 // elements. 5495 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5496 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5497 unsigned Factor = 5498 N1.getOperand(0).getValueType().getVectorNumElements(); 5499 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5500 N1.getOperand(N2C->getZExtValue() / Factor), 5501 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5502 } 5503 5504 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5505 // lowering is expanding large vector constants. 5506 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5507 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5508 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5509 N1.getValueType().isFixedLengthVector()) && 5510 "BUILD_VECTOR used for scalable vectors"); 5511 unsigned Index = 5512 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5513 SDValue Elt = N1.getOperand(Index); 5514 5515 if (VT != Elt.getValueType()) 5516 // If the vector element type is not legal, the BUILD_VECTOR operands 5517 // are promoted and implicitly truncated, and the result implicitly 5518 // extended. Make that explicit here. 5519 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5520 5521 return Elt; 5522 } 5523 5524 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5525 // operations are lowered to scalars. 5526 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5527 // If the indices are the same, return the inserted element else 5528 // if the indices are known different, extract the element from 5529 // the original vector. 5530 SDValue N1Op2 = N1.getOperand(2); 5531 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5532 5533 if (N1Op2C && N2C) { 5534 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5535 if (VT == N1.getOperand(1).getValueType()) 5536 return N1.getOperand(1); 5537 else 5538 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5539 } 5540 5541 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5542 } 5543 } 5544 5545 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5546 // when vector types are scalarized and v1iX is legal. 5547 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5548 // Here we are completely ignoring the extract element index (N2), 5549 // which is fine for fixed width vectors, since any index other than 0 5550 // is undefined anyway. However, this cannot be ignored for scalable 5551 // vectors - in theory we could support this, but we don't want to do this 5552 // without a profitability check. 5553 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5554 N1.getValueType().isFixedLengthVector() && 5555 N1.getValueType().getVectorNumElements() == 1) { 5556 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5557 N1.getOperand(1)); 5558 } 5559 break; 5560 case ISD::EXTRACT_ELEMENT: 5561 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5562 assert(!N1.getValueType().isVector() && !VT.isVector() && 5563 (N1.getValueType().isInteger() == VT.isInteger()) && 5564 N1.getValueType() != VT && 5565 "Wrong types for EXTRACT_ELEMENT!"); 5566 5567 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5568 // 64-bit integers into 32-bit parts. Instead of building the extract of 5569 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5570 if (N1.getOpcode() == ISD::BUILD_PAIR) 5571 return N1.getOperand(N2C->getZExtValue()); 5572 5573 // EXTRACT_ELEMENT of a constant int is also very common. 5574 if (N1C) { 5575 unsigned ElementSize = VT.getSizeInBits(); 5576 unsigned Shift = ElementSize * N2C->getZExtValue(); 5577 const APInt &Val = N1C->getAPIntValue(); 5578 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 5579 } 5580 break; 5581 case ISD::EXTRACT_SUBVECTOR: 5582 EVT N1VT = N1.getValueType(); 5583 assert(VT.isVector() && N1VT.isVector() && 5584 "Extract subvector VTs must be vectors!"); 5585 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5586 "Extract subvector VTs must have the same element type!"); 5587 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5588 "Cannot extract a scalable vector from a fixed length vector!"); 5589 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5590 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5591 "Extract subvector must be from larger vector to smaller vector!"); 5592 assert(N2C && "Extract subvector index must be a constant"); 5593 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5594 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5595 N1VT.getVectorMinNumElements()) && 5596 "Extract subvector overflow!"); 5597 assert(N2C->getAPIntValue().getBitWidth() == 5598 TLI->getVectorIdxTy(getDataLayout()) 5599 .getSizeInBits() 5600 .getFixedSize() && 5601 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5602 5603 // Trivial extraction. 5604 if (VT == N1VT) 5605 return N1; 5606 5607 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5608 if (N1.isUndef()) 5609 return getUNDEF(VT); 5610 5611 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5612 // the concat have the same type as the extract. 5613 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 5614 VT == N1.getOperand(0).getValueType()) { 5615 unsigned Factor = VT.getVectorMinNumElements(); 5616 return N1.getOperand(N2C->getZExtValue() / Factor); 5617 } 5618 5619 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5620 // during shuffle legalization. 5621 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5622 VT == N1.getOperand(1).getValueType()) 5623 return N1.getOperand(1); 5624 break; 5625 } 5626 5627 // Perform trivial constant folding. 5628 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5629 return SV; 5630 5631 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5632 return V; 5633 5634 // Canonicalize an UNDEF to the RHS, even over a constant. 5635 if (N1.isUndef()) { 5636 if (TLI->isCommutativeBinOp(Opcode)) { 5637 std::swap(N1, N2); 5638 } else { 5639 switch (Opcode) { 5640 case ISD::SIGN_EXTEND_INREG: 5641 case ISD::SUB: 5642 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5643 case ISD::UDIV: 5644 case ISD::SDIV: 5645 case ISD::UREM: 5646 case ISD::SREM: 5647 case ISD::SSUBSAT: 5648 case ISD::USUBSAT: 5649 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5650 } 5651 } 5652 } 5653 5654 // Fold a bunch of operators when the RHS is undef. 5655 if (N2.isUndef()) { 5656 switch (Opcode) { 5657 case ISD::XOR: 5658 if (N1.isUndef()) 5659 // Handle undef ^ undef -> 0 special case. This is a common 5660 // idiom (misuse). 5661 return getConstant(0, DL, VT); 5662 LLVM_FALLTHROUGH; 5663 case ISD::ADD: 5664 case ISD::SUB: 5665 case ISD::UDIV: 5666 case ISD::SDIV: 5667 case ISD::UREM: 5668 case ISD::SREM: 5669 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5670 case ISD::MUL: 5671 case ISD::AND: 5672 case ISD::SSUBSAT: 5673 case ISD::USUBSAT: 5674 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5675 case ISD::OR: 5676 case ISD::SADDSAT: 5677 case ISD::UADDSAT: 5678 return getAllOnesConstant(DL, VT); 5679 } 5680 } 5681 5682 // Memoize this node if possible. 5683 SDNode *N; 5684 SDVTList VTs = getVTList(VT); 5685 SDValue Ops[] = {N1, N2}; 5686 if (VT != MVT::Glue) { 5687 FoldingSetNodeID ID; 5688 AddNodeIDNode(ID, Opcode, VTs, Ops); 5689 void *IP = nullptr; 5690 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5691 E->intersectFlagsWith(Flags); 5692 return SDValue(E, 0); 5693 } 5694 5695 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5696 N->setFlags(Flags); 5697 createOperands(N, Ops); 5698 CSEMap.InsertNode(N, IP); 5699 } else { 5700 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5701 createOperands(N, Ops); 5702 } 5703 5704 InsertNode(N); 5705 SDValue V = SDValue(N, 0); 5706 NewSDValueDbgMsg(V, "Creating new node: ", this); 5707 return V; 5708 } 5709 5710 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5711 SDValue N1, SDValue N2, SDValue N3) { 5712 SDNodeFlags Flags; 5713 if (Inserter) 5714 Flags = Inserter->getFlags(); 5715 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 5716 } 5717 5718 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5719 SDValue N1, SDValue N2, SDValue N3, 5720 const SDNodeFlags Flags) { 5721 // Perform various simplifications. 5722 switch (Opcode) { 5723 case ISD::FMA: { 5724 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5725 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5726 N3.getValueType() == VT && "FMA types must match!"); 5727 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5728 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5729 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5730 if (N1CFP && N2CFP && N3CFP) { 5731 APFloat V1 = N1CFP->getValueAPF(); 5732 const APFloat &V2 = N2CFP->getValueAPF(); 5733 const APFloat &V3 = N3CFP->getValueAPF(); 5734 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5735 return getConstantFP(V1, DL, VT); 5736 } 5737 break; 5738 } 5739 case ISD::BUILD_VECTOR: { 5740 // Attempt to simplify BUILD_VECTOR. 5741 SDValue Ops[] = {N1, N2, N3}; 5742 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5743 return V; 5744 break; 5745 } 5746 case ISD::CONCAT_VECTORS: { 5747 SDValue Ops[] = {N1, N2, N3}; 5748 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5749 return V; 5750 break; 5751 } 5752 case ISD::SETCC: { 5753 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5754 assert(N1.getValueType() == N2.getValueType() && 5755 "SETCC operands must have the same type!"); 5756 assert(VT.isVector() == N1.getValueType().isVector() && 5757 "SETCC type should be vector iff the operand type is vector!"); 5758 assert((!VT.isVector() || VT.getVectorElementCount() == 5759 N1.getValueType().getVectorElementCount()) && 5760 "SETCC vector element counts must match!"); 5761 // Use FoldSetCC to simplify SETCC's. 5762 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5763 return V; 5764 // Vector constant folding. 5765 SDValue Ops[] = {N1, N2, N3}; 5766 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5767 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5768 return V; 5769 } 5770 break; 5771 } 5772 case ISD::SELECT: 5773 case ISD::VSELECT: 5774 if (SDValue V = simplifySelect(N1, N2, N3)) 5775 return V; 5776 break; 5777 case ISD::VECTOR_SHUFFLE: 5778 llvm_unreachable("should use getVectorShuffle constructor!"); 5779 case ISD::INSERT_VECTOR_ELT: { 5780 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5781 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 5782 // for scalable vectors where we will generate appropriate code to 5783 // deal with out-of-bounds cases correctly. 5784 if (N3C && N1.getValueType().isFixedLengthVector() && 5785 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5786 return getUNDEF(VT); 5787 5788 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 5789 if (N3.isUndef()) 5790 return getUNDEF(VT); 5791 5792 // If the inserted element is an UNDEF, just use the input vector. 5793 if (N2.isUndef()) 5794 return N1; 5795 5796 break; 5797 } 5798 case ISD::INSERT_SUBVECTOR: { 5799 // Inserting undef into undef is still undef. 5800 if (N1.isUndef() && N2.isUndef()) 5801 return getUNDEF(VT); 5802 5803 EVT N2VT = N2.getValueType(); 5804 assert(VT == N1.getValueType() && 5805 "Dest and insert subvector source types must match!"); 5806 assert(VT.isVector() && N2VT.isVector() && 5807 "Insert subvector VTs must be vectors!"); 5808 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 5809 "Cannot insert a scalable vector into a fixed length vector!"); 5810 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5811 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 5812 "Insert subvector must be from smaller vector to larger vector!"); 5813 assert(isa<ConstantSDNode>(N3) && 5814 "Insert subvector index must be constant"); 5815 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5816 (N2VT.getVectorMinNumElements() + 5817 cast<ConstantSDNode>(N3)->getZExtValue()) <= 5818 VT.getVectorMinNumElements()) && 5819 "Insert subvector overflow!"); 5820 5821 // Trivial insertion. 5822 if (VT == N2VT) 5823 return N2; 5824 5825 // If this is an insert of an extracted vector into an undef vector, we 5826 // can just use the input to the extract. 5827 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5828 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5829 return N2.getOperand(0); 5830 break; 5831 } 5832 case ISD::BITCAST: 5833 // Fold bit_convert nodes from a type to themselves. 5834 if (N1.getValueType() == VT) 5835 return N1; 5836 break; 5837 } 5838 5839 // Memoize node if it doesn't produce a flag. 5840 SDNode *N; 5841 SDVTList VTs = getVTList(VT); 5842 SDValue Ops[] = {N1, N2, N3}; 5843 if (VT != MVT::Glue) { 5844 FoldingSetNodeID ID; 5845 AddNodeIDNode(ID, Opcode, VTs, Ops); 5846 void *IP = nullptr; 5847 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5848 E->intersectFlagsWith(Flags); 5849 return SDValue(E, 0); 5850 } 5851 5852 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5853 N->setFlags(Flags); 5854 createOperands(N, Ops); 5855 CSEMap.InsertNode(N, IP); 5856 } else { 5857 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5858 createOperands(N, Ops); 5859 } 5860 5861 InsertNode(N); 5862 SDValue V = SDValue(N, 0); 5863 NewSDValueDbgMsg(V, "Creating new node: ", this); 5864 return V; 5865 } 5866 5867 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5868 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5869 SDValue Ops[] = { N1, N2, N3, N4 }; 5870 return getNode(Opcode, DL, VT, Ops); 5871 } 5872 5873 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5874 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5875 SDValue N5) { 5876 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5877 return getNode(Opcode, DL, VT, Ops); 5878 } 5879 5880 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5881 /// the incoming stack arguments to be loaded from the stack. 5882 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5883 SmallVector<SDValue, 8> ArgChains; 5884 5885 // Include the original chain at the beginning of the list. When this is 5886 // used by target LowerCall hooks, this helps legalize find the 5887 // CALLSEQ_BEGIN node. 5888 ArgChains.push_back(Chain); 5889 5890 // Add a chain value for each stack argument. 5891 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5892 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5893 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5894 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5895 if (FI->getIndex() < 0) 5896 ArgChains.push_back(SDValue(L, 1)); 5897 5898 // Build a tokenfactor for all the chains. 5899 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5900 } 5901 5902 /// getMemsetValue - Vectorized representation of the memset value 5903 /// operand. 5904 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5905 const SDLoc &dl) { 5906 assert(!Value.isUndef()); 5907 5908 unsigned NumBits = VT.getScalarSizeInBits(); 5909 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5910 assert(C->getAPIntValue().getBitWidth() == 8); 5911 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5912 if (VT.isInteger()) { 5913 bool IsOpaque = VT.getSizeInBits() > 64 || 5914 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5915 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5916 } 5917 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5918 VT); 5919 } 5920 5921 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5922 EVT IntVT = VT.getScalarType(); 5923 if (!IntVT.isInteger()) 5924 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5925 5926 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5927 if (NumBits > 8) { 5928 // Use a multiplication with 0x010101... to extend the input to the 5929 // required length. 5930 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5931 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5932 DAG.getConstant(Magic, dl, IntVT)); 5933 } 5934 5935 if (VT != Value.getValueType() && !VT.isInteger()) 5936 Value = DAG.getBitcast(VT.getScalarType(), Value); 5937 if (VT != Value.getValueType()) 5938 Value = DAG.getSplatBuildVector(VT, dl, Value); 5939 5940 return Value; 5941 } 5942 5943 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5944 /// used when a memcpy is turned into a memset when the source is a constant 5945 /// string ptr. 5946 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5947 const TargetLowering &TLI, 5948 const ConstantDataArraySlice &Slice) { 5949 // Handle vector with all elements zero. 5950 if (Slice.Array == nullptr) { 5951 if (VT.isInteger()) 5952 return DAG.getConstant(0, dl, VT); 5953 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5954 return DAG.getConstantFP(0.0, dl, VT); 5955 else if (VT.isVector()) { 5956 unsigned NumElts = VT.getVectorNumElements(); 5957 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5958 return DAG.getNode(ISD::BITCAST, dl, VT, 5959 DAG.getConstant(0, dl, 5960 EVT::getVectorVT(*DAG.getContext(), 5961 EltVT, NumElts))); 5962 } else 5963 llvm_unreachable("Expected type!"); 5964 } 5965 5966 assert(!VT.isVector() && "Can't handle vector type here!"); 5967 unsigned NumVTBits = VT.getSizeInBits(); 5968 unsigned NumVTBytes = NumVTBits / 8; 5969 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5970 5971 APInt Val(NumVTBits, 0); 5972 if (DAG.getDataLayout().isLittleEndian()) { 5973 for (unsigned i = 0; i != NumBytes; ++i) 5974 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5975 } else { 5976 for (unsigned i = 0; i != NumBytes; ++i) 5977 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5978 } 5979 5980 // If the "cost" of materializing the integer immediate is less than the cost 5981 // of a load, then it is cost effective to turn the load into the immediate. 5982 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5983 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5984 return DAG.getConstant(Val, dl, VT); 5985 return SDValue(nullptr, 0); 5986 } 5987 5988 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 5989 const SDLoc &DL, 5990 const SDNodeFlags Flags) { 5991 EVT VT = Base.getValueType(); 5992 SDValue Index; 5993 5994 if (Offset.isScalable()) 5995 Index = getVScale(DL, Base.getValueType(), 5996 APInt(Base.getValueSizeInBits().getFixedSize(), 5997 Offset.getKnownMinSize())); 5998 else 5999 Index = getConstant(Offset.getFixedSize(), DL, VT); 6000 6001 return getMemBasePlusOffset(Base, Index, DL, Flags); 6002 } 6003 6004 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6005 const SDLoc &DL, 6006 const SDNodeFlags Flags) { 6007 assert(Offset.getValueType().isInteger()); 6008 EVT BasePtrVT = Ptr.getValueType(); 6009 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6010 } 6011 6012 /// Returns true if memcpy source is constant data. 6013 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6014 uint64_t SrcDelta = 0; 6015 GlobalAddressSDNode *G = nullptr; 6016 if (Src.getOpcode() == ISD::GlobalAddress) 6017 G = cast<GlobalAddressSDNode>(Src); 6018 else if (Src.getOpcode() == ISD::ADD && 6019 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6020 Src.getOperand(1).getOpcode() == ISD::Constant) { 6021 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6022 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6023 } 6024 if (!G) 6025 return false; 6026 6027 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6028 SrcDelta + G->getOffset()); 6029 } 6030 6031 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6032 SelectionDAG &DAG) { 6033 // On Darwin, -Os means optimize for size without hurting performance, so 6034 // only really optimize for size when -Oz (MinSize) is used. 6035 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6036 return MF.getFunction().hasMinSize(); 6037 return DAG.shouldOptForSize(); 6038 } 6039 6040 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6041 SmallVector<SDValue, 32> &OutChains, unsigned From, 6042 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6043 SmallVector<SDValue, 16> &OutStoreChains) { 6044 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6045 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6046 SmallVector<SDValue, 16> GluedLoadChains; 6047 for (unsigned i = From; i < To; ++i) { 6048 OutChains.push_back(OutLoadChains[i]); 6049 GluedLoadChains.push_back(OutLoadChains[i]); 6050 } 6051 6052 // Chain for all loads. 6053 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6054 GluedLoadChains); 6055 6056 for (unsigned i = From; i < To; ++i) { 6057 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6058 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6059 ST->getBasePtr(), ST->getMemoryVT(), 6060 ST->getMemOperand()); 6061 OutChains.push_back(NewStore); 6062 } 6063 } 6064 6065 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6066 SDValue Chain, SDValue Dst, SDValue Src, 6067 uint64_t Size, Align Alignment, 6068 bool isVol, bool AlwaysInline, 6069 MachinePointerInfo DstPtrInfo, 6070 MachinePointerInfo SrcPtrInfo) { 6071 // Turn a memcpy of undef to nop. 6072 // FIXME: We need to honor volatile even is Src is undef. 6073 if (Src.isUndef()) 6074 return Chain; 6075 6076 // Expand memcpy to a series of load and store ops if the size operand falls 6077 // below a certain threshold. 6078 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6079 // rather than maybe a humongous number of loads and stores. 6080 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6081 const DataLayout &DL = DAG.getDataLayout(); 6082 LLVMContext &C = *DAG.getContext(); 6083 std::vector<EVT> MemOps; 6084 bool DstAlignCanChange = false; 6085 MachineFunction &MF = DAG.getMachineFunction(); 6086 MachineFrameInfo &MFI = MF.getFrameInfo(); 6087 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6088 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6089 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6090 DstAlignCanChange = true; 6091 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6092 if (!SrcAlign || Alignment > *SrcAlign) 6093 SrcAlign = Alignment; 6094 assert(SrcAlign && "SrcAlign must be set"); 6095 ConstantDataArraySlice Slice; 6096 // If marked as volatile, perform a copy even when marked as constant. 6097 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6098 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6099 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6100 const MemOp Op = isZeroConstant 6101 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6102 /*IsZeroMemset*/ true, isVol) 6103 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6104 *SrcAlign, isVol, CopyFromConstant); 6105 if (!TLI.findOptimalMemOpLowering( 6106 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6107 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6108 return SDValue(); 6109 6110 if (DstAlignCanChange) { 6111 Type *Ty = MemOps[0].getTypeForEVT(C); 6112 Align NewAlign = DL.getABITypeAlign(Ty); 6113 6114 // Don't promote to an alignment that would require dynamic stack 6115 // realignment. 6116 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6117 if (!TRI->needsStackRealignment(MF)) 6118 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6119 NewAlign = NewAlign / 2; 6120 6121 if (NewAlign > Alignment) { 6122 // Give the stack frame object a larger alignment if needed. 6123 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6124 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6125 Alignment = NewAlign; 6126 } 6127 } 6128 6129 MachineMemOperand::Flags MMOFlags = 6130 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6131 SmallVector<SDValue, 16> OutLoadChains; 6132 SmallVector<SDValue, 16> OutStoreChains; 6133 SmallVector<SDValue, 32> OutChains; 6134 unsigned NumMemOps = MemOps.size(); 6135 uint64_t SrcOff = 0, DstOff = 0; 6136 for (unsigned i = 0; i != NumMemOps; ++i) { 6137 EVT VT = MemOps[i]; 6138 unsigned VTSize = VT.getSizeInBits() / 8; 6139 SDValue Value, Store; 6140 6141 if (VTSize > Size) { 6142 // Issuing an unaligned load / store pair that overlaps with the previous 6143 // pair. Adjust the offset accordingly. 6144 assert(i == NumMemOps-1 && i != 0); 6145 SrcOff -= VTSize - Size; 6146 DstOff -= VTSize - Size; 6147 } 6148 6149 if (CopyFromConstant && 6150 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6151 // It's unlikely a store of a vector immediate can be done in a single 6152 // instruction. It would require a load from a constantpool first. 6153 // We only handle zero vectors here. 6154 // FIXME: Handle other cases where store of vector immediate is done in 6155 // a single instruction. 6156 ConstantDataArraySlice SubSlice; 6157 if (SrcOff < Slice.Length) { 6158 SubSlice = Slice; 6159 SubSlice.move(SrcOff); 6160 } else { 6161 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6162 SubSlice.Array = nullptr; 6163 SubSlice.Offset = 0; 6164 SubSlice.Length = VTSize; 6165 } 6166 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6167 if (Value.getNode()) { 6168 Store = DAG.getStore( 6169 Chain, dl, Value, 6170 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6171 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6172 OutChains.push_back(Store); 6173 } 6174 } 6175 6176 if (!Store.getNode()) { 6177 // The type might not be legal for the target. This should only happen 6178 // if the type is smaller than a legal type, as on PPC, so the right 6179 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6180 // to Load/Store if NVT==VT. 6181 // FIXME does the case above also need this? 6182 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6183 assert(NVT.bitsGE(VT)); 6184 6185 bool isDereferenceable = 6186 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6187 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6188 if (isDereferenceable) 6189 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6190 6191 Value = DAG.getExtLoad( 6192 ISD::EXTLOAD, dl, NVT, Chain, 6193 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6194 SrcPtrInfo.getWithOffset(SrcOff), VT, 6195 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags); 6196 OutLoadChains.push_back(Value.getValue(1)); 6197 6198 Store = DAG.getTruncStore( 6199 Chain, dl, Value, 6200 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6201 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags); 6202 OutStoreChains.push_back(Store); 6203 } 6204 SrcOff += VTSize; 6205 DstOff += VTSize; 6206 Size -= VTSize; 6207 } 6208 6209 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6210 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6211 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6212 6213 if (NumLdStInMemcpy) { 6214 // It may be that memcpy might be converted to memset if it's memcpy 6215 // of constants. In such a case, we won't have loads and stores, but 6216 // just stores. In the absence of loads, there is nothing to gang up. 6217 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6218 // If target does not care, just leave as it. 6219 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6220 OutChains.push_back(OutLoadChains[i]); 6221 OutChains.push_back(OutStoreChains[i]); 6222 } 6223 } else { 6224 // Ld/St less than/equal limit set by target. 6225 if (NumLdStInMemcpy <= GluedLdStLimit) { 6226 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6227 NumLdStInMemcpy, OutLoadChains, 6228 OutStoreChains); 6229 } else { 6230 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6231 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6232 unsigned GlueIter = 0; 6233 6234 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6235 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6236 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6237 6238 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6239 OutLoadChains, OutStoreChains); 6240 GlueIter += GluedLdStLimit; 6241 } 6242 6243 // Residual ld/st. 6244 if (RemainingLdStInMemcpy) { 6245 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6246 RemainingLdStInMemcpy, OutLoadChains, 6247 OutStoreChains); 6248 } 6249 } 6250 } 6251 } 6252 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6253 } 6254 6255 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6256 SDValue Chain, SDValue Dst, SDValue Src, 6257 uint64_t Size, Align Alignment, 6258 bool isVol, bool AlwaysInline, 6259 MachinePointerInfo DstPtrInfo, 6260 MachinePointerInfo SrcPtrInfo) { 6261 // Turn a memmove of undef to nop. 6262 // FIXME: We need to honor volatile even is Src is undef. 6263 if (Src.isUndef()) 6264 return Chain; 6265 6266 // Expand memmove to a series of load and store ops if the size operand falls 6267 // below a certain threshold. 6268 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6269 const DataLayout &DL = DAG.getDataLayout(); 6270 LLVMContext &C = *DAG.getContext(); 6271 std::vector<EVT> MemOps; 6272 bool DstAlignCanChange = false; 6273 MachineFunction &MF = DAG.getMachineFunction(); 6274 MachineFrameInfo &MFI = MF.getFrameInfo(); 6275 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6276 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6277 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6278 DstAlignCanChange = true; 6279 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6280 if (!SrcAlign || Alignment > *SrcAlign) 6281 SrcAlign = Alignment; 6282 assert(SrcAlign && "SrcAlign must be set"); 6283 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6284 if (!TLI.findOptimalMemOpLowering( 6285 MemOps, Limit, 6286 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6287 /*IsVolatile*/ true), 6288 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6289 MF.getFunction().getAttributes())) 6290 return SDValue(); 6291 6292 if (DstAlignCanChange) { 6293 Type *Ty = MemOps[0].getTypeForEVT(C); 6294 Align NewAlign = DL.getABITypeAlign(Ty); 6295 if (NewAlign > Alignment) { 6296 // Give the stack frame object a larger alignment if needed. 6297 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6298 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6299 Alignment = NewAlign; 6300 } 6301 } 6302 6303 MachineMemOperand::Flags MMOFlags = 6304 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6305 uint64_t SrcOff = 0, DstOff = 0; 6306 SmallVector<SDValue, 8> LoadValues; 6307 SmallVector<SDValue, 8> LoadChains; 6308 SmallVector<SDValue, 8> OutChains; 6309 unsigned NumMemOps = MemOps.size(); 6310 for (unsigned i = 0; i < NumMemOps; i++) { 6311 EVT VT = MemOps[i]; 6312 unsigned VTSize = VT.getSizeInBits() / 8; 6313 SDValue Value; 6314 6315 bool isDereferenceable = 6316 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6317 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6318 if (isDereferenceable) 6319 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6320 6321 Value = 6322 DAG.getLoad(VT, dl, Chain, 6323 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6324 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags); 6325 LoadValues.push_back(Value); 6326 LoadChains.push_back(Value.getValue(1)); 6327 SrcOff += VTSize; 6328 } 6329 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6330 OutChains.clear(); 6331 for (unsigned i = 0; i < NumMemOps; i++) { 6332 EVT VT = MemOps[i]; 6333 unsigned VTSize = VT.getSizeInBits() / 8; 6334 SDValue Store; 6335 6336 Store = 6337 DAG.getStore(Chain, dl, LoadValues[i], 6338 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6339 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6340 OutChains.push_back(Store); 6341 DstOff += VTSize; 6342 } 6343 6344 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6345 } 6346 6347 /// Lower the call to 'memset' intrinsic function into a series of store 6348 /// operations. 6349 /// 6350 /// \param DAG Selection DAG where lowered code is placed. 6351 /// \param dl Link to corresponding IR location. 6352 /// \param Chain Control flow dependency. 6353 /// \param Dst Pointer to destination memory location. 6354 /// \param Src Value of byte to write into the memory. 6355 /// \param Size Number of bytes to write. 6356 /// \param Alignment Alignment of the destination in bytes. 6357 /// \param isVol True if destination is volatile. 6358 /// \param DstPtrInfo IR information on the memory pointer. 6359 /// \returns New head in the control flow, if lowering was successful, empty 6360 /// SDValue otherwise. 6361 /// 6362 /// The function tries to replace 'llvm.memset' intrinsic with several store 6363 /// operations and value calculation code. This is usually profitable for small 6364 /// memory size. 6365 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6366 SDValue Chain, SDValue Dst, SDValue Src, 6367 uint64_t Size, Align Alignment, bool isVol, 6368 MachinePointerInfo DstPtrInfo) { 6369 // Turn a memset of undef to nop. 6370 // FIXME: We need to honor volatile even is Src is undef. 6371 if (Src.isUndef()) 6372 return Chain; 6373 6374 // Expand memset to a series of load/store ops if the size operand 6375 // falls below a certain threshold. 6376 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6377 std::vector<EVT> MemOps; 6378 bool DstAlignCanChange = false; 6379 MachineFunction &MF = DAG.getMachineFunction(); 6380 MachineFrameInfo &MFI = MF.getFrameInfo(); 6381 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6382 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6383 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6384 DstAlignCanChange = true; 6385 bool IsZeroVal = 6386 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6387 if (!TLI.findOptimalMemOpLowering( 6388 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6389 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6390 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6391 return SDValue(); 6392 6393 if (DstAlignCanChange) { 6394 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6395 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6396 if (NewAlign > Alignment) { 6397 // Give the stack frame object a larger alignment if needed. 6398 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6399 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6400 Alignment = NewAlign; 6401 } 6402 } 6403 6404 SmallVector<SDValue, 8> OutChains; 6405 uint64_t DstOff = 0; 6406 unsigned NumMemOps = MemOps.size(); 6407 6408 // Find the largest store and generate the bit pattern for it. 6409 EVT LargestVT = MemOps[0]; 6410 for (unsigned i = 1; i < NumMemOps; i++) 6411 if (MemOps[i].bitsGT(LargestVT)) 6412 LargestVT = MemOps[i]; 6413 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6414 6415 for (unsigned i = 0; i < NumMemOps; i++) { 6416 EVT VT = MemOps[i]; 6417 unsigned VTSize = VT.getSizeInBits() / 8; 6418 if (VTSize > Size) { 6419 // Issuing an unaligned load / store pair that overlaps with the previous 6420 // pair. Adjust the offset accordingly. 6421 assert(i == NumMemOps-1 && i != 0); 6422 DstOff -= VTSize - Size; 6423 } 6424 6425 // If this store is smaller than the largest store see whether we can get 6426 // the smaller value for free with a truncate. 6427 SDValue Value = MemSetValue; 6428 if (VT.bitsLT(LargestVT)) { 6429 if (!LargestVT.isVector() && !VT.isVector() && 6430 TLI.isTruncateFree(LargestVT, VT)) 6431 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6432 else 6433 Value = getMemsetValue(Src, VT, DAG, dl); 6434 } 6435 assert(Value.getValueType() == VT && "Value with wrong type."); 6436 SDValue Store = DAG.getStore( 6437 Chain, dl, Value, 6438 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6439 DstPtrInfo.getWithOffset(DstOff), Alignment, 6440 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6441 OutChains.push_back(Store); 6442 DstOff += VT.getSizeInBits() / 8; 6443 Size -= VTSize; 6444 } 6445 6446 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6447 } 6448 6449 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6450 unsigned AS) { 6451 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6452 // pointer operands can be losslessly bitcasted to pointers of address space 0 6453 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6454 report_fatal_error("cannot lower memory intrinsic in address space " + 6455 Twine(AS)); 6456 } 6457 } 6458 6459 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6460 SDValue Src, SDValue Size, Align Alignment, 6461 bool isVol, bool AlwaysInline, bool isTailCall, 6462 MachinePointerInfo DstPtrInfo, 6463 MachinePointerInfo SrcPtrInfo) { 6464 // Check to see if we should lower the memcpy to loads and stores first. 6465 // For cases within the target-specified limits, this is the best choice. 6466 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6467 if (ConstantSize) { 6468 // Memcpy with size zero? Just return the original chain. 6469 if (ConstantSize->isNullValue()) 6470 return Chain; 6471 6472 SDValue Result = getMemcpyLoadsAndStores( 6473 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6474 isVol, false, DstPtrInfo, SrcPtrInfo); 6475 if (Result.getNode()) 6476 return Result; 6477 } 6478 6479 // Then check to see if we should lower the memcpy with target-specific 6480 // code. If the target chooses to do this, this is the next best. 6481 if (TSI) { 6482 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6483 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6484 DstPtrInfo, SrcPtrInfo); 6485 if (Result.getNode()) 6486 return Result; 6487 } 6488 6489 // If we really need inline code and the target declined to provide it, 6490 // use a (potentially long) sequence of loads and stores. 6491 if (AlwaysInline) { 6492 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6493 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6494 ConstantSize->getZExtValue(), Alignment, 6495 isVol, true, DstPtrInfo, SrcPtrInfo); 6496 } 6497 6498 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6499 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6500 6501 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6502 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6503 // respect volatile, so they may do things like read or write memory 6504 // beyond the given memory regions. But fixing this isn't easy, and most 6505 // people don't care. 6506 6507 // Emit a library call. 6508 TargetLowering::ArgListTy Args; 6509 TargetLowering::ArgListEntry Entry; 6510 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6511 Entry.Node = Dst; Args.push_back(Entry); 6512 Entry.Node = Src; Args.push_back(Entry); 6513 6514 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6515 Entry.Node = Size; Args.push_back(Entry); 6516 // FIXME: pass in SDLoc 6517 TargetLowering::CallLoweringInfo CLI(*this); 6518 CLI.setDebugLoc(dl) 6519 .setChain(Chain) 6520 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6521 Dst.getValueType().getTypeForEVT(*getContext()), 6522 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6523 TLI->getPointerTy(getDataLayout())), 6524 std::move(Args)) 6525 .setDiscardResult() 6526 .setTailCall(isTailCall); 6527 6528 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6529 return CallResult.second; 6530 } 6531 6532 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6533 SDValue Dst, unsigned DstAlign, 6534 SDValue Src, unsigned SrcAlign, 6535 SDValue Size, Type *SizeTy, 6536 unsigned ElemSz, bool isTailCall, 6537 MachinePointerInfo DstPtrInfo, 6538 MachinePointerInfo SrcPtrInfo) { 6539 // Emit a library call. 6540 TargetLowering::ArgListTy Args; 6541 TargetLowering::ArgListEntry Entry; 6542 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6543 Entry.Node = Dst; 6544 Args.push_back(Entry); 6545 6546 Entry.Node = Src; 6547 Args.push_back(Entry); 6548 6549 Entry.Ty = SizeTy; 6550 Entry.Node = Size; 6551 Args.push_back(Entry); 6552 6553 RTLIB::Libcall LibraryCall = 6554 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6555 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6556 report_fatal_error("Unsupported element size"); 6557 6558 TargetLowering::CallLoweringInfo CLI(*this); 6559 CLI.setDebugLoc(dl) 6560 .setChain(Chain) 6561 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6562 Type::getVoidTy(*getContext()), 6563 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6564 TLI->getPointerTy(getDataLayout())), 6565 std::move(Args)) 6566 .setDiscardResult() 6567 .setTailCall(isTailCall); 6568 6569 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6570 return CallResult.second; 6571 } 6572 6573 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6574 SDValue Src, SDValue Size, Align Alignment, 6575 bool isVol, bool isTailCall, 6576 MachinePointerInfo DstPtrInfo, 6577 MachinePointerInfo SrcPtrInfo) { 6578 // Check to see if we should lower the memmove to loads and stores first. 6579 // For cases within the target-specified limits, this is the best choice. 6580 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6581 if (ConstantSize) { 6582 // Memmove with size zero? Just return the original chain. 6583 if (ConstantSize->isNullValue()) 6584 return Chain; 6585 6586 SDValue Result = getMemmoveLoadsAndStores( 6587 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6588 isVol, false, DstPtrInfo, SrcPtrInfo); 6589 if (Result.getNode()) 6590 return Result; 6591 } 6592 6593 // Then check to see if we should lower the memmove with target-specific 6594 // code. If the target chooses to do this, this is the next best. 6595 if (TSI) { 6596 SDValue Result = 6597 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6598 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6599 if (Result.getNode()) 6600 return Result; 6601 } 6602 6603 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6604 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6605 6606 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6607 // not be safe. See memcpy above for more details. 6608 6609 // Emit a library call. 6610 TargetLowering::ArgListTy Args; 6611 TargetLowering::ArgListEntry Entry; 6612 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6613 Entry.Node = Dst; Args.push_back(Entry); 6614 Entry.Node = Src; Args.push_back(Entry); 6615 6616 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6617 Entry.Node = Size; Args.push_back(Entry); 6618 // FIXME: pass in SDLoc 6619 TargetLowering::CallLoweringInfo CLI(*this); 6620 CLI.setDebugLoc(dl) 6621 .setChain(Chain) 6622 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6623 Dst.getValueType().getTypeForEVT(*getContext()), 6624 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6625 TLI->getPointerTy(getDataLayout())), 6626 std::move(Args)) 6627 .setDiscardResult() 6628 .setTailCall(isTailCall); 6629 6630 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6631 return CallResult.second; 6632 } 6633 6634 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6635 SDValue Dst, unsigned DstAlign, 6636 SDValue Src, unsigned SrcAlign, 6637 SDValue Size, Type *SizeTy, 6638 unsigned ElemSz, bool isTailCall, 6639 MachinePointerInfo DstPtrInfo, 6640 MachinePointerInfo SrcPtrInfo) { 6641 // Emit a library call. 6642 TargetLowering::ArgListTy Args; 6643 TargetLowering::ArgListEntry Entry; 6644 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6645 Entry.Node = Dst; 6646 Args.push_back(Entry); 6647 6648 Entry.Node = Src; 6649 Args.push_back(Entry); 6650 6651 Entry.Ty = SizeTy; 6652 Entry.Node = Size; 6653 Args.push_back(Entry); 6654 6655 RTLIB::Libcall LibraryCall = 6656 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6657 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6658 report_fatal_error("Unsupported element size"); 6659 6660 TargetLowering::CallLoweringInfo CLI(*this); 6661 CLI.setDebugLoc(dl) 6662 .setChain(Chain) 6663 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6664 Type::getVoidTy(*getContext()), 6665 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6666 TLI->getPointerTy(getDataLayout())), 6667 std::move(Args)) 6668 .setDiscardResult() 6669 .setTailCall(isTailCall); 6670 6671 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6672 return CallResult.second; 6673 } 6674 6675 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6676 SDValue Src, SDValue Size, Align Alignment, 6677 bool isVol, bool isTailCall, 6678 MachinePointerInfo DstPtrInfo) { 6679 // Check to see if we should lower the memset to stores first. 6680 // For cases within the target-specified limits, this is the best choice. 6681 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6682 if (ConstantSize) { 6683 // Memset with size zero? Just return the original chain. 6684 if (ConstantSize->isNullValue()) 6685 return Chain; 6686 6687 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 6688 ConstantSize->getZExtValue(), Alignment, 6689 isVol, DstPtrInfo); 6690 6691 if (Result.getNode()) 6692 return Result; 6693 } 6694 6695 // Then check to see if we should lower the memset with target-specific 6696 // code. If the target chooses to do this, this is the next best. 6697 if (TSI) { 6698 SDValue Result = TSI->EmitTargetCodeForMemset( 6699 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 6700 if (Result.getNode()) 6701 return Result; 6702 } 6703 6704 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6705 6706 // Emit a library call. 6707 TargetLowering::ArgListTy Args; 6708 TargetLowering::ArgListEntry Entry; 6709 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6710 Args.push_back(Entry); 6711 Entry.Node = Src; 6712 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6713 Args.push_back(Entry); 6714 Entry.Node = Size; 6715 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6716 Args.push_back(Entry); 6717 6718 // FIXME: pass in SDLoc 6719 TargetLowering::CallLoweringInfo CLI(*this); 6720 CLI.setDebugLoc(dl) 6721 .setChain(Chain) 6722 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6723 Dst.getValueType().getTypeForEVT(*getContext()), 6724 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6725 TLI->getPointerTy(getDataLayout())), 6726 std::move(Args)) 6727 .setDiscardResult() 6728 .setTailCall(isTailCall); 6729 6730 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6731 return CallResult.second; 6732 } 6733 6734 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6735 SDValue Dst, unsigned DstAlign, 6736 SDValue Value, SDValue Size, Type *SizeTy, 6737 unsigned ElemSz, bool isTailCall, 6738 MachinePointerInfo DstPtrInfo) { 6739 // Emit a library call. 6740 TargetLowering::ArgListTy Args; 6741 TargetLowering::ArgListEntry Entry; 6742 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6743 Entry.Node = Dst; 6744 Args.push_back(Entry); 6745 6746 Entry.Ty = Type::getInt8Ty(*getContext()); 6747 Entry.Node = Value; 6748 Args.push_back(Entry); 6749 6750 Entry.Ty = SizeTy; 6751 Entry.Node = Size; 6752 Args.push_back(Entry); 6753 6754 RTLIB::Libcall LibraryCall = 6755 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6756 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6757 report_fatal_error("Unsupported element size"); 6758 6759 TargetLowering::CallLoweringInfo CLI(*this); 6760 CLI.setDebugLoc(dl) 6761 .setChain(Chain) 6762 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6763 Type::getVoidTy(*getContext()), 6764 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6765 TLI->getPointerTy(getDataLayout())), 6766 std::move(Args)) 6767 .setDiscardResult() 6768 .setTailCall(isTailCall); 6769 6770 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6771 return CallResult.second; 6772 } 6773 6774 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6775 SDVTList VTList, ArrayRef<SDValue> Ops, 6776 MachineMemOperand *MMO) { 6777 FoldingSetNodeID ID; 6778 ID.AddInteger(MemVT.getRawBits()); 6779 AddNodeIDNode(ID, Opcode, VTList, Ops); 6780 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6781 void* IP = nullptr; 6782 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6783 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6784 return SDValue(E, 0); 6785 } 6786 6787 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6788 VTList, MemVT, MMO); 6789 createOperands(N, Ops); 6790 6791 CSEMap.InsertNode(N, IP); 6792 InsertNode(N); 6793 return SDValue(N, 0); 6794 } 6795 6796 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6797 EVT MemVT, SDVTList VTs, SDValue Chain, 6798 SDValue Ptr, SDValue Cmp, SDValue Swp, 6799 MachineMemOperand *MMO) { 6800 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6801 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6802 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6803 6804 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6805 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6806 } 6807 6808 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6809 SDValue Chain, SDValue Ptr, SDValue Val, 6810 MachineMemOperand *MMO) { 6811 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6812 Opcode == ISD::ATOMIC_LOAD_SUB || 6813 Opcode == ISD::ATOMIC_LOAD_AND || 6814 Opcode == ISD::ATOMIC_LOAD_CLR || 6815 Opcode == ISD::ATOMIC_LOAD_OR || 6816 Opcode == ISD::ATOMIC_LOAD_XOR || 6817 Opcode == ISD::ATOMIC_LOAD_NAND || 6818 Opcode == ISD::ATOMIC_LOAD_MIN || 6819 Opcode == ISD::ATOMIC_LOAD_MAX || 6820 Opcode == ISD::ATOMIC_LOAD_UMIN || 6821 Opcode == ISD::ATOMIC_LOAD_UMAX || 6822 Opcode == ISD::ATOMIC_LOAD_FADD || 6823 Opcode == ISD::ATOMIC_LOAD_FSUB || 6824 Opcode == ISD::ATOMIC_SWAP || 6825 Opcode == ISD::ATOMIC_STORE) && 6826 "Invalid Atomic Op"); 6827 6828 EVT VT = Val.getValueType(); 6829 6830 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6831 getVTList(VT, MVT::Other); 6832 SDValue Ops[] = {Chain, Ptr, Val}; 6833 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6834 } 6835 6836 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6837 EVT VT, SDValue Chain, SDValue Ptr, 6838 MachineMemOperand *MMO) { 6839 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6840 6841 SDVTList VTs = getVTList(VT, MVT::Other); 6842 SDValue Ops[] = {Chain, Ptr}; 6843 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6844 } 6845 6846 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6847 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6848 if (Ops.size() == 1) 6849 return Ops[0]; 6850 6851 SmallVector<EVT, 4> VTs; 6852 VTs.reserve(Ops.size()); 6853 for (const SDValue &Op : Ops) 6854 VTs.push_back(Op.getValueType()); 6855 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6856 } 6857 6858 SDValue SelectionDAG::getMemIntrinsicNode( 6859 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6860 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 6861 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 6862 if (!Size && MemVT.isScalableVector()) 6863 Size = MemoryLocation::UnknownSize; 6864 else if (!Size) 6865 Size = MemVT.getStoreSize(); 6866 6867 MachineFunction &MF = getMachineFunction(); 6868 MachineMemOperand *MMO = 6869 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 6870 6871 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6872 } 6873 6874 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6875 SDVTList VTList, 6876 ArrayRef<SDValue> Ops, EVT MemVT, 6877 MachineMemOperand *MMO) { 6878 assert((Opcode == ISD::INTRINSIC_VOID || 6879 Opcode == ISD::INTRINSIC_W_CHAIN || 6880 Opcode == ISD::PREFETCH || 6881 ((int)Opcode <= std::numeric_limits<int>::max() && 6882 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6883 "Opcode is not a memory-accessing opcode!"); 6884 6885 // Memoize the node unless it returns a flag. 6886 MemIntrinsicSDNode *N; 6887 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6888 FoldingSetNodeID ID; 6889 AddNodeIDNode(ID, Opcode, VTList, Ops); 6890 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6891 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6892 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6893 void *IP = nullptr; 6894 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6895 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6896 return SDValue(E, 0); 6897 } 6898 6899 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6900 VTList, MemVT, MMO); 6901 createOperands(N, Ops); 6902 6903 CSEMap.InsertNode(N, IP); 6904 } else { 6905 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6906 VTList, MemVT, MMO); 6907 createOperands(N, Ops); 6908 } 6909 InsertNode(N); 6910 SDValue V(N, 0); 6911 NewSDValueDbgMsg(V, "Creating new node: ", this); 6912 return V; 6913 } 6914 6915 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6916 SDValue Chain, int FrameIndex, 6917 int64_t Size, int64_t Offset) { 6918 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6919 const auto VTs = getVTList(MVT::Other); 6920 SDValue Ops[2] = { 6921 Chain, 6922 getFrameIndex(FrameIndex, 6923 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6924 true)}; 6925 6926 FoldingSetNodeID ID; 6927 AddNodeIDNode(ID, Opcode, VTs, Ops); 6928 ID.AddInteger(FrameIndex); 6929 ID.AddInteger(Size); 6930 ID.AddInteger(Offset); 6931 void *IP = nullptr; 6932 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6933 return SDValue(E, 0); 6934 6935 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6936 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6937 createOperands(N, Ops); 6938 CSEMap.InsertNode(N, IP); 6939 InsertNode(N); 6940 SDValue V(N, 0); 6941 NewSDValueDbgMsg(V, "Creating new node: ", this); 6942 return V; 6943 } 6944 6945 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 6946 uint64_t Guid, uint64_t Index, 6947 uint32_t Attr) { 6948 const unsigned Opcode = ISD::PSEUDO_PROBE; 6949 const auto VTs = getVTList(MVT::Other); 6950 SDValue Ops[] = {Chain}; 6951 FoldingSetNodeID ID; 6952 AddNodeIDNode(ID, Opcode, VTs, Ops); 6953 ID.AddInteger(Guid); 6954 ID.AddInteger(Index); 6955 void *IP = nullptr; 6956 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 6957 return SDValue(E, 0); 6958 6959 auto *N = newSDNode<PseudoProbeSDNode>( 6960 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 6961 createOperands(N, Ops); 6962 CSEMap.InsertNode(N, IP); 6963 InsertNode(N); 6964 SDValue V(N, 0); 6965 NewSDValueDbgMsg(V, "Creating new node: ", this); 6966 return V; 6967 } 6968 6969 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6970 /// MachinePointerInfo record from it. This is particularly useful because the 6971 /// code generator has many cases where it doesn't bother passing in a 6972 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6973 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6974 SelectionDAG &DAG, SDValue Ptr, 6975 int64_t Offset = 0) { 6976 // If this is FI+Offset, we can model it. 6977 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6978 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6979 FI->getIndex(), Offset); 6980 6981 // If this is (FI+Offset1)+Offset2, we can model it. 6982 if (Ptr.getOpcode() != ISD::ADD || 6983 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6984 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6985 return Info; 6986 6987 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6988 return MachinePointerInfo::getFixedStack( 6989 DAG.getMachineFunction(), FI, 6990 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6991 } 6992 6993 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6994 /// MachinePointerInfo record from it. This is particularly useful because the 6995 /// code generator has many cases where it doesn't bother passing in a 6996 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6997 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6998 SelectionDAG &DAG, SDValue Ptr, 6999 SDValue OffsetOp) { 7000 // If the 'Offset' value isn't a constant, we can't handle this. 7001 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7002 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7003 if (OffsetOp.isUndef()) 7004 return InferPointerInfo(Info, DAG, Ptr); 7005 return Info; 7006 } 7007 7008 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7009 EVT VT, const SDLoc &dl, SDValue Chain, 7010 SDValue Ptr, SDValue Offset, 7011 MachinePointerInfo PtrInfo, EVT MemVT, 7012 Align Alignment, 7013 MachineMemOperand::Flags MMOFlags, 7014 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7015 assert(Chain.getValueType() == MVT::Other && 7016 "Invalid chain type"); 7017 7018 MMOFlags |= MachineMemOperand::MOLoad; 7019 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7020 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7021 // clients. 7022 if (PtrInfo.V.isNull()) 7023 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7024 7025 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7026 MachineFunction &MF = getMachineFunction(); 7027 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7028 Alignment, AAInfo, Ranges); 7029 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7030 } 7031 7032 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7033 EVT VT, const SDLoc &dl, SDValue Chain, 7034 SDValue Ptr, SDValue Offset, EVT MemVT, 7035 MachineMemOperand *MMO) { 7036 if (VT == MemVT) { 7037 ExtType = ISD::NON_EXTLOAD; 7038 } else if (ExtType == ISD::NON_EXTLOAD) { 7039 assert(VT == MemVT && "Non-extending load from different memory type!"); 7040 } else { 7041 // Extending load. 7042 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7043 "Should only be an extending load, not truncating!"); 7044 assert(VT.isInteger() == MemVT.isInteger() && 7045 "Cannot convert from FP to Int or Int -> FP!"); 7046 assert(VT.isVector() == MemVT.isVector() && 7047 "Cannot use an ext load to convert to or from a vector!"); 7048 assert((!VT.isVector() || 7049 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7050 "Cannot use an ext load to change the number of vector elements!"); 7051 } 7052 7053 bool Indexed = AM != ISD::UNINDEXED; 7054 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7055 7056 SDVTList VTs = Indexed ? 7057 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7058 SDValue Ops[] = { Chain, Ptr, Offset }; 7059 FoldingSetNodeID ID; 7060 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7061 ID.AddInteger(MemVT.getRawBits()); 7062 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7063 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7064 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7065 void *IP = nullptr; 7066 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7067 cast<LoadSDNode>(E)->refineAlignment(MMO); 7068 return SDValue(E, 0); 7069 } 7070 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7071 ExtType, MemVT, MMO); 7072 createOperands(N, Ops); 7073 7074 CSEMap.InsertNode(N, IP); 7075 InsertNode(N); 7076 SDValue V(N, 0); 7077 NewSDValueDbgMsg(V, "Creating new node: ", this); 7078 return V; 7079 } 7080 7081 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7082 SDValue Ptr, MachinePointerInfo PtrInfo, 7083 MaybeAlign Alignment, 7084 MachineMemOperand::Flags MMOFlags, 7085 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7086 SDValue Undef = getUNDEF(Ptr.getValueType()); 7087 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7088 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7089 } 7090 7091 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7092 SDValue Ptr, MachineMemOperand *MMO) { 7093 SDValue Undef = getUNDEF(Ptr.getValueType()); 7094 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7095 VT, MMO); 7096 } 7097 7098 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7099 EVT VT, SDValue Chain, SDValue Ptr, 7100 MachinePointerInfo PtrInfo, EVT MemVT, 7101 MaybeAlign Alignment, 7102 MachineMemOperand::Flags MMOFlags, 7103 const AAMDNodes &AAInfo) { 7104 SDValue Undef = getUNDEF(Ptr.getValueType()); 7105 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7106 MemVT, Alignment, MMOFlags, AAInfo); 7107 } 7108 7109 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7110 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7111 MachineMemOperand *MMO) { 7112 SDValue Undef = getUNDEF(Ptr.getValueType()); 7113 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7114 MemVT, MMO); 7115 } 7116 7117 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7118 SDValue Base, SDValue Offset, 7119 ISD::MemIndexedMode AM) { 7120 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7121 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7122 // Don't propagate the invariant or dereferenceable flags. 7123 auto MMOFlags = 7124 LD->getMemOperand()->getFlags() & 7125 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7126 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7127 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7128 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7129 } 7130 7131 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7132 SDValue Ptr, MachinePointerInfo PtrInfo, 7133 Align Alignment, 7134 MachineMemOperand::Flags MMOFlags, 7135 const AAMDNodes &AAInfo) { 7136 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7137 7138 MMOFlags |= MachineMemOperand::MOStore; 7139 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7140 7141 if (PtrInfo.V.isNull()) 7142 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7143 7144 MachineFunction &MF = getMachineFunction(); 7145 uint64_t Size = 7146 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7147 MachineMemOperand *MMO = 7148 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7149 return getStore(Chain, dl, Val, Ptr, MMO); 7150 } 7151 7152 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7153 SDValue Ptr, MachineMemOperand *MMO) { 7154 assert(Chain.getValueType() == MVT::Other && 7155 "Invalid chain type"); 7156 EVT VT = Val.getValueType(); 7157 SDVTList VTs = getVTList(MVT::Other); 7158 SDValue Undef = getUNDEF(Ptr.getValueType()); 7159 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7160 FoldingSetNodeID ID; 7161 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7162 ID.AddInteger(VT.getRawBits()); 7163 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7164 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7165 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7166 void *IP = nullptr; 7167 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7168 cast<StoreSDNode>(E)->refineAlignment(MMO); 7169 return SDValue(E, 0); 7170 } 7171 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7172 ISD::UNINDEXED, false, VT, MMO); 7173 createOperands(N, Ops); 7174 7175 CSEMap.InsertNode(N, IP); 7176 InsertNode(N); 7177 SDValue V(N, 0); 7178 NewSDValueDbgMsg(V, "Creating new node: ", this); 7179 return V; 7180 } 7181 7182 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7183 SDValue Ptr, MachinePointerInfo PtrInfo, 7184 EVT SVT, Align Alignment, 7185 MachineMemOperand::Flags MMOFlags, 7186 const AAMDNodes &AAInfo) { 7187 assert(Chain.getValueType() == MVT::Other && 7188 "Invalid chain type"); 7189 7190 MMOFlags |= MachineMemOperand::MOStore; 7191 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7192 7193 if (PtrInfo.V.isNull()) 7194 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7195 7196 MachineFunction &MF = getMachineFunction(); 7197 MachineMemOperand *MMO = MF.getMachineMemOperand( 7198 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7199 Alignment, AAInfo); 7200 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7201 } 7202 7203 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7204 SDValue Ptr, EVT SVT, 7205 MachineMemOperand *MMO) { 7206 EVT VT = Val.getValueType(); 7207 7208 assert(Chain.getValueType() == MVT::Other && 7209 "Invalid chain type"); 7210 if (VT == SVT) 7211 return getStore(Chain, dl, Val, Ptr, MMO); 7212 7213 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7214 "Should only be a truncating store, not extending!"); 7215 assert(VT.isInteger() == SVT.isInteger() && 7216 "Can't do FP-INT conversion!"); 7217 assert(VT.isVector() == SVT.isVector() && 7218 "Cannot use trunc store to convert to or from a vector!"); 7219 assert((!VT.isVector() || 7220 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7221 "Cannot use trunc store to change the number of vector elements!"); 7222 7223 SDVTList VTs = getVTList(MVT::Other); 7224 SDValue Undef = getUNDEF(Ptr.getValueType()); 7225 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7226 FoldingSetNodeID ID; 7227 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7228 ID.AddInteger(SVT.getRawBits()); 7229 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7230 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7231 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7232 void *IP = nullptr; 7233 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7234 cast<StoreSDNode>(E)->refineAlignment(MMO); 7235 return SDValue(E, 0); 7236 } 7237 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7238 ISD::UNINDEXED, true, SVT, MMO); 7239 createOperands(N, Ops); 7240 7241 CSEMap.InsertNode(N, IP); 7242 InsertNode(N); 7243 SDValue V(N, 0); 7244 NewSDValueDbgMsg(V, "Creating new node: ", this); 7245 return V; 7246 } 7247 7248 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7249 SDValue Base, SDValue Offset, 7250 ISD::MemIndexedMode AM) { 7251 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7252 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7253 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7254 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7255 FoldingSetNodeID ID; 7256 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7257 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7258 ID.AddInteger(ST->getRawSubclassData()); 7259 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7260 void *IP = nullptr; 7261 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7262 return SDValue(E, 0); 7263 7264 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7265 ST->isTruncatingStore(), ST->getMemoryVT(), 7266 ST->getMemOperand()); 7267 createOperands(N, Ops); 7268 7269 CSEMap.InsertNode(N, IP); 7270 InsertNode(N); 7271 SDValue V(N, 0); 7272 NewSDValueDbgMsg(V, "Creating new node: ", this); 7273 return V; 7274 } 7275 7276 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7277 SDValue Base, SDValue Offset, SDValue Mask, 7278 SDValue PassThru, EVT MemVT, 7279 MachineMemOperand *MMO, 7280 ISD::MemIndexedMode AM, 7281 ISD::LoadExtType ExtTy, bool isExpanding) { 7282 bool Indexed = AM != ISD::UNINDEXED; 7283 assert((Indexed || Offset.isUndef()) && 7284 "Unindexed masked load with an offset!"); 7285 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 7286 : getVTList(VT, MVT::Other); 7287 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 7288 FoldingSetNodeID ID; 7289 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 7290 ID.AddInteger(MemVT.getRawBits()); 7291 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7292 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7293 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7294 void *IP = nullptr; 7295 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7296 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7297 return SDValue(E, 0); 7298 } 7299 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7300 AM, ExtTy, isExpanding, MemVT, MMO); 7301 createOperands(N, Ops); 7302 7303 CSEMap.InsertNode(N, IP); 7304 InsertNode(N); 7305 SDValue V(N, 0); 7306 NewSDValueDbgMsg(V, "Creating new node: ", this); 7307 return V; 7308 } 7309 7310 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7311 SDValue Base, SDValue Offset, 7312 ISD::MemIndexedMode AM) { 7313 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7314 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7315 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7316 Offset, LD->getMask(), LD->getPassThru(), 7317 LD->getMemoryVT(), LD->getMemOperand(), AM, 7318 LD->getExtensionType(), LD->isExpandingLoad()); 7319 } 7320 7321 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7322 SDValue Val, SDValue Base, SDValue Offset, 7323 SDValue Mask, EVT MemVT, 7324 MachineMemOperand *MMO, 7325 ISD::MemIndexedMode AM, bool IsTruncating, 7326 bool IsCompressing) { 7327 assert(Chain.getValueType() == MVT::Other && 7328 "Invalid chain type"); 7329 bool Indexed = AM != ISD::UNINDEXED; 7330 assert((Indexed || Offset.isUndef()) && 7331 "Unindexed masked store with an offset!"); 7332 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 7333 : getVTList(MVT::Other); 7334 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 7335 FoldingSetNodeID ID; 7336 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7337 ID.AddInteger(MemVT.getRawBits()); 7338 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7339 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7340 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7341 void *IP = nullptr; 7342 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7343 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7344 return SDValue(E, 0); 7345 } 7346 auto *N = 7347 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7348 IsTruncating, IsCompressing, MemVT, MMO); 7349 createOperands(N, Ops); 7350 7351 CSEMap.InsertNode(N, IP); 7352 InsertNode(N); 7353 SDValue V(N, 0); 7354 NewSDValueDbgMsg(V, "Creating new node: ", this); 7355 return V; 7356 } 7357 7358 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 7359 SDValue Base, SDValue Offset, 7360 ISD::MemIndexedMode AM) { 7361 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 7362 assert(ST->getOffset().isUndef() && 7363 "Masked store is already a indexed store!"); 7364 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 7365 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 7366 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 7367 } 7368 7369 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7370 ArrayRef<SDValue> Ops, 7371 MachineMemOperand *MMO, 7372 ISD::MemIndexType IndexType, 7373 ISD::LoadExtType ExtTy) { 7374 assert(Ops.size() == 6 && "Incompatible number of operands"); 7375 7376 FoldingSetNodeID ID; 7377 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7378 ID.AddInteger(VT.getRawBits()); 7379 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7380 dl.getIROrder(), VTs, VT, MMO, IndexType, ExtTy)); 7381 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7382 void *IP = nullptr; 7383 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7384 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7385 return SDValue(E, 0); 7386 } 7387 7388 IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]); 7389 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7390 VTs, VT, MMO, IndexType, ExtTy); 7391 createOperands(N, Ops); 7392 7393 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7394 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7395 assert(N->getMask().getValueType().getVectorElementCount() == 7396 N->getValueType(0).getVectorElementCount() && 7397 "Vector width mismatch between mask and data"); 7398 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 7399 N->getValueType(0).getVectorElementCount().isScalable() && 7400 "Scalable flags of index and data do not match"); 7401 assert(ElementCount::isKnownGE( 7402 N->getIndex().getValueType().getVectorElementCount(), 7403 N->getValueType(0).getVectorElementCount()) && 7404 "Vector width mismatch between index and data"); 7405 assert(isa<ConstantSDNode>(N->getScale()) && 7406 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7407 "Scale should be a constant power of 2"); 7408 7409 CSEMap.InsertNode(N, IP); 7410 InsertNode(N); 7411 SDValue V(N, 0); 7412 NewSDValueDbgMsg(V, "Creating new node: ", this); 7413 return V; 7414 } 7415 7416 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7417 ArrayRef<SDValue> Ops, 7418 MachineMemOperand *MMO, 7419 ISD::MemIndexType IndexType, 7420 bool IsTrunc) { 7421 assert(Ops.size() == 6 && "Incompatible number of operands"); 7422 7423 FoldingSetNodeID ID; 7424 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7425 ID.AddInteger(VT.getRawBits()); 7426 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7427 dl.getIROrder(), VTs, VT, MMO, IndexType, IsTrunc)); 7428 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7429 void *IP = nullptr; 7430 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7431 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7432 return SDValue(E, 0); 7433 } 7434 7435 IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]); 7436 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7437 VTs, VT, MMO, IndexType, IsTrunc); 7438 createOperands(N, Ops); 7439 7440 assert(N->getMask().getValueType().getVectorElementCount() == 7441 N->getValue().getValueType().getVectorElementCount() && 7442 "Vector width mismatch between mask and data"); 7443 assert( 7444 N->getIndex().getValueType().getVectorElementCount().isScalable() == 7445 N->getValue().getValueType().getVectorElementCount().isScalable() && 7446 "Scalable flags of index and data do not match"); 7447 assert(ElementCount::isKnownGE( 7448 N->getIndex().getValueType().getVectorElementCount(), 7449 N->getValue().getValueType().getVectorElementCount()) && 7450 "Vector width mismatch between index and data"); 7451 assert(isa<ConstantSDNode>(N->getScale()) && 7452 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7453 "Scale should be a constant power of 2"); 7454 7455 CSEMap.InsertNode(N, IP); 7456 InsertNode(N); 7457 SDValue V(N, 0); 7458 NewSDValueDbgMsg(V, "Creating new node: ", this); 7459 return V; 7460 } 7461 7462 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7463 // select undef, T, F --> T (if T is a constant), otherwise F 7464 // select, ?, undef, F --> F 7465 // select, ?, T, undef --> T 7466 if (Cond.isUndef()) 7467 return isConstantValueOfAnyType(T) ? T : F; 7468 if (T.isUndef()) 7469 return F; 7470 if (F.isUndef()) 7471 return T; 7472 7473 // select true, T, F --> T 7474 // select false, T, F --> F 7475 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7476 return CondC->isNullValue() ? F : T; 7477 7478 // TODO: This should simplify VSELECT with constant condition using something 7479 // like this (but check boolean contents to be complete?): 7480 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7481 // return T; 7482 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7483 // return F; 7484 7485 // select ?, T, T --> T 7486 if (T == F) 7487 return T; 7488 7489 return SDValue(); 7490 } 7491 7492 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7493 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7494 if (X.isUndef()) 7495 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7496 // shift X, undef --> undef (because it may shift by the bitwidth) 7497 if (Y.isUndef()) 7498 return getUNDEF(X.getValueType()); 7499 7500 // shift 0, Y --> 0 7501 // shift X, 0 --> X 7502 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7503 return X; 7504 7505 // shift X, C >= bitwidth(X) --> undef 7506 // All vector elements must be too big (or undef) to avoid partial undefs. 7507 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7508 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7509 }; 7510 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7511 return getUNDEF(X.getValueType()); 7512 7513 return SDValue(); 7514 } 7515 7516 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 7517 SDNodeFlags Flags) { 7518 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 7519 // (an undef operand can be chosen to be Nan/Inf), then the result of this 7520 // operation is poison. That result can be relaxed to undef. 7521 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 7522 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7523 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 7524 (YC && YC->getValueAPF().isNaN()); 7525 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 7526 (YC && YC->getValueAPF().isInfinity()); 7527 7528 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 7529 return getUNDEF(X.getValueType()); 7530 7531 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 7532 return getUNDEF(X.getValueType()); 7533 7534 if (!YC) 7535 return SDValue(); 7536 7537 // X + -0.0 --> X 7538 if (Opcode == ISD::FADD) 7539 if (YC->getValueAPF().isNegZero()) 7540 return X; 7541 7542 // X - +0.0 --> X 7543 if (Opcode == ISD::FSUB) 7544 if (YC->getValueAPF().isPosZero()) 7545 return X; 7546 7547 // X * 1.0 --> X 7548 // X / 1.0 --> X 7549 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7550 if (YC->getValueAPF().isExactlyValue(1.0)) 7551 return X; 7552 7553 // X * 0.0 --> 0.0 7554 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 7555 if (YC->getValueAPF().isZero()) 7556 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 7557 7558 return SDValue(); 7559 } 7560 7561 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7562 SDValue Ptr, SDValue SV, unsigned Align) { 7563 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7564 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7565 } 7566 7567 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7568 ArrayRef<SDUse> Ops) { 7569 switch (Ops.size()) { 7570 case 0: return getNode(Opcode, DL, VT); 7571 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7572 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7573 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7574 default: break; 7575 } 7576 7577 // Copy from an SDUse array into an SDValue array for use with 7578 // the regular getNode logic. 7579 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7580 return getNode(Opcode, DL, VT, NewOps); 7581 } 7582 7583 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7584 ArrayRef<SDValue> Ops) { 7585 SDNodeFlags Flags; 7586 if (Inserter) 7587 Flags = Inserter->getFlags(); 7588 return getNode(Opcode, DL, VT, Ops, Flags); 7589 } 7590 7591 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7592 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7593 unsigned NumOps = Ops.size(); 7594 switch (NumOps) { 7595 case 0: return getNode(Opcode, DL, VT); 7596 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7597 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7598 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7599 default: break; 7600 } 7601 7602 switch (Opcode) { 7603 default: break; 7604 case ISD::BUILD_VECTOR: 7605 // Attempt to simplify BUILD_VECTOR. 7606 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7607 return V; 7608 break; 7609 case ISD::CONCAT_VECTORS: 7610 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7611 return V; 7612 break; 7613 case ISD::SELECT_CC: 7614 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7615 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7616 "LHS and RHS of condition must have same type!"); 7617 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7618 "True and False arms of SelectCC must have same type!"); 7619 assert(Ops[2].getValueType() == VT && 7620 "select_cc node must be of same type as true and false value!"); 7621 break; 7622 case ISD::BR_CC: 7623 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7624 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7625 "LHS/RHS of comparison should match types!"); 7626 break; 7627 } 7628 7629 // Memoize nodes. 7630 SDNode *N; 7631 SDVTList VTs = getVTList(VT); 7632 7633 if (VT != MVT::Glue) { 7634 FoldingSetNodeID ID; 7635 AddNodeIDNode(ID, Opcode, VTs, Ops); 7636 void *IP = nullptr; 7637 7638 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7639 return SDValue(E, 0); 7640 7641 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7642 createOperands(N, Ops); 7643 7644 CSEMap.InsertNode(N, IP); 7645 } else { 7646 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7647 createOperands(N, Ops); 7648 } 7649 7650 N->setFlags(Flags); 7651 InsertNode(N); 7652 SDValue V(N, 0); 7653 NewSDValueDbgMsg(V, "Creating new node: ", this); 7654 return V; 7655 } 7656 7657 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7658 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7659 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7660 } 7661 7662 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7663 ArrayRef<SDValue> Ops) { 7664 SDNodeFlags Flags; 7665 if (Inserter) 7666 Flags = Inserter->getFlags(); 7667 return getNode(Opcode, DL, VTList, Ops, Flags); 7668 } 7669 7670 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7671 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7672 if (VTList.NumVTs == 1) 7673 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7674 7675 switch (Opcode) { 7676 case ISD::STRICT_FP_EXTEND: 7677 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 7678 "Invalid STRICT_FP_EXTEND!"); 7679 assert(VTList.VTs[0].isFloatingPoint() && 7680 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 7681 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7682 "STRICT_FP_EXTEND result type should be vector iff the operand " 7683 "type is vector!"); 7684 assert((!VTList.VTs[0].isVector() || 7685 VTList.VTs[0].getVectorNumElements() == 7686 Ops[1].getValueType().getVectorNumElements()) && 7687 "Vector element count mismatch!"); 7688 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 7689 "Invalid fpext node, dst <= src!"); 7690 break; 7691 case ISD::STRICT_FP_ROUND: 7692 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 7693 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7694 "STRICT_FP_ROUND result type should be vector iff the operand " 7695 "type is vector!"); 7696 assert((!VTList.VTs[0].isVector() || 7697 VTList.VTs[0].getVectorNumElements() == 7698 Ops[1].getValueType().getVectorNumElements()) && 7699 "Vector element count mismatch!"); 7700 assert(VTList.VTs[0].isFloatingPoint() && 7701 Ops[1].getValueType().isFloatingPoint() && 7702 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 7703 isa<ConstantSDNode>(Ops[2]) && 7704 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 7705 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 7706 "Invalid STRICT_FP_ROUND!"); 7707 break; 7708 #if 0 7709 // FIXME: figure out how to safely handle things like 7710 // int foo(int x) { return 1 << (x & 255); } 7711 // int bar() { return foo(256); } 7712 case ISD::SRA_PARTS: 7713 case ISD::SRL_PARTS: 7714 case ISD::SHL_PARTS: 7715 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7716 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7717 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7718 else if (N3.getOpcode() == ISD::AND) 7719 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7720 // If the and is only masking out bits that cannot effect the shift, 7721 // eliminate the and. 7722 unsigned NumBits = VT.getScalarSizeInBits()*2; 7723 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7724 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7725 } 7726 break; 7727 #endif 7728 } 7729 7730 // Memoize the node unless it returns a flag. 7731 SDNode *N; 7732 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7733 FoldingSetNodeID ID; 7734 AddNodeIDNode(ID, Opcode, VTList, Ops); 7735 void *IP = nullptr; 7736 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7737 return SDValue(E, 0); 7738 7739 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7740 createOperands(N, Ops); 7741 CSEMap.InsertNode(N, IP); 7742 } else { 7743 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7744 createOperands(N, Ops); 7745 } 7746 7747 N->setFlags(Flags); 7748 InsertNode(N); 7749 SDValue V(N, 0); 7750 NewSDValueDbgMsg(V, "Creating new node: ", this); 7751 return V; 7752 } 7753 7754 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7755 SDVTList VTList) { 7756 return getNode(Opcode, DL, VTList, None); 7757 } 7758 7759 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7760 SDValue N1) { 7761 SDValue Ops[] = { N1 }; 7762 return getNode(Opcode, DL, VTList, Ops); 7763 } 7764 7765 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7766 SDValue N1, SDValue N2) { 7767 SDValue Ops[] = { N1, N2 }; 7768 return getNode(Opcode, DL, VTList, Ops); 7769 } 7770 7771 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7772 SDValue N1, SDValue N2, SDValue N3) { 7773 SDValue Ops[] = { N1, N2, N3 }; 7774 return getNode(Opcode, DL, VTList, Ops); 7775 } 7776 7777 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7778 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7779 SDValue Ops[] = { N1, N2, N3, N4 }; 7780 return getNode(Opcode, DL, VTList, Ops); 7781 } 7782 7783 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7784 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7785 SDValue N5) { 7786 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7787 return getNode(Opcode, DL, VTList, Ops); 7788 } 7789 7790 SDVTList SelectionDAG::getVTList(EVT VT) { 7791 return makeVTList(SDNode::getValueTypeList(VT), 1); 7792 } 7793 7794 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7795 FoldingSetNodeID ID; 7796 ID.AddInteger(2U); 7797 ID.AddInteger(VT1.getRawBits()); 7798 ID.AddInteger(VT2.getRawBits()); 7799 7800 void *IP = nullptr; 7801 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7802 if (!Result) { 7803 EVT *Array = Allocator.Allocate<EVT>(2); 7804 Array[0] = VT1; 7805 Array[1] = VT2; 7806 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7807 VTListMap.InsertNode(Result, IP); 7808 } 7809 return Result->getSDVTList(); 7810 } 7811 7812 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7813 FoldingSetNodeID ID; 7814 ID.AddInteger(3U); 7815 ID.AddInteger(VT1.getRawBits()); 7816 ID.AddInteger(VT2.getRawBits()); 7817 ID.AddInteger(VT3.getRawBits()); 7818 7819 void *IP = nullptr; 7820 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7821 if (!Result) { 7822 EVT *Array = Allocator.Allocate<EVT>(3); 7823 Array[0] = VT1; 7824 Array[1] = VT2; 7825 Array[2] = VT3; 7826 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7827 VTListMap.InsertNode(Result, IP); 7828 } 7829 return Result->getSDVTList(); 7830 } 7831 7832 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7833 FoldingSetNodeID ID; 7834 ID.AddInteger(4U); 7835 ID.AddInteger(VT1.getRawBits()); 7836 ID.AddInteger(VT2.getRawBits()); 7837 ID.AddInteger(VT3.getRawBits()); 7838 ID.AddInteger(VT4.getRawBits()); 7839 7840 void *IP = nullptr; 7841 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7842 if (!Result) { 7843 EVT *Array = Allocator.Allocate<EVT>(4); 7844 Array[0] = VT1; 7845 Array[1] = VT2; 7846 Array[2] = VT3; 7847 Array[3] = VT4; 7848 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7849 VTListMap.InsertNode(Result, IP); 7850 } 7851 return Result->getSDVTList(); 7852 } 7853 7854 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7855 unsigned NumVTs = VTs.size(); 7856 FoldingSetNodeID ID; 7857 ID.AddInteger(NumVTs); 7858 for (unsigned index = 0; index < NumVTs; index++) { 7859 ID.AddInteger(VTs[index].getRawBits()); 7860 } 7861 7862 void *IP = nullptr; 7863 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7864 if (!Result) { 7865 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7866 llvm::copy(VTs, Array); 7867 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7868 VTListMap.InsertNode(Result, IP); 7869 } 7870 return Result->getSDVTList(); 7871 } 7872 7873 7874 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7875 /// specified operands. If the resultant node already exists in the DAG, 7876 /// this does not modify the specified node, instead it returns the node that 7877 /// already exists. If the resultant node does not exist in the DAG, the 7878 /// input node is returned. As a degenerate case, if you specify the same 7879 /// input operands as the node already has, the input node is returned. 7880 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7881 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7882 7883 // Check to see if there is no change. 7884 if (Op == N->getOperand(0)) return N; 7885 7886 // See if the modified node already exists. 7887 void *InsertPos = nullptr; 7888 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7889 return Existing; 7890 7891 // Nope it doesn't. Remove the node from its current place in the maps. 7892 if (InsertPos) 7893 if (!RemoveNodeFromCSEMaps(N)) 7894 InsertPos = nullptr; 7895 7896 // Now we update the operands. 7897 N->OperandList[0].set(Op); 7898 7899 updateDivergence(N); 7900 // If this gets put into a CSE map, add it. 7901 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7902 return N; 7903 } 7904 7905 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7906 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7907 7908 // Check to see if there is no change. 7909 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7910 return N; // No operands changed, just return the input node. 7911 7912 // See if the modified node already exists. 7913 void *InsertPos = nullptr; 7914 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7915 return Existing; 7916 7917 // Nope it doesn't. Remove the node from its current place in the maps. 7918 if (InsertPos) 7919 if (!RemoveNodeFromCSEMaps(N)) 7920 InsertPos = nullptr; 7921 7922 // Now we update the operands. 7923 if (N->OperandList[0] != Op1) 7924 N->OperandList[0].set(Op1); 7925 if (N->OperandList[1] != Op2) 7926 N->OperandList[1].set(Op2); 7927 7928 updateDivergence(N); 7929 // If this gets put into a CSE map, add it. 7930 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7931 return N; 7932 } 7933 7934 SDNode *SelectionDAG:: 7935 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7936 SDValue Ops[] = { Op1, Op2, Op3 }; 7937 return UpdateNodeOperands(N, Ops); 7938 } 7939 7940 SDNode *SelectionDAG:: 7941 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7942 SDValue Op3, SDValue Op4) { 7943 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7944 return UpdateNodeOperands(N, Ops); 7945 } 7946 7947 SDNode *SelectionDAG:: 7948 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7949 SDValue Op3, SDValue Op4, SDValue Op5) { 7950 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7951 return UpdateNodeOperands(N, Ops); 7952 } 7953 7954 SDNode *SelectionDAG:: 7955 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7956 unsigned NumOps = Ops.size(); 7957 assert(N->getNumOperands() == NumOps && 7958 "Update with wrong number of operands"); 7959 7960 // If no operands changed just return the input node. 7961 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7962 return N; 7963 7964 // See if the modified node already exists. 7965 void *InsertPos = nullptr; 7966 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7967 return Existing; 7968 7969 // Nope it doesn't. Remove the node from its current place in the maps. 7970 if (InsertPos) 7971 if (!RemoveNodeFromCSEMaps(N)) 7972 InsertPos = nullptr; 7973 7974 // Now we update the operands. 7975 for (unsigned i = 0; i != NumOps; ++i) 7976 if (N->OperandList[i] != Ops[i]) 7977 N->OperandList[i].set(Ops[i]); 7978 7979 updateDivergence(N); 7980 // If this gets put into a CSE map, add it. 7981 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7982 return N; 7983 } 7984 7985 /// DropOperands - Release the operands and set this node to have 7986 /// zero operands. 7987 void SDNode::DropOperands() { 7988 // Unlike the code in MorphNodeTo that does this, we don't need to 7989 // watch for dead nodes here. 7990 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7991 SDUse &Use = *I++; 7992 Use.set(SDValue()); 7993 } 7994 } 7995 7996 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7997 ArrayRef<MachineMemOperand *> NewMemRefs) { 7998 if (NewMemRefs.empty()) { 7999 N->clearMemRefs(); 8000 return; 8001 } 8002 8003 // Check if we can avoid allocating by storing a single reference directly. 8004 if (NewMemRefs.size() == 1) { 8005 N->MemRefs = NewMemRefs[0]; 8006 N->NumMemRefs = 1; 8007 return; 8008 } 8009 8010 MachineMemOperand **MemRefsBuffer = 8011 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 8012 llvm::copy(NewMemRefs, MemRefsBuffer); 8013 N->MemRefs = MemRefsBuffer; 8014 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 8015 } 8016 8017 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 8018 /// machine opcode. 8019 /// 8020 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8021 EVT VT) { 8022 SDVTList VTs = getVTList(VT); 8023 return SelectNodeTo(N, MachineOpc, VTs, None); 8024 } 8025 8026 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8027 EVT VT, SDValue Op1) { 8028 SDVTList VTs = getVTList(VT); 8029 SDValue Ops[] = { Op1 }; 8030 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8031 } 8032 8033 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8034 EVT VT, SDValue Op1, 8035 SDValue Op2) { 8036 SDVTList VTs = getVTList(VT); 8037 SDValue Ops[] = { Op1, Op2 }; 8038 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8039 } 8040 8041 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8042 EVT VT, SDValue Op1, 8043 SDValue Op2, SDValue Op3) { 8044 SDVTList VTs = getVTList(VT); 8045 SDValue Ops[] = { Op1, Op2, Op3 }; 8046 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8047 } 8048 8049 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8050 EVT VT, ArrayRef<SDValue> Ops) { 8051 SDVTList VTs = getVTList(VT); 8052 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8053 } 8054 8055 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8056 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 8057 SDVTList VTs = getVTList(VT1, VT2); 8058 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8059 } 8060 8061 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8062 EVT VT1, EVT VT2) { 8063 SDVTList VTs = getVTList(VT1, VT2); 8064 return SelectNodeTo(N, MachineOpc, VTs, None); 8065 } 8066 8067 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8068 EVT VT1, EVT VT2, EVT VT3, 8069 ArrayRef<SDValue> Ops) { 8070 SDVTList VTs = getVTList(VT1, VT2, VT3); 8071 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8072 } 8073 8074 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8075 EVT VT1, EVT VT2, 8076 SDValue Op1, SDValue Op2) { 8077 SDVTList VTs = getVTList(VT1, VT2); 8078 SDValue Ops[] = { Op1, Op2 }; 8079 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8080 } 8081 8082 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8083 SDVTList VTs,ArrayRef<SDValue> Ops) { 8084 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8085 // Reset the NodeID to -1. 8086 New->setNodeId(-1); 8087 if (New != N) { 8088 ReplaceAllUsesWith(N, New); 8089 RemoveDeadNode(N); 8090 } 8091 return New; 8092 } 8093 8094 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8095 /// the line number information on the merged node since it is not possible to 8096 /// preserve the information that operation is associated with multiple lines. 8097 /// This will make the debugger working better at -O0, were there is a higher 8098 /// probability having other instructions associated with that line. 8099 /// 8100 /// For IROrder, we keep the smaller of the two 8101 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8102 DebugLoc NLoc = N->getDebugLoc(); 8103 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8104 N->setDebugLoc(DebugLoc()); 8105 } 8106 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8107 N->setIROrder(Order); 8108 return N; 8109 } 8110 8111 /// MorphNodeTo - This *mutates* the specified node to have the specified 8112 /// return type, opcode, and operands. 8113 /// 8114 /// Note that MorphNodeTo returns the resultant node. If there is already a 8115 /// node of the specified opcode and operands, it returns that node instead of 8116 /// the current one. Note that the SDLoc need not be the same. 8117 /// 8118 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8119 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8120 /// node, and because it doesn't require CSE recalculation for any of 8121 /// the node's users. 8122 /// 8123 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8124 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8125 /// the legalizer which maintain worklists that would need to be updated when 8126 /// deleting things. 8127 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8128 SDVTList VTs, ArrayRef<SDValue> Ops) { 8129 // If an identical node already exists, use it. 8130 void *IP = nullptr; 8131 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8132 FoldingSetNodeID ID; 8133 AddNodeIDNode(ID, Opc, VTs, Ops); 8134 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8135 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8136 } 8137 8138 if (!RemoveNodeFromCSEMaps(N)) 8139 IP = nullptr; 8140 8141 // Start the morphing. 8142 N->NodeType = Opc; 8143 N->ValueList = VTs.VTs; 8144 N->NumValues = VTs.NumVTs; 8145 8146 // Clear the operands list, updating used nodes to remove this from their 8147 // use list. Keep track of any operands that become dead as a result. 8148 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8149 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8150 SDUse &Use = *I++; 8151 SDNode *Used = Use.getNode(); 8152 Use.set(SDValue()); 8153 if (Used->use_empty()) 8154 DeadNodeSet.insert(Used); 8155 } 8156 8157 // For MachineNode, initialize the memory references information. 8158 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8159 MN->clearMemRefs(); 8160 8161 // Swap for an appropriately sized array from the recycler. 8162 removeOperands(N); 8163 createOperands(N, Ops); 8164 8165 // Delete any nodes that are still dead after adding the uses for the 8166 // new operands. 8167 if (!DeadNodeSet.empty()) { 8168 SmallVector<SDNode *, 16> DeadNodes; 8169 for (SDNode *N : DeadNodeSet) 8170 if (N->use_empty()) 8171 DeadNodes.push_back(N); 8172 RemoveDeadNodes(DeadNodes); 8173 } 8174 8175 if (IP) 8176 CSEMap.InsertNode(N, IP); // Memoize the new node. 8177 return N; 8178 } 8179 8180 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8181 unsigned OrigOpc = Node->getOpcode(); 8182 unsigned NewOpc; 8183 switch (OrigOpc) { 8184 default: 8185 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8186 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8187 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8188 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8189 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8190 #include "llvm/IR/ConstrainedOps.def" 8191 } 8192 8193 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8194 8195 // We're taking this node out of the chain, so we need to re-link things. 8196 SDValue InputChain = Node->getOperand(0); 8197 SDValue OutputChain = SDValue(Node, 1); 8198 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8199 8200 SmallVector<SDValue, 3> Ops; 8201 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8202 Ops.push_back(Node->getOperand(i)); 8203 8204 SDVTList VTs = getVTList(Node->getValueType(0)); 8205 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8206 8207 // MorphNodeTo can operate in two ways: if an existing node with the 8208 // specified operands exists, it can just return it. Otherwise, it 8209 // updates the node in place to have the requested operands. 8210 if (Res == Node) { 8211 // If we updated the node in place, reset the node ID. To the isel, 8212 // this should be just like a newly allocated machine node. 8213 Res->setNodeId(-1); 8214 } else { 8215 ReplaceAllUsesWith(Node, Res); 8216 RemoveDeadNode(Node); 8217 } 8218 8219 return Res; 8220 } 8221 8222 /// getMachineNode - These are used for target selectors to create a new node 8223 /// with specified return type(s), MachineInstr opcode, and operands. 8224 /// 8225 /// Note that getMachineNode returns the resultant node. If there is already a 8226 /// node of the specified opcode and operands, it returns that node instead of 8227 /// the current one. 8228 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8229 EVT VT) { 8230 SDVTList VTs = getVTList(VT); 8231 return getMachineNode(Opcode, dl, VTs, None); 8232 } 8233 8234 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8235 EVT VT, SDValue Op1) { 8236 SDVTList VTs = getVTList(VT); 8237 SDValue Ops[] = { Op1 }; 8238 return getMachineNode(Opcode, dl, VTs, Ops); 8239 } 8240 8241 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8242 EVT VT, SDValue Op1, SDValue Op2) { 8243 SDVTList VTs = getVTList(VT); 8244 SDValue Ops[] = { Op1, Op2 }; 8245 return getMachineNode(Opcode, dl, VTs, Ops); 8246 } 8247 8248 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8249 EVT VT, SDValue Op1, SDValue Op2, 8250 SDValue Op3) { 8251 SDVTList VTs = getVTList(VT); 8252 SDValue Ops[] = { Op1, Op2, Op3 }; 8253 return getMachineNode(Opcode, dl, VTs, Ops); 8254 } 8255 8256 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8257 EVT VT, ArrayRef<SDValue> Ops) { 8258 SDVTList VTs = getVTList(VT); 8259 return getMachineNode(Opcode, dl, VTs, Ops); 8260 } 8261 8262 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8263 EVT VT1, EVT VT2, SDValue Op1, 8264 SDValue Op2) { 8265 SDVTList VTs = getVTList(VT1, VT2); 8266 SDValue Ops[] = { Op1, Op2 }; 8267 return getMachineNode(Opcode, dl, VTs, Ops); 8268 } 8269 8270 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8271 EVT VT1, EVT VT2, SDValue Op1, 8272 SDValue Op2, SDValue Op3) { 8273 SDVTList VTs = getVTList(VT1, VT2); 8274 SDValue Ops[] = { Op1, Op2, Op3 }; 8275 return getMachineNode(Opcode, dl, VTs, Ops); 8276 } 8277 8278 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8279 EVT VT1, EVT VT2, 8280 ArrayRef<SDValue> Ops) { 8281 SDVTList VTs = getVTList(VT1, VT2); 8282 return getMachineNode(Opcode, dl, VTs, Ops); 8283 } 8284 8285 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8286 EVT VT1, EVT VT2, EVT VT3, 8287 SDValue Op1, SDValue Op2) { 8288 SDVTList VTs = getVTList(VT1, VT2, VT3); 8289 SDValue Ops[] = { Op1, Op2 }; 8290 return getMachineNode(Opcode, dl, VTs, Ops); 8291 } 8292 8293 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8294 EVT VT1, EVT VT2, EVT VT3, 8295 SDValue Op1, SDValue Op2, 8296 SDValue Op3) { 8297 SDVTList VTs = getVTList(VT1, VT2, VT3); 8298 SDValue Ops[] = { Op1, Op2, Op3 }; 8299 return getMachineNode(Opcode, dl, VTs, Ops); 8300 } 8301 8302 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8303 EVT VT1, EVT VT2, EVT VT3, 8304 ArrayRef<SDValue> Ops) { 8305 SDVTList VTs = getVTList(VT1, VT2, VT3); 8306 return getMachineNode(Opcode, dl, VTs, Ops); 8307 } 8308 8309 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8310 ArrayRef<EVT> ResultTys, 8311 ArrayRef<SDValue> Ops) { 8312 SDVTList VTs = getVTList(ResultTys); 8313 return getMachineNode(Opcode, dl, VTs, Ops); 8314 } 8315 8316 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 8317 SDVTList VTs, 8318 ArrayRef<SDValue> Ops) { 8319 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 8320 MachineSDNode *N; 8321 void *IP = nullptr; 8322 8323 if (DoCSE) { 8324 FoldingSetNodeID ID; 8325 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 8326 IP = nullptr; 8327 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8328 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 8329 } 8330 } 8331 8332 // Allocate a new MachineSDNode. 8333 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8334 createOperands(N, Ops); 8335 8336 if (DoCSE) 8337 CSEMap.InsertNode(N, IP); 8338 8339 InsertNode(N); 8340 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 8341 return N; 8342 } 8343 8344 /// getTargetExtractSubreg - A convenience function for creating 8345 /// TargetOpcode::EXTRACT_SUBREG nodes. 8346 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8347 SDValue Operand) { 8348 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8349 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 8350 VT, Operand, SRIdxVal); 8351 return SDValue(Subreg, 0); 8352 } 8353 8354 /// getTargetInsertSubreg - A convenience function for creating 8355 /// TargetOpcode::INSERT_SUBREG nodes. 8356 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8357 SDValue Operand, SDValue Subreg) { 8358 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8359 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 8360 VT, Operand, Subreg, SRIdxVal); 8361 return SDValue(Result, 0); 8362 } 8363 8364 /// getNodeIfExists - Get the specified node if it's already available, or 8365 /// else return NULL. 8366 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8367 ArrayRef<SDValue> Ops) { 8368 SDNodeFlags Flags; 8369 if (Inserter) 8370 Flags = Inserter->getFlags(); 8371 return getNodeIfExists(Opcode, VTList, Ops, Flags); 8372 } 8373 8374 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8375 ArrayRef<SDValue> Ops, 8376 const SDNodeFlags Flags) { 8377 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8378 FoldingSetNodeID ID; 8379 AddNodeIDNode(ID, Opcode, VTList, Ops); 8380 void *IP = nullptr; 8381 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 8382 E->intersectFlagsWith(Flags); 8383 return E; 8384 } 8385 } 8386 return nullptr; 8387 } 8388 8389 /// doesNodeExist - Check if a node exists without modifying its flags. 8390 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 8391 ArrayRef<SDValue> Ops) { 8392 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8393 FoldingSetNodeID ID; 8394 AddNodeIDNode(ID, Opcode, VTList, Ops); 8395 void *IP = nullptr; 8396 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 8397 return true; 8398 } 8399 return false; 8400 } 8401 8402 /// getDbgValue - Creates a SDDbgValue node. 8403 /// 8404 /// SDNode 8405 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 8406 SDNode *N, unsigned R, bool IsIndirect, 8407 const DebugLoc &DL, unsigned O) { 8408 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8409 "Expected inlined-at fields to agree"); 8410 return new (DbgInfo->getAlloc()) 8411 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 8412 } 8413 8414 /// Constant 8415 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 8416 DIExpression *Expr, 8417 const Value *C, 8418 const DebugLoc &DL, unsigned O) { 8419 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8420 "Expected inlined-at fields to agree"); 8421 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 8422 } 8423 8424 /// FrameIndex 8425 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8426 DIExpression *Expr, unsigned FI, 8427 bool IsIndirect, 8428 const DebugLoc &DL, 8429 unsigned O) { 8430 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8431 "Expected inlined-at fields to agree"); 8432 return new (DbgInfo->getAlloc()) 8433 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 8434 } 8435 8436 /// VReg 8437 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 8438 DIExpression *Expr, 8439 unsigned VReg, bool IsIndirect, 8440 const DebugLoc &DL, unsigned O) { 8441 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8442 "Expected inlined-at fields to agree"); 8443 return new (DbgInfo->getAlloc()) 8444 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 8445 } 8446 8447 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8448 unsigned OffsetInBits, unsigned SizeInBits, 8449 bool InvalidateDbg) { 8450 SDNode *FromNode = From.getNode(); 8451 SDNode *ToNode = To.getNode(); 8452 assert(FromNode && ToNode && "Can't modify dbg values"); 8453 8454 // PR35338 8455 // TODO: assert(From != To && "Redundant dbg value transfer"); 8456 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8457 if (From == To || FromNode == ToNode) 8458 return; 8459 8460 if (!FromNode->getHasDebugValue()) 8461 return; 8462 8463 SmallVector<SDDbgValue *, 2> ClonedDVs; 8464 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8465 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 8466 continue; 8467 8468 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8469 8470 // Just transfer the dbg value attached to From. 8471 if (Dbg->getResNo() != From.getResNo()) 8472 continue; 8473 8474 DIVariable *Var = Dbg->getVariable(); 8475 auto *Expr = Dbg->getExpression(); 8476 // If a fragment is requested, update the expression. 8477 if (SizeInBits) { 8478 // When splitting a larger (e.g., sign-extended) value whose 8479 // lower bits are described with an SDDbgValue, do not attempt 8480 // to transfer the SDDbgValue to the upper bits. 8481 if (auto FI = Expr->getFragmentInfo()) 8482 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8483 continue; 8484 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8485 SizeInBits); 8486 if (!Fragment) 8487 continue; 8488 Expr = *Fragment; 8489 } 8490 // Clone the SDDbgValue and move it to To. 8491 SDDbgValue *Clone = getDbgValue( 8492 Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(), 8493 std::max(ToNode->getIROrder(), Dbg->getOrder())); 8494 ClonedDVs.push_back(Clone); 8495 8496 if (InvalidateDbg) { 8497 // Invalidate value and indicate the SDDbgValue should not be emitted. 8498 Dbg->setIsInvalidated(); 8499 Dbg->setIsEmitted(); 8500 } 8501 } 8502 8503 for (SDDbgValue *Dbg : ClonedDVs) 8504 AddDbgValue(Dbg, ToNode, false); 8505 } 8506 8507 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8508 if (!N.getHasDebugValue()) 8509 return; 8510 8511 SmallVector<SDDbgValue *, 2> ClonedDVs; 8512 for (auto DV : GetDbgValues(&N)) { 8513 if (DV->isInvalidated()) 8514 continue; 8515 switch (N.getOpcode()) { 8516 default: 8517 break; 8518 case ISD::ADD: 8519 SDValue N0 = N.getOperand(0); 8520 SDValue N1 = N.getOperand(1); 8521 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8522 isConstantIntBuildVectorOrConstantInt(N1)) { 8523 uint64_t Offset = N.getConstantOperandVal(1); 8524 // Rewrite an ADD constant node into a DIExpression. Since we are 8525 // performing arithmetic to compute the variable's *value* in the 8526 // DIExpression, we need to mark the expression with a 8527 // DW_OP_stack_value. 8528 auto *DIExpr = DV->getExpression(); 8529 DIExpr = 8530 DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset); 8531 SDDbgValue *Clone = 8532 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 8533 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 8534 ClonedDVs.push_back(Clone); 8535 DV->setIsInvalidated(); 8536 DV->setIsEmitted(); 8537 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8538 N0.getNode()->dumprFull(this); 8539 dbgs() << " into " << *DIExpr << '\n'); 8540 } 8541 } 8542 } 8543 8544 for (SDDbgValue *Dbg : ClonedDVs) 8545 AddDbgValue(Dbg, Dbg->getSDNode(), false); 8546 } 8547 8548 /// Creates a SDDbgLabel node. 8549 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8550 const DebugLoc &DL, unsigned O) { 8551 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8552 "Expected inlined-at fields to agree"); 8553 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8554 } 8555 8556 namespace { 8557 8558 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8559 /// pointed to by a use iterator is deleted, increment the use iterator 8560 /// so that it doesn't dangle. 8561 /// 8562 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8563 SDNode::use_iterator &UI; 8564 SDNode::use_iterator &UE; 8565 8566 void NodeDeleted(SDNode *N, SDNode *E) override { 8567 // Increment the iterator as needed. 8568 while (UI != UE && N == *UI) 8569 ++UI; 8570 } 8571 8572 public: 8573 RAUWUpdateListener(SelectionDAG &d, 8574 SDNode::use_iterator &ui, 8575 SDNode::use_iterator &ue) 8576 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8577 }; 8578 8579 } // end anonymous namespace 8580 8581 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8582 /// This can cause recursive merging of nodes in the DAG. 8583 /// 8584 /// This version assumes From has a single result value. 8585 /// 8586 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8587 SDNode *From = FromN.getNode(); 8588 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8589 "Cannot replace with this method!"); 8590 assert(From != To.getNode() && "Cannot replace uses of with self"); 8591 8592 // Preserve Debug Values 8593 transferDbgValues(FromN, To); 8594 8595 // Iterate over all the existing uses of From. New uses will be added 8596 // to the beginning of the use list, which we avoid visiting. 8597 // This specifically avoids visiting uses of From that arise while the 8598 // replacement is happening, because any such uses would be the result 8599 // of CSE: If an existing node looks like From after one of its operands 8600 // is replaced by To, we don't want to replace of all its users with To 8601 // too. See PR3018 for more info. 8602 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8603 RAUWUpdateListener Listener(*this, UI, UE); 8604 while (UI != UE) { 8605 SDNode *User = *UI; 8606 8607 // This node is about to morph, remove its old self from the CSE maps. 8608 RemoveNodeFromCSEMaps(User); 8609 8610 // A user can appear in a use list multiple times, and when this 8611 // happens the uses are usually next to each other in the list. 8612 // To help reduce the number of CSE recomputations, process all 8613 // the uses of this user that we can find this way. 8614 do { 8615 SDUse &Use = UI.getUse(); 8616 ++UI; 8617 Use.set(To); 8618 if (To->isDivergent() != From->isDivergent()) 8619 updateDivergence(User); 8620 } while (UI != UE && *UI == User); 8621 // Now that we have modified User, add it back to the CSE maps. If it 8622 // already exists there, recursively merge the results together. 8623 AddModifiedNodeToCSEMaps(User); 8624 } 8625 8626 // If we just RAUW'd the root, take note. 8627 if (FromN == getRoot()) 8628 setRoot(To); 8629 } 8630 8631 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8632 /// This can cause recursive merging of nodes in the DAG. 8633 /// 8634 /// This version assumes that for each value of From, there is a 8635 /// corresponding value in To in the same position with the same type. 8636 /// 8637 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8638 #ifndef NDEBUG 8639 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8640 assert((!From->hasAnyUseOfValue(i) || 8641 From->getValueType(i) == To->getValueType(i)) && 8642 "Cannot use this version of ReplaceAllUsesWith!"); 8643 #endif 8644 8645 // Handle the trivial case. 8646 if (From == To) 8647 return; 8648 8649 // Preserve Debug Info. Only do this if there's a use. 8650 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8651 if (From->hasAnyUseOfValue(i)) { 8652 assert((i < To->getNumValues()) && "Invalid To location"); 8653 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8654 } 8655 8656 // Iterate over just the existing users of From. See the comments in 8657 // the ReplaceAllUsesWith above. 8658 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8659 RAUWUpdateListener Listener(*this, UI, UE); 8660 while (UI != UE) { 8661 SDNode *User = *UI; 8662 8663 // This node is about to morph, remove its old self from the CSE maps. 8664 RemoveNodeFromCSEMaps(User); 8665 8666 // A user can appear in a use list multiple times, and when this 8667 // happens the uses are usually next to each other in the list. 8668 // To help reduce the number of CSE recomputations, process all 8669 // the uses of this user that we can find this way. 8670 do { 8671 SDUse &Use = UI.getUse(); 8672 ++UI; 8673 Use.setNode(To); 8674 if (To->isDivergent() != From->isDivergent()) 8675 updateDivergence(User); 8676 } while (UI != UE && *UI == User); 8677 8678 // Now that we have modified User, add it back to the CSE maps. If it 8679 // already exists there, recursively merge the results together. 8680 AddModifiedNodeToCSEMaps(User); 8681 } 8682 8683 // If we just RAUW'd the root, take note. 8684 if (From == getRoot().getNode()) 8685 setRoot(SDValue(To, getRoot().getResNo())); 8686 } 8687 8688 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8689 /// This can cause recursive merging of nodes in the DAG. 8690 /// 8691 /// This version can replace From with any result values. To must match the 8692 /// number and types of values returned by From. 8693 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8694 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8695 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8696 8697 // Preserve Debug Info. 8698 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8699 transferDbgValues(SDValue(From, i), To[i]); 8700 8701 // Iterate over just the existing users of From. See the comments in 8702 // the ReplaceAllUsesWith above. 8703 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8704 RAUWUpdateListener Listener(*this, UI, UE); 8705 while (UI != UE) { 8706 SDNode *User = *UI; 8707 8708 // This node is about to morph, remove its old self from the CSE maps. 8709 RemoveNodeFromCSEMaps(User); 8710 8711 // A user can appear in a use list multiple times, and when this happens the 8712 // uses are usually next to each other in the list. To help reduce the 8713 // number of CSE and divergence recomputations, process all the uses of this 8714 // user that we can find this way. 8715 bool To_IsDivergent = false; 8716 do { 8717 SDUse &Use = UI.getUse(); 8718 const SDValue &ToOp = To[Use.getResNo()]; 8719 ++UI; 8720 Use.set(ToOp); 8721 To_IsDivergent |= ToOp->isDivergent(); 8722 } while (UI != UE && *UI == User); 8723 8724 if (To_IsDivergent != From->isDivergent()) 8725 updateDivergence(User); 8726 8727 // Now that we have modified User, add it back to the CSE maps. If it 8728 // already exists there, recursively merge the results together. 8729 AddModifiedNodeToCSEMaps(User); 8730 } 8731 8732 // If we just RAUW'd the root, take note. 8733 if (From == getRoot().getNode()) 8734 setRoot(SDValue(To[getRoot().getResNo()])); 8735 } 8736 8737 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8738 /// uses of other values produced by From.getNode() alone. The Deleted 8739 /// vector is handled the same way as for ReplaceAllUsesWith. 8740 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8741 // Handle the really simple, really trivial case efficiently. 8742 if (From == To) return; 8743 8744 // Handle the simple, trivial, case efficiently. 8745 if (From.getNode()->getNumValues() == 1) { 8746 ReplaceAllUsesWith(From, To); 8747 return; 8748 } 8749 8750 // Preserve Debug Info. 8751 transferDbgValues(From, To); 8752 8753 // Iterate over just the existing users of From. See the comments in 8754 // the ReplaceAllUsesWith above. 8755 SDNode::use_iterator UI = From.getNode()->use_begin(), 8756 UE = From.getNode()->use_end(); 8757 RAUWUpdateListener Listener(*this, UI, UE); 8758 while (UI != UE) { 8759 SDNode *User = *UI; 8760 bool UserRemovedFromCSEMaps = false; 8761 8762 // A user can appear in a use list multiple times, and when this 8763 // happens the uses are usually next to each other in the list. 8764 // To help reduce the number of CSE recomputations, process all 8765 // the uses of this user that we can find this way. 8766 do { 8767 SDUse &Use = UI.getUse(); 8768 8769 // Skip uses of different values from the same node. 8770 if (Use.getResNo() != From.getResNo()) { 8771 ++UI; 8772 continue; 8773 } 8774 8775 // If this node hasn't been modified yet, it's still in the CSE maps, 8776 // so remove its old self from the CSE maps. 8777 if (!UserRemovedFromCSEMaps) { 8778 RemoveNodeFromCSEMaps(User); 8779 UserRemovedFromCSEMaps = true; 8780 } 8781 8782 ++UI; 8783 Use.set(To); 8784 if (To->isDivergent() != From->isDivergent()) 8785 updateDivergence(User); 8786 } while (UI != UE && *UI == User); 8787 // We are iterating over all uses of the From node, so if a use 8788 // doesn't use the specific value, no changes are made. 8789 if (!UserRemovedFromCSEMaps) 8790 continue; 8791 8792 // Now that we have modified User, add it back to the CSE maps. If it 8793 // already exists there, recursively merge the results together. 8794 AddModifiedNodeToCSEMaps(User); 8795 } 8796 8797 // If we just RAUW'd the root, take note. 8798 if (From == getRoot()) 8799 setRoot(To); 8800 } 8801 8802 namespace { 8803 8804 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8805 /// to record information about a use. 8806 struct UseMemo { 8807 SDNode *User; 8808 unsigned Index; 8809 SDUse *Use; 8810 }; 8811 8812 /// operator< - Sort Memos by User. 8813 bool operator<(const UseMemo &L, const UseMemo &R) { 8814 return (intptr_t)L.User < (intptr_t)R.User; 8815 } 8816 8817 } // end anonymous namespace 8818 8819 bool SelectionDAG::calculateDivergence(SDNode *N) { 8820 if (TLI->isSDNodeAlwaysUniform(N)) { 8821 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 8822 "Conflicting divergence information!"); 8823 return false; 8824 } 8825 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 8826 return true; 8827 for (auto &Op : N->ops()) { 8828 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 8829 return true; 8830 } 8831 return false; 8832 } 8833 8834 void SelectionDAG::updateDivergence(SDNode *N) { 8835 SmallVector<SDNode *, 16> Worklist(1, N); 8836 do { 8837 N = Worklist.pop_back_val(); 8838 bool IsDivergent = calculateDivergence(N); 8839 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8840 N->SDNodeBits.IsDivergent = IsDivergent; 8841 llvm::append_range(Worklist, N->uses()); 8842 } 8843 } while (!Worklist.empty()); 8844 } 8845 8846 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8847 DenseMap<SDNode *, unsigned> Degree; 8848 Order.reserve(AllNodes.size()); 8849 for (auto &N : allnodes()) { 8850 unsigned NOps = N.getNumOperands(); 8851 Degree[&N] = NOps; 8852 if (0 == NOps) 8853 Order.push_back(&N); 8854 } 8855 for (size_t I = 0; I != Order.size(); ++I) { 8856 SDNode *N = Order[I]; 8857 for (auto U : N->uses()) { 8858 unsigned &UnsortedOps = Degree[U]; 8859 if (0 == --UnsortedOps) 8860 Order.push_back(U); 8861 } 8862 } 8863 } 8864 8865 #ifndef NDEBUG 8866 void SelectionDAG::VerifyDAGDiverence() { 8867 std::vector<SDNode *> TopoOrder; 8868 CreateTopologicalOrder(TopoOrder); 8869 for (auto *N : TopoOrder) { 8870 assert(calculateDivergence(N) == N->isDivergent() && 8871 "Divergence bit inconsistency detected"); 8872 } 8873 } 8874 #endif 8875 8876 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8877 /// uses of other values produced by From.getNode() alone. The same value 8878 /// may appear in both the From and To list. The Deleted vector is 8879 /// handled the same way as for ReplaceAllUsesWith. 8880 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8881 const SDValue *To, 8882 unsigned Num){ 8883 // Handle the simple, trivial case efficiently. 8884 if (Num == 1) 8885 return ReplaceAllUsesOfValueWith(*From, *To); 8886 8887 transferDbgValues(*From, *To); 8888 8889 // Read up all the uses and make records of them. This helps 8890 // processing new uses that are introduced during the 8891 // replacement process. 8892 SmallVector<UseMemo, 4> Uses; 8893 for (unsigned i = 0; i != Num; ++i) { 8894 unsigned FromResNo = From[i].getResNo(); 8895 SDNode *FromNode = From[i].getNode(); 8896 for (SDNode::use_iterator UI = FromNode->use_begin(), 8897 E = FromNode->use_end(); UI != E; ++UI) { 8898 SDUse &Use = UI.getUse(); 8899 if (Use.getResNo() == FromResNo) { 8900 UseMemo Memo = { *UI, i, &Use }; 8901 Uses.push_back(Memo); 8902 } 8903 } 8904 } 8905 8906 // Sort the uses, so that all the uses from a given User are together. 8907 llvm::sort(Uses); 8908 8909 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8910 UseIndex != UseIndexEnd; ) { 8911 // We know that this user uses some value of From. If it is the right 8912 // value, update it. 8913 SDNode *User = Uses[UseIndex].User; 8914 8915 // This node is about to morph, remove its old self from the CSE maps. 8916 RemoveNodeFromCSEMaps(User); 8917 8918 // The Uses array is sorted, so all the uses for a given User 8919 // are next to each other in the list. 8920 // To help reduce the number of CSE recomputations, process all 8921 // the uses of this user that we can find this way. 8922 do { 8923 unsigned i = Uses[UseIndex].Index; 8924 SDUse &Use = *Uses[UseIndex].Use; 8925 ++UseIndex; 8926 8927 Use.set(To[i]); 8928 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8929 8930 // Now that we have modified User, add it back to the CSE maps. If it 8931 // already exists there, recursively merge the results together. 8932 AddModifiedNodeToCSEMaps(User); 8933 } 8934 } 8935 8936 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8937 /// based on their topological order. It returns the maximum id and a vector 8938 /// of the SDNodes* in assigned order by reference. 8939 unsigned SelectionDAG::AssignTopologicalOrder() { 8940 unsigned DAGSize = 0; 8941 8942 // SortedPos tracks the progress of the algorithm. Nodes before it are 8943 // sorted, nodes after it are unsorted. When the algorithm completes 8944 // it is at the end of the list. 8945 allnodes_iterator SortedPos = allnodes_begin(); 8946 8947 // Visit all the nodes. Move nodes with no operands to the front of 8948 // the list immediately. Annotate nodes that do have operands with their 8949 // operand count. Before we do this, the Node Id fields of the nodes 8950 // may contain arbitrary values. After, the Node Id fields for nodes 8951 // before SortedPos will contain the topological sort index, and the 8952 // Node Id fields for nodes At SortedPos and after will contain the 8953 // count of outstanding operands. 8954 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8955 SDNode *N = &*I++; 8956 checkForCycles(N, this); 8957 unsigned Degree = N->getNumOperands(); 8958 if (Degree == 0) { 8959 // A node with no uses, add it to the result array immediately. 8960 N->setNodeId(DAGSize++); 8961 allnodes_iterator Q(N); 8962 if (Q != SortedPos) 8963 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8964 assert(SortedPos != AllNodes.end() && "Overran node list"); 8965 ++SortedPos; 8966 } else { 8967 // Temporarily use the Node Id as scratch space for the degree count. 8968 N->setNodeId(Degree); 8969 } 8970 } 8971 8972 // Visit all the nodes. As we iterate, move nodes into sorted order, 8973 // such that by the time the end is reached all nodes will be sorted. 8974 for (SDNode &Node : allnodes()) { 8975 SDNode *N = &Node; 8976 checkForCycles(N, this); 8977 // N is in sorted position, so all its uses have one less operand 8978 // that needs to be sorted. 8979 for (SDNode *P : N->uses()) { 8980 unsigned Degree = P->getNodeId(); 8981 assert(Degree != 0 && "Invalid node degree"); 8982 --Degree; 8983 if (Degree == 0) { 8984 // All of P's operands are sorted, so P may sorted now. 8985 P->setNodeId(DAGSize++); 8986 if (P->getIterator() != SortedPos) 8987 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8988 assert(SortedPos != AllNodes.end() && "Overran node list"); 8989 ++SortedPos; 8990 } else { 8991 // Update P's outstanding operand count. 8992 P->setNodeId(Degree); 8993 } 8994 } 8995 if (Node.getIterator() == SortedPos) { 8996 #ifndef NDEBUG 8997 allnodes_iterator I(N); 8998 SDNode *S = &*++I; 8999 dbgs() << "Overran sorted position:\n"; 9000 S->dumprFull(this); dbgs() << "\n"; 9001 dbgs() << "Checking if this is due to cycles\n"; 9002 checkForCycles(this, true); 9003 #endif 9004 llvm_unreachable(nullptr); 9005 } 9006 } 9007 9008 assert(SortedPos == AllNodes.end() && 9009 "Topological sort incomplete!"); 9010 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 9011 "First node in topological sort is not the entry token!"); 9012 assert(AllNodes.front().getNodeId() == 0 && 9013 "First node in topological sort has non-zero id!"); 9014 assert(AllNodes.front().getNumOperands() == 0 && 9015 "First node in topological sort has operands!"); 9016 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 9017 "Last node in topologic sort has unexpected id!"); 9018 assert(AllNodes.back().use_empty() && 9019 "Last node in topologic sort has users!"); 9020 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 9021 return DAGSize; 9022 } 9023 9024 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 9025 /// value is produced by SD. 9026 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 9027 if (SD) { 9028 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 9029 SD->setHasDebugValue(true); 9030 } 9031 DbgInfo->add(DB, SD, isParameter); 9032 } 9033 9034 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 9035 DbgInfo->add(DB); 9036 } 9037 9038 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 9039 SDValue NewMemOpChain) { 9040 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 9041 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 9042 // The new memory operation must have the same position as the old load in 9043 // terms of memory dependency. Create a TokenFactor for the old load and new 9044 // memory operation and update uses of the old load's output chain to use that 9045 // TokenFactor. 9046 if (OldChain == NewMemOpChain || OldChain.use_empty()) 9047 return NewMemOpChain; 9048 9049 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 9050 OldChain, NewMemOpChain); 9051 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 9052 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 9053 return TokenFactor; 9054 } 9055 9056 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 9057 SDValue NewMemOp) { 9058 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 9059 SDValue OldChain = SDValue(OldLoad, 1); 9060 SDValue NewMemOpChain = NewMemOp.getValue(1); 9061 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 9062 } 9063 9064 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 9065 Function **OutFunction) { 9066 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 9067 9068 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 9069 auto *Module = MF->getFunction().getParent(); 9070 auto *Function = Module->getFunction(Symbol); 9071 9072 if (OutFunction != nullptr) 9073 *OutFunction = Function; 9074 9075 if (Function != nullptr) { 9076 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 9077 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 9078 } 9079 9080 std::string ErrorStr; 9081 raw_string_ostream ErrorFormatter(ErrorStr); 9082 9083 ErrorFormatter << "Undefined external symbol "; 9084 ErrorFormatter << '"' << Symbol << '"'; 9085 ErrorFormatter.flush(); 9086 9087 report_fatal_error(ErrorStr); 9088 } 9089 9090 //===----------------------------------------------------------------------===// 9091 // SDNode Class 9092 //===----------------------------------------------------------------------===// 9093 9094 bool llvm::isNullConstant(SDValue V) { 9095 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9096 return Const != nullptr && Const->isNullValue(); 9097 } 9098 9099 bool llvm::isNullFPConstant(SDValue V) { 9100 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 9101 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9102 } 9103 9104 bool llvm::isAllOnesConstant(SDValue V) { 9105 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9106 return Const != nullptr && Const->isAllOnesValue(); 9107 } 9108 9109 bool llvm::isOneConstant(SDValue V) { 9110 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9111 return Const != nullptr && Const->isOne(); 9112 } 9113 9114 SDValue llvm::peekThroughBitcasts(SDValue V) { 9115 while (V.getOpcode() == ISD::BITCAST) 9116 V = V.getOperand(0); 9117 return V; 9118 } 9119 9120 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9121 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9122 V = V.getOperand(0); 9123 return V; 9124 } 9125 9126 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9127 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9128 V = V.getOperand(0); 9129 return V; 9130 } 9131 9132 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9133 if (V.getOpcode() != ISD::XOR) 9134 return false; 9135 V = peekThroughBitcasts(V.getOperand(1)); 9136 unsigned NumBits = V.getScalarValueSizeInBits(); 9137 ConstantSDNode *C = 9138 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9139 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9140 } 9141 9142 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9143 bool AllowTruncation) { 9144 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9145 return CN; 9146 9147 // SplatVectors can truncate their operands. Ignore that case here unless 9148 // AllowTruncation is set. 9149 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 9150 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 9151 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 9152 EVT CVT = CN->getValueType(0); 9153 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 9154 if (AllowTruncation || CVT == VecEltVT) 9155 return CN; 9156 } 9157 } 9158 9159 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9160 BitVector UndefElements; 9161 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 9162 9163 // BuildVectors can truncate their operands. Ignore that case here unless 9164 // AllowTruncation is set. 9165 if (CN && (UndefElements.none() || AllowUndefs)) { 9166 EVT CVT = CN->getValueType(0); 9167 EVT NSVT = N.getValueType().getScalarType(); 9168 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9169 if (AllowTruncation || (CVT == NSVT)) 9170 return CN; 9171 } 9172 } 9173 9174 return nullptr; 9175 } 9176 9177 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 9178 bool AllowUndefs, 9179 bool AllowTruncation) { 9180 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9181 return CN; 9182 9183 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9184 BitVector UndefElements; 9185 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 9186 9187 // BuildVectors can truncate their operands. Ignore that case here unless 9188 // AllowTruncation is set. 9189 if (CN && (UndefElements.none() || AllowUndefs)) { 9190 EVT CVT = CN->getValueType(0); 9191 EVT NSVT = N.getValueType().getScalarType(); 9192 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9193 if (AllowTruncation || (CVT == NSVT)) 9194 return CN; 9195 } 9196 } 9197 9198 return nullptr; 9199 } 9200 9201 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 9202 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9203 return CN; 9204 9205 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9206 BitVector UndefElements; 9207 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 9208 if (CN && (UndefElements.none() || AllowUndefs)) 9209 return CN; 9210 } 9211 9212 if (N.getOpcode() == ISD::SPLAT_VECTOR) 9213 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 9214 return CN; 9215 9216 return nullptr; 9217 } 9218 9219 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 9220 const APInt &DemandedElts, 9221 bool AllowUndefs) { 9222 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9223 return CN; 9224 9225 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9226 BitVector UndefElements; 9227 ConstantFPSDNode *CN = 9228 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 9229 if (CN && (UndefElements.none() || AllowUndefs)) 9230 return CN; 9231 } 9232 9233 return nullptr; 9234 } 9235 9236 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 9237 // TODO: may want to use peekThroughBitcast() here. 9238 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9239 return C && C->isNullValue(); 9240 } 9241 9242 bool llvm::isOneOrOneSplat(SDValue N) { 9243 // TODO: may want to use peekThroughBitcast() here. 9244 unsigned BitWidth = N.getScalarValueSizeInBits(); 9245 ConstantSDNode *C = isConstOrConstSplat(N); 9246 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 9247 } 9248 9249 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 9250 N = peekThroughBitcasts(N); 9251 unsigned BitWidth = N.getScalarValueSizeInBits(); 9252 ConstantSDNode *C = isConstOrConstSplat(N); 9253 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 9254 } 9255 9256 HandleSDNode::~HandleSDNode() { 9257 DropOperands(); 9258 } 9259 9260 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 9261 const DebugLoc &DL, 9262 const GlobalValue *GA, EVT VT, 9263 int64_t o, unsigned TF) 9264 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 9265 TheGlobal = GA; 9266 } 9267 9268 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 9269 EVT VT, unsigned SrcAS, 9270 unsigned DestAS) 9271 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 9272 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 9273 9274 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 9275 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 9276 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 9277 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 9278 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 9279 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 9280 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 9281 9282 // We check here that the size of the memory operand fits within the size of 9283 // the MMO. This is because the MMO might indicate only a possible address 9284 // range instead of specifying the affected memory addresses precisely. 9285 // TODO: Make MachineMemOperands aware of scalable vectors. 9286 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 9287 "Size mismatch!"); 9288 } 9289 9290 /// Profile - Gather unique data for the node. 9291 /// 9292 void SDNode::Profile(FoldingSetNodeID &ID) const { 9293 AddNodeIDNode(ID, this); 9294 } 9295 9296 namespace { 9297 9298 struct EVTArray { 9299 std::vector<EVT> VTs; 9300 9301 EVTArray() { 9302 VTs.reserve(MVT::LAST_VALUETYPE); 9303 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 9304 VTs.push_back(MVT((MVT::SimpleValueType)i)); 9305 } 9306 }; 9307 9308 } // end anonymous namespace 9309 9310 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 9311 static ManagedStatic<EVTArray> SimpleVTArray; 9312 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 9313 9314 /// getValueTypeList - Return a pointer to the specified value type. 9315 /// 9316 const EVT *SDNode::getValueTypeList(EVT VT) { 9317 if (VT.isExtended()) { 9318 sys::SmartScopedLock<true> Lock(*VTMutex); 9319 return &(*EVTs->insert(VT).first); 9320 } else { 9321 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 9322 "Value type out of range!"); 9323 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 9324 } 9325 } 9326 9327 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 9328 /// indicated value. This method ignores uses of other values defined by this 9329 /// operation. 9330 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 9331 assert(Value < getNumValues() && "Bad value!"); 9332 9333 // TODO: Only iterate over uses of a given value of the node 9334 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 9335 if (UI.getUse().getResNo() == Value) { 9336 if (NUses == 0) 9337 return false; 9338 --NUses; 9339 } 9340 } 9341 9342 // Found exactly the right number of uses? 9343 return NUses == 0; 9344 } 9345 9346 /// hasAnyUseOfValue - Return true if there are any use of the indicated 9347 /// value. This method ignores uses of other values defined by this operation. 9348 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 9349 assert(Value < getNumValues() && "Bad value!"); 9350 9351 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 9352 if (UI.getUse().getResNo() == Value) 9353 return true; 9354 9355 return false; 9356 } 9357 9358 /// isOnlyUserOf - Return true if this node is the only use of N. 9359 bool SDNode::isOnlyUserOf(const SDNode *N) const { 9360 bool Seen = false; 9361 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9362 SDNode *User = *I; 9363 if (User == this) 9364 Seen = true; 9365 else 9366 return false; 9367 } 9368 9369 return Seen; 9370 } 9371 9372 /// Return true if the only users of N are contained in Nodes. 9373 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 9374 bool Seen = false; 9375 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9376 SDNode *User = *I; 9377 if (llvm::is_contained(Nodes, User)) 9378 Seen = true; 9379 else 9380 return false; 9381 } 9382 9383 return Seen; 9384 } 9385 9386 /// isOperand - Return true if this node is an operand of N. 9387 bool SDValue::isOperandOf(const SDNode *N) const { 9388 return is_contained(N->op_values(), *this); 9389 } 9390 9391 bool SDNode::isOperandOf(const SDNode *N) const { 9392 return any_of(N->op_values(), 9393 [this](SDValue Op) { return this == Op.getNode(); }); 9394 } 9395 9396 /// reachesChainWithoutSideEffects - Return true if this operand (which must 9397 /// be a chain) reaches the specified operand without crossing any 9398 /// side-effecting instructions on any chain path. In practice, this looks 9399 /// through token factors and non-volatile loads. In order to remain efficient, 9400 /// this only looks a couple of nodes in, it does not do an exhaustive search. 9401 /// 9402 /// Note that we only need to examine chains when we're searching for 9403 /// side-effects; SelectionDAG requires that all side-effects are represented 9404 /// by chains, even if another operand would force a specific ordering. This 9405 /// constraint is necessary to allow transformations like splitting loads. 9406 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 9407 unsigned Depth) const { 9408 if (*this == Dest) return true; 9409 9410 // Don't search too deeply, we just want to be able to see through 9411 // TokenFactor's etc. 9412 if (Depth == 0) return false; 9413 9414 // If this is a token factor, all inputs to the TF happen in parallel. 9415 if (getOpcode() == ISD::TokenFactor) { 9416 // First, try a shallow search. 9417 if (is_contained((*this)->ops(), Dest)) { 9418 // We found the chain we want as an operand of this TokenFactor. 9419 // Essentially, we reach the chain without side-effects if we could 9420 // serialize the TokenFactor into a simple chain of operations with 9421 // Dest as the last operation. This is automatically true if the 9422 // chain has one use: there are no other ordering constraints. 9423 // If the chain has more than one use, we give up: some other 9424 // use of Dest might force a side-effect between Dest and the current 9425 // node. 9426 if (Dest.hasOneUse()) 9427 return true; 9428 } 9429 // Next, try a deep search: check whether every operand of the TokenFactor 9430 // reaches Dest. 9431 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 9432 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 9433 }); 9434 } 9435 9436 // Loads don't have side effects, look through them. 9437 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 9438 if (Ld->isUnordered()) 9439 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 9440 } 9441 return false; 9442 } 9443 9444 bool SDNode::hasPredecessor(const SDNode *N) const { 9445 SmallPtrSet<const SDNode *, 32> Visited; 9446 SmallVector<const SDNode *, 16> Worklist; 9447 Worklist.push_back(this); 9448 return hasPredecessorHelper(N, Visited, Worklist); 9449 } 9450 9451 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9452 this->Flags.intersectWith(Flags); 9453 } 9454 9455 SDValue 9456 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9457 ArrayRef<ISD::NodeType> CandidateBinOps, 9458 bool AllowPartials) { 9459 // The pattern must end in an extract from index 0. 9460 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9461 !isNullConstant(Extract->getOperand(1))) 9462 return SDValue(); 9463 9464 // Match against one of the candidate binary ops. 9465 SDValue Op = Extract->getOperand(0); 9466 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9467 return Op.getOpcode() == unsigned(BinOp); 9468 })) 9469 return SDValue(); 9470 9471 // Floating-point reductions may require relaxed constraints on the final step 9472 // of the reduction because they may reorder intermediate operations. 9473 unsigned CandidateBinOp = Op.getOpcode(); 9474 if (Op.getValueType().isFloatingPoint()) { 9475 SDNodeFlags Flags = Op->getFlags(); 9476 switch (CandidateBinOp) { 9477 case ISD::FADD: 9478 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9479 return SDValue(); 9480 break; 9481 default: 9482 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9483 } 9484 } 9485 9486 // Matching failed - attempt to see if we did enough stages that a partial 9487 // reduction from a subvector is possible. 9488 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9489 if (!AllowPartials || !Op) 9490 return SDValue(); 9491 EVT OpVT = Op.getValueType(); 9492 EVT OpSVT = OpVT.getScalarType(); 9493 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9494 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9495 return SDValue(); 9496 BinOp = (ISD::NodeType)CandidateBinOp; 9497 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9498 getVectorIdxConstant(0, SDLoc(Op))); 9499 }; 9500 9501 // At each stage, we're looking for something that looks like: 9502 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9503 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9504 // i32 undef, i32 undef, i32 undef, i32 undef> 9505 // %a = binop <8 x i32> %op, %s 9506 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9507 // we expect something like: 9508 // <4,5,6,7,u,u,u,u> 9509 // <2,3,u,u,u,u,u,u> 9510 // <1,u,u,u,u,u,u,u> 9511 // While a partial reduction match would be: 9512 // <2,3,u,u,u,u,u,u> 9513 // <1,u,u,u,u,u,u,u> 9514 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9515 SDValue PrevOp; 9516 for (unsigned i = 0; i < Stages; ++i) { 9517 unsigned MaskEnd = (1 << i); 9518 9519 if (Op.getOpcode() != CandidateBinOp) 9520 return PartialReduction(PrevOp, MaskEnd); 9521 9522 SDValue Op0 = Op.getOperand(0); 9523 SDValue Op1 = Op.getOperand(1); 9524 9525 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9526 if (Shuffle) { 9527 Op = Op1; 9528 } else { 9529 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9530 Op = Op0; 9531 } 9532 9533 // The first operand of the shuffle should be the same as the other operand 9534 // of the binop. 9535 if (!Shuffle || Shuffle->getOperand(0) != Op) 9536 return PartialReduction(PrevOp, MaskEnd); 9537 9538 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9539 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9540 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9541 return PartialReduction(PrevOp, MaskEnd); 9542 9543 PrevOp = Op; 9544 } 9545 9546 // Handle subvector reductions, which tend to appear after the shuffle 9547 // reduction stages. 9548 while (Op.getOpcode() == CandidateBinOp) { 9549 unsigned NumElts = Op.getValueType().getVectorNumElements(); 9550 SDValue Op0 = Op.getOperand(0); 9551 SDValue Op1 = Op.getOperand(1); 9552 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9553 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9554 Op0.getOperand(0) != Op1.getOperand(0)) 9555 break; 9556 SDValue Src = Op0.getOperand(0); 9557 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 9558 if (NumSrcElts != (2 * NumElts)) 9559 break; 9560 if (!(Op0.getConstantOperandAPInt(1) == 0 && 9561 Op1.getConstantOperandAPInt(1) == NumElts) && 9562 !(Op1.getConstantOperandAPInt(1) == 0 && 9563 Op0.getConstantOperandAPInt(1) == NumElts)) 9564 break; 9565 Op = Src; 9566 } 9567 9568 BinOp = (ISD::NodeType)CandidateBinOp; 9569 return Op; 9570 } 9571 9572 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9573 assert(N->getNumValues() == 1 && 9574 "Can't unroll a vector with multiple results!"); 9575 9576 EVT VT = N->getValueType(0); 9577 unsigned NE = VT.getVectorNumElements(); 9578 EVT EltVT = VT.getVectorElementType(); 9579 SDLoc dl(N); 9580 9581 SmallVector<SDValue, 8> Scalars; 9582 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9583 9584 // If ResNE is 0, fully unroll the vector op. 9585 if (ResNE == 0) 9586 ResNE = NE; 9587 else if (NE > ResNE) 9588 NE = ResNE; 9589 9590 unsigned i; 9591 for (i= 0; i != NE; ++i) { 9592 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9593 SDValue Operand = N->getOperand(j); 9594 EVT OperandVT = Operand.getValueType(); 9595 if (OperandVT.isVector()) { 9596 // A vector operand; extract a single element. 9597 EVT OperandEltVT = OperandVT.getVectorElementType(); 9598 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 9599 Operand, getVectorIdxConstant(i, dl)); 9600 } else { 9601 // A scalar operand; just use it as is. 9602 Operands[j] = Operand; 9603 } 9604 } 9605 9606 switch (N->getOpcode()) { 9607 default: { 9608 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9609 N->getFlags())); 9610 break; 9611 } 9612 case ISD::VSELECT: 9613 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9614 break; 9615 case ISD::SHL: 9616 case ISD::SRA: 9617 case ISD::SRL: 9618 case ISD::ROTL: 9619 case ISD::ROTR: 9620 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9621 getShiftAmountOperand(Operands[0].getValueType(), 9622 Operands[1]))); 9623 break; 9624 case ISD::SIGN_EXTEND_INREG: { 9625 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9626 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9627 Operands[0], 9628 getValueType(ExtVT))); 9629 } 9630 } 9631 } 9632 9633 for (; i < ResNE; ++i) 9634 Scalars.push_back(getUNDEF(EltVT)); 9635 9636 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9637 return getBuildVector(VecVT, dl, Scalars); 9638 } 9639 9640 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9641 SDNode *N, unsigned ResNE) { 9642 unsigned Opcode = N->getOpcode(); 9643 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9644 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9645 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9646 "Expected an overflow opcode"); 9647 9648 EVT ResVT = N->getValueType(0); 9649 EVT OvVT = N->getValueType(1); 9650 EVT ResEltVT = ResVT.getVectorElementType(); 9651 EVT OvEltVT = OvVT.getVectorElementType(); 9652 SDLoc dl(N); 9653 9654 // If ResNE is 0, fully unroll the vector op. 9655 unsigned NE = ResVT.getVectorNumElements(); 9656 if (ResNE == 0) 9657 ResNE = NE; 9658 else if (NE > ResNE) 9659 NE = ResNE; 9660 9661 SmallVector<SDValue, 8> LHSScalars; 9662 SmallVector<SDValue, 8> RHSScalars; 9663 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9664 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9665 9666 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9667 SDVTList VTs = getVTList(ResEltVT, SVT); 9668 SmallVector<SDValue, 8> ResScalars; 9669 SmallVector<SDValue, 8> OvScalars; 9670 for (unsigned i = 0; i < NE; ++i) { 9671 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9672 SDValue Ov = 9673 getSelect(dl, OvEltVT, Res.getValue(1), 9674 getBoolConstant(true, dl, OvEltVT, ResVT), 9675 getConstant(0, dl, OvEltVT)); 9676 9677 ResScalars.push_back(Res); 9678 OvScalars.push_back(Ov); 9679 } 9680 9681 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9682 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9683 9684 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9685 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9686 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9687 getBuildVector(NewOvVT, dl, OvScalars)); 9688 } 9689 9690 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9691 LoadSDNode *Base, 9692 unsigned Bytes, 9693 int Dist) const { 9694 if (LD->isVolatile() || Base->isVolatile()) 9695 return false; 9696 // TODO: probably too restrictive for atomics, revisit 9697 if (!LD->isSimple()) 9698 return false; 9699 if (LD->isIndexed() || Base->isIndexed()) 9700 return false; 9701 if (LD->getChain() != Base->getChain()) 9702 return false; 9703 EVT VT = LD->getValueType(0); 9704 if (VT.getSizeInBits() / 8 != Bytes) 9705 return false; 9706 9707 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9708 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9709 9710 int64_t Offset = 0; 9711 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9712 return (Dist * Bytes == Offset); 9713 return false; 9714 } 9715 9716 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 9717 /// if it cannot be inferred. 9718 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 9719 // If this is a GlobalAddress + cst, return the alignment. 9720 const GlobalValue *GV = nullptr; 9721 int64_t GVOffset = 0; 9722 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9723 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 9724 KnownBits Known(PtrWidth); 9725 llvm::computeKnownBits(GV, Known, getDataLayout()); 9726 unsigned AlignBits = Known.countMinTrailingZeros(); 9727 if (AlignBits) 9728 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 9729 } 9730 9731 // If this is a direct reference to a stack slot, use information about the 9732 // stack slot's alignment. 9733 int FrameIdx = INT_MIN; 9734 int64_t FrameOffset = 0; 9735 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9736 FrameIdx = FI->getIndex(); 9737 } else if (isBaseWithConstantOffset(Ptr) && 9738 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9739 // Handle FI+Cst 9740 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9741 FrameOffset = Ptr.getConstantOperandVal(1); 9742 } 9743 9744 if (FrameIdx != INT_MIN) { 9745 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9746 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 9747 } 9748 9749 return None; 9750 } 9751 9752 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9753 /// which is split (or expanded) into two not necessarily identical pieces. 9754 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9755 // Currently all types are split in half. 9756 EVT LoVT, HiVT; 9757 if (!VT.isVector()) 9758 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9759 else 9760 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9761 9762 return std::make_pair(LoVT, HiVT); 9763 } 9764 9765 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 9766 /// type, dependent on an enveloping VT that has been split into two identical 9767 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 9768 std::pair<EVT, EVT> 9769 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 9770 bool *HiIsEmpty) const { 9771 EVT EltTp = VT.getVectorElementType(); 9772 // Examples: 9773 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 9774 // custom VL=9 with enveloping VL=8/8 yields 8/1 9775 // custom VL=10 with enveloping VL=8/8 yields 8/2 9776 // etc. 9777 ElementCount VTNumElts = VT.getVectorElementCount(); 9778 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 9779 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 9780 "Mixing fixed width and scalable vectors when enveloping a type"); 9781 EVT LoVT, HiVT; 9782 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 9783 LoVT = EnvVT; 9784 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 9785 *HiIsEmpty = false; 9786 } else { 9787 // Flag that hi type has zero storage size, but return split envelop type 9788 // (this would be easier if vector types with zero elements were allowed). 9789 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 9790 HiVT = EnvVT; 9791 *HiIsEmpty = true; 9792 } 9793 return std::make_pair(LoVT, HiVT); 9794 } 9795 9796 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9797 /// low/high part. 9798 std::pair<SDValue, SDValue> 9799 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9800 const EVT &HiVT) { 9801 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 9802 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 9803 "Splitting vector with an invalid mixture of fixed and scalable " 9804 "vector types"); 9805 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 9806 N.getValueType().getVectorMinNumElements() && 9807 "More vector elements requested than available!"); 9808 SDValue Lo, Hi; 9809 Lo = 9810 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 9811 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 9812 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 9813 // IDX with the runtime scaling factor of the result vector type. For 9814 // fixed-width result vectors, that runtime scaling factor is 1. 9815 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9816 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 9817 return std::make_pair(Lo, Hi); 9818 } 9819 9820 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9821 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9822 EVT VT = N.getValueType(); 9823 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9824 NextPowerOf2(VT.getVectorNumElements())); 9825 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9826 getVectorIdxConstant(0, DL)); 9827 } 9828 9829 void SelectionDAG::ExtractVectorElements(SDValue Op, 9830 SmallVectorImpl<SDValue> &Args, 9831 unsigned Start, unsigned Count, 9832 EVT EltVT) { 9833 EVT VT = Op.getValueType(); 9834 if (Count == 0) 9835 Count = VT.getVectorNumElements(); 9836 if (EltVT == EVT()) 9837 EltVT = VT.getVectorElementType(); 9838 SDLoc SL(Op); 9839 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9840 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 9841 getVectorIdxConstant(i, SL))); 9842 } 9843 } 9844 9845 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9846 unsigned GlobalAddressSDNode::getAddressSpace() const { 9847 return getGlobal()->getType()->getAddressSpace(); 9848 } 9849 9850 Type *ConstantPoolSDNode::getType() const { 9851 if (isMachineConstantPoolEntry()) 9852 return Val.MachineCPVal->getType(); 9853 return Val.ConstVal->getType(); 9854 } 9855 9856 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9857 unsigned &SplatBitSize, 9858 bool &HasAnyUndefs, 9859 unsigned MinSplatBits, 9860 bool IsBigEndian) const { 9861 EVT VT = getValueType(0); 9862 assert(VT.isVector() && "Expected a vector type"); 9863 unsigned VecWidth = VT.getSizeInBits(); 9864 if (MinSplatBits > VecWidth) 9865 return false; 9866 9867 // FIXME: The widths are based on this node's type, but build vectors can 9868 // truncate their operands. 9869 SplatValue = APInt(VecWidth, 0); 9870 SplatUndef = APInt(VecWidth, 0); 9871 9872 // Get the bits. Bits with undefined values (when the corresponding element 9873 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9874 // in SplatValue. If any of the values are not constant, give up and return 9875 // false. 9876 unsigned int NumOps = getNumOperands(); 9877 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9878 unsigned EltWidth = VT.getScalarSizeInBits(); 9879 9880 for (unsigned j = 0; j < NumOps; ++j) { 9881 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9882 SDValue OpVal = getOperand(i); 9883 unsigned BitPos = j * EltWidth; 9884 9885 if (OpVal.isUndef()) 9886 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9887 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9888 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9889 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9890 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9891 else 9892 return false; 9893 } 9894 9895 // The build_vector is all constants or undefs. Find the smallest element 9896 // size that splats the vector. 9897 HasAnyUndefs = (SplatUndef != 0); 9898 9899 // FIXME: This does not work for vectors with elements less than 8 bits. 9900 while (VecWidth > 8) { 9901 unsigned HalfSize = VecWidth / 2; 9902 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9903 APInt LowValue = SplatValue.trunc(HalfSize); 9904 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9905 APInt LowUndef = SplatUndef.trunc(HalfSize); 9906 9907 // If the two halves do not match (ignoring undef bits), stop here. 9908 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9909 MinSplatBits > HalfSize) 9910 break; 9911 9912 SplatValue = HighValue | LowValue; 9913 SplatUndef = HighUndef & LowUndef; 9914 9915 VecWidth = HalfSize; 9916 } 9917 9918 SplatBitSize = VecWidth; 9919 return true; 9920 } 9921 9922 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 9923 BitVector *UndefElements) const { 9924 unsigned NumOps = getNumOperands(); 9925 if (UndefElements) { 9926 UndefElements->clear(); 9927 UndefElements->resize(NumOps); 9928 } 9929 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 9930 if (!DemandedElts) 9931 return SDValue(); 9932 SDValue Splatted; 9933 for (unsigned i = 0; i != NumOps; ++i) { 9934 if (!DemandedElts[i]) 9935 continue; 9936 SDValue Op = getOperand(i); 9937 if (Op.isUndef()) { 9938 if (UndefElements) 9939 (*UndefElements)[i] = true; 9940 } else if (!Splatted) { 9941 Splatted = Op; 9942 } else if (Splatted != Op) { 9943 return SDValue(); 9944 } 9945 } 9946 9947 if (!Splatted) { 9948 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 9949 assert(getOperand(FirstDemandedIdx).isUndef() && 9950 "Can only have a splat without a constant for all undefs."); 9951 return getOperand(FirstDemandedIdx); 9952 } 9953 9954 return Splatted; 9955 } 9956 9957 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9958 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9959 return getSplatValue(DemandedElts, UndefElements); 9960 } 9961 9962 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 9963 SmallVectorImpl<SDValue> &Sequence, 9964 BitVector *UndefElements) const { 9965 unsigned NumOps = getNumOperands(); 9966 Sequence.clear(); 9967 if (UndefElements) { 9968 UndefElements->clear(); 9969 UndefElements->resize(NumOps); 9970 } 9971 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 9972 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 9973 return false; 9974 9975 // Set the undefs even if we don't find a sequence (like getSplatValue). 9976 if (UndefElements) 9977 for (unsigned I = 0; I != NumOps; ++I) 9978 if (DemandedElts[I] && getOperand(I).isUndef()) 9979 (*UndefElements)[I] = true; 9980 9981 // Iteratively widen the sequence length looking for repetitions. 9982 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 9983 Sequence.append(SeqLen, SDValue()); 9984 for (unsigned I = 0; I != NumOps; ++I) { 9985 if (!DemandedElts[I]) 9986 continue; 9987 SDValue &SeqOp = Sequence[I % SeqLen]; 9988 SDValue Op = getOperand(I); 9989 if (Op.isUndef()) { 9990 if (!SeqOp) 9991 SeqOp = Op; 9992 continue; 9993 } 9994 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 9995 Sequence.clear(); 9996 break; 9997 } 9998 SeqOp = Op; 9999 } 10000 if (!Sequence.empty()) 10001 return true; 10002 } 10003 10004 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 10005 return false; 10006 } 10007 10008 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 10009 BitVector *UndefElements) const { 10010 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 10011 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 10012 } 10013 10014 ConstantSDNode * 10015 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 10016 BitVector *UndefElements) const { 10017 return dyn_cast_or_null<ConstantSDNode>( 10018 getSplatValue(DemandedElts, UndefElements)); 10019 } 10020 10021 ConstantSDNode * 10022 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 10023 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 10024 } 10025 10026 ConstantFPSDNode * 10027 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 10028 BitVector *UndefElements) const { 10029 return dyn_cast_or_null<ConstantFPSDNode>( 10030 getSplatValue(DemandedElts, UndefElements)); 10031 } 10032 10033 ConstantFPSDNode * 10034 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 10035 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 10036 } 10037 10038 int32_t 10039 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 10040 uint32_t BitWidth) const { 10041 if (ConstantFPSDNode *CN = 10042 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 10043 bool IsExact; 10044 APSInt IntVal(BitWidth); 10045 const APFloat &APF = CN->getValueAPF(); 10046 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 10047 APFloat::opOK || 10048 !IsExact) 10049 return -1; 10050 10051 return IntVal.exactLogBase2(); 10052 } 10053 return -1; 10054 } 10055 10056 bool BuildVectorSDNode::isConstant() const { 10057 for (const SDValue &Op : op_values()) { 10058 unsigned Opc = Op.getOpcode(); 10059 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 10060 return false; 10061 } 10062 return true; 10063 } 10064 10065 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 10066 // Find the first non-undef value in the shuffle mask. 10067 unsigned i, e; 10068 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 10069 /* search */; 10070 10071 // If all elements are undefined, this shuffle can be considered a splat 10072 // (although it should eventually get simplified away completely). 10073 if (i == e) 10074 return true; 10075 10076 // Make sure all remaining elements are either undef or the same as the first 10077 // non-undef value. 10078 for (int Idx = Mask[i]; i != e; ++i) 10079 if (Mask[i] >= 0 && Mask[i] != Idx) 10080 return false; 10081 return true; 10082 } 10083 10084 // Returns the SDNode if it is a constant integer BuildVector 10085 // or constant integer. 10086 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 10087 if (isa<ConstantSDNode>(N)) 10088 return N.getNode(); 10089 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 10090 return N.getNode(); 10091 // Treat a GlobalAddress supporting constant offset folding as a 10092 // constant integer. 10093 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 10094 if (GA->getOpcode() == ISD::GlobalAddress && 10095 TLI->isOffsetFoldingLegal(GA)) 10096 return GA; 10097 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 10098 isa<ConstantSDNode>(N.getOperand(0))) 10099 return N.getNode(); 10100 return nullptr; 10101 } 10102 10103 // Returns the SDNode if it is a constant float BuildVector 10104 // or constant float. 10105 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 10106 if (isa<ConstantFPSDNode>(N)) 10107 return N.getNode(); 10108 10109 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 10110 return N.getNode(); 10111 10112 return nullptr; 10113 } 10114 10115 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 10116 assert(!Node->OperandList && "Node already has operands"); 10117 assert(SDNode::getMaxNumOperands() >= Vals.size() && 10118 "too many operands to fit into SDNode"); 10119 SDUse *Ops = OperandRecycler.allocate( 10120 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 10121 10122 bool IsDivergent = false; 10123 for (unsigned I = 0; I != Vals.size(); ++I) { 10124 Ops[I].setUser(Node); 10125 Ops[I].setInitial(Vals[I]); 10126 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 10127 IsDivergent |= Ops[I].getNode()->isDivergent(); 10128 } 10129 Node->NumOperands = Vals.size(); 10130 Node->OperandList = Ops; 10131 if (!TLI->isSDNodeAlwaysUniform(Node)) { 10132 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 10133 Node->SDNodeBits.IsDivergent = IsDivergent; 10134 } 10135 checkForCycles(Node); 10136 } 10137 10138 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 10139 SmallVectorImpl<SDValue> &Vals) { 10140 size_t Limit = SDNode::getMaxNumOperands(); 10141 while (Vals.size() > Limit) { 10142 unsigned SliceIdx = Vals.size() - Limit; 10143 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 10144 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 10145 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 10146 Vals.emplace_back(NewTF); 10147 } 10148 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 10149 } 10150 10151 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 10152 EVT VT, SDNodeFlags Flags) { 10153 switch (Opcode) { 10154 default: 10155 return SDValue(); 10156 case ISD::ADD: 10157 case ISD::OR: 10158 case ISD::XOR: 10159 case ISD::UMAX: 10160 return getConstant(0, DL, VT); 10161 case ISD::MUL: 10162 return getConstant(1, DL, VT); 10163 case ISD::AND: 10164 case ISD::UMIN: 10165 return getAllOnesConstant(DL, VT); 10166 case ISD::SMAX: 10167 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 10168 case ISD::SMIN: 10169 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 10170 case ISD::FADD: 10171 return getConstantFP(-0.0, DL, VT); 10172 case ISD::FMUL: 10173 return getConstantFP(1.0, DL, VT); 10174 case ISD::FMINNUM: 10175 case ISD::FMAXNUM: { 10176 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 10177 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 10178 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 10179 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 10180 APFloat::getLargest(Semantics); 10181 if (Opcode == ISD::FMAXNUM) 10182 NeutralAF.changeSign(); 10183 10184 return getConstantFP(NeutralAF, DL, VT); 10185 } 10186 } 10187 } 10188 10189 #ifndef NDEBUG 10190 static void checkForCyclesHelper(const SDNode *N, 10191 SmallPtrSetImpl<const SDNode*> &Visited, 10192 SmallPtrSetImpl<const SDNode*> &Checked, 10193 const llvm::SelectionDAG *DAG) { 10194 // If this node has already been checked, don't check it again. 10195 if (Checked.count(N)) 10196 return; 10197 10198 // If a node has already been visited on this depth-first walk, reject it as 10199 // a cycle. 10200 if (!Visited.insert(N).second) { 10201 errs() << "Detected cycle in SelectionDAG\n"; 10202 dbgs() << "Offending node:\n"; 10203 N->dumprFull(DAG); dbgs() << "\n"; 10204 abort(); 10205 } 10206 10207 for (const SDValue &Op : N->op_values()) 10208 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 10209 10210 Checked.insert(N); 10211 Visited.erase(N); 10212 } 10213 #endif 10214 10215 void llvm::checkForCycles(const llvm::SDNode *N, 10216 const llvm::SelectionDAG *DAG, 10217 bool force) { 10218 #ifndef NDEBUG 10219 bool check = force; 10220 #ifdef EXPENSIVE_CHECKS 10221 check = true; 10222 #endif // EXPENSIVE_CHECKS 10223 if (check) { 10224 assert(N && "Checking nonexistent SDNode"); 10225 SmallPtrSet<const SDNode*, 32> visited; 10226 SmallPtrSet<const SDNode*, 32> checked; 10227 checkForCyclesHelper(N, visited, checked, DAG); 10228 } 10229 #endif // !NDEBUG 10230 } 10231 10232 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 10233 checkForCycles(DAG->getRoot().getNode(), DAG, force); 10234 } 10235