1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/FunctionLoweringInfo.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineConstantPool.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/RuntimeLibcalls.h"
39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
40 #include "llvm/CodeGen/SelectionDAGNodes.h"
41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
42 #include "llvm/CodeGen/TargetFrameLowering.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/KnownBits.h"
64 #include "llvm/Support/MachineValueType.h"
65 #include "llvm/Support/ManagedStatic.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/Mutex.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Target/TargetOptions.h"
71 #include "llvm/Transforms/Utils/SizeOpts.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <cstdlib>
76 #include <limits>
77 #include <set>
78 #include <string>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 
84 /// makeVTList - Return an instance of the SDVTList struct initialized with the
85 /// specified members.
86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
87   SDVTList Res = {VTs, NumVTs};
88   return Res;
89 }
90 
91 // Default null implementations of the callbacks.
92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
95 
96 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
97 
98 #define DEBUG_TYPE "selectiondag"
99 
100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
101        cl::Hidden, cl::init(true),
102        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
103 
104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
105        cl::desc("Number limit for gluing ld/st of memcpy."),
106        cl::Hidden, cl::init(0));
107 
108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
109   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
110 }
111 
112 //===----------------------------------------------------------------------===//
113 //                              ConstantFPSDNode Class
114 //===----------------------------------------------------------------------===//
115 
116 /// isExactlyValue - We don't rely on operator== working on double values, as
117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
118 /// As such, this method can be used to do an exact bit-for-bit comparison of
119 /// two floating point values.
120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
121   return getValueAPF().bitwiseIsEqual(V);
122 }
123 
124 bool ConstantFPSDNode::isValueValidForType(EVT VT,
125                                            const APFloat& Val) {
126   assert(VT.isFloatingPoint() && "Can only convert between FP types");
127 
128   // convert modifies in place, so make a copy.
129   APFloat Val2 = APFloat(Val);
130   bool losesInfo;
131   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
132                       APFloat::rmNearestTiesToEven,
133                       &losesInfo);
134   return !losesInfo;
135 }
136 
137 //===----------------------------------------------------------------------===//
138 //                              ISD Namespace
139 //===----------------------------------------------------------------------===//
140 
141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
142   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
143     unsigned EltSize =
144         N->getValueType(0).getVectorElementType().getSizeInBits();
145     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
146       SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize);
147       return true;
148     }
149   }
150 
151   auto *BV = dyn_cast<BuildVectorSDNode>(N);
152   if (!BV)
153     return false;
154 
155   APInt SplatUndef;
156   unsigned SplatBitSize;
157   bool HasUndefs;
158   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
159   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
160                              EltSize) &&
161          EltSize == SplatBitSize;
162 }
163 
164 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
165 // specializations of the more general isConstantSplatVector()?
166 
167 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
168   // Look through a bit convert.
169   while (N->getOpcode() == ISD::BITCAST)
170     N = N->getOperand(0).getNode();
171 
172   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
173     APInt SplatVal;
174     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnesValue();
175   }
176 
177   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
178 
179   unsigned i = 0, e = N->getNumOperands();
180 
181   // Skip over all of the undef values.
182   while (i != e && N->getOperand(i).isUndef())
183     ++i;
184 
185   // Do not accept an all-undef vector.
186   if (i == e) return false;
187 
188   // Do not accept build_vectors that aren't all constants or which have non-~0
189   // elements. We have to be a bit careful here, as the type of the constant
190   // may not be the same as the type of the vector elements due to type
191   // legalization (the elements are promoted to a legal type for the target and
192   // a vector of a type may be legal when the base element type is not).
193   // We only want to check enough bits to cover the vector elements, because
194   // we care if the resultant vector is all ones, not whether the individual
195   // constants are.
196   SDValue NotZero = N->getOperand(i);
197   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
198   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
199     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
200       return false;
201   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
202     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
203       return false;
204   } else
205     return false;
206 
207   // Okay, we have at least one ~0 value, check to see if the rest match or are
208   // undefs. Even with the above element type twiddling, this should be OK, as
209   // the same type legalization should have applied to all the elements.
210   for (++i; i != e; ++i)
211     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
212       return false;
213   return true;
214 }
215 
216 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
217   // Look through a bit convert.
218   while (N->getOpcode() == ISD::BITCAST)
219     N = N->getOperand(0).getNode();
220 
221   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
222     APInt SplatVal;
223     return isConstantSplatVector(N, SplatVal) && SplatVal.isNullValue();
224   }
225 
226   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
227 
228   bool IsAllUndef = true;
229   for (const SDValue &Op : N->op_values()) {
230     if (Op.isUndef())
231       continue;
232     IsAllUndef = false;
233     // Do not accept build_vectors that aren't all constants or which have non-0
234     // elements. We have to be a bit careful here, as the type of the constant
235     // may not be the same as the type of the vector elements due to type
236     // legalization (the elements are promoted to a legal type for the target
237     // and a vector of a type may be legal when the base element type is not).
238     // We only want to check enough bits to cover the vector elements, because
239     // we care if the resultant vector is all zeros, not whether the individual
240     // constants are.
241     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
242     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
243       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
244         return false;
245     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
246       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
247         return false;
248     } else
249       return false;
250   }
251 
252   // Do not accept an all-undef vector.
253   if (IsAllUndef)
254     return false;
255   return true;
256 }
257 
258 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
259   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
260 }
261 
262 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
263   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
264 }
265 
266 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
267   if (N->getOpcode() != ISD::BUILD_VECTOR)
268     return false;
269 
270   for (const SDValue &Op : N->op_values()) {
271     if (Op.isUndef())
272       continue;
273     if (!isa<ConstantSDNode>(Op))
274       return false;
275   }
276   return true;
277 }
278 
279 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
280   if (N->getOpcode() != ISD::BUILD_VECTOR)
281     return false;
282 
283   for (const SDValue &Op : N->op_values()) {
284     if (Op.isUndef())
285       continue;
286     if (!isa<ConstantFPSDNode>(Op))
287       return false;
288   }
289   return true;
290 }
291 
292 bool ISD::allOperandsUndef(const SDNode *N) {
293   // Return false if the node has no operands.
294   // This is "logically inconsistent" with the definition of "all" but
295   // is probably the desired behavior.
296   if (N->getNumOperands() == 0)
297     return false;
298   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
299 }
300 
301 bool ISD::matchUnaryPredicate(SDValue Op,
302                               std::function<bool(ConstantSDNode *)> Match,
303                               bool AllowUndefs) {
304   // FIXME: Add support for scalar UNDEF cases?
305   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
306     return Match(Cst);
307 
308   // FIXME: Add support for vector UNDEF cases?
309   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
310       ISD::SPLAT_VECTOR != Op.getOpcode())
311     return false;
312 
313   EVT SVT = Op.getValueType().getScalarType();
314   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
315     if (AllowUndefs && Op.getOperand(i).isUndef()) {
316       if (!Match(nullptr))
317         return false;
318       continue;
319     }
320 
321     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
322     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
323       return false;
324   }
325   return true;
326 }
327 
328 bool ISD::matchBinaryPredicate(
329     SDValue LHS, SDValue RHS,
330     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
331     bool AllowUndefs, bool AllowTypeMismatch) {
332   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
333     return false;
334 
335   // TODO: Add support for scalar UNDEF cases?
336   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
337     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
338       return Match(LHSCst, RHSCst);
339 
340   // TODO: Add support for vector UNDEF cases?
341   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
342       ISD::BUILD_VECTOR != RHS.getOpcode())
343     return false;
344 
345   EVT SVT = LHS.getValueType().getScalarType();
346   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
347     SDValue LHSOp = LHS.getOperand(i);
348     SDValue RHSOp = RHS.getOperand(i);
349     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
350     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
351     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
352     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
353     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
354       return false;
355     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
356                                LHSOp.getValueType() != RHSOp.getValueType()))
357       return false;
358     if (!Match(LHSCst, RHSCst))
359       return false;
360   }
361   return true;
362 }
363 
364 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
365   switch (VecReduceOpcode) {
366   default:
367     llvm_unreachable("Expected VECREDUCE opcode");
368   case ISD::VECREDUCE_FADD:
369   case ISD::VECREDUCE_SEQ_FADD:
370     return ISD::FADD;
371   case ISD::VECREDUCE_FMUL:
372   case ISD::VECREDUCE_SEQ_FMUL:
373     return ISD::FMUL;
374   case ISD::VECREDUCE_ADD:
375     return ISD::ADD;
376   case ISD::VECREDUCE_MUL:
377     return ISD::MUL;
378   case ISD::VECREDUCE_AND:
379     return ISD::AND;
380   case ISD::VECREDUCE_OR:
381     return ISD::OR;
382   case ISD::VECREDUCE_XOR:
383     return ISD::XOR;
384   case ISD::VECREDUCE_SMAX:
385     return ISD::SMAX;
386   case ISD::VECREDUCE_SMIN:
387     return ISD::SMIN;
388   case ISD::VECREDUCE_UMAX:
389     return ISD::UMAX;
390   case ISD::VECREDUCE_UMIN:
391     return ISD::UMIN;
392   case ISD::VECREDUCE_FMAX:
393     return ISD::FMAXNUM;
394   case ISD::VECREDUCE_FMIN:
395     return ISD::FMINNUM;
396   }
397 }
398 
399 bool ISD::isVPOpcode(unsigned Opcode) {
400   switch (Opcode) {
401   default:
402     return false;
403 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...)                                   \
404   case ISD::SDOPC:                                                             \
405     return true;
406 #include "llvm/IR/VPIntrinsics.def"
407   }
408 }
409 
410 /// The operand position of the vector mask.
411 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
412   switch (Opcode) {
413   default:
414     return None;
415 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, ...)        \
416   case ISD::SDOPC:                                                             \
417     return MASKPOS;
418 #include "llvm/IR/VPIntrinsics.def"
419   }
420 }
421 
422 /// The operand position of the explicit vector length parameter.
423 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
424   switch (Opcode) {
425   default:
426     return None;
427 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, EVLPOS)     \
428   case ISD::SDOPC:                                                             \
429     return EVLPOS;
430 #include "llvm/IR/VPIntrinsics.def"
431   }
432 }
433 
434 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
435   switch (ExtType) {
436   case ISD::EXTLOAD:
437     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
438   case ISD::SEXTLOAD:
439     return ISD::SIGN_EXTEND;
440   case ISD::ZEXTLOAD:
441     return ISD::ZERO_EXTEND;
442   default:
443     break;
444   }
445 
446   llvm_unreachable("Invalid LoadExtType");
447 }
448 
449 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
450   // To perform this operation, we just need to swap the L and G bits of the
451   // operation.
452   unsigned OldL = (Operation >> 2) & 1;
453   unsigned OldG = (Operation >> 1) & 1;
454   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
455                        (OldL << 1) |       // New G bit
456                        (OldG << 2));       // New L bit.
457 }
458 
459 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
460   unsigned Operation = Op;
461   if (isIntegerLike)
462     Operation ^= 7;   // Flip L, G, E bits, but not U.
463   else
464     Operation ^= 15;  // Flip all of the condition bits.
465 
466   if (Operation > ISD::SETTRUE2)
467     Operation &= ~8;  // Don't let N and U bits get set.
468 
469   return ISD::CondCode(Operation);
470 }
471 
472 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
473   return getSetCCInverseImpl(Op, Type.isInteger());
474 }
475 
476 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
477                                                bool isIntegerLike) {
478   return getSetCCInverseImpl(Op, isIntegerLike);
479 }
480 
481 /// For an integer comparison, return 1 if the comparison is a signed operation
482 /// and 2 if the result is an unsigned comparison. Return zero if the operation
483 /// does not depend on the sign of the input (setne and seteq).
484 static int isSignedOp(ISD::CondCode Opcode) {
485   switch (Opcode) {
486   default: llvm_unreachable("Illegal integer setcc operation!");
487   case ISD::SETEQ:
488   case ISD::SETNE: return 0;
489   case ISD::SETLT:
490   case ISD::SETLE:
491   case ISD::SETGT:
492   case ISD::SETGE: return 1;
493   case ISD::SETULT:
494   case ISD::SETULE:
495   case ISD::SETUGT:
496   case ISD::SETUGE: return 2;
497   }
498 }
499 
500 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
501                                        EVT Type) {
502   bool IsInteger = Type.isInteger();
503   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
504     // Cannot fold a signed integer setcc with an unsigned integer setcc.
505     return ISD::SETCC_INVALID;
506 
507   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
508 
509   // If the N and U bits get set, then the resultant comparison DOES suddenly
510   // care about orderedness, and it is true when ordered.
511   if (Op > ISD::SETTRUE2)
512     Op &= ~16;     // Clear the U bit if the N bit is set.
513 
514   // Canonicalize illegal integer setcc's.
515   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
516     Op = ISD::SETNE;
517 
518   return ISD::CondCode(Op);
519 }
520 
521 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
522                                         EVT Type) {
523   bool IsInteger = Type.isInteger();
524   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
525     // Cannot fold a signed setcc with an unsigned setcc.
526     return ISD::SETCC_INVALID;
527 
528   // Combine all of the condition bits.
529   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
530 
531   // Canonicalize illegal integer setcc's.
532   if (IsInteger) {
533     switch (Result) {
534     default: break;
535     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
536     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
537     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
538     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
539     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
540     }
541   }
542 
543   return Result;
544 }
545 
546 //===----------------------------------------------------------------------===//
547 //                           SDNode Profile Support
548 //===----------------------------------------------------------------------===//
549 
550 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
551 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
552   ID.AddInteger(OpC);
553 }
554 
555 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
556 /// solely with their pointer.
557 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
558   ID.AddPointer(VTList.VTs);
559 }
560 
561 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
562 static void AddNodeIDOperands(FoldingSetNodeID &ID,
563                               ArrayRef<SDValue> Ops) {
564   for (auto& Op : Ops) {
565     ID.AddPointer(Op.getNode());
566     ID.AddInteger(Op.getResNo());
567   }
568 }
569 
570 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
571 static void AddNodeIDOperands(FoldingSetNodeID &ID,
572                               ArrayRef<SDUse> Ops) {
573   for (auto& Op : Ops) {
574     ID.AddPointer(Op.getNode());
575     ID.AddInteger(Op.getResNo());
576   }
577 }
578 
579 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
580                           SDVTList VTList, ArrayRef<SDValue> OpList) {
581   AddNodeIDOpcode(ID, OpC);
582   AddNodeIDValueTypes(ID, VTList);
583   AddNodeIDOperands(ID, OpList);
584 }
585 
586 /// If this is an SDNode with special info, add this info to the NodeID data.
587 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
588   switch (N->getOpcode()) {
589   case ISD::TargetExternalSymbol:
590   case ISD::ExternalSymbol:
591   case ISD::MCSymbol:
592     llvm_unreachable("Should only be used on nodes with operands");
593   default: break;  // Normal nodes don't need extra info.
594   case ISD::TargetConstant:
595   case ISD::Constant: {
596     const ConstantSDNode *C = cast<ConstantSDNode>(N);
597     ID.AddPointer(C->getConstantIntValue());
598     ID.AddBoolean(C->isOpaque());
599     break;
600   }
601   case ISD::TargetConstantFP:
602   case ISD::ConstantFP:
603     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
604     break;
605   case ISD::TargetGlobalAddress:
606   case ISD::GlobalAddress:
607   case ISD::TargetGlobalTLSAddress:
608   case ISD::GlobalTLSAddress: {
609     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
610     ID.AddPointer(GA->getGlobal());
611     ID.AddInteger(GA->getOffset());
612     ID.AddInteger(GA->getTargetFlags());
613     break;
614   }
615   case ISD::BasicBlock:
616     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
617     break;
618   case ISD::Register:
619     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
620     break;
621   case ISD::RegisterMask:
622     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
623     break;
624   case ISD::SRCVALUE:
625     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
626     break;
627   case ISD::FrameIndex:
628   case ISD::TargetFrameIndex:
629     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
630     break;
631   case ISD::LIFETIME_START:
632   case ISD::LIFETIME_END:
633     if (cast<LifetimeSDNode>(N)->hasOffset()) {
634       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
635       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
636     }
637     break;
638   case ISD::PSEUDO_PROBE:
639     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
640     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
641     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
642     break;
643   case ISD::JumpTable:
644   case ISD::TargetJumpTable:
645     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
646     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
647     break;
648   case ISD::ConstantPool:
649   case ISD::TargetConstantPool: {
650     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
651     ID.AddInteger(CP->getAlign().value());
652     ID.AddInteger(CP->getOffset());
653     if (CP->isMachineConstantPoolEntry())
654       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
655     else
656       ID.AddPointer(CP->getConstVal());
657     ID.AddInteger(CP->getTargetFlags());
658     break;
659   }
660   case ISD::TargetIndex: {
661     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
662     ID.AddInteger(TI->getIndex());
663     ID.AddInteger(TI->getOffset());
664     ID.AddInteger(TI->getTargetFlags());
665     break;
666   }
667   case ISD::LOAD: {
668     const LoadSDNode *LD = cast<LoadSDNode>(N);
669     ID.AddInteger(LD->getMemoryVT().getRawBits());
670     ID.AddInteger(LD->getRawSubclassData());
671     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
672     break;
673   }
674   case ISD::STORE: {
675     const StoreSDNode *ST = cast<StoreSDNode>(N);
676     ID.AddInteger(ST->getMemoryVT().getRawBits());
677     ID.AddInteger(ST->getRawSubclassData());
678     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
679     break;
680   }
681   case ISD::MLOAD: {
682     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
683     ID.AddInteger(MLD->getMemoryVT().getRawBits());
684     ID.AddInteger(MLD->getRawSubclassData());
685     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
686     break;
687   }
688   case ISD::MSTORE: {
689     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
690     ID.AddInteger(MST->getMemoryVT().getRawBits());
691     ID.AddInteger(MST->getRawSubclassData());
692     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
693     break;
694   }
695   case ISD::MGATHER: {
696     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
697     ID.AddInteger(MG->getMemoryVT().getRawBits());
698     ID.AddInteger(MG->getRawSubclassData());
699     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
700     break;
701   }
702   case ISD::MSCATTER: {
703     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
704     ID.AddInteger(MS->getMemoryVT().getRawBits());
705     ID.AddInteger(MS->getRawSubclassData());
706     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
707     break;
708   }
709   case ISD::ATOMIC_CMP_SWAP:
710   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
711   case ISD::ATOMIC_SWAP:
712   case ISD::ATOMIC_LOAD_ADD:
713   case ISD::ATOMIC_LOAD_SUB:
714   case ISD::ATOMIC_LOAD_AND:
715   case ISD::ATOMIC_LOAD_CLR:
716   case ISD::ATOMIC_LOAD_OR:
717   case ISD::ATOMIC_LOAD_XOR:
718   case ISD::ATOMIC_LOAD_NAND:
719   case ISD::ATOMIC_LOAD_MIN:
720   case ISD::ATOMIC_LOAD_MAX:
721   case ISD::ATOMIC_LOAD_UMIN:
722   case ISD::ATOMIC_LOAD_UMAX:
723   case ISD::ATOMIC_LOAD:
724   case ISD::ATOMIC_STORE: {
725     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
726     ID.AddInteger(AT->getMemoryVT().getRawBits());
727     ID.AddInteger(AT->getRawSubclassData());
728     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
729     break;
730   }
731   case ISD::PREFETCH: {
732     const MemSDNode *PF = cast<MemSDNode>(N);
733     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
734     break;
735   }
736   case ISD::VECTOR_SHUFFLE: {
737     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
738     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
739          i != e; ++i)
740       ID.AddInteger(SVN->getMaskElt(i));
741     break;
742   }
743   case ISD::TargetBlockAddress:
744   case ISD::BlockAddress: {
745     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
746     ID.AddPointer(BA->getBlockAddress());
747     ID.AddInteger(BA->getOffset());
748     ID.AddInteger(BA->getTargetFlags());
749     break;
750   }
751   } // end switch (N->getOpcode())
752 
753   // Target specific memory nodes could also have address spaces to check.
754   if (N->isTargetMemoryOpcode())
755     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
756 }
757 
758 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
759 /// data.
760 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
761   AddNodeIDOpcode(ID, N->getOpcode());
762   // Add the return value info.
763   AddNodeIDValueTypes(ID, N->getVTList());
764   // Add the operand info.
765   AddNodeIDOperands(ID, N->ops());
766 
767   // Handle SDNode leafs with special info.
768   AddNodeIDCustom(ID, N);
769 }
770 
771 //===----------------------------------------------------------------------===//
772 //                              SelectionDAG Class
773 //===----------------------------------------------------------------------===//
774 
775 /// doNotCSE - Return true if CSE should not be performed for this node.
776 static bool doNotCSE(SDNode *N) {
777   if (N->getValueType(0) == MVT::Glue)
778     return true; // Never CSE anything that produces a flag.
779 
780   switch (N->getOpcode()) {
781   default: break;
782   case ISD::HANDLENODE:
783   case ISD::EH_LABEL:
784     return true;   // Never CSE these nodes.
785   }
786 
787   // Check that remaining values produced are not flags.
788   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
789     if (N->getValueType(i) == MVT::Glue)
790       return true; // Never CSE anything that produces a flag.
791 
792   return false;
793 }
794 
795 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
796 /// SelectionDAG.
797 void SelectionDAG::RemoveDeadNodes() {
798   // Create a dummy node (which is not added to allnodes), that adds a reference
799   // to the root node, preventing it from being deleted.
800   HandleSDNode Dummy(getRoot());
801 
802   SmallVector<SDNode*, 128> DeadNodes;
803 
804   // Add all obviously-dead nodes to the DeadNodes worklist.
805   for (SDNode &Node : allnodes())
806     if (Node.use_empty())
807       DeadNodes.push_back(&Node);
808 
809   RemoveDeadNodes(DeadNodes);
810 
811   // If the root changed (e.g. it was a dead load, update the root).
812   setRoot(Dummy.getValue());
813 }
814 
815 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
816 /// given list, and any nodes that become unreachable as a result.
817 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
818 
819   // Process the worklist, deleting the nodes and adding their uses to the
820   // worklist.
821   while (!DeadNodes.empty()) {
822     SDNode *N = DeadNodes.pop_back_val();
823     // Skip to next node if we've already managed to delete the node. This could
824     // happen if replacing a node causes a node previously added to the node to
825     // be deleted.
826     if (N->getOpcode() == ISD::DELETED_NODE)
827       continue;
828 
829     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
830       DUL->NodeDeleted(N, nullptr);
831 
832     // Take the node out of the appropriate CSE map.
833     RemoveNodeFromCSEMaps(N);
834 
835     // Next, brutally remove the operand list.  This is safe to do, as there are
836     // no cycles in the graph.
837     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
838       SDUse &Use = *I++;
839       SDNode *Operand = Use.getNode();
840       Use.set(SDValue());
841 
842       // Now that we removed this operand, see if there are no uses of it left.
843       if (Operand->use_empty())
844         DeadNodes.push_back(Operand);
845     }
846 
847     DeallocateNode(N);
848   }
849 }
850 
851 void SelectionDAG::RemoveDeadNode(SDNode *N){
852   SmallVector<SDNode*, 16> DeadNodes(1, N);
853 
854   // Create a dummy node that adds a reference to the root node, preventing
855   // it from being deleted.  (This matters if the root is an operand of the
856   // dead node.)
857   HandleSDNode Dummy(getRoot());
858 
859   RemoveDeadNodes(DeadNodes);
860 }
861 
862 void SelectionDAG::DeleteNode(SDNode *N) {
863   // First take this out of the appropriate CSE map.
864   RemoveNodeFromCSEMaps(N);
865 
866   // Finally, remove uses due to operands of this node, remove from the
867   // AllNodes list, and delete the node.
868   DeleteNodeNotInCSEMaps(N);
869 }
870 
871 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
872   assert(N->getIterator() != AllNodes.begin() &&
873          "Cannot delete the entry node!");
874   assert(N->use_empty() && "Cannot delete a node that is not dead!");
875 
876   // Drop all of the operands and decrement used node's use counts.
877   N->DropOperands();
878 
879   DeallocateNode(N);
880 }
881 
882 void SDDbgInfo::erase(const SDNode *Node) {
883   DbgValMapType::iterator I = DbgValMap.find(Node);
884   if (I == DbgValMap.end())
885     return;
886   for (auto &Val: I->second)
887     Val->setIsInvalidated();
888   DbgValMap.erase(I);
889 }
890 
891 void SelectionDAG::DeallocateNode(SDNode *N) {
892   // If we have operands, deallocate them.
893   removeOperands(N);
894 
895   NodeAllocator.Deallocate(AllNodes.remove(N));
896 
897   // Set the opcode to DELETED_NODE to help catch bugs when node
898   // memory is reallocated.
899   // FIXME: There are places in SDag that have grown a dependency on the opcode
900   // value in the released node.
901   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
902   N->NodeType = ISD::DELETED_NODE;
903 
904   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
905   // them and forget about that node.
906   DbgInfo->erase(N);
907 }
908 
909 #ifndef NDEBUG
910 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
911 static void VerifySDNode(SDNode *N) {
912   switch (N->getOpcode()) {
913   default:
914     break;
915   case ISD::BUILD_PAIR: {
916     EVT VT = N->getValueType(0);
917     assert(N->getNumValues() == 1 && "Too many results!");
918     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
919            "Wrong return type!");
920     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
921     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
922            "Mismatched operand types!");
923     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
924            "Wrong operand type!");
925     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
926            "Wrong return type size");
927     break;
928   }
929   case ISD::BUILD_VECTOR: {
930     assert(N->getNumValues() == 1 && "Too many results!");
931     assert(N->getValueType(0).isVector() && "Wrong return type!");
932     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
933            "Wrong number of operands!");
934     EVT EltVT = N->getValueType(0).getVectorElementType();
935     for (const SDUse &Op : N->ops()) {
936       assert((Op.getValueType() == EltVT ||
937               (EltVT.isInteger() && Op.getValueType().isInteger() &&
938                EltVT.bitsLE(Op.getValueType()))) &&
939              "Wrong operand type!");
940       assert(Op.getValueType() == N->getOperand(0).getValueType() &&
941              "Operands must all have the same type");
942     }
943     break;
944   }
945   }
946 }
947 #endif // NDEBUG
948 
949 /// Insert a newly allocated node into the DAG.
950 ///
951 /// Handles insertion into the all nodes list and CSE map, as well as
952 /// verification and other common operations when a new node is allocated.
953 void SelectionDAG::InsertNode(SDNode *N) {
954   AllNodes.push_back(N);
955 #ifndef NDEBUG
956   N->PersistentId = NextPersistentId++;
957   VerifySDNode(N);
958 #endif
959   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
960     DUL->NodeInserted(N);
961 }
962 
963 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
964 /// correspond to it.  This is useful when we're about to delete or repurpose
965 /// the node.  We don't want future request for structurally identical nodes
966 /// to return N anymore.
967 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
968   bool Erased = false;
969   switch (N->getOpcode()) {
970   case ISD::HANDLENODE: return false;  // noop.
971   case ISD::CONDCODE:
972     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
973            "Cond code doesn't exist!");
974     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
975     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
976     break;
977   case ISD::ExternalSymbol:
978     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
979     break;
980   case ISD::TargetExternalSymbol: {
981     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
982     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
983         ESN->getSymbol(), ESN->getTargetFlags()));
984     break;
985   }
986   case ISD::MCSymbol: {
987     auto *MCSN = cast<MCSymbolSDNode>(N);
988     Erased = MCSymbols.erase(MCSN->getMCSymbol());
989     break;
990   }
991   case ISD::VALUETYPE: {
992     EVT VT = cast<VTSDNode>(N)->getVT();
993     if (VT.isExtended()) {
994       Erased = ExtendedValueTypeNodes.erase(VT);
995     } else {
996       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
997       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
998     }
999     break;
1000   }
1001   default:
1002     // Remove it from the CSE Map.
1003     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1004     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1005     Erased = CSEMap.RemoveNode(N);
1006     break;
1007   }
1008 #ifndef NDEBUG
1009   // Verify that the node was actually in one of the CSE maps, unless it has a
1010   // flag result (which cannot be CSE'd) or is one of the special cases that are
1011   // not subject to CSE.
1012   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1013       !N->isMachineOpcode() && !doNotCSE(N)) {
1014     N->dump(this);
1015     dbgs() << "\n";
1016     llvm_unreachable("Node is not in map!");
1017   }
1018 #endif
1019   return Erased;
1020 }
1021 
1022 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1023 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1024 /// node already exists, in which case transfer all its users to the existing
1025 /// node. This transfer can potentially trigger recursive merging.
1026 void
1027 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1028   // For node types that aren't CSE'd, just act as if no identical node
1029   // already exists.
1030   if (!doNotCSE(N)) {
1031     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1032     if (Existing != N) {
1033       // If there was already an existing matching node, use ReplaceAllUsesWith
1034       // to replace the dead one with the existing one.  This can cause
1035       // recursive merging of other unrelated nodes down the line.
1036       ReplaceAllUsesWith(N, Existing);
1037 
1038       // N is now dead. Inform the listeners and delete it.
1039       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1040         DUL->NodeDeleted(N, Existing);
1041       DeleteNodeNotInCSEMaps(N);
1042       return;
1043     }
1044   }
1045 
1046   // If the node doesn't already exist, we updated it.  Inform listeners.
1047   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1048     DUL->NodeUpdated(N);
1049 }
1050 
1051 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1052 /// were replaced with those specified.  If this node is never memoized,
1053 /// return null, otherwise return a pointer to the slot it would take.  If a
1054 /// node already exists with these operands, the slot will be non-null.
1055 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1056                                            void *&InsertPos) {
1057   if (doNotCSE(N))
1058     return nullptr;
1059 
1060   SDValue Ops[] = { Op };
1061   FoldingSetNodeID ID;
1062   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1063   AddNodeIDCustom(ID, N);
1064   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1065   if (Node)
1066     Node->intersectFlagsWith(N->getFlags());
1067   return Node;
1068 }
1069 
1070 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1071 /// were replaced with those specified.  If this node is never memoized,
1072 /// return null, otherwise return a pointer to the slot it would take.  If a
1073 /// node already exists with these operands, the slot will be non-null.
1074 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1075                                            SDValue Op1, SDValue Op2,
1076                                            void *&InsertPos) {
1077   if (doNotCSE(N))
1078     return nullptr;
1079 
1080   SDValue Ops[] = { Op1, Op2 };
1081   FoldingSetNodeID ID;
1082   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1083   AddNodeIDCustom(ID, N);
1084   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1085   if (Node)
1086     Node->intersectFlagsWith(N->getFlags());
1087   return Node;
1088 }
1089 
1090 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1091 /// were replaced with those specified.  If this node is never memoized,
1092 /// return null, otherwise return a pointer to the slot it would take.  If a
1093 /// node already exists with these operands, the slot will be non-null.
1094 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1095                                            void *&InsertPos) {
1096   if (doNotCSE(N))
1097     return nullptr;
1098 
1099   FoldingSetNodeID ID;
1100   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1101   AddNodeIDCustom(ID, N);
1102   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1103   if (Node)
1104     Node->intersectFlagsWith(N->getFlags());
1105   return Node;
1106 }
1107 
1108 Align SelectionDAG::getEVTAlign(EVT VT) const {
1109   Type *Ty = VT == MVT::iPTR ?
1110                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1111                    VT.getTypeForEVT(*getContext());
1112 
1113   return getDataLayout().getABITypeAlign(Ty);
1114 }
1115 
1116 // EntryNode could meaningfully have debug info if we can find it...
1117 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1118     : TM(tm), OptLevel(OL),
1119       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1120       Root(getEntryNode()) {
1121   InsertNode(&EntryNode);
1122   DbgInfo = new SDDbgInfo();
1123 }
1124 
1125 void SelectionDAG::init(MachineFunction &NewMF,
1126                         OptimizationRemarkEmitter &NewORE,
1127                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1128                         LegacyDivergenceAnalysis * Divergence,
1129                         ProfileSummaryInfo *PSIin,
1130                         BlockFrequencyInfo *BFIin) {
1131   MF = &NewMF;
1132   SDAGISelPass = PassPtr;
1133   ORE = &NewORE;
1134   TLI = getSubtarget().getTargetLowering();
1135   TSI = getSubtarget().getSelectionDAGInfo();
1136   LibInfo = LibraryInfo;
1137   Context = &MF->getFunction().getContext();
1138   DA = Divergence;
1139   PSI = PSIin;
1140   BFI = BFIin;
1141 }
1142 
1143 SelectionDAG::~SelectionDAG() {
1144   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1145   allnodes_clear();
1146   OperandRecycler.clear(OperandAllocator);
1147   delete DbgInfo;
1148 }
1149 
1150 bool SelectionDAG::shouldOptForSize() const {
1151   return MF->getFunction().hasOptSize() ||
1152       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1153 }
1154 
1155 void SelectionDAG::allnodes_clear() {
1156   assert(&*AllNodes.begin() == &EntryNode);
1157   AllNodes.remove(AllNodes.begin());
1158   while (!AllNodes.empty())
1159     DeallocateNode(&AllNodes.front());
1160 #ifndef NDEBUG
1161   NextPersistentId = 0;
1162 #endif
1163 }
1164 
1165 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1166                                           void *&InsertPos) {
1167   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1168   if (N) {
1169     switch (N->getOpcode()) {
1170     default: break;
1171     case ISD::Constant:
1172     case ISD::ConstantFP:
1173       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1174                        "debug location.  Use another overload.");
1175     }
1176   }
1177   return N;
1178 }
1179 
1180 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1181                                           const SDLoc &DL, void *&InsertPos) {
1182   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1183   if (N) {
1184     switch (N->getOpcode()) {
1185     case ISD::Constant:
1186     case ISD::ConstantFP:
1187       // Erase debug location from the node if the node is used at several
1188       // different places. Do not propagate one location to all uses as it
1189       // will cause a worse single stepping debugging experience.
1190       if (N->getDebugLoc() != DL.getDebugLoc())
1191         N->setDebugLoc(DebugLoc());
1192       break;
1193     default:
1194       // When the node's point of use is located earlier in the instruction
1195       // sequence than its prior point of use, update its debug info to the
1196       // earlier location.
1197       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1198         N->setDebugLoc(DL.getDebugLoc());
1199       break;
1200     }
1201   }
1202   return N;
1203 }
1204 
1205 void SelectionDAG::clear() {
1206   allnodes_clear();
1207   OperandRecycler.clear(OperandAllocator);
1208   OperandAllocator.Reset();
1209   CSEMap.clear();
1210 
1211   ExtendedValueTypeNodes.clear();
1212   ExternalSymbols.clear();
1213   TargetExternalSymbols.clear();
1214   MCSymbols.clear();
1215   SDCallSiteDbgInfo.clear();
1216   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1217             static_cast<CondCodeSDNode*>(nullptr));
1218   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1219             static_cast<SDNode*>(nullptr));
1220 
1221   EntryNode.UseList = nullptr;
1222   InsertNode(&EntryNode);
1223   Root = getEntryNode();
1224   DbgInfo->clear();
1225 }
1226 
1227 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1228   return VT.bitsGT(Op.getValueType())
1229              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1230              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1231 }
1232 
1233 std::pair<SDValue, SDValue>
1234 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1235                                        const SDLoc &DL, EVT VT) {
1236   assert(!VT.bitsEq(Op.getValueType()) &&
1237          "Strict no-op FP extend/round not allowed.");
1238   SDValue Res =
1239       VT.bitsGT(Op.getValueType())
1240           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1241           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1242                     {Chain, Op, getIntPtrConstant(0, DL)});
1243 
1244   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1245 }
1246 
1247 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1248   return VT.bitsGT(Op.getValueType()) ?
1249     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1250     getNode(ISD::TRUNCATE, DL, VT, Op);
1251 }
1252 
1253 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1254   return VT.bitsGT(Op.getValueType()) ?
1255     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1256     getNode(ISD::TRUNCATE, DL, VT, Op);
1257 }
1258 
1259 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1260   return VT.bitsGT(Op.getValueType()) ?
1261     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1262     getNode(ISD::TRUNCATE, DL, VT, Op);
1263 }
1264 
1265 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1266                                         EVT OpVT) {
1267   if (VT.bitsLE(Op.getValueType()))
1268     return getNode(ISD::TRUNCATE, SL, VT, Op);
1269 
1270   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1271   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1272 }
1273 
1274 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1275   EVT OpVT = Op.getValueType();
1276   assert(VT.isInteger() && OpVT.isInteger() &&
1277          "Cannot getZeroExtendInReg FP types");
1278   assert(VT.isVector() == OpVT.isVector() &&
1279          "getZeroExtendInReg type should be vector iff the operand "
1280          "type is vector!");
1281   assert((!VT.isVector() ||
1282           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1283          "Vector element counts must match in getZeroExtendInReg");
1284   assert(VT.bitsLE(OpVT) && "Not extending!");
1285   if (OpVT == VT)
1286     return Op;
1287   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1288                                    VT.getScalarSizeInBits());
1289   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1290 }
1291 
1292 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1293   // Only unsigned pointer semantics are supported right now. In the future this
1294   // might delegate to TLI to check pointer signedness.
1295   return getZExtOrTrunc(Op, DL, VT);
1296 }
1297 
1298 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1299   // Only unsigned pointer semantics are supported right now. In the future this
1300   // might delegate to TLI to check pointer signedness.
1301   return getZeroExtendInReg(Op, DL, VT);
1302 }
1303 
1304 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1305 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1306   EVT EltVT = VT.getScalarType();
1307   SDValue NegOne =
1308     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1309   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1310 }
1311 
1312 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1313   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1314   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1315 }
1316 
1317 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1318                                       EVT OpVT) {
1319   if (!V)
1320     return getConstant(0, DL, VT);
1321 
1322   switch (TLI->getBooleanContents(OpVT)) {
1323   case TargetLowering::ZeroOrOneBooleanContent:
1324   case TargetLowering::UndefinedBooleanContent:
1325     return getConstant(1, DL, VT);
1326   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1327     return getAllOnesConstant(DL, VT);
1328   }
1329   llvm_unreachable("Unexpected boolean content enum!");
1330 }
1331 
1332 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1333                                   bool isT, bool isO) {
1334   EVT EltVT = VT.getScalarType();
1335   assert((EltVT.getSizeInBits() >= 64 ||
1336           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1337          "getConstant with a uint64_t value that doesn't fit in the type!");
1338   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1339 }
1340 
1341 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1342                                   bool isT, bool isO) {
1343   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1344 }
1345 
1346 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1347                                   EVT VT, bool isT, bool isO) {
1348   assert(VT.isInteger() && "Cannot create FP integer constant!");
1349 
1350   EVT EltVT = VT.getScalarType();
1351   const ConstantInt *Elt = &Val;
1352 
1353   // In some cases the vector type is legal but the element type is illegal and
1354   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1355   // inserted value (the type does not need to match the vector element type).
1356   // Any extra bits introduced will be truncated away.
1357   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1358                            TargetLowering::TypePromoteInteger) {
1359     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1360     APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1361     Elt = ConstantInt::get(*getContext(), NewVal);
1362   }
1363   // In other cases the element type is illegal and needs to be expanded, for
1364   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1365   // the value into n parts and use a vector type with n-times the elements.
1366   // Then bitcast to the type requested.
1367   // Legalizing constants too early makes the DAGCombiner's job harder so we
1368   // only legalize if the DAG tells us we must produce legal types.
1369   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1370            TLI->getTypeAction(*getContext(), EltVT) ==
1371                TargetLowering::TypeExpandInteger) {
1372     const APInt &NewVal = Elt->getValue();
1373     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1374     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1375     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1376     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1377 
1378     // Check the temporary vector is the correct size. If this fails then
1379     // getTypeToTransformTo() probably returned a type whose size (in bits)
1380     // isn't a power-of-2 factor of the requested type size.
1381     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1382 
1383     SmallVector<SDValue, 2> EltParts;
1384     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1385       EltParts.push_back(getConstant(
1386           NewVal.lshr(i * ViaEltSizeInBits).zextOrTrunc(ViaEltSizeInBits), DL,
1387           ViaEltVT, isT, isO));
1388     }
1389 
1390     // EltParts is currently in little endian order. If we actually want
1391     // big-endian order then reverse it now.
1392     if (getDataLayout().isBigEndian())
1393       std::reverse(EltParts.begin(), EltParts.end());
1394 
1395     // The elements must be reversed when the element order is different
1396     // to the endianness of the elements (because the BITCAST is itself a
1397     // vector shuffle in this situation). However, we do not need any code to
1398     // perform this reversal because getConstant() is producing a vector
1399     // splat.
1400     // This situation occurs in MIPS MSA.
1401 
1402     SmallVector<SDValue, 8> Ops;
1403     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1404       llvm::append_range(Ops, EltParts);
1405 
1406     SDValue V =
1407         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1408     return V;
1409   }
1410 
1411   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1412          "APInt size does not match type size!");
1413   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1414   FoldingSetNodeID ID;
1415   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1416   ID.AddPointer(Elt);
1417   ID.AddBoolean(isO);
1418   void *IP = nullptr;
1419   SDNode *N = nullptr;
1420   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1421     if (!VT.isVector())
1422       return SDValue(N, 0);
1423 
1424   if (!N) {
1425     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1426     CSEMap.InsertNode(N, IP);
1427     InsertNode(N);
1428     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1429   }
1430 
1431   SDValue Result(N, 0);
1432   if (VT.isScalableVector())
1433     Result = getSplatVector(VT, DL, Result);
1434   else if (VT.isVector())
1435     Result = getSplatBuildVector(VT, DL, Result);
1436 
1437   return Result;
1438 }
1439 
1440 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1441                                         bool isTarget) {
1442   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1443 }
1444 
1445 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1446                                              const SDLoc &DL, bool LegalTypes) {
1447   assert(VT.isInteger() && "Shift amount is not an integer type!");
1448   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1449   return getConstant(Val, DL, ShiftVT);
1450 }
1451 
1452 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1453                                            bool isTarget) {
1454   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1455 }
1456 
1457 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1458                                     bool isTarget) {
1459   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1460 }
1461 
1462 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1463                                     EVT VT, bool isTarget) {
1464   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1465 
1466   EVT EltVT = VT.getScalarType();
1467 
1468   // Do the map lookup using the actual bit pattern for the floating point
1469   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1470   // we don't have issues with SNANs.
1471   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1472   FoldingSetNodeID ID;
1473   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1474   ID.AddPointer(&V);
1475   void *IP = nullptr;
1476   SDNode *N = nullptr;
1477   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1478     if (!VT.isVector())
1479       return SDValue(N, 0);
1480 
1481   if (!N) {
1482     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1483     CSEMap.InsertNode(N, IP);
1484     InsertNode(N);
1485   }
1486 
1487   SDValue Result(N, 0);
1488   if (VT.isScalableVector())
1489     Result = getSplatVector(VT, DL, Result);
1490   else if (VT.isVector())
1491     Result = getSplatBuildVector(VT, DL, Result);
1492   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1493   return Result;
1494 }
1495 
1496 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1497                                     bool isTarget) {
1498   EVT EltVT = VT.getScalarType();
1499   if (EltVT == MVT::f32)
1500     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1501   else if (EltVT == MVT::f64)
1502     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1503   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1504            EltVT == MVT::f16 || EltVT == MVT::bf16) {
1505     bool Ignored;
1506     APFloat APF = APFloat(Val);
1507     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1508                 &Ignored);
1509     return getConstantFP(APF, DL, VT, isTarget);
1510   } else
1511     llvm_unreachable("Unsupported type in getConstantFP");
1512 }
1513 
1514 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1515                                        EVT VT, int64_t Offset, bool isTargetGA,
1516                                        unsigned TargetFlags) {
1517   assert((TargetFlags == 0 || isTargetGA) &&
1518          "Cannot set target flags on target-independent globals");
1519 
1520   // Truncate (with sign-extension) the offset value to the pointer size.
1521   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1522   if (BitWidth < 64)
1523     Offset = SignExtend64(Offset, BitWidth);
1524 
1525   unsigned Opc;
1526   if (GV->isThreadLocal())
1527     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1528   else
1529     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1530 
1531   FoldingSetNodeID ID;
1532   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1533   ID.AddPointer(GV);
1534   ID.AddInteger(Offset);
1535   ID.AddInteger(TargetFlags);
1536   void *IP = nullptr;
1537   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1538     return SDValue(E, 0);
1539 
1540   auto *N = newSDNode<GlobalAddressSDNode>(
1541       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1542   CSEMap.InsertNode(N, IP);
1543     InsertNode(N);
1544   return SDValue(N, 0);
1545 }
1546 
1547 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1548   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1549   FoldingSetNodeID ID;
1550   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1551   ID.AddInteger(FI);
1552   void *IP = nullptr;
1553   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1554     return SDValue(E, 0);
1555 
1556   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1557   CSEMap.InsertNode(N, IP);
1558   InsertNode(N);
1559   return SDValue(N, 0);
1560 }
1561 
1562 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1563                                    unsigned TargetFlags) {
1564   assert((TargetFlags == 0 || isTarget) &&
1565          "Cannot set target flags on target-independent jump tables");
1566   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1567   FoldingSetNodeID ID;
1568   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1569   ID.AddInteger(JTI);
1570   ID.AddInteger(TargetFlags);
1571   void *IP = nullptr;
1572   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1573     return SDValue(E, 0);
1574 
1575   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1576   CSEMap.InsertNode(N, IP);
1577   InsertNode(N);
1578   return SDValue(N, 0);
1579 }
1580 
1581 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1582                                       MaybeAlign Alignment, int Offset,
1583                                       bool isTarget, unsigned TargetFlags) {
1584   assert((TargetFlags == 0 || isTarget) &&
1585          "Cannot set target flags on target-independent globals");
1586   if (!Alignment)
1587     Alignment = shouldOptForSize()
1588                     ? getDataLayout().getABITypeAlign(C->getType())
1589                     : getDataLayout().getPrefTypeAlign(C->getType());
1590   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1591   FoldingSetNodeID ID;
1592   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1593   ID.AddInteger(Alignment->value());
1594   ID.AddInteger(Offset);
1595   ID.AddPointer(C);
1596   ID.AddInteger(TargetFlags);
1597   void *IP = nullptr;
1598   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1599     return SDValue(E, 0);
1600 
1601   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1602                                           TargetFlags);
1603   CSEMap.InsertNode(N, IP);
1604   InsertNode(N);
1605   SDValue V = SDValue(N, 0);
1606   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1607   return V;
1608 }
1609 
1610 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1611                                       MaybeAlign Alignment, int Offset,
1612                                       bool isTarget, unsigned TargetFlags) {
1613   assert((TargetFlags == 0 || isTarget) &&
1614          "Cannot set target flags on target-independent globals");
1615   if (!Alignment)
1616     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1617   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1618   FoldingSetNodeID ID;
1619   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1620   ID.AddInteger(Alignment->value());
1621   ID.AddInteger(Offset);
1622   C->addSelectionDAGCSEId(ID);
1623   ID.AddInteger(TargetFlags);
1624   void *IP = nullptr;
1625   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1626     return SDValue(E, 0);
1627 
1628   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1629                                           TargetFlags);
1630   CSEMap.InsertNode(N, IP);
1631   InsertNode(N);
1632   return SDValue(N, 0);
1633 }
1634 
1635 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1636                                      unsigned TargetFlags) {
1637   FoldingSetNodeID ID;
1638   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1639   ID.AddInteger(Index);
1640   ID.AddInteger(Offset);
1641   ID.AddInteger(TargetFlags);
1642   void *IP = nullptr;
1643   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1644     return SDValue(E, 0);
1645 
1646   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1647   CSEMap.InsertNode(N, IP);
1648   InsertNode(N);
1649   return SDValue(N, 0);
1650 }
1651 
1652 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1653   FoldingSetNodeID ID;
1654   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1655   ID.AddPointer(MBB);
1656   void *IP = nullptr;
1657   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1658     return SDValue(E, 0);
1659 
1660   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1661   CSEMap.InsertNode(N, IP);
1662   InsertNode(N);
1663   return SDValue(N, 0);
1664 }
1665 
1666 SDValue SelectionDAG::getValueType(EVT VT) {
1667   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1668       ValueTypeNodes.size())
1669     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1670 
1671   SDNode *&N = VT.isExtended() ?
1672     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1673 
1674   if (N) return SDValue(N, 0);
1675   N = newSDNode<VTSDNode>(VT);
1676   InsertNode(N);
1677   return SDValue(N, 0);
1678 }
1679 
1680 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1681   SDNode *&N = ExternalSymbols[Sym];
1682   if (N) return SDValue(N, 0);
1683   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1684   InsertNode(N);
1685   return SDValue(N, 0);
1686 }
1687 
1688 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1689   SDNode *&N = MCSymbols[Sym];
1690   if (N)
1691     return SDValue(N, 0);
1692   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1693   InsertNode(N);
1694   return SDValue(N, 0);
1695 }
1696 
1697 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1698                                               unsigned TargetFlags) {
1699   SDNode *&N =
1700       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1701   if (N) return SDValue(N, 0);
1702   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1703   InsertNode(N);
1704   return SDValue(N, 0);
1705 }
1706 
1707 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1708   if ((unsigned)Cond >= CondCodeNodes.size())
1709     CondCodeNodes.resize(Cond+1);
1710 
1711   if (!CondCodeNodes[Cond]) {
1712     auto *N = newSDNode<CondCodeSDNode>(Cond);
1713     CondCodeNodes[Cond] = N;
1714     InsertNode(N);
1715   }
1716 
1717   return SDValue(CondCodeNodes[Cond], 0);
1718 }
1719 
1720 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1721 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1722 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1723   std::swap(N1, N2);
1724   ShuffleVectorSDNode::commuteMask(M);
1725 }
1726 
1727 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1728                                        SDValue N2, ArrayRef<int> Mask) {
1729   assert(VT.getVectorNumElements() == Mask.size() &&
1730            "Must have the same number of vector elements as mask elements!");
1731   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1732          "Invalid VECTOR_SHUFFLE");
1733 
1734   // Canonicalize shuffle undef, undef -> undef
1735   if (N1.isUndef() && N2.isUndef())
1736     return getUNDEF(VT);
1737 
1738   // Validate that all indices in Mask are within the range of the elements
1739   // input to the shuffle.
1740   int NElts = Mask.size();
1741   assert(llvm::all_of(Mask,
1742                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1743          "Index out of range");
1744 
1745   // Copy the mask so we can do any needed cleanup.
1746   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1747 
1748   // Canonicalize shuffle v, v -> v, undef
1749   if (N1 == N2) {
1750     N2 = getUNDEF(VT);
1751     for (int i = 0; i != NElts; ++i)
1752       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1753   }
1754 
1755   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1756   if (N1.isUndef())
1757     commuteShuffle(N1, N2, MaskVec);
1758 
1759   if (TLI->hasVectorBlend()) {
1760     // If shuffling a splat, try to blend the splat instead. We do this here so
1761     // that even when this arises during lowering we don't have to re-handle it.
1762     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1763       BitVector UndefElements;
1764       SDValue Splat = BV->getSplatValue(&UndefElements);
1765       if (!Splat)
1766         return;
1767 
1768       for (int i = 0; i < NElts; ++i) {
1769         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1770           continue;
1771 
1772         // If this input comes from undef, mark it as such.
1773         if (UndefElements[MaskVec[i] - Offset]) {
1774           MaskVec[i] = -1;
1775           continue;
1776         }
1777 
1778         // If we can blend a non-undef lane, use that instead.
1779         if (!UndefElements[i])
1780           MaskVec[i] = i + Offset;
1781       }
1782     };
1783     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1784       BlendSplat(N1BV, 0);
1785     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1786       BlendSplat(N2BV, NElts);
1787   }
1788 
1789   // Canonicalize all index into lhs, -> shuffle lhs, undef
1790   // Canonicalize all index into rhs, -> shuffle rhs, undef
1791   bool AllLHS = true, AllRHS = true;
1792   bool N2Undef = N2.isUndef();
1793   for (int i = 0; i != NElts; ++i) {
1794     if (MaskVec[i] >= NElts) {
1795       if (N2Undef)
1796         MaskVec[i] = -1;
1797       else
1798         AllLHS = false;
1799     } else if (MaskVec[i] >= 0) {
1800       AllRHS = false;
1801     }
1802   }
1803   if (AllLHS && AllRHS)
1804     return getUNDEF(VT);
1805   if (AllLHS && !N2Undef)
1806     N2 = getUNDEF(VT);
1807   if (AllRHS) {
1808     N1 = getUNDEF(VT);
1809     commuteShuffle(N1, N2, MaskVec);
1810   }
1811   // Reset our undef status after accounting for the mask.
1812   N2Undef = N2.isUndef();
1813   // Re-check whether both sides ended up undef.
1814   if (N1.isUndef() && N2Undef)
1815     return getUNDEF(VT);
1816 
1817   // If Identity shuffle return that node.
1818   bool Identity = true, AllSame = true;
1819   for (int i = 0; i != NElts; ++i) {
1820     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1821     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1822   }
1823   if (Identity && NElts)
1824     return N1;
1825 
1826   // Shuffling a constant splat doesn't change the result.
1827   if (N2Undef) {
1828     SDValue V = N1;
1829 
1830     // Look through any bitcasts. We check that these don't change the number
1831     // (and size) of elements and just changes their types.
1832     while (V.getOpcode() == ISD::BITCAST)
1833       V = V->getOperand(0);
1834 
1835     // A splat should always show up as a build vector node.
1836     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1837       BitVector UndefElements;
1838       SDValue Splat = BV->getSplatValue(&UndefElements);
1839       // If this is a splat of an undef, shuffling it is also undef.
1840       if (Splat && Splat.isUndef())
1841         return getUNDEF(VT);
1842 
1843       bool SameNumElts =
1844           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1845 
1846       // We only have a splat which can skip shuffles if there is a splatted
1847       // value and no undef lanes rearranged by the shuffle.
1848       if (Splat && UndefElements.none()) {
1849         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1850         // number of elements match or the value splatted is a zero constant.
1851         if (SameNumElts)
1852           return N1;
1853         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1854           if (C->isNullValue())
1855             return N1;
1856       }
1857 
1858       // If the shuffle itself creates a splat, build the vector directly.
1859       if (AllSame && SameNumElts) {
1860         EVT BuildVT = BV->getValueType(0);
1861         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1862         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1863 
1864         // We may have jumped through bitcasts, so the type of the
1865         // BUILD_VECTOR may not match the type of the shuffle.
1866         if (BuildVT != VT)
1867           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1868         return NewBV;
1869       }
1870     }
1871   }
1872 
1873   FoldingSetNodeID ID;
1874   SDValue Ops[2] = { N1, N2 };
1875   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1876   for (int i = 0; i != NElts; ++i)
1877     ID.AddInteger(MaskVec[i]);
1878 
1879   void* IP = nullptr;
1880   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1881     return SDValue(E, 0);
1882 
1883   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1884   // SDNode doesn't have access to it.  This memory will be "leaked" when
1885   // the node is deallocated, but recovered when the NodeAllocator is released.
1886   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1887   llvm::copy(MaskVec, MaskAlloc);
1888 
1889   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1890                                            dl.getDebugLoc(), MaskAlloc);
1891   createOperands(N, Ops);
1892 
1893   CSEMap.InsertNode(N, IP);
1894   InsertNode(N);
1895   SDValue V = SDValue(N, 0);
1896   NewSDValueDbgMsg(V, "Creating new node: ", this);
1897   return V;
1898 }
1899 
1900 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1901   EVT VT = SV.getValueType(0);
1902   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1903   ShuffleVectorSDNode::commuteMask(MaskVec);
1904 
1905   SDValue Op0 = SV.getOperand(0);
1906   SDValue Op1 = SV.getOperand(1);
1907   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1908 }
1909 
1910 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1911   FoldingSetNodeID ID;
1912   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1913   ID.AddInteger(RegNo);
1914   void *IP = nullptr;
1915   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1916     return SDValue(E, 0);
1917 
1918   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1919   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1920   CSEMap.InsertNode(N, IP);
1921   InsertNode(N);
1922   return SDValue(N, 0);
1923 }
1924 
1925 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1926   FoldingSetNodeID ID;
1927   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1928   ID.AddPointer(RegMask);
1929   void *IP = nullptr;
1930   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1931     return SDValue(E, 0);
1932 
1933   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1934   CSEMap.InsertNode(N, IP);
1935   InsertNode(N);
1936   return SDValue(N, 0);
1937 }
1938 
1939 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1940                                  MCSymbol *Label) {
1941   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1942 }
1943 
1944 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1945                                    SDValue Root, MCSymbol *Label) {
1946   FoldingSetNodeID ID;
1947   SDValue Ops[] = { Root };
1948   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1949   ID.AddPointer(Label);
1950   void *IP = nullptr;
1951   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1952     return SDValue(E, 0);
1953 
1954   auto *N =
1955       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1956   createOperands(N, Ops);
1957 
1958   CSEMap.InsertNode(N, IP);
1959   InsertNode(N);
1960   return SDValue(N, 0);
1961 }
1962 
1963 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1964                                       int64_t Offset, bool isTarget,
1965                                       unsigned TargetFlags) {
1966   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1967 
1968   FoldingSetNodeID ID;
1969   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1970   ID.AddPointer(BA);
1971   ID.AddInteger(Offset);
1972   ID.AddInteger(TargetFlags);
1973   void *IP = nullptr;
1974   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1975     return SDValue(E, 0);
1976 
1977   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1978   CSEMap.InsertNode(N, IP);
1979   InsertNode(N);
1980   return SDValue(N, 0);
1981 }
1982 
1983 SDValue SelectionDAG::getSrcValue(const Value *V) {
1984   FoldingSetNodeID ID;
1985   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1986   ID.AddPointer(V);
1987 
1988   void *IP = nullptr;
1989   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1990     return SDValue(E, 0);
1991 
1992   auto *N = newSDNode<SrcValueSDNode>(V);
1993   CSEMap.InsertNode(N, IP);
1994   InsertNode(N);
1995   return SDValue(N, 0);
1996 }
1997 
1998 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1999   FoldingSetNodeID ID;
2000   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
2001   ID.AddPointer(MD);
2002 
2003   void *IP = nullptr;
2004   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2005     return SDValue(E, 0);
2006 
2007   auto *N = newSDNode<MDNodeSDNode>(MD);
2008   CSEMap.InsertNode(N, IP);
2009   InsertNode(N);
2010   return SDValue(N, 0);
2011 }
2012 
2013 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2014   if (VT == V.getValueType())
2015     return V;
2016 
2017   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2018 }
2019 
2020 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2021                                        unsigned SrcAS, unsigned DestAS) {
2022   SDValue Ops[] = {Ptr};
2023   FoldingSetNodeID ID;
2024   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2025   ID.AddInteger(SrcAS);
2026   ID.AddInteger(DestAS);
2027 
2028   void *IP = nullptr;
2029   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2030     return SDValue(E, 0);
2031 
2032   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2033                                            VT, SrcAS, DestAS);
2034   createOperands(N, Ops);
2035 
2036   CSEMap.InsertNode(N, IP);
2037   InsertNode(N);
2038   return SDValue(N, 0);
2039 }
2040 
2041 SDValue SelectionDAG::getFreeze(SDValue V) {
2042   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2043 }
2044 
2045 /// getShiftAmountOperand - Return the specified value casted to
2046 /// the target's desired shift amount type.
2047 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2048   EVT OpTy = Op.getValueType();
2049   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2050   if (OpTy == ShTy || OpTy.isVector()) return Op;
2051 
2052   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2053 }
2054 
2055 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2056   SDLoc dl(Node);
2057   const TargetLowering &TLI = getTargetLoweringInfo();
2058   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2059   EVT VT = Node->getValueType(0);
2060   SDValue Tmp1 = Node->getOperand(0);
2061   SDValue Tmp2 = Node->getOperand(1);
2062   const MaybeAlign MA(Node->getConstantOperandVal(3));
2063 
2064   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2065                                Tmp2, MachinePointerInfo(V));
2066   SDValue VAList = VAListLoad;
2067 
2068   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2069     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2070                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2071 
2072     VAList =
2073         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2074                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2075   }
2076 
2077   // Increment the pointer, VAList, to the next vaarg
2078   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2079                  getConstant(getDataLayout().getTypeAllocSize(
2080                                                VT.getTypeForEVT(*getContext())),
2081                              dl, VAList.getValueType()));
2082   // Store the incremented VAList to the legalized pointer
2083   Tmp1 =
2084       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2085   // Load the actual argument out of the pointer VAList
2086   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2087 }
2088 
2089 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2090   SDLoc dl(Node);
2091   const TargetLowering &TLI = getTargetLoweringInfo();
2092   // This defaults to loading a pointer from the input and storing it to the
2093   // output, returning the chain.
2094   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2095   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2096   SDValue Tmp1 =
2097       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2098               Node->getOperand(2), MachinePointerInfo(VS));
2099   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2100                   MachinePointerInfo(VD));
2101 }
2102 
2103 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2104   const DataLayout &DL = getDataLayout();
2105   Type *Ty = VT.getTypeForEVT(*getContext());
2106   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2107 
2108   if (TLI->isTypeLegal(VT) || !VT.isVector())
2109     return RedAlign;
2110 
2111   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2112   const Align StackAlign = TFI->getStackAlign();
2113 
2114   // See if we can choose a smaller ABI alignment in cases where it's an
2115   // illegal vector type that will get broken down.
2116   if (RedAlign > StackAlign) {
2117     EVT IntermediateVT;
2118     MVT RegisterVT;
2119     unsigned NumIntermediates;
2120     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2121                                 NumIntermediates, RegisterVT);
2122     Ty = IntermediateVT.getTypeForEVT(*getContext());
2123     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2124     if (RedAlign2 < RedAlign)
2125       RedAlign = RedAlign2;
2126   }
2127 
2128   return RedAlign;
2129 }
2130 
2131 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2132   MachineFrameInfo &MFI = MF->getFrameInfo();
2133   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2134   int StackID = 0;
2135   if (Bytes.isScalable())
2136     StackID = TFI->getStackIDForScalableVectors();
2137   // The stack id gives an indication of whether the object is scalable or
2138   // not, so it's safe to pass in the minimum size here.
2139   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2140                                        false, nullptr, StackID);
2141   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2142 }
2143 
2144 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2145   Type *Ty = VT.getTypeForEVT(*getContext());
2146   Align StackAlign =
2147       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2148   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2149 }
2150 
2151 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2152   TypeSize VT1Size = VT1.getStoreSize();
2153   TypeSize VT2Size = VT2.getStoreSize();
2154   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2155          "Don't know how to choose the maximum size when creating a stack "
2156          "temporary");
2157   TypeSize Bytes =
2158       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2159 
2160   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2161   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2162   const DataLayout &DL = getDataLayout();
2163   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2164   return CreateStackTemporary(Bytes, Align);
2165 }
2166 
2167 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2168                                 ISD::CondCode Cond, const SDLoc &dl) {
2169   EVT OpVT = N1.getValueType();
2170 
2171   // These setcc operations always fold.
2172   switch (Cond) {
2173   default: break;
2174   case ISD::SETFALSE:
2175   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2176   case ISD::SETTRUE:
2177   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2178 
2179   case ISD::SETOEQ:
2180   case ISD::SETOGT:
2181   case ISD::SETOGE:
2182   case ISD::SETOLT:
2183   case ISD::SETOLE:
2184   case ISD::SETONE:
2185   case ISD::SETO:
2186   case ISD::SETUO:
2187   case ISD::SETUEQ:
2188   case ISD::SETUNE:
2189     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2190     break;
2191   }
2192 
2193   if (OpVT.isInteger()) {
2194     // For EQ and NE, we can always pick a value for the undef to make the
2195     // predicate pass or fail, so we can return undef.
2196     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2197     // icmp eq/ne X, undef -> undef.
2198     if ((N1.isUndef() || N2.isUndef()) &&
2199         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2200       return getUNDEF(VT);
2201 
2202     // If both operands are undef, we can return undef for int comparison.
2203     // icmp undef, undef -> undef.
2204     if (N1.isUndef() && N2.isUndef())
2205       return getUNDEF(VT);
2206 
2207     // icmp X, X -> true/false
2208     // icmp X, undef -> true/false because undef could be X.
2209     if (N1 == N2)
2210       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2211   }
2212 
2213   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2214     const APInt &C2 = N2C->getAPIntValue();
2215     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2216       const APInt &C1 = N1C->getAPIntValue();
2217 
2218       switch (Cond) {
2219       default: llvm_unreachable("Unknown integer setcc!");
2220       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2221       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2222       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2223       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2224       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2225       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2226       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2227       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2228       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2229       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2230       }
2231     }
2232   }
2233 
2234   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2235   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2236 
2237   if (N1CFP && N2CFP) {
2238     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2239     switch (Cond) {
2240     default: break;
2241     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2242                         return getUNDEF(VT);
2243                       LLVM_FALLTHROUGH;
2244     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2245                                              OpVT);
2246     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2247                         return getUNDEF(VT);
2248                       LLVM_FALLTHROUGH;
2249     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2250                                              R==APFloat::cmpLessThan, dl, VT,
2251                                              OpVT);
2252     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2253                         return getUNDEF(VT);
2254                       LLVM_FALLTHROUGH;
2255     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2256                                              OpVT);
2257     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2258                         return getUNDEF(VT);
2259                       LLVM_FALLTHROUGH;
2260     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2261                                              VT, OpVT);
2262     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2263                         return getUNDEF(VT);
2264                       LLVM_FALLTHROUGH;
2265     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2266                                              R==APFloat::cmpEqual, dl, VT,
2267                                              OpVT);
2268     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2269                         return getUNDEF(VT);
2270                       LLVM_FALLTHROUGH;
2271     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2272                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2273     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2274                                              OpVT);
2275     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2276                                              OpVT);
2277     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2278                                              R==APFloat::cmpEqual, dl, VT,
2279                                              OpVT);
2280     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2281                                              OpVT);
2282     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2283                                              R==APFloat::cmpLessThan, dl, VT,
2284                                              OpVT);
2285     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2286                                              R==APFloat::cmpUnordered, dl, VT,
2287                                              OpVT);
2288     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2289                                              VT, OpVT);
2290     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2291                                              OpVT);
2292     }
2293   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2294     // Ensure that the constant occurs on the RHS.
2295     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2296     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2297       return SDValue();
2298     return getSetCC(dl, VT, N2, N1, SwappedCond);
2299   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2300              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2301     // If an operand is known to be a nan (or undef that could be a nan), we can
2302     // fold it.
2303     // Choosing NaN for the undef will always make unordered comparison succeed
2304     // and ordered comparison fails.
2305     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2306     switch (ISD::getUnorderedFlavor(Cond)) {
2307     default:
2308       llvm_unreachable("Unknown flavor!");
2309     case 0: // Known false.
2310       return getBoolConstant(false, dl, VT, OpVT);
2311     case 1: // Known true.
2312       return getBoolConstant(true, dl, VT, OpVT);
2313     case 2: // Undefined.
2314       return getUNDEF(VT);
2315     }
2316   }
2317 
2318   // Could not fold it.
2319   return SDValue();
2320 }
2321 
2322 /// See if the specified operand can be simplified with the knowledge that only
2323 /// the bits specified by DemandedBits are used.
2324 /// TODO: really we should be making this into the DAG equivalent of
2325 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2326 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2327   EVT VT = V.getValueType();
2328 
2329   if (VT.isScalableVector())
2330     return SDValue();
2331 
2332   APInt DemandedElts = VT.isVector()
2333                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2334                            : APInt(1, 1);
2335   return GetDemandedBits(V, DemandedBits, DemandedElts);
2336 }
2337 
2338 /// See if the specified operand can be simplified with the knowledge that only
2339 /// the bits specified by DemandedBits are used in the elements specified by
2340 /// DemandedElts.
2341 /// TODO: really we should be making this into the DAG equivalent of
2342 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2343 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2344                                       const APInt &DemandedElts) {
2345   switch (V.getOpcode()) {
2346   default:
2347     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2348                                                 *this, 0);
2349   case ISD::Constant: {
2350     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2351     APInt NewVal = CVal & DemandedBits;
2352     if (NewVal != CVal)
2353       return getConstant(NewVal, SDLoc(V), V.getValueType());
2354     break;
2355   }
2356   case ISD::SRL:
2357     // Only look at single-use SRLs.
2358     if (!V.getNode()->hasOneUse())
2359       break;
2360     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2361       // See if we can recursively simplify the LHS.
2362       unsigned Amt = RHSC->getZExtValue();
2363 
2364       // Watch out for shift count overflow though.
2365       if (Amt >= DemandedBits.getBitWidth())
2366         break;
2367       APInt SrcDemandedBits = DemandedBits << Amt;
2368       if (SDValue SimplifyLHS =
2369               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2370         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2371                        V.getOperand(1));
2372     }
2373     break;
2374   }
2375   return SDValue();
2376 }
2377 
2378 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2379 /// use this predicate to simplify operations downstream.
2380 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2381   unsigned BitWidth = Op.getScalarValueSizeInBits();
2382   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2383 }
2384 
2385 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2386 /// this predicate to simplify operations downstream.  Mask is known to be zero
2387 /// for bits that V cannot have.
2388 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2389                                      unsigned Depth) const {
2390   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2391 }
2392 
2393 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2394 /// DemandedElts.  We use this predicate to simplify operations downstream.
2395 /// Mask is known to be zero for bits that V cannot have.
2396 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2397                                      const APInt &DemandedElts,
2398                                      unsigned Depth) const {
2399   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2400 }
2401 
2402 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2403 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2404                                         unsigned Depth) const {
2405   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2406 }
2407 
2408 /// isSplatValue - Return true if the vector V has the same value
2409 /// across all DemandedElts. For scalable vectors it does not make
2410 /// sense to specify which elements are demanded or undefined, therefore
2411 /// they are simply ignored.
2412 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2413                                 APInt &UndefElts, unsigned Depth) {
2414   EVT VT = V.getValueType();
2415   assert(VT.isVector() && "Vector type expected");
2416 
2417   if (!VT.isScalableVector() && !DemandedElts)
2418     return false; // No demanded elts, better to assume we don't know anything.
2419 
2420   if (Depth >= MaxRecursionDepth)
2421     return false; // Limit search depth.
2422 
2423   // Deal with some common cases here that work for both fixed and scalable
2424   // vector types.
2425   switch (V.getOpcode()) {
2426   case ISD::SPLAT_VECTOR:
2427     UndefElts = V.getOperand(0).isUndef()
2428                     ? APInt::getAllOnesValue(DemandedElts.getBitWidth())
2429                     : APInt(DemandedElts.getBitWidth(), 0);
2430     return true;
2431   case ISD::ADD:
2432   case ISD::SUB:
2433   case ISD::AND:
2434   case ISD::XOR:
2435   case ISD::OR: {
2436     APInt UndefLHS, UndefRHS;
2437     SDValue LHS = V.getOperand(0);
2438     SDValue RHS = V.getOperand(1);
2439     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2440         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2441       UndefElts = UndefLHS | UndefRHS;
2442       return true;
2443     }
2444     break;
2445   }
2446   case ISD::TRUNCATE:
2447   case ISD::SIGN_EXTEND:
2448   case ISD::ZERO_EXTEND:
2449     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2450   }
2451 
2452   // We don't support other cases than those above for scalable vectors at
2453   // the moment.
2454   if (VT.isScalableVector())
2455     return false;
2456 
2457   unsigned NumElts = VT.getVectorNumElements();
2458   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2459   UndefElts = APInt::getNullValue(NumElts);
2460 
2461   switch (V.getOpcode()) {
2462   case ISD::BUILD_VECTOR: {
2463     SDValue Scl;
2464     for (unsigned i = 0; i != NumElts; ++i) {
2465       SDValue Op = V.getOperand(i);
2466       if (Op.isUndef()) {
2467         UndefElts.setBit(i);
2468         continue;
2469       }
2470       if (!DemandedElts[i])
2471         continue;
2472       if (Scl && Scl != Op)
2473         return false;
2474       Scl = Op;
2475     }
2476     return true;
2477   }
2478   case ISD::VECTOR_SHUFFLE: {
2479     // Check if this is a shuffle node doing a splat.
2480     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2481     int SplatIndex = -1;
2482     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2483     for (int i = 0; i != (int)NumElts; ++i) {
2484       int M = Mask[i];
2485       if (M < 0) {
2486         UndefElts.setBit(i);
2487         continue;
2488       }
2489       if (!DemandedElts[i])
2490         continue;
2491       if (0 <= SplatIndex && SplatIndex != M)
2492         return false;
2493       SplatIndex = M;
2494     }
2495     return true;
2496   }
2497   case ISD::EXTRACT_SUBVECTOR: {
2498     // Offset the demanded elts by the subvector index.
2499     SDValue Src = V.getOperand(0);
2500     uint64_t Idx = V.getConstantOperandVal(1);
2501     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2502     APInt UndefSrcElts;
2503     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2504     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2505       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2506       return true;
2507     }
2508     break;
2509   }
2510   }
2511 
2512   return false;
2513 }
2514 
2515 /// Helper wrapper to main isSplatValue function.
2516 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2517   EVT VT = V.getValueType();
2518   assert(VT.isVector() && "Vector type expected");
2519 
2520   APInt UndefElts;
2521   APInt DemandedElts;
2522 
2523   // For now we don't support this with scalable vectors.
2524   if (!VT.isScalableVector())
2525     DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2526   return isSplatValue(V, DemandedElts, UndefElts) &&
2527          (AllowUndefs || !UndefElts);
2528 }
2529 
2530 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2531   V = peekThroughExtractSubvectors(V);
2532 
2533   EVT VT = V.getValueType();
2534   unsigned Opcode = V.getOpcode();
2535   switch (Opcode) {
2536   default: {
2537     APInt UndefElts;
2538     APInt DemandedElts;
2539 
2540     if (!VT.isScalableVector())
2541       DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2542 
2543     if (isSplatValue(V, DemandedElts, UndefElts)) {
2544       if (VT.isScalableVector()) {
2545         // DemandedElts and UndefElts are ignored for scalable vectors, since
2546         // the only supported cases are SPLAT_VECTOR nodes.
2547         SplatIdx = 0;
2548       } else {
2549         // Handle case where all demanded elements are UNDEF.
2550         if (DemandedElts.isSubsetOf(UndefElts)) {
2551           SplatIdx = 0;
2552           return getUNDEF(VT);
2553         }
2554         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2555       }
2556       return V;
2557     }
2558     break;
2559   }
2560   case ISD::SPLAT_VECTOR:
2561     SplatIdx = 0;
2562     return V;
2563   case ISD::VECTOR_SHUFFLE: {
2564     if (VT.isScalableVector())
2565       return SDValue();
2566 
2567     // Check if this is a shuffle node doing a splat.
2568     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2569     // getTargetVShiftNode currently struggles without the splat source.
2570     auto *SVN = cast<ShuffleVectorSDNode>(V);
2571     if (!SVN->isSplat())
2572       break;
2573     int Idx = SVN->getSplatIndex();
2574     int NumElts = V.getValueType().getVectorNumElements();
2575     SplatIdx = Idx % NumElts;
2576     return V.getOperand(Idx / NumElts);
2577   }
2578   }
2579 
2580   return SDValue();
2581 }
2582 
2583 SDValue SelectionDAG::getSplatValue(SDValue V) {
2584   int SplatIdx;
2585   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2586     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2587                    SrcVector.getValueType().getScalarType(), SrcVector,
2588                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2589   return SDValue();
2590 }
2591 
2592 const APInt *
2593 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2594                                           const APInt &DemandedElts) const {
2595   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2596           V.getOpcode() == ISD::SRA) &&
2597          "Unknown shift node");
2598   unsigned BitWidth = V.getScalarValueSizeInBits();
2599   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2600     // Shifting more than the bitwidth is not valid.
2601     const APInt &ShAmt = SA->getAPIntValue();
2602     if (ShAmt.ult(BitWidth))
2603       return &ShAmt;
2604   }
2605   return nullptr;
2606 }
2607 
2608 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2609     SDValue V, const APInt &DemandedElts) const {
2610   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2611           V.getOpcode() == ISD::SRA) &&
2612          "Unknown shift node");
2613   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2614     return ValidAmt;
2615   unsigned BitWidth = V.getScalarValueSizeInBits();
2616   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2617   if (!BV)
2618     return nullptr;
2619   const APInt *MinShAmt = nullptr;
2620   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2621     if (!DemandedElts[i])
2622       continue;
2623     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2624     if (!SA)
2625       return nullptr;
2626     // Shifting more than the bitwidth is not valid.
2627     const APInt &ShAmt = SA->getAPIntValue();
2628     if (ShAmt.uge(BitWidth))
2629       return nullptr;
2630     if (MinShAmt && MinShAmt->ule(ShAmt))
2631       continue;
2632     MinShAmt = &ShAmt;
2633   }
2634   return MinShAmt;
2635 }
2636 
2637 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2638     SDValue V, const APInt &DemandedElts) const {
2639   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2640           V.getOpcode() == ISD::SRA) &&
2641          "Unknown shift node");
2642   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2643     return ValidAmt;
2644   unsigned BitWidth = V.getScalarValueSizeInBits();
2645   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2646   if (!BV)
2647     return nullptr;
2648   const APInt *MaxShAmt = nullptr;
2649   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2650     if (!DemandedElts[i])
2651       continue;
2652     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2653     if (!SA)
2654       return nullptr;
2655     // Shifting more than the bitwidth is not valid.
2656     const APInt &ShAmt = SA->getAPIntValue();
2657     if (ShAmt.uge(BitWidth))
2658       return nullptr;
2659     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2660       continue;
2661     MaxShAmt = &ShAmt;
2662   }
2663   return MaxShAmt;
2664 }
2665 
2666 /// Determine which bits of Op are known to be either zero or one and return
2667 /// them in Known. For vectors, the known bits are those that are shared by
2668 /// every vector element.
2669 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2670   EVT VT = Op.getValueType();
2671 
2672   // TOOD: Until we have a plan for how to represent demanded elements for
2673   // scalable vectors, we can just bail out for now.
2674   if (Op.getValueType().isScalableVector()) {
2675     unsigned BitWidth = Op.getScalarValueSizeInBits();
2676     return KnownBits(BitWidth);
2677   }
2678 
2679   APInt DemandedElts = VT.isVector()
2680                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2681                            : APInt(1, 1);
2682   return computeKnownBits(Op, DemandedElts, Depth);
2683 }
2684 
2685 /// Determine which bits of Op are known to be either zero or one and return
2686 /// them in Known. The DemandedElts argument allows us to only collect the known
2687 /// bits that are shared by the requested vector elements.
2688 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2689                                          unsigned Depth) const {
2690   unsigned BitWidth = Op.getScalarValueSizeInBits();
2691 
2692   KnownBits Known(BitWidth);   // Don't know anything.
2693 
2694   // TOOD: Until we have a plan for how to represent demanded elements for
2695   // scalable vectors, we can just bail out for now.
2696   if (Op.getValueType().isScalableVector())
2697     return Known;
2698 
2699   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2700     // We know all of the bits for a constant!
2701     return KnownBits::makeConstant(C->getAPIntValue());
2702   }
2703   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2704     // We know all of the bits for a constant fp!
2705     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2706   }
2707 
2708   if (Depth >= MaxRecursionDepth)
2709     return Known;  // Limit search depth.
2710 
2711   KnownBits Known2;
2712   unsigned NumElts = DemandedElts.getBitWidth();
2713   assert((!Op.getValueType().isVector() ||
2714           NumElts == Op.getValueType().getVectorNumElements()) &&
2715          "Unexpected vector size");
2716 
2717   if (!DemandedElts)
2718     return Known;  // No demanded elts, better to assume we don't know anything.
2719 
2720   unsigned Opcode = Op.getOpcode();
2721   switch (Opcode) {
2722   case ISD::BUILD_VECTOR:
2723     // Collect the known bits that are shared by every demanded vector element.
2724     Known.Zero.setAllBits(); Known.One.setAllBits();
2725     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2726       if (!DemandedElts[i])
2727         continue;
2728 
2729       SDValue SrcOp = Op.getOperand(i);
2730       Known2 = computeKnownBits(SrcOp, Depth + 1);
2731 
2732       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2733       if (SrcOp.getValueSizeInBits() != BitWidth) {
2734         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2735                "Expected BUILD_VECTOR implicit truncation");
2736         Known2 = Known2.trunc(BitWidth);
2737       }
2738 
2739       // Known bits are the values that are shared by every demanded element.
2740       Known = KnownBits::commonBits(Known, Known2);
2741 
2742       // If we don't know any bits, early out.
2743       if (Known.isUnknown())
2744         break;
2745     }
2746     break;
2747   case ISD::VECTOR_SHUFFLE: {
2748     // Collect the known bits that are shared by every vector element referenced
2749     // by the shuffle.
2750     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2751     Known.Zero.setAllBits(); Known.One.setAllBits();
2752     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2753     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2754     for (unsigned i = 0; i != NumElts; ++i) {
2755       if (!DemandedElts[i])
2756         continue;
2757 
2758       int M = SVN->getMaskElt(i);
2759       if (M < 0) {
2760         // For UNDEF elements, we don't know anything about the common state of
2761         // the shuffle result.
2762         Known.resetAll();
2763         DemandedLHS.clearAllBits();
2764         DemandedRHS.clearAllBits();
2765         break;
2766       }
2767 
2768       if ((unsigned)M < NumElts)
2769         DemandedLHS.setBit((unsigned)M % NumElts);
2770       else
2771         DemandedRHS.setBit((unsigned)M % NumElts);
2772     }
2773     // Known bits are the values that are shared by every demanded element.
2774     if (!!DemandedLHS) {
2775       SDValue LHS = Op.getOperand(0);
2776       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2777       Known = KnownBits::commonBits(Known, Known2);
2778     }
2779     // If we don't know any bits, early out.
2780     if (Known.isUnknown())
2781       break;
2782     if (!!DemandedRHS) {
2783       SDValue RHS = Op.getOperand(1);
2784       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2785       Known = KnownBits::commonBits(Known, Known2);
2786     }
2787     break;
2788   }
2789   case ISD::CONCAT_VECTORS: {
2790     // Split DemandedElts and test each of the demanded subvectors.
2791     Known.Zero.setAllBits(); Known.One.setAllBits();
2792     EVT SubVectorVT = Op.getOperand(0).getValueType();
2793     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2794     unsigned NumSubVectors = Op.getNumOperands();
2795     for (unsigned i = 0; i != NumSubVectors; ++i) {
2796       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2797       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2798       if (!!DemandedSub) {
2799         SDValue Sub = Op.getOperand(i);
2800         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2801         Known = KnownBits::commonBits(Known, Known2);
2802       }
2803       // If we don't know any bits, early out.
2804       if (Known.isUnknown())
2805         break;
2806     }
2807     break;
2808   }
2809   case ISD::INSERT_SUBVECTOR: {
2810     // Demand any elements from the subvector and the remainder from the src its
2811     // inserted into.
2812     SDValue Src = Op.getOperand(0);
2813     SDValue Sub = Op.getOperand(1);
2814     uint64_t Idx = Op.getConstantOperandVal(2);
2815     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2816     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2817     APInt DemandedSrcElts = DemandedElts;
2818     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2819 
2820     Known.One.setAllBits();
2821     Known.Zero.setAllBits();
2822     if (!!DemandedSubElts) {
2823       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2824       if (Known.isUnknown())
2825         break; // early-out.
2826     }
2827     if (!!DemandedSrcElts) {
2828       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2829       Known = KnownBits::commonBits(Known, Known2);
2830     }
2831     break;
2832   }
2833   case ISD::EXTRACT_SUBVECTOR: {
2834     // Offset the demanded elts by the subvector index.
2835     SDValue Src = Op.getOperand(0);
2836     // Bail until we can represent demanded elements for scalable vectors.
2837     if (Src.getValueType().isScalableVector())
2838       break;
2839     uint64_t Idx = Op.getConstantOperandVal(1);
2840     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2841     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2842     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2843     break;
2844   }
2845   case ISD::SCALAR_TO_VECTOR: {
2846     // We know about scalar_to_vector as much as we know about it source,
2847     // which becomes the first element of otherwise unknown vector.
2848     if (DemandedElts != 1)
2849       break;
2850 
2851     SDValue N0 = Op.getOperand(0);
2852     Known = computeKnownBits(N0, Depth + 1);
2853     if (N0.getValueSizeInBits() != BitWidth)
2854       Known = Known.trunc(BitWidth);
2855 
2856     break;
2857   }
2858   case ISD::BITCAST: {
2859     SDValue N0 = Op.getOperand(0);
2860     EVT SubVT = N0.getValueType();
2861     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2862 
2863     // Ignore bitcasts from unsupported types.
2864     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2865       break;
2866 
2867     // Fast handling of 'identity' bitcasts.
2868     if (BitWidth == SubBitWidth) {
2869       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2870       break;
2871     }
2872 
2873     bool IsLE = getDataLayout().isLittleEndian();
2874 
2875     // Bitcast 'small element' vector to 'large element' scalar/vector.
2876     if ((BitWidth % SubBitWidth) == 0) {
2877       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2878 
2879       // Collect known bits for the (larger) output by collecting the known
2880       // bits from each set of sub elements and shift these into place.
2881       // We need to separately call computeKnownBits for each set of
2882       // sub elements as the knownbits for each is likely to be different.
2883       unsigned SubScale = BitWidth / SubBitWidth;
2884       APInt SubDemandedElts(NumElts * SubScale, 0);
2885       for (unsigned i = 0; i != NumElts; ++i)
2886         if (DemandedElts[i])
2887           SubDemandedElts.setBit(i * SubScale);
2888 
2889       for (unsigned i = 0; i != SubScale; ++i) {
2890         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2891                          Depth + 1);
2892         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2893         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2894         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2895       }
2896     }
2897 
2898     // Bitcast 'large element' scalar/vector to 'small element' vector.
2899     if ((SubBitWidth % BitWidth) == 0) {
2900       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2901 
2902       // Collect known bits for the (smaller) output by collecting the known
2903       // bits from the overlapping larger input elements and extracting the
2904       // sub sections we actually care about.
2905       unsigned SubScale = SubBitWidth / BitWidth;
2906       APInt SubDemandedElts(NumElts / SubScale, 0);
2907       for (unsigned i = 0; i != NumElts; ++i)
2908         if (DemandedElts[i])
2909           SubDemandedElts.setBit(i / SubScale);
2910 
2911       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2912 
2913       Known.Zero.setAllBits(); Known.One.setAllBits();
2914       for (unsigned i = 0; i != NumElts; ++i)
2915         if (DemandedElts[i]) {
2916           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2917           unsigned Offset = (Shifts % SubScale) * BitWidth;
2918           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2919           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2920           // If we don't know any bits, early out.
2921           if (Known.isUnknown())
2922             break;
2923         }
2924     }
2925     break;
2926   }
2927   case ISD::AND:
2928     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2929     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2930 
2931     Known &= Known2;
2932     break;
2933   case ISD::OR:
2934     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2935     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2936 
2937     Known |= Known2;
2938     break;
2939   case ISD::XOR:
2940     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2941     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2942 
2943     Known ^= Known2;
2944     break;
2945   case ISD::MUL: {
2946     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2947     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2948     Known = KnownBits::computeForMul(Known, Known2);
2949     break;
2950   }
2951   case ISD::UDIV: {
2952     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2953     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2954     Known = KnownBits::udiv(Known, Known2);
2955     break;
2956   }
2957   case ISD::SELECT:
2958   case ISD::VSELECT:
2959     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2960     // If we don't know any bits, early out.
2961     if (Known.isUnknown())
2962       break;
2963     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2964 
2965     // Only known if known in both the LHS and RHS.
2966     Known = KnownBits::commonBits(Known, Known2);
2967     break;
2968   case ISD::SELECT_CC:
2969     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2970     // If we don't know any bits, early out.
2971     if (Known.isUnknown())
2972       break;
2973     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2974 
2975     // Only known if known in both the LHS and RHS.
2976     Known = KnownBits::commonBits(Known, Known2);
2977     break;
2978   case ISD::SMULO:
2979   case ISD::UMULO:
2980   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2981     if (Op.getResNo() != 1)
2982       break;
2983     // The boolean result conforms to getBooleanContents.
2984     // If we know the result of a setcc has the top bits zero, use this info.
2985     // We know that we have an integer-based boolean since these operations
2986     // are only available for integer.
2987     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2988             TargetLowering::ZeroOrOneBooleanContent &&
2989         BitWidth > 1)
2990       Known.Zero.setBitsFrom(1);
2991     break;
2992   case ISD::SETCC:
2993   case ISD::STRICT_FSETCC:
2994   case ISD::STRICT_FSETCCS: {
2995     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
2996     // If we know the result of a setcc has the top bits zero, use this info.
2997     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
2998             TargetLowering::ZeroOrOneBooleanContent &&
2999         BitWidth > 1)
3000       Known.Zero.setBitsFrom(1);
3001     break;
3002   }
3003   case ISD::SHL:
3004     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3005     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3006     Known = KnownBits::shl(Known, Known2);
3007 
3008     // Minimum shift low bits are known zero.
3009     if (const APInt *ShMinAmt =
3010             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3011       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3012     break;
3013   case ISD::SRL:
3014     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3015     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3016     Known = KnownBits::lshr(Known, Known2);
3017 
3018     // Minimum shift high bits are known zero.
3019     if (const APInt *ShMinAmt =
3020             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3021       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3022     break;
3023   case ISD::SRA:
3024     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3025     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3026     Known = KnownBits::ashr(Known, Known2);
3027     // TODO: Add minimum shift high known sign bits.
3028     break;
3029   case ISD::FSHL:
3030   case ISD::FSHR:
3031     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3032       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3033 
3034       // For fshl, 0-shift returns the 1st arg.
3035       // For fshr, 0-shift returns the 2nd arg.
3036       if (Amt == 0) {
3037         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3038                                  DemandedElts, Depth + 1);
3039         break;
3040       }
3041 
3042       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3043       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3044       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3045       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3046       if (Opcode == ISD::FSHL) {
3047         Known.One <<= Amt;
3048         Known.Zero <<= Amt;
3049         Known2.One.lshrInPlace(BitWidth - Amt);
3050         Known2.Zero.lshrInPlace(BitWidth - Amt);
3051       } else {
3052         Known.One <<= BitWidth - Amt;
3053         Known.Zero <<= BitWidth - Amt;
3054         Known2.One.lshrInPlace(Amt);
3055         Known2.Zero.lshrInPlace(Amt);
3056       }
3057       Known.One |= Known2.One;
3058       Known.Zero |= Known2.Zero;
3059     }
3060     break;
3061   case ISD::SIGN_EXTEND_INREG: {
3062     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3063     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3064     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3065     break;
3066   }
3067   case ISD::CTTZ:
3068   case ISD::CTTZ_ZERO_UNDEF: {
3069     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3070     // If we have a known 1, its position is our upper bound.
3071     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3072     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3073     Known.Zero.setBitsFrom(LowBits);
3074     break;
3075   }
3076   case ISD::CTLZ:
3077   case ISD::CTLZ_ZERO_UNDEF: {
3078     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3079     // If we have a known 1, its position is our upper bound.
3080     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3081     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3082     Known.Zero.setBitsFrom(LowBits);
3083     break;
3084   }
3085   case ISD::CTPOP: {
3086     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3087     // If we know some of the bits are zero, they can't be one.
3088     unsigned PossibleOnes = Known2.countMaxPopulation();
3089     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3090     break;
3091   }
3092   case ISD::PARITY: {
3093     // Parity returns 0 everywhere but the LSB.
3094     Known.Zero.setBitsFrom(1);
3095     break;
3096   }
3097   case ISD::LOAD: {
3098     LoadSDNode *LD = cast<LoadSDNode>(Op);
3099     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3100     if (ISD::isNON_EXTLoad(LD) && Cst) {
3101       // Determine any common known bits from the loaded constant pool value.
3102       Type *CstTy = Cst->getType();
3103       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3104         // If its a vector splat, then we can (quickly) reuse the scalar path.
3105         // NOTE: We assume all elements match and none are UNDEF.
3106         if (CstTy->isVectorTy()) {
3107           if (const Constant *Splat = Cst->getSplatValue()) {
3108             Cst = Splat;
3109             CstTy = Cst->getType();
3110           }
3111         }
3112         // TODO - do we need to handle different bitwidths?
3113         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3114           // Iterate across all vector elements finding common known bits.
3115           Known.One.setAllBits();
3116           Known.Zero.setAllBits();
3117           for (unsigned i = 0; i != NumElts; ++i) {
3118             if (!DemandedElts[i])
3119               continue;
3120             if (Constant *Elt = Cst->getAggregateElement(i)) {
3121               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3122                 const APInt &Value = CInt->getValue();
3123                 Known.One &= Value;
3124                 Known.Zero &= ~Value;
3125                 continue;
3126               }
3127               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3128                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3129                 Known.One &= Value;
3130                 Known.Zero &= ~Value;
3131                 continue;
3132               }
3133             }
3134             Known.One.clearAllBits();
3135             Known.Zero.clearAllBits();
3136             break;
3137           }
3138         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3139           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3140             Known = KnownBits::makeConstant(CInt->getValue());
3141           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3142             Known =
3143                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3144           }
3145         }
3146       }
3147     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3148       // If this is a ZEXTLoad and we are looking at the loaded value.
3149       EVT VT = LD->getMemoryVT();
3150       unsigned MemBits = VT.getScalarSizeInBits();
3151       Known.Zero.setBitsFrom(MemBits);
3152     } else if (const MDNode *Ranges = LD->getRanges()) {
3153       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3154         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3155     }
3156     break;
3157   }
3158   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3159     EVT InVT = Op.getOperand(0).getValueType();
3160     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3161     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3162     Known = Known.zext(BitWidth);
3163     break;
3164   }
3165   case ISD::ZERO_EXTEND: {
3166     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3167     Known = Known.zext(BitWidth);
3168     break;
3169   }
3170   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3171     EVT InVT = Op.getOperand(0).getValueType();
3172     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3173     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3174     // If the sign bit is known to be zero or one, then sext will extend
3175     // it to the top bits, else it will just zext.
3176     Known = Known.sext(BitWidth);
3177     break;
3178   }
3179   case ISD::SIGN_EXTEND: {
3180     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3181     // If the sign bit is known to be zero or one, then sext will extend
3182     // it to the top bits, else it will just zext.
3183     Known = Known.sext(BitWidth);
3184     break;
3185   }
3186   case ISD::ANY_EXTEND_VECTOR_INREG: {
3187     EVT InVT = Op.getOperand(0).getValueType();
3188     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3189     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3190     Known = Known.anyext(BitWidth);
3191     break;
3192   }
3193   case ISD::ANY_EXTEND: {
3194     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3195     Known = Known.anyext(BitWidth);
3196     break;
3197   }
3198   case ISD::TRUNCATE: {
3199     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3200     Known = Known.trunc(BitWidth);
3201     break;
3202   }
3203   case ISD::AssertZext: {
3204     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3205     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3206     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3207     Known.Zero |= (~InMask);
3208     Known.One  &= (~Known.Zero);
3209     break;
3210   }
3211   case ISD::AssertAlign: {
3212     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3213     assert(LogOfAlign != 0);
3214     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3215     // well as clearing one bits.
3216     Known.Zero.setLowBits(LogOfAlign);
3217     Known.One.clearLowBits(LogOfAlign);
3218     break;
3219   }
3220   case ISD::FGETSIGN:
3221     // All bits are zero except the low bit.
3222     Known.Zero.setBitsFrom(1);
3223     break;
3224   case ISD::USUBO:
3225   case ISD::SSUBO:
3226     if (Op.getResNo() == 1) {
3227       // If we know the result of a setcc has the top bits zero, use this info.
3228       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3229               TargetLowering::ZeroOrOneBooleanContent &&
3230           BitWidth > 1)
3231         Known.Zero.setBitsFrom(1);
3232       break;
3233     }
3234     LLVM_FALLTHROUGH;
3235   case ISD::SUB:
3236   case ISD::SUBC: {
3237     assert(Op.getResNo() == 0 &&
3238            "We only compute knownbits for the difference here.");
3239 
3240     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3241     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3242     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3243                                         Known, Known2);
3244     break;
3245   }
3246   case ISD::UADDO:
3247   case ISD::SADDO:
3248   case ISD::ADDCARRY:
3249     if (Op.getResNo() == 1) {
3250       // If we know the result of a setcc has the top bits zero, use this info.
3251       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3252               TargetLowering::ZeroOrOneBooleanContent &&
3253           BitWidth > 1)
3254         Known.Zero.setBitsFrom(1);
3255       break;
3256     }
3257     LLVM_FALLTHROUGH;
3258   case ISD::ADD:
3259   case ISD::ADDC:
3260   case ISD::ADDE: {
3261     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3262 
3263     // With ADDE and ADDCARRY, a carry bit may be added in.
3264     KnownBits Carry(1);
3265     if (Opcode == ISD::ADDE)
3266       // Can't track carry from glue, set carry to unknown.
3267       Carry.resetAll();
3268     else if (Opcode == ISD::ADDCARRY)
3269       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3270       // the trouble (how often will we find a known carry bit). And I haven't
3271       // tested this very much yet, but something like this might work:
3272       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3273       //   Carry = Carry.zextOrTrunc(1, false);
3274       Carry.resetAll();
3275     else
3276       Carry.setAllZero();
3277 
3278     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3279     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3280     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3281     break;
3282   }
3283   case ISD::SREM: {
3284     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3285     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3286     Known = KnownBits::srem(Known, Known2);
3287     break;
3288   }
3289   case ISD::UREM: {
3290     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3291     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3292     Known = KnownBits::urem(Known, Known2);
3293     break;
3294   }
3295   case ISD::EXTRACT_ELEMENT: {
3296     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3297     const unsigned Index = Op.getConstantOperandVal(1);
3298     const unsigned EltBitWidth = Op.getValueSizeInBits();
3299 
3300     // Remove low part of known bits mask
3301     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3302     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3303 
3304     // Remove high part of known bit mask
3305     Known = Known.trunc(EltBitWidth);
3306     break;
3307   }
3308   case ISD::EXTRACT_VECTOR_ELT: {
3309     SDValue InVec = Op.getOperand(0);
3310     SDValue EltNo = Op.getOperand(1);
3311     EVT VecVT = InVec.getValueType();
3312     // computeKnownBits not yet implemented for scalable vectors.
3313     if (VecVT.isScalableVector())
3314       break;
3315     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3316     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3317 
3318     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3319     // anything about the extended bits.
3320     if (BitWidth > EltBitWidth)
3321       Known = Known.trunc(EltBitWidth);
3322 
3323     // If we know the element index, just demand that vector element, else for
3324     // an unknown element index, ignore DemandedElts and demand them all.
3325     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3326     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3327     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3328       DemandedSrcElts =
3329           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3330 
3331     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3332     if (BitWidth > EltBitWidth)
3333       Known = Known.anyext(BitWidth);
3334     break;
3335   }
3336   case ISD::INSERT_VECTOR_ELT: {
3337     // If we know the element index, split the demand between the
3338     // source vector and the inserted element, otherwise assume we need
3339     // the original demanded vector elements and the value.
3340     SDValue InVec = Op.getOperand(0);
3341     SDValue InVal = Op.getOperand(1);
3342     SDValue EltNo = Op.getOperand(2);
3343     bool DemandedVal = true;
3344     APInt DemandedVecElts = DemandedElts;
3345     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3346     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3347       unsigned EltIdx = CEltNo->getZExtValue();
3348       DemandedVal = !!DemandedElts[EltIdx];
3349       DemandedVecElts.clearBit(EltIdx);
3350     }
3351     Known.One.setAllBits();
3352     Known.Zero.setAllBits();
3353     if (DemandedVal) {
3354       Known2 = computeKnownBits(InVal, Depth + 1);
3355       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3356     }
3357     if (!!DemandedVecElts) {
3358       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3359       Known = KnownBits::commonBits(Known, Known2);
3360     }
3361     break;
3362   }
3363   case ISD::BITREVERSE: {
3364     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3365     Known = Known2.reverseBits();
3366     break;
3367   }
3368   case ISD::BSWAP: {
3369     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3370     Known = Known2.byteSwap();
3371     break;
3372   }
3373   case ISD::ABS: {
3374     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3375     Known = Known2.abs();
3376     break;
3377   }
3378   case ISD::UMIN: {
3379     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3380     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3381     Known = KnownBits::umin(Known, Known2);
3382     break;
3383   }
3384   case ISD::UMAX: {
3385     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3386     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3387     Known = KnownBits::umax(Known, Known2);
3388     break;
3389   }
3390   case ISD::SMIN:
3391   case ISD::SMAX: {
3392     // If we have a clamp pattern, we know that the number of sign bits will be
3393     // the minimum of the clamp min/max range.
3394     bool IsMax = (Opcode == ISD::SMAX);
3395     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3396     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3397       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3398         CstHigh =
3399             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3400     if (CstLow && CstHigh) {
3401       if (!IsMax)
3402         std::swap(CstLow, CstHigh);
3403 
3404       const APInt &ValueLow = CstLow->getAPIntValue();
3405       const APInt &ValueHigh = CstHigh->getAPIntValue();
3406       if (ValueLow.sle(ValueHigh)) {
3407         unsigned LowSignBits = ValueLow.getNumSignBits();
3408         unsigned HighSignBits = ValueHigh.getNumSignBits();
3409         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3410         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3411           Known.One.setHighBits(MinSignBits);
3412           break;
3413         }
3414         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3415           Known.Zero.setHighBits(MinSignBits);
3416           break;
3417         }
3418       }
3419     }
3420 
3421     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3422     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3423     if (IsMax)
3424       Known = KnownBits::smax(Known, Known2);
3425     else
3426       Known = KnownBits::smin(Known, Known2);
3427     break;
3428   }
3429   case ISD::FrameIndex:
3430   case ISD::TargetFrameIndex:
3431     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3432                                        Known, getMachineFunction());
3433     break;
3434 
3435   default:
3436     if (Opcode < ISD::BUILTIN_OP_END)
3437       break;
3438     LLVM_FALLTHROUGH;
3439   case ISD::INTRINSIC_WO_CHAIN:
3440   case ISD::INTRINSIC_W_CHAIN:
3441   case ISD::INTRINSIC_VOID:
3442     // Allow the target to implement this method for its nodes.
3443     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3444     break;
3445   }
3446 
3447   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3448   return Known;
3449 }
3450 
3451 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3452                                                              SDValue N1) const {
3453   // X + 0 never overflow
3454   if (isNullConstant(N1))
3455     return OFK_Never;
3456 
3457   KnownBits N1Known = computeKnownBits(N1);
3458   if (N1Known.Zero.getBoolValue()) {
3459     KnownBits N0Known = computeKnownBits(N0);
3460 
3461     bool overflow;
3462     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3463     if (!overflow)
3464       return OFK_Never;
3465   }
3466 
3467   // mulhi + 1 never overflow
3468   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3469       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3470     return OFK_Never;
3471 
3472   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3473     KnownBits N0Known = computeKnownBits(N0);
3474 
3475     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3476       return OFK_Never;
3477   }
3478 
3479   return OFK_Sometime;
3480 }
3481 
3482 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3483   EVT OpVT = Val.getValueType();
3484   unsigned BitWidth = OpVT.getScalarSizeInBits();
3485 
3486   // Is the constant a known power of 2?
3487   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3488     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3489 
3490   // A left-shift of a constant one will have exactly one bit set because
3491   // shifting the bit off the end is undefined.
3492   if (Val.getOpcode() == ISD::SHL) {
3493     auto *C = isConstOrConstSplat(Val.getOperand(0));
3494     if (C && C->getAPIntValue() == 1)
3495       return true;
3496   }
3497 
3498   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3499   // one bit set.
3500   if (Val.getOpcode() == ISD::SRL) {
3501     auto *C = isConstOrConstSplat(Val.getOperand(0));
3502     if (C && C->getAPIntValue().isSignMask())
3503       return true;
3504   }
3505 
3506   // Are all operands of a build vector constant powers of two?
3507   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3508     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3509           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3510             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3511           return false;
3512         }))
3513       return true;
3514 
3515   // More could be done here, though the above checks are enough
3516   // to handle some common cases.
3517 
3518   // Fall back to computeKnownBits to catch other known cases.
3519   KnownBits Known = computeKnownBits(Val);
3520   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3521 }
3522 
3523 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3524   EVT VT = Op.getValueType();
3525 
3526   // TODO: Assume we don't know anything for now.
3527   if (VT.isScalableVector())
3528     return 1;
3529 
3530   APInt DemandedElts = VT.isVector()
3531                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3532                            : APInt(1, 1);
3533   return ComputeNumSignBits(Op, DemandedElts, Depth);
3534 }
3535 
3536 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3537                                           unsigned Depth) const {
3538   EVT VT = Op.getValueType();
3539   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3540   unsigned VTBits = VT.getScalarSizeInBits();
3541   unsigned NumElts = DemandedElts.getBitWidth();
3542   unsigned Tmp, Tmp2;
3543   unsigned FirstAnswer = 1;
3544 
3545   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3546     const APInt &Val = C->getAPIntValue();
3547     return Val.getNumSignBits();
3548   }
3549 
3550   if (Depth >= MaxRecursionDepth)
3551     return 1;  // Limit search depth.
3552 
3553   if (!DemandedElts || VT.isScalableVector())
3554     return 1;  // No demanded elts, better to assume we don't know anything.
3555 
3556   unsigned Opcode = Op.getOpcode();
3557   switch (Opcode) {
3558   default: break;
3559   case ISD::AssertSext:
3560     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3561     return VTBits-Tmp+1;
3562   case ISD::AssertZext:
3563     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3564     return VTBits-Tmp;
3565 
3566   case ISD::BUILD_VECTOR:
3567     Tmp = VTBits;
3568     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3569       if (!DemandedElts[i])
3570         continue;
3571 
3572       SDValue SrcOp = Op.getOperand(i);
3573       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3574 
3575       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3576       if (SrcOp.getValueSizeInBits() != VTBits) {
3577         assert(SrcOp.getValueSizeInBits() > VTBits &&
3578                "Expected BUILD_VECTOR implicit truncation");
3579         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3580         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3581       }
3582       Tmp = std::min(Tmp, Tmp2);
3583     }
3584     return Tmp;
3585 
3586   case ISD::VECTOR_SHUFFLE: {
3587     // Collect the minimum number of sign bits that are shared by every vector
3588     // element referenced by the shuffle.
3589     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3590     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3591     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3592     for (unsigned i = 0; i != NumElts; ++i) {
3593       int M = SVN->getMaskElt(i);
3594       if (!DemandedElts[i])
3595         continue;
3596       // For UNDEF elements, we don't know anything about the common state of
3597       // the shuffle result.
3598       if (M < 0)
3599         return 1;
3600       if ((unsigned)M < NumElts)
3601         DemandedLHS.setBit((unsigned)M % NumElts);
3602       else
3603         DemandedRHS.setBit((unsigned)M % NumElts);
3604     }
3605     Tmp = std::numeric_limits<unsigned>::max();
3606     if (!!DemandedLHS)
3607       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3608     if (!!DemandedRHS) {
3609       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3610       Tmp = std::min(Tmp, Tmp2);
3611     }
3612     // If we don't know anything, early out and try computeKnownBits fall-back.
3613     if (Tmp == 1)
3614       break;
3615     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3616     return Tmp;
3617   }
3618 
3619   case ISD::BITCAST: {
3620     SDValue N0 = Op.getOperand(0);
3621     EVT SrcVT = N0.getValueType();
3622     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3623 
3624     // Ignore bitcasts from unsupported types..
3625     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3626       break;
3627 
3628     // Fast handling of 'identity' bitcasts.
3629     if (VTBits == SrcBits)
3630       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3631 
3632     bool IsLE = getDataLayout().isLittleEndian();
3633 
3634     // Bitcast 'large element' scalar/vector to 'small element' vector.
3635     if ((SrcBits % VTBits) == 0) {
3636       assert(VT.isVector() && "Expected bitcast to vector");
3637 
3638       unsigned Scale = SrcBits / VTBits;
3639       APInt SrcDemandedElts(NumElts / Scale, 0);
3640       for (unsigned i = 0; i != NumElts; ++i)
3641         if (DemandedElts[i])
3642           SrcDemandedElts.setBit(i / Scale);
3643 
3644       // Fast case - sign splat can be simply split across the small elements.
3645       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3646       if (Tmp == SrcBits)
3647         return VTBits;
3648 
3649       // Slow case - determine how far the sign extends into each sub-element.
3650       Tmp2 = VTBits;
3651       for (unsigned i = 0; i != NumElts; ++i)
3652         if (DemandedElts[i]) {
3653           unsigned SubOffset = i % Scale;
3654           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3655           SubOffset = SubOffset * VTBits;
3656           if (Tmp <= SubOffset)
3657             return 1;
3658           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3659         }
3660       return Tmp2;
3661     }
3662     break;
3663   }
3664 
3665   case ISD::SIGN_EXTEND:
3666     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3667     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3668   case ISD::SIGN_EXTEND_INREG:
3669     // Max of the input and what this extends.
3670     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3671     Tmp = VTBits-Tmp+1;
3672     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3673     return std::max(Tmp, Tmp2);
3674   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3675     SDValue Src = Op.getOperand(0);
3676     EVT SrcVT = Src.getValueType();
3677     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3678     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3679     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3680   }
3681   case ISD::SRA:
3682     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3683     // SRA X, C -> adds C sign bits.
3684     if (const APInt *ShAmt =
3685             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3686       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3687     return Tmp;
3688   case ISD::SHL:
3689     if (const APInt *ShAmt =
3690             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3691       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3692       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3693       if (ShAmt->ult(Tmp))
3694         return Tmp - ShAmt->getZExtValue();
3695     }
3696     break;
3697   case ISD::AND:
3698   case ISD::OR:
3699   case ISD::XOR:    // NOT is handled here.
3700     // Logical binary ops preserve the number of sign bits at the worst.
3701     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3702     if (Tmp != 1) {
3703       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3704       FirstAnswer = std::min(Tmp, Tmp2);
3705       // We computed what we know about the sign bits as our first
3706       // answer. Now proceed to the generic code that uses
3707       // computeKnownBits, and pick whichever answer is better.
3708     }
3709     break;
3710 
3711   case ISD::SELECT:
3712   case ISD::VSELECT:
3713     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3714     if (Tmp == 1) return 1;  // Early out.
3715     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3716     return std::min(Tmp, Tmp2);
3717   case ISD::SELECT_CC:
3718     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3719     if (Tmp == 1) return 1;  // Early out.
3720     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3721     return std::min(Tmp, Tmp2);
3722 
3723   case ISD::SMIN:
3724   case ISD::SMAX: {
3725     // If we have a clamp pattern, we know that the number of sign bits will be
3726     // the minimum of the clamp min/max range.
3727     bool IsMax = (Opcode == ISD::SMAX);
3728     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3729     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3730       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3731         CstHigh =
3732             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3733     if (CstLow && CstHigh) {
3734       if (!IsMax)
3735         std::swap(CstLow, CstHigh);
3736       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3737         Tmp = CstLow->getAPIntValue().getNumSignBits();
3738         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3739         return std::min(Tmp, Tmp2);
3740       }
3741     }
3742 
3743     // Fallback - just get the minimum number of sign bits of the operands.
3744     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3745     if (Tmp == 1)
3746       return 1;  // Early out.
3747     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3748     return std::min(Tmp, Tmp2);
3749   }
3750   case ISD::UMIN:
3751   case ISD::UMAX:
3752     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3753     if (Tmp == 1)
3754       return 1;  // Early out.
3755     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3756     return std::min(Tmp, Tmp2);
3757   case ISD::SADDO:
3758   case ISD::UADDO:
3759   case ISD::SSUBO:
3760   case ISD::USUBO:
3761   case ISD::SMULO:
3762   case ISD::UMULO:
3763     if (Op.getResNo() != 1)
3764       break;
3765     // The boolean result conforms to getBooleanContents.  Fall through.
3766     // If setcc returns 0/-1, all bits are sign bits.
3767     // We know that we have an integer-based boolean since these operations
3768     // are only available for integer.
3769     if (TLI->getBooleanContents(VT.isVector(), false) ==
3770         TargetLowering::ZeroOrNegativeOneBooleanContent)
3771       return VTBits;
3772     break;
3773   case ISD::SETCC:
3774   case ISD::STRICT_FSETCC:
3775   case ISD::STRICT_FSETCCS: {
3776     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3777     // If setcc returns 0/-1, all bits are sign bits.
3778     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3779         TargetLowering::ZeroOrNegativeOneBooleanContent)
3780       return VTBits;
3781     break;
3782   }
3783   case ISD::ROTL:
3784   case ISD::ROTR:
3785     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3786 
3787     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3788     if (Tmp == VTBits)
3789       return VTBits;
3790 
3791     if (ConstantSDNode *C =
3792             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3793       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3794 
3795       // Handle rotate right by N like a rotate left by 32-N.
3796       if (Opcode == ISD::ROTR)
3797         RotAmt = (VTBits - RotAmt) % VTBits;
3798 
3799       // If we aren't rotating out all of the known-in sign bits, return the
3800       // number that are left.  This handles rotl(sext(x), 1) for example.
3801       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3802     }
3803     break;
3804   case ISD::ADD:
3805   case ISD::ADDC:
3806     // Add can have at most one carry bit.  Thus we know that the output
3807     // is, at worst, one more bit than the inputs.
3808     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3809     if (Tmp == 1) return 1; // Early out.
3810 
3811     // Special case decrementing a value (ADD X, -1):
3812     if (ConstantSDNode *CRHS =
3813             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3814       if (CRHS->isAllOnesValue()) {
3815         KnownBits Known =
3816             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3817 
3818         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3819         // sign bits set.
3820         if ((Known.Zero | 1).isAllOnesValue())
3821           return VTBits;
3822 
3823         // If we are subtracting one from a positive number, there is no carry
3824         // out of the result.
3825         if (Known.isNonNegative())
3826           return Tmp;
3827       }
3828 
3829     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3830     if (Tmp2 == 1) return 1; // Early out.
3831     return std::min(Tmp, Tmp2) - 1;
3832   case ISD::SUB:
3833     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3834     if (Tmp2 == 1) return 1; // Early out.
3835 
3836     // Handle NEG.
3837     if (ConstantSDNode *CLHS =
3838             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
3839       if (CLHS->isNullValue()) {
3840         KnownBits Known =
3841             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3842         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3843         // sign bits set.
3844         if ((Known.Zero | 1).isAllOnesValue())
3845           return VTBits;
3846 
3847         // If the input is known to be positive (the sign bit is known clear),
3848         // the output of the NEG has the same number of sign bits as the input.
3849         if (Known.isNonNegative())
3850           return Tmp2;
3851 
3852         // Otherwise, we treat this like a SUB.
3853       }
3854 
3855     // Sub can have at most one carry bit.  Thus we know that the output
3856     // is, at worst, one more bit than the inputs.
3857     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3858     if (Tmp == 1) return 1; // Early out.
3859     return std::min(Tmp, Tmp2) - 1;
3860   case ISD::MUL: {
3861     // The output of the Mul can be at most twice the valid bits in the inputs.
3862     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3863     if (SignBitsOp0 == 1)
3864       break;
3865     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3866     if (SignBitsOp1 == 1)
3867       break;
3868     unsigned OutValidBits =
3869         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3870     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
3871   }
3872   case ISD::SREM:
3873     // The sign bit is the LHS's sign bit, except when the result of the
3874     // remainder is zero. The magnitude of the result should be less than or
3875     // equal to the magnitude of the LHS. Therefore, the result should have
3876     // at least as many sign bits as the left hand side.
3877     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3878   case ISD::TRUNCATE: {
3879     // Check if the sign bits of source go down as far as the truncated value.
3880     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3881     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3882     if (NumSrcSignBits > (NumSrcBits - VTBits))
3883       return NumSrcSignBits - (NumSrcBits - VTBits);
3884     break;
3885   }
3886   case ISD::EXTRACT_ELEMENT: {
3887     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3888     const int BitWidth = Op.getValueSizeInBits();
3889     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3890 
3891     // Get reverse index (starting from 1), Op1 value indexes elements from
3892     // little end. Sign starts at big end.
3893     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3894 
3895     // If the sign portion ends in our element the subtraction gives correct
3896     // result. Otherwise it gives either negative or > bitwidth result
3897     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3898   }
3899   case ISD::INSERT_VECTOR_ELT: {
3900     // If we know the element index, split the demand between the
3901     // source vector and the inserted element, otherwise assume we need
3902     // the original demanded vector elements and the value.
3903     SDValue InVec = Op.getOperand(0);
3904     SDValue InVal = Op.getOperand(1);
3905     SDValue EltNo = Op.getOperand(2);
3906     bool DemandedVal = true;
3907     APInt DemandedVecElts = DemandedElts;
3908     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3909     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3910       unsigned EltIdx = CEltNo->getZExtValue();
3911       DemandedVal = !!DemandedElts[EltIdx];
3912       DemandedVecElts.clearBit(EltIdx);
3913     }
3914     Tmp = std::numeric_limits<unsigned>::max();
3915     if (DemandedVal) {
3916       // TODO - handle implicit truncation of inserted elements.
3917       if (InVal.getScalarValueSizeInBits() != VTBits)
3918         break;
3919       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3920       Tmp = std::min(Tmp, Tmp2);
3921     }
3922     if (!!DemandedVecElts) {
3923       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
3924       Tmp = std::min(Tmp, Tmp2);
3925     }
3926     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3927     return Tmp;
3928   }
3929   case ISD::EXTRACT_VECTOR_ELT: {
3930     SDValue InVec = Op.getOperand(0);
3931     SDValue EltNo = Op.getOperand(1);
3932     EVT VecVT = InVec.getValueType();
3933     // ComputeNumSignBits not yet implemented for scalable vectors.
3934     if (VecVT.isScalableVector())
3935       break;
3936     const unsigned BitWidth = Op.getValueSizeInBits();
3937     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3938     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3939 
3940     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3941     // anything about sign bits. But if the sizes match we can derive knowledge
3942     // about sign bits from the vector operand.
3943     if (BitWidth != EltBitWidth)
3944       break;
3945 
3946     // If we know the element index, just demand that vector element, else for
3947     // an unknown element index, ignore DemandedElts and demand them all.
3948     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3949     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3950     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3951       DemandedSrcElts =
3952           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3953 
3954     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3955   }
3956   case ISD::EXTRACT_SUBVECTOR: {
3957     // Offset the demanded elts by the subvector index.
3958     SDValue Src = Op.getOperand(0);
3959     // Bail until we can represent demanded elements for scalable vectors.
3960     if (Src.getValueType().isScalableVector())
3961       break;
3962     uint64_t Idx = Op.getConstantOperandVal(1);
3963     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3964     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3965     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3966   }
3967   case ISD::CONCAT_VECTORS: {
3968     // Determine the minimum number of sign bits across all demanded
3969     // elts of the input vectors. Early out if the result is already 1.
3970     Tmp = std::numeric_limits<unsigned>::max();
3971     EVT SubVectorVT = Op.getOperand(0).getValueType();
3972     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3973     unsigned NumSubVectors = Op.getNumOperands();
3974     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3975       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3976       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3977       if (!DemandedSub)
3978         continue;
3979       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3980       Tmp = std::min(Tmp, Tmp2);
3981     }
3982     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3983     return Tmp;
3984   }
3985   case ISD::INSERT_SUBVECTOR: {
3986     // Demand any elements from the subvector and the remainder from the src its
3987     // inserted into.
3988     SDValue Src = Op.getOperand(0);
3989     SDValue Sub = Op.getOperand(1);
3990     uint64_t Idx = Op.getConstantOperandVal(2);
3991     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3992     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3993     APInt DemandedSrcElts = DemandedElts;
3994     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
3995 
3996     Tmp = std::numeric_limits<unsigned>::max();
3997     if (!!DemandedSubElts) {
3998       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
3999       if (Tmp == 1)
4000         return 1; // early-out
4001     }
4002     if (!!DemandedSrcElts) {
4003       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4004       Tmp = std::min(Tmp, Tmp2);
4005     }
4006     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4007     return Tmp;
4008   }
4009   }
4010 
4011   // If we are looking at the loaded value of the SDNode.
4012   if (Op.getResNo() == 0) {
4013     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4014     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4015       unsigned ExtType = LD->getExtensionType();
4016       switch (ExtType) {
4017       default: break;
4018       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4019         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4020         return VTBits - Tmp + 1;
4021       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4022         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4023         return VTBits - Tmp;
4024       case ISD::NON_EXTLOAD:
4025         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4026           // We only need to handle vectors - computeKnownBits should handle
4027           // scalar cases.
4028           Type *CstTy = Cst->getType();
4029           if (CstTy->isVectorTy() &&
4030               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
4031             Tmp = VTBits;
4032             for (unsigned i = 0; i != NumElts; ++i) {
4033               if (!DemandedElts[i])
4034                 continue;
4035               if (Constant *Elt = Cst->getAggregateElement(i)) {
4036                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4037                   const APInt &Value = CInt->getValue();
4038                   Tmp = std::min(Tmp, Value.getNumSignBits());
4039                   continue;
4040                 }
4041                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4042                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4043                   Tmp = std::min(Tmp, Value.getNumSignBits());
4044                   continue;
4045                 }
4046               }
4047               // Unknown type. Conservatively assume no bits match sign bit.
4048               return 1;
4049             }
4050             return Tmp;
4051           }
4052         }
4053         break;
4054       }
4055     }
4056   }
4057 
4058   // Allow the target to implement this method for its nodes.
4059   if (Opcode >= ISD::BUILTIN_OP_END ||
4060       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4061       Opcode == ISD::INTRINSIC_W_CHAIN ||
4062       Opcode == ISD::INTRINSIC_VOID) {
4063     unsigned NumBits =
4064         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4065     if (NumBits > 1)
4066       FirstAnswer = std::max(FirstAnswer, NumBits);
4067   }
4068 
4069   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4070   // use this information.
4071   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4072 
4073   APInt Mask;
4074   if (Known.isNonNegative()) {        // sign bit is 0
4075     Mask = Known.Zero;
4076   } else if (Known.isNegative()) {  // sign bit is 1;
4077     Mask = Known.One;
4078   } else {
4079     // Nothing known.
4080     return FirstAnswer;
4081   }
4082 
4083   // Okay, we know that the sign bit in Mask is set.  Use CLO to determine
4084   // the number of identical bits in the top of the input value.
4085   Mask <<= Mask.getBitWidth()-VTBits;
4086   return std::max(FirstAnswer, Mask.countLeadingOnes());
4087 }
4088 
4089 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4090   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4091       !isa<ConstantSDNode>(Op.getOperand(1)))
4092     return false;
4093 
4094   if (Op.getOpcode() == ISD::OR &&
4095       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4096     return false;
4097 
4098   return true;
4099 }
4100 
4101 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4102   // If we're told that NaNs won't happen, assume they won't.
4103   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4104     return true;
4105 
4106   if (Depth >= MaxRecursionDepth)
4107     return false; // Limit search depth.
4108 
4109   // TODO: Handle vectors.
4110   // If the value is a constant, we can obviously see if it is a NaN or not.
4111   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4112     return !C->getValueAPF().isNaN() ||
4113            (SNaN && !C->getValueAPF().isSignaling());
4114   }
4115 
4116   unsigned Opcode = Op.getOpcode();
4117   switch (Opcode) {
4118   case ISD::FADD:
4119   case ISD::FSUB:
4120   case ISD::FMUL:
4121   case ISD::FDIV:
4122   case ISD::FREM:
4123   case ISD::FSIN:
4124   case ISD::FCOS: {
4125     if (SNaN)
4126       return true;
4127     // TODO: Need isKnownNeverInfinity
4128     return false;
4129   }
4130   case ISD::FCANONICALIZE:
4131   case ISD::FEXP:
4132   case ISD::FEXP2:
4133   case ISD::FTRUNC:
4134   case ISD::FFLOOR:
4135   case ISD::FCEIL:
4136   case ISD::FROUND:
4137   case ISD::FROUNDEVEN:
4138   case ISD::FRINT:
4139   case ISD::FNEARBYINT: {
4140     if (SNaN)
4141       return true;
4142     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4143   }
4144   case ISD::FABS:
4145   case ISD::FNEG:
4146   case ISD::FCOPYSIGN: {
4147     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4148   }
4149   case ISD::SELECT:
4150     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4151            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4152   case ISD::FP_EXTEND:
4153   case ISD::FP_ROUND: {
4154     if (SNaN)
4155       return true;
4156     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4157   }
4158   case ISD::SINT_TO_FP:
4159   case ISD::UINT_TO_FP:
4160     return true;
4161   case ISD::FMA:
4162   case ISD::FMAD: {
4163     if (SNaN)
4164       return true;
4165     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4166            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4167            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4168   }
4169   case ISD::FSQRT: // Need is known positive
4170   case ISD::FLOG:
4171   case ISD::FLOG2:
4172   case ISD::FLOG10:
4173   case ISD::FPOWI:
4174   case ISD::FPOW: {
4175     if (SNaN)
4176       return true;
4177     // TODO: Refine on operand
4178     return false;
4179   }
4180   case ISD::FMINNUM:
4181   case ISD::FMAXNUM: {
4182     // Only one needs to be known not-nan, since it will be returned if the
4183     // other ends up being one.
4184     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4185            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4186   }
4187   case ISD::FMINNUM_IEEE:
4188   case ISD::FMAXNUM_IEEE: {
4189     if (SNaN)
4190       return true;
4191     // This can return a NaN if either operand is an sNaN, or if both operands
4192     // are NaN.
4193     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4194             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4195            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4196             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4197   }
4198   case ISD::FMINIMUM:
4199   case ISD::FMAXIMUM: {
4200     // TODO: Does this quiet or return the origina NaN as-is?
4201     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4202            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4203   }
4204   case ISD::EXTRACT_VECTOR_ELT: {
4205     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4206   }
4207   default:
4208     if (Opcode >= ISD::BUILTIN_OP_END ||
4209         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4210         Opcode == ISD::INTRINSIC_W_CHAIN ||
4211         Opcode == ISD::INTRINSIC_VOID) {
4212       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4213     }
4214 
4215     return false;
4216   }
4217 }
4218 
4219 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4220   assert(Op.getValueType().isFloatingPoint() &&
4221          "Floating point type expected");
4222 
4223   // If the value is a constant, we can obviously see if it is a zero or not.
4224   // TODO: Add BuildVector support.
4225   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4226     return !C->isZero();
4227   return false;
4228 }
4229 
4230 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4231   assert(!Op.getValueType().isFloatingPoint() &&
4232          "Floating point types unsupported - use isKnownNeverZeroFloat");
4233 
4234   // If the value is a constant, we can obviously see if it is a zero or not.
4235   if (ISD::matchUnaryPredicate(
4236           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4237     return true;
4238 
4239   // TODO: Recognize more cases here.
4240   switch (Op.getOpcode()) {
4241   default: break;
4242   case ISD::OR:
4243     if (isKnownNeverZero(Op.getOperand(1)) ||
4244         isKnownNeverZero(Op.getOperand(0)))
4245       return true;
4246     break;
4247   }
4248 
4249   return false;
4250 }
4251 
4252 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4253   // Check the obvious case.
4254   if (A == B) return true;
4255 
4256   // For for negative and positive zero.
4257   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4258     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4259       if (CA->isZero() && CB->isZero()) return true;
4260 
4261   // Otherwise they may not be equal.
4262   return false;
4263 }
4264 
4265 // FIXME: unify with llvm::haveNoCommonBitsSet.
4266 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4267 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4268   assert(A.getValueType() == B.getValueType() &&
4269          "Values must have the same type");
4270   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4271 }
4272 
4273 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4274                                 ArrayRef<SDValue> Ops,
4275                                 SelectionDAG &DAG) {
4276   int NumOps = Ops.size();
4277   assert(NumOps != 0 && "Can't build an empty vector!");
4278   assert(!VT.isScalableVector() &&
4279          "BUILD_VECTOR cannot be used with scalable types");
4280   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4281          "Incorrect element count in BUILD_VECTOR!");
4282 
4283   // BUILD_VECTOR of UNDEFs is UNDEF.
4284   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4285     return DAG.getUNDEF(VT);
4286 
4287   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4288   SDValue IdentitySrc;
4289   bool IsIdentity = true;
4290   for (int i = 0; i != NumOps; ++i) {
4291     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4292         Ops[i].getOperand(0).getValueType() != VT ||
4293         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4294         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4295         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4296       IsIdentity = false;
4297       break;
4298     }
4299     IdentitySrc = Ops[i].getOperand(0);
4300   }
4301   if (IsIdentity)
4302     return IdentitySrc;
4303 
4304   return SDValue();
4305 }
4306 
4307 /// Try to simplify vector concatenation to an input value, undef, or build
4308 /// vector.
4309 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4310                                   ArrayRef<SDValue> Ops,
4311                                   SelectionDAG &DAG) {
4312   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4313   assert(llvm::all_of(Ops,
4314                       [Ops](SDValue Op) {
4315                         return Ops[0].getValueType() == Op.getValueType();
4316                       }) &&
4317          "Concatenation of vectors with inconsistent value types!");
4318   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4319              VT.getVectorElementCount() &&
4320          "Incorrect element count in vector concatenation!");
4321 
4322   if (Ops.size() == 1)
4323     return Ops[0];
4324 
4325   // Concat of UNDEFs is UNDEF.
4326   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4327     return DAG.getUNDEF(VT);
4328 
4329   // Scan the operands and look for extract operations from a single source
4330   // that correspond to insertion at the same location via this concatenation:
4331   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4332   SDValue IdentitySrc;
4333   bool IsIdentity = true;
4334   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4335     SDValue Op = Ops[i];
4336     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4337     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4338         Op.getOperand(0).getValueType() != VT ||
4339         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4340         Op.getConstantOperandVal(1) != IdentityIndex) {
4341       IsIdentity = false;
4342       break;
4343     }
4344     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4345            "Unexpected identity source vector for concat of extracts");
4346     IdentitySrc = Op.getOperand(0);
4347   }
4348   if (IsIdentity) {
4349     assert(IdentitySrc && "Failed to set source vector of extracts");
4350     return IdentitySrc;
4351   }
4352 
4353   // The code below this point is only designed to work for fixed width
4354   // vectors, so we bail out for now.
4355   if (VT.isScalableVector())
4356     return SDValue();
4357 
4358   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4359   // simplified to one big BUILD_VECTOR.
4360   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4361   EVT SVT = VT.getScalarType();
4362   SmallVector<SDValue, 16> Elts;
4363   for (SDValue Op : Ops) {
4364     EVT OpVT = Op.getValueType();
4365     if (Op.isUndef())
4366       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4367     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4368       Elts.append(Op->op_begin(), Op->op_end());
4369     else
4370       return SDValue();
4371   }
4372 
4373   // BUILD_VECTOR requires all inputs to be of the same type, find the
4374   // maximum type and extend them all.
4375   for (SDValue Op : Elts)
4376     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4377 
4378   if (SVT.bitsGT(VT.getScalarType())) {
4379     for (SDValue &Op : Elts) {
4380       if (Op.isUndef())
4381         Op = DAG.getUNDEF(SVT);
4382       else
4383         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4384                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4385                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4386     }
4387   }
4388 
4389   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4390   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4391   return V;
4392 }
4393 
4394 /// Gets or creates the specified node.
4395 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4396   FoldingSetNodeID ID;
4397   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4398   void *IP = nullptr;
4399   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4400     return SDValue(E, 0);
4401 
4402   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4403                               getVTList(VT));
4404   CSEMap.InsertNode(N, IP);
4405 
4406   InsertNode(N);
4407   SDValue V = SDValue(N, 0);
4408   NewSDValueDbgMsg(V, "Creating new node: ", this);
4409   return V;
4410 }
4411 
4412 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4413                               SDValue Operand) {
4414   SDNodeFlags Flags;
4415   if (Inserter)
4416     Flags = Inserter->getFlags();
4417   return getNode(Opcode, DL, VT, Operand, Flags);
4418 }
4419 
4420 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4421                               SDValue Operand, const SDNodeFlags Flags) {
4422   // Constant fold unary operations with an integer constant operand. Even
4423   // opaque constant will be folded, because the folding of unary operations
4424   // doesn't create new constants with different values. Nevertheless, the
4425   // opaque flag is preserved during folding to prevent future folding with
4426   // other constants.
4427   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4428     const APInt &Val = C->getAPIntValue();
4429     switch (Opcode) {
4430     default: break;
4431     case ISD::SIGN_EXTEND:
4432       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4433                          C->isTargetOpcode(), C->isOpaque());
4434     case ISD::TRUNCATE:
4435       if (C->isOpaque())
4436         break;
4437       LLVM_FALLTHROUGH;
4438     case ISD::ANY_EXTEND:
4439     case ISD::ZERO_EXTEND:
4440       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4441                          C->isTargetOpcode(), C->isOpaque());
4442     case ISD::UINT_TO_FP:
4443     case ISD::SINT_TO_FP: {
4444       APFloat apf(EVTToAPFloatSemantics(VT),
4445                   APInt::getNullValue(VT.getSizeInBits()));
4446       (void)apf.convertFromAPInt(Val,
4447                                  Opcode==ISD::SINT_TO_FP,
4448                                  APFloat::rmNearestTiesToEven);
4449       return getConstantFP(apf, DL, VT);
4450     }
4451     case ISD::BITCAST:
4452       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4453         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4454       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4455         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4456       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4457         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4458       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4459         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4460       break;
4461     case ISD::ABS:
4462       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4463                          C->isOpaque());
4464     case ISD::BITREVERSE:
4465       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4466                          C->isOpaque());
4467     case ISD::BSWAP:
4468       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4469                          C->isOpaque());
4470     case ISD::CTPOP:
4471       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4472                          C->isOpaque());
4473     case ISD::CTLZ:
4474     case ISD::CTLZ_ZERO_UNDEF:
4475       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4476                          C->isOpaque());
4477     case ISD::CTTZ:
4478     case ISD::CTTZ_ZERO_UNDEF:
4479       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4480                          C->isOpaque());
4481     case ISD::FP16_TO_FP: {
4482       bool Ignored;
4483       APFloat FPV(APFloat::IEEEhalf(),
4484                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4485 
4486       // This can return overflow, underflow, or inexact; we don't care.
4487       // FIXME need to be more flexible about rounding mode.
4488       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4489                         APFloat::rmNearestTiesToEven, &Ignored);
4490       return getConstantFP(FPV, DL, VT);
4491     }
4492     }
4493   }
4494 
4495   // Constant fold unary operations with a floating point constant operand.
4496   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4497     APFloat V = C->getValueAPF();    // make copy
4498     switch (Opcode) {
4499     case ISD::FNEG:
4500       V.changeSign();
4501       return getConstantFP(V, DL, VT);
4502     case ISD::FABS:
4503       V.clearSign();
4504       return getConstantFP(V, DL, VT);
4505     case ISD::FCEIL: {
4506       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4507       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4508         return getConstantFP(V, DL, VT);
4509       break;
4510     }
4511     case ISD::FTRUNC: {
4512       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4513       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4514         return getConstantFP(V, DL, VT);
4515       break;
4516     }
4517     case ISD::FFLOOR: {
4518       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4519       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4520         return getConstantFP(V, DL, VT);
4521       break;
4522     }
4523     case ISD::FP_EXTEND: {
4524       bool ignored;
4525       // This can return overflow, underflow, or inexact; we don't care.
4526       // FIXME need to be more flexible about rounding mode.
4527       (void)V.convert(EVTToAPFloatSemantics(VT),
4528                       APFloat::rmNearestTiesToEven, &ignored);
4529       return getConstantFP(V, DL, VT);
4530     }
4531     case ISD::FP_TO_SINT:
4532     case ISD::FP_TO_UINT: {
4533       bool ignored;
4534       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4535       // FIXME need to be more flexible about rounding mode.
4536       APFloat::opStatus s =
4537           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4538       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4539         break;
4540       return getConstant(IntVal, DL, VT);
4541     }
4542     case ISD::BITCAST:
4543       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4544         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4545       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4546         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4547       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4548         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4549       break;
4550     case ISD::FP_TO_FP16: {
4551       bool Ignored;
4552       // This can return overflow, underflow, or inexact; we don't care.
4553       // FIXME need to be more flexible about rounding mode.
4554       (void)V.convert(APFloat::IEEEhalf(),
4555                       APFloat::rmNearestTiesToEven, &Ignored);
4556       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4557     }
4558     }
4559   }
4560 
4561   // Constant fold unary operations with a vector integer or float operand.
4562   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4563     if (BV->isConstant()) {
4564       switch (Opcode) {
4565       default:
4566         // FIXME: Entirely reasonable to perform folding of other unary
4567         // operations here as the need arises.
4568         break;
4569       case ISD::FNEG:
4570       case ISD::FABS:
4571       case ISD::FCEIL:
4572       case ISD::FTRUNC:
4573       case ISD::FFLOOR:
4574       case ISD::FP_EXTEND:
4575       case ISD::FP_TO_SINT:
4576       case ISD::FP_TO_UINT:
4577       case ISD::TRUNCATE:
4578       case ISD::ANY_EXTEND:
4579       case ISD::ZERO_EXTEND:
4580       case ISD::SIGN_EXTEND:
4581       case ISD::UINT_TO_FP:
4582       case ISD::SINT_TO_FP:
4583       case ISD::ABS:
4584       case ISD::BITREVERSE:
4585       case ISD::BSWAP:
4586       case ISD::CTLZ:
4587       case ISD::CTLZ_ZERO_UNDEF:
4588       case ISD::CTTZ:
4589       case ISD::CTTZ_ZERO_UNDEF:
4590       case ISD::CTPOP: {
4591         SDValue Ops = { Operand };
4592         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4593           return Fold;
4594       }
4595       }
4596     }
4597   }
4598 
4599   unsigned OpOpcode = Operand.getNode()->getOpcode();
4600   switch (Opcode) {
4601   case ISD::FREEZE:
4602     assert(VT == Operand.getValueType() && "Unexpected VT!");
4603     break;
4604   case ISD::TokenFactor:
4605   case ISD::MERGE_VALUES:
4606   case ISD::CONCAT_VECTORS:
4607     return Operand;         // Factor, merge or concat of one node?  No need.
4608   case ISD::BUILD_VECTOR: {
4609     // Attempt to simplify BUILD_VECTOR.
4610     SDValue Ops[] = {Operand};
4611     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4612       return V;
4613     break;
4614   }
4615   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4616   case ISD::FP_EXTEND:
4617     assert(VT.isFloatingPoint() &&
4618            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4619     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4620     assert((!VT.isVector() ||
4621             VT.getVectorElementCount() ==
4622             Operand.getValueType().getVectorElementCount()) &&
4623            "Vector element count mismatch!");
4624     assert(Operand.getValueType().bitsLT(VT) &&
4625            "Invalid fpext node, dst < src!");
4626     if (Operand.isUndef())
4627       return getUNDEF(VT);
4628     break;
4629   case ISD::FP_TO_SINT:
4630   case ISD::FP_TO_UINT:
4631     if (Operand.isUndef())
4632       return getUNDEF(VT);
4633     break;
4634   case ISD::SINT_TO_FP:
4635   case ISD::UINT_TO_FP:
4636     // [us]itofp(undef) = 0, because the result value is bounded.
4637     if (Operand.isUndef())
4638       return getConstantFP(0.0, DL, VT);
4639     break;
4640   case ISD::SIGN_EXTEND:
4641     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4642            "Invalid SIGN_EXTEND!");
4643     assert(VT.isVector() == Operand.getValueType().isVector() &&
4644            "SIGN_EXTEND result type type should be vector iff the operand "
4645            "type is vector!");
4646     if (Operand.getValueType() == VT) return Operand;   // noop extension
4647     assert((!VT.isVector() ||
4648             VT.getVectorElementCount() ==
4649                 Operand.getValueType().getVectorElementCount()) &&
4650            "Vector element count mismatch!");
4651     assert(Operand.getValueType().bitsLT(VT) &&
4652            "Invalid sext node, dst < src!");
4653     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4654       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4655     else if (OpOpcode == ISD::UNDEF)
4656       // sext(undef) = 0, because the top bits will all be the same.
4657       return getConstant(0, DL, VT);
4658     break;
4659   case ISD::ZERO_EXTEND:
4660     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4661            "Invalid ZERO_EXTEND!");
4662     assert(VT.isVector() == Operand.getValueType().isVector() &&
4663            "ZERO_EXTEND result type type should be vector iff the operand "
4664            "type is vector!");
4665     if (Operand.getValueType() == VT) return Operand;   // noop extension
4666     assert((!VT.isVector() ||
4667             VT.getVectorElementCount() ==
4668                 Operand.getValueType().getVectorElementCount()) &&
4669            "Vector element count mismatch!");
4670     assert(Operand.getValueType().bitsLT(VT) &&
4671            "Invalid zext node, dst < src!");
4672     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4673       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4674     else if (OpOpcode == ISD::UNDEF)
4675       // zext(undef) = 0, because the top bits will be zero.
4676       return getConstant(0, DL, VT);
4677     break;
4678   case ISD::ANY_EXTEND:
4679     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4680            "Invalid ANY_EXTEND!");
4681     assert(VT.isVector() == Operand.getValueType().isVector() &&
4682            "ANY_EXTEND result type type should be vector iff the operand "
4683            "type is vector!");
4684     if (Operand.getValueType() == VT) return Operand;   // noop extension
4685     assert((!VT.isVector() ||
4686             VT.getVectorElementCount() ==
4687                 Operand.getValueType().getVectorElementCount()) &&
4688            "Vector element count mismatch!");
4689     assert(Operand.getValueType().bitsLT(VT) &&
4690            "Invalid anyext node, dst < src!");
4691 
4692     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4693         OpOpcode == ISD::ANY_EXTEND)
4694       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4695       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4696     else if (OpOpcode == ISD::UNDEF)
4697       return getUNDEF(VT);
4698 
4699     // (ext (trunc x)) -> x
4700     if (OpOpcode == ISD::TRUNCATE) {
4701       SDValue OpOp = Operand.getOperand(0);
4702       if (OpOp.getValueType() == VT) {
4703         transferDbgValues(Operand, OpOp);
4704         return OpOp;
4705       }
4706     }
4707     break;
4708   case ISD::TRUNCATE:
4709     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4710            "Invalid TRUNCATE!");
4711     assert(VT.isVector() == Operand.getValueType().isVector() &&
4712            "TRUNCATE result type type should be vector iff the operand "
4713            "type is vector!");
4714     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4715     assert((!VT.isVector() ||
4716             VT.getVectorElementCount() ==
4717                 Operand.getValueType().getVectorElementCount()) &&
4718            "Vector element count mismatch!");
4719     assert(Operand.getValueType().bitsGT(VT) &&
4720            "Invalid truncate node, src < dst!");
4721     if (OpOpcode == ISD::TRUNCATE)
4722       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4723     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4724         OpOpcode == ISD::ANY_EXTEND) {
4725       // If the source is smaller than the dest, we still need an extend.
4726       if (Operand.getOperand(0).getValueType().getScalarType()
4727             .bitsLT(VT.getScalarType()))
4728         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4729       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4730         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4731       return Operand.getOperand(0);
4732     }
4733     if (OpOpcode == ISD::UNDEF)
4734       return getUNDEF(VT);
4735     break;
4736   case ISD::ANY_EXTEND_VECTOR_INREG:
4737   case ISD::ZERO_EXTEND_VECTOR_INREG:
4738   case ISD::SIGN_EXTEND_VECTOR_INREG:
4739     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4740     assert(Operand.getValueType().bitsLE(VT) &&
4741            "The input must be the same size or smaller than the result.");
4742     assert(VT.getVectorNumElements() <
4743              Operand.getValueType().getVectorNumElements() &&
4744            "The destination vector type must have fewer lanes than the input.");
4745     break;
4746   case ISD::ABS:
4747     assert(VT.isInteger() && VT == Operand.getValueType() &&
4748            "Invalid ABS!");
4749     if (OpOpcode == ISD::UNDEF)
4750       return getUNDEF(VT);
4751     break;
4752   case ISD::BSWAP:
4753     assert(VT.isInteger() && VT == Operand.getValueType() &&
4754            "Invalid BSWAP!");
4755     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4756            "BSWAP types must be a multiple of 16 bits!");
4757     if (OpOpcode == ISD::UNDEF)
4758       return getUNDEF(VT);
4759     break;
4760   case ISD::BITREVERSE:
4761     assert(VT.isInteger() && VT == Operand.getValueType() &&
4762            "Invalid BITREVERSE!");
4763     if (OpOpcode == ISD::UNDEF)
4764       return getUNDEF(VT);
4765     break;
4766   case ISD::BITCAST:
4767     // Basic sanity checking.
4768     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4769            "Cannot BITCAST between types of different sizes!");
4770     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4771     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4772       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4773     if (OpOpcode == ISD::UNDEF)
4774       return getUNDEF(VT);
4775     break;
4776   case ISD::SCALAR_TO_VECTOR:
4777     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4778            (VT.getVectorElementType() == Operand.getValueType() ||
4779             (VT.getVectorElementType().isInteger() &&
4780              Operand.getValueType().isInteger() &&
4781              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4782            "Illegal SCALAR_TO_VECTOR node!");
4783     if (OpOpcode == ISD::UNDEF)
4784       return getUNDEF(VT);
4785     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4786     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4787         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4788         Operand.getConstantOperandVal(1) == 0 &&
4789         Operand.getOperand(0).getValueType() == VT)
4790       return Operand.getOperand(0);
4791     break;
4792   case ISD::FNEG:
4793     // Negation of an unknown bag of bits is still completely undefined.
4794     if (OpOpcode == ISD::UNDEF)
4795       return getUNDEF(VT);
4796 
4797     if (OpOpcode == ISD::FNEG)  // --X -> X
4798       return Operand.getOperand(0);
4799     break;
4800   case ISD::FABS:
4801     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4802       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4803     break;
4804   case ISD::VSCALE:
4805     assert(VT == Operand.getValueType() && "Unexpected VT!");
4806     break;
4807   case ISD::CTPOP:
4808     if (Operand.getValueType().getScalarType() == MVT::i1)
4809       return Operand;
4810     break;
4811   case ISD::CTLZ:
4812   case ISD::CTTZ:
4813     if (Operand.getValueType().getScalarType() == MVT::i1)
4814       return getNOT(DL, Operand, Operand.getValueType());
4815     break;
4816   case ISD::VECREDUCE_SMIN:
4817   case ISD::VECREDUCE_UMAX:
4818     if (Operand.getValueType().getScalarType() == MVT::i1)
4819       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
4820     break;
4821   case ISD::VECREDUCE_SMAX:
4822   case ISD::VECREDUCE_UMIN:
4823     if (Operand.getValueType().getScalarType() == MVT::i1)
4824       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
4825     break;
4826   }
4827 
4828   SDNode *N;
4829   SDVTList VTs = getVTList(VT);
4830   SDValue Ops[] = {Operand};
4831   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4832     FoldingSetNodeID ID;
4833     AddNodeIDNode(ID, Opcode, VTs, Ops);
4834     void *IP = nullptr;
4835     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4836       E->intersectFlagsWith(Flags);
4837       return SDValue(E, 0);
4838     }
4839 
4840     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4841     N->setFlags(Flags);
4842     createOperands(N, Ops);
4843     CSEMap.InsertNode(N, IP);
4844   } else {
4845     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4846     createOperands(N, Ops);
4847   }
4848 
4849   InsertNode(N);
4850   SDValue V = SDValue(N, 0);
4851   NewSDValueDbgMsg(V, "Creating new node: ", this);
4852   return V;
4853 }
4854 
4855 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
4856                                        const APInt &C2) {
4857   switch (Opcode) {
4858   case ISD::ADD:  return C1 + C2;
4859   case ISD::SUB:  return C1 - C2;
4860   case ISD::MUL:  return C1 * C2;
4861   case ISD::AND:  return C1 & C2;
4862   case ISD::OR:   return C1 | C2;
4863   case ISD::XOR:  return C1 ^ C2;
4864   case ISD::SHL:  return C1 << C2;
4865   case ISD::SRL:  return C1.lshr(C2);
4866   case ISD::SRA:  return C1.ashr(C2);
4867   case ISD::ROTL: return C1.rotl(C2);
4868   case ISD::ROTR: return C1.rotr(C2);
4869   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
4870   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
4871   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
4872   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
4873   case ISD::SADDSAT: return C1.sadd_sat(C2);
4874   case ISD::UADDSAT: return C1.uadd_sat(C2);
4875   case ISD::SSUBSAT: return C1.ssub_sat(C2);
4876   case ISD::USUBSAT: return C1.usub_sat(C2);
4877   case ISD::UDIV:
4878     if (!C2.getBoolValue())
4879       break;
4880     return C1.udiv(C2);
4881   case ISD::UREM:
4882     if (!C2.getBoolValue())
4883       break;
4884     return C1.urem(C2);
4885   case ISD::SDIV:
4886     if (!C2.getBoolValue())
4887       break;
4888     return C1.sdiv(C2);
4889   case ISD::SREM:
4890     if (!C2.getBoolValue())
4891       break;
4892     return C1.srem(C2);
4893   }
4894   return llvm::None;
4895 }
4896 
4897 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4898                                        const GlobalAddressSDNode *GA,
4899                                        const SDNode *N2) {
4900   if (GA->getOpcode() != ISD::GlobalAddress)
4901     return SDValue();
4902   if (!TLI->isOffsetFoldingLegal(GA))
4903     return SDValue();
4904   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4905   if (!C2)
4906     return SDValue();
4907   int64_t Offset = C2->getSExtValue();
4908   switch (Opcode) {
4909   case ISD::ADD: break;
4910   case ISD::SUB: Offset = -uint64_t(Offset); break;
4911   default: return SDValue();
4912   }
4913   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4914                           GA->getOffset() + uint64_t(Offset));
4915 }
4916 
4917 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4918   switch (Opcode) {
4919   case ISD::SDIV:
4920   case ISD::UDIV:
4921   case ISD::SREM:
4922   case ISD::UREM: {
4923     // If a divisor is zero/undef or any element of a divisor vector is
4924     // zero/undef, the whole op is undef.
4925     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4926     SDValue Divisor = Ops[1];
4927     if (Divisor.isUndef() || isNullConstant(Divisor))
4928       return true;
4929 
4930     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4931            llvm::any_of(Divisor->op_values(),
4932                         [](SDValue V) { return V.isUndef() ||
4933                                         isNullConstant(V); });
4934     // TODO: Handle signed overflow.
4935   }
4936   // TODO: Handle oversized shifts.
4937   default:
4938     return false;
4939   }
4940 }
4941 
4942 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4943                                              EVT VT, ArrayRef<SDValue> Ops) {
4944   // If the opcode is a target-specific ISD node, there's nothing we can
4945   // do here and the operand rules may not line up with the below, so
4946   // bail early.
4947   if (Opcode >= ISD::BUILTIN_OP_END)
4948     return SDValue();
4949 
4950   // For now, the array Ops should only contain two values.
4951   // This enforcement will be removed once this function is merged with
4952   // FoldConstantVectorArithmetic
4953   if (Ops.size() != 2)
4954     return SDValue();
4955 
4956   if (isUndef(Opcode, Ops))
4957     return getUNDEF(VT);
4958 
4959   SDNode *N1 = Ops[0].getNode();
4960   SDNode *N2 = Ops[1].getNode();
4961 
4962   // Handle the case of two scalars.
4963   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4964     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4965       if (C1->isOpaque() || C2->isOpaque())
4966         return SDValue();
4967 
4968       Optional<APInt> FoldAttempt =
4969           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
4970       if (!FoldAttempt)
4971         return SDValue();
4972 
4973       SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
4974       assert((!Folded || !VT.isVector()) &&
4975              "Can't fold vectors ops with scalar operands");
4976       return Folded;
4977     }
4978   }
4979 
4980   // fold (add Sym, c) -> Sym+c
4981   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
4982     return FoldSymbolOffset(Opcode, VT, GA, N2);
4983   if (TLI->isCommutativeBinOp(Opcode))
4984     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
4985       return FoldSymbolOffset(Opcode, VT, GA, N1);
4986 
4987   // TODO: All the folds below are performed lane-by-lane and assume a fixed
4988   // vector width, however we should be able to do constant folds involving
4989   // splat vector nodes too.
4990   if (VT.isScalableVector())
4991     return SDValue();
4992 
4993   // For fixed width vectors, extract each constant element and fold them
4994   // individually. Either input may be an undef value.
4995   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
4996   if (!BV1 && !N1->isUndef())
4997     return SDValue();
4998   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
4999   if (!BV2 && !N2->isUndef())
5000     return SDValue();
5001   // If both operands are undef, that's handled the same way as scalars.
5002   if (!BV1 && !BV2)
5003     return SDValue();
5004 
5005   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
5006          "Vector binop with different number of elements in operands?");
5007 
5008   EVT SVT = VT.getScalarType();
5009   EVT LegalSVT = SVT;
5010   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5011     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5012     if (LegalSVT.bitsLT(SVT))
5013       return SDValue();
5014   }
5015   SmallVector<SDValue, 4> Outputs;
5016   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
5017   for (unsigned I = 0; I != NumOps; ++I) {
5018     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
5019     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
5020     if (SVT.isInteger()) {
5021       if (V1->getValueType(0).bitsGT(SVT))
5022         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
5023       if (V2->getValueType(0).bitsGT(SVT))
5024         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
5025     }
5026 
5027     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
5028       return SDValue();
5029 
5030     // Fold one vector element.
5031     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
5032     if (LegalSVT != SVT)
5033       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5034 
5035     // Scalar folding only succeeded if the result is a constant or UNDEF.
5036     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5037         ScalarResult.getOpcode() != ISD::ConstantFP)
5038       return SDValue();
5039     Outputs.push_back(ScalarResult);
5040   }
5041 
5042   assert(VT.getVectorNumElements() == Outputs.size() &&
5043          "Vector size mismatch!");
5044 
5045   // We may have a vector type but a scalar result. Create a splat.
5046   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
5047 
5048   // Build a big vector out of the scalar elements we generated.
5049   return getBuildVector(VT, SDLoc(), Outputs);
5050 }
5051 
5052 // TODO: Merge with FoldConstantArithmetic
5053 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
5054                                                    const SDLoc &DL, EVT VT,
5055                                                    ArrayRef<SDValue> Ops,
5056                                                    const SDNodeFlags Flags) {
5057   // If the opcode is a target-specific ISD node, there's nothing we can
5058   // do here and the operand rules may not line up with the below, so
5059   // bail early.
5060   if (Opcode >= ISD::BUILTIN_OP_END)
5061     return SDValue();
5062 
5063   if (isUndef(Opcode, Ops))
5064     return getUNDEF(VT);
5065 
5066   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
5067   if (!VT.isVector())
5068     return SDValue();
5069 
5070   // TODO: All the folds below are performed lane-by-lane and assume a fixed
5071   // vector width, however we should be able to do constant folds involving
5072   // splat vector nodes too.
5073   if (VT.isScalableVector())
5074     return SDValue();
5075 
5076   // From this point onwards all vectors are assumed to be fixed width.
5077   unsigned NumElts = VT.getVectorNumElements();
5078 
5079   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
5080     return !Op.getValueType().isVector() ||
5081            Op.getValueType().getVectorNumElements() == NumElts;
5082   };
5083 
5084   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
5085     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
5086     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
5087            (BV && BV->isConstant());
5088   };
5089 
5090   // All operands must be vector types with the same number of elements as
5091   // the result type and must be either UNDEF or a build vector of constant
5092   // or UNDEF scalars.
5093   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
5094       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5095     return SDValue();
5096 
5097   // If we are comparing vectors, then the result needs to be a i1 boolean
5098   // that is then sign-extended back to the legal result type.
5099   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5100 
5101   // Find legal integer scalar type for constant promotion and
5102   // ensure that its scalar size is at least as large as source.
5103   EVT LegalSVT = VT.getScalarType();
5104   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5105     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5106     if (LegalSVT.bitsLT(VT.getScalarType()))
5107       return SDValue();
5108   }
5109 
5110   // Constant fold each scalar lane separately.
5111   SmallVector<SDValue, 4> ScalarResults;
5112   for (unsigned i = 0; i != NumElts; i++) {
5113     SmallVector<SDValue, 4> ScalarOps;
5114     for (SDValue Op : Ops) {
5115       EVT InSVT = Op.getValueType().getScalarType();
5116       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
5117       if (!InBV) {
5118         // We've checked that this is UNDEF or a constant of some kind.
5119         if (Op.isUndef())
5120           ScalarOps.push_back(getUNDEF(InSVT));
5121         else
5122           ScalarOps.push_back(Op);
5123         continue;
5124       }
5125 
5126       SDValue ScalarOp = InBV->getOperand(i);
5127       EVT ScalarVT = ScalarOp.getValueType();
5128 
5129       // Build vector (integer) scalar operands may need implicit
5130       // truncation - do this before constant folding.
5131       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5132         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5133 
5134       ScalarOps.push_back(ScalarOp);
5135     }
5136 
5137     // Constant fold the scalar operands.
5138     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5139 
5140     // Legalize the (integer) scalar constant if necessary.
5141     if (LegalSVT != SVT)
5142       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5143 
5144     // Scalar folding only succeeded if the result is a constant or UNDEF.
5145     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5146         ScalarResult.getOpcode() != ISD::ConstantFP)
5147       return SDValue();
5148     ScalarResults.push_back(ScalarResult);
5149   }
5150 
5151   SDValue V = getBuildVector(VT, DL, ScalarResults);
5152   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5153   return V;
5154 }
5155 
5156 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5157                                          EVT VT, SDValue N1, SDValue N2) {
5158   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5159   //       should. That will require dealing with a potentially non-default
5160   //       rounding mode, checking the "opStatus" return value from the APFloat
5161   //       math calculations, and possibly other variations.
5162   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5163   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5164   if (N1CFP && N2CFP) {
5165     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5166     switch (Opcode) {
5167     case ISD::FADD:
5168       C1.add(C2, APFloat::rmNearestTiesToEven);
5169       return getConstantFP(C1, DL, VT);
5170     case ISD::FSUB:
5171       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5172       return getConstantFP(C1, DL, VT);
5173     case ISD::FMUL:
5174       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5175       return getConstantFP(C1, DL, VT);
5176     case ISD::FDIV:
5177       C1.divide(C2, APFloat::rmNearestTiesToEven);
5178       return getConstantFP(C1, DL, VT);
5179     case ISD::FREM:
5180       C1.mod(C2);
5181       return getConstantFP(C1, DL, VT);
5182     case ISD::FCOPYSIGN:
5183       C1.copySign(C2);
5184       return getConstantFP(C1, DL, VT);
5185     default: break;
5186     }
5187   }
5188   if (N1CFP && Opcode == ISD::FP_ROUND) {
5189     APFloat C1 = N1CFP->getValueAPF();    // make copy
5190     bool Unused;
5191     // This can return overflow, underflow, or inexact; we don't care.
5192     // FIXME need to be more flexible about rounding mode.
5193     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5194                       &Unused);
5195     return getConstantFP(C1, DL, VT);
5196   }
5197 
5198   switch (Opcode) {
5199   case ISD::FSUB:
5200     // -0.0 - undef --> undef (consistent with "fneg undef")
5201     if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef())
5202       return getUNDEF(VT);
5203     LLVM_FALLTHROUGH;
5204 
5205   case ISD::FADD:
5206   case ISD::FMUL:
5207   case ISD::FDIV:
5208   case ISD::FREM:
5209     // If both operands are undef, the result is undef. If 1 operand is undef,
5210     // the result is NaN. This should match the behavior of the IR optimizer.
5211     if (N1.isUndef() && N2.isUndef())
5212       return getUNDEF(VT);
5213     if (N1.isUndef() || N2.isUndef())
5214       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5215   }
5216   return SDValue();
5217 }
5218 
5219 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5220   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5221 
5222   // There's no need to assert on a byte-aligned pointer. All pointers are at
5223   // least byte aligned.
5224   if (A == Align(1))
5225     return Val;
5226 
5227   FoldingSetNodeID ID;
5228   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5229   ID.AddInteger(A.value());
5230 
5231   void *IP = nullptr;
5232   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5233     return SDValue(E, 0);
5234 
5235   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5236                                          Val.getValueType(), A);
5237   createOperands(N, {Val});
5238 
5239   CSEMap.InsertNode(N, IP);
5240   InsertNode(N);
5241 
5242   SDValue V(N, 0);
5243   NewSDValueDbgMsg(V, "Creating new node: ", this);
5244   return V;
5245 }
5246 
5247 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5248                               SDValue N1, SDValue N2) {
5249   SDNodeFlags Flags;
5250   if (Inserter)
5251     Flags = Inserter->getFlags();
5252   return getNode(Opcode, DL, VT, N1, N2, Flags);
5253 }
5254 
5255 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5256                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5257   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5258   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5259   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5260   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5261 
5262   // Canonicalize constant to RHS if commutative.
5263   if (TLI->isCommutativeBinOp(Opcode)) {
5264     if (N1C && !N2C) {
5265       std::swap(N1C, N2C);
5266       std::swap(N1, N2);
5267     } else if (N1CFP && !N2CFP) {
5268       std::swap(N1CFP, N2CFP);
5269       std::swap(N1, N2);
5270     }
5271   }
5272 
5273   switch (Opcode) {
5274   default: break;
5275   case ISD::TokenFactor:
5276     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5277            N2.getValueType() == MVT::Other && "Invalid token factor!");
5278     // Fold trivial token factors.
5279     if (N1.getOpcode() == ISD::EntryToken) return N2;
5280     if (N2.getOpcode() == ISD::EntryToken) return N1;
5281     if (N1 == N2) return N1;
5282     break;
5283   case ISD::BUILD_VECTOR: {
5284     // Attempt to simplify BUILD_VECTOR.
5285     SDValue Ops[] = {N1, N2};
5286     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5287       return V;
5288     break;
5289   }
5290   case ISD::CONCAT_VECTORS: {
5291     SDValue Ops[] = {N1, N2};
5292     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5293       return V;
5294     break;
5295   }
5296   case ISD::AND:
5297     assert(VT.isInteger() && "This operator does not apply to FP types!");
5298     assert(N1.getValueType() == N2.getValueType() &&
5299            N1.getValueType() == VT && "Binary operator types must match!");
5300     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5301     // worth handling here.
5302     if (N2C && N2C->isNullValue())
5303       return N2;
5304     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5305       return N1;
5306     break;
5307   case ISD::OR:
5308   case ISD::XOR:
5309   case ISD::ADD:
5310   case ISD::SUB:
5311     assert(VT.isInteger() && "This operator does not apply to FP types!");
5312     assert(N1.getValueType() == N2.getValueType() &&
5313            N1.getValueType() == VT && "Binary operator types must match!");
5314     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5315     // it's worth handling here.
5316     if (N2C && N2C->isNullValue())
5317       return N1;
5318     break;
5319   case ISD::MUL:
5320     assert(VT.isInteger() && "This operator does not apply to FP types!");
5321     assert(N1.getValueType() == N2.getValueType() &&
5322            N1.getValueType() == VT && "Binary operator types must match!");
5323     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5324       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5325       const APInt &N2CImm = N2C->getAPIntValue();
5326       return getVScale(DL, VT, MulImm * N2CImm);
5327     }
5328     break;
5329   case ISD::UDIV:
5330   case ISD::UREM:
5331   case ISD::MULHU:
5332   case ISD::MULHS:
5333   case ISD::SDIV:
5334   case ISD::SREM:
5335   case ISD::SADDSAT:
5336   case ISD::SSUBSAT:
5337   case ISD::UADDSAT:
5338   case ISD::USUBSAT:
5339     assert(VT.isInteger() && "This operator does not apply to FP types!");
5340     assert(N1.getValueType() == N2.getValueType() &&
5341            N1.getValueType() == VT && "Binary operator types must match!");
5342     break;
5343   case ISD::SMIN:
5344   case ISD::UMAX:
5345     assert(VT.isInteger() && "This operator does not apply to FP types!");
5346     assert(N1.getValueType() == N2.getValueType() &&
5347            N1.getValueType() == VT && "Binary operator types must match!");
5348     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5349       return getNode(ISD::OR, DL, VT, N1, N2);
5350     break;
5351   case ISD::SMAX:
5352   case ISD::UMIN:
5353     assert(VT.isInteger() && "This operator does not apply to FP types!");
5354     assert(N1.getValueType() == N2.getValueType() &&
5355            N1.getValueType() == VT && "Binary operator types must match!");
5356     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5357       return getNode(ISD::AND, DL, VT, N1, N2);
5358     break;
5359   case ISD::FADD:
5360   case ISD::FSUB:
5361   case ISD::FMUL:
5362   case ISD::FDIV:
5363   case ISD::FREM:
5364     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5365     assert(N1.getValueType() == N2.getValueType() &&
5366            N1.getValueType() == VT && "Binary operator types must match!");
5367     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5368       return V;
5369     break;
5370   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5371     assert(N1.getValueType() == VT &&
5372            N1.getValueType().isFloatingPoint() &&
5373            N2.getValueType().isFloatingPoint() &&
5374            "Invalid FCOPYSIGN!");
5375     break;
5376   case ISD::SHL:
5377     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5378       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5379       const APInt &ShiftImm = N2C->getAPIntValue();
5380       return getVScale(DL, VT, MulImm << ShiftImm);
5381     }
5382     LLVM_FALLTHROUGH;
5383   case ISD::SRA:
5384   case ISD::SRL:
5385     if (SDValue V = simplifyShift(N1, N2))
5386       return V;
5387     LLVM_FALLTHROUGH;
5388   case ISD::ROTL:
5389   case ISD::ROTR:
5390     assert(VT == N1.getValueType() &&
5391            "Shift operators return type must be the same as their first arg");
5392     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5393            "Shifts only work on integers");
5394     assert((!VT.isVector() || VT == N2.getValueType()) &&
5395            "Vector shift amounts must be in the same as their first arg");
5396     // Verify that the shift amount VT is big enough to hold valid shift
5397     // amounts.  This catches things like trying to shift an i1024 value by an
5398     // i8, which is easy to fall into in generic code that uses
5399     // TLI.getShiftAmount().
5400     assert(N2.getValueType().getScalarSizeInBits() >=
5401                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5402            "Invalid use of small shift amount with oversized value!");
5403 
5404     // Always fold shifts of i1 values so the code generator doesn't need to
5405     // handle them.  Since we know the size of the shift has to be less than the
5406     // size of the value, the shift/rotate count is guaranteed to be zero.
5407     if (VT == MVT::i1)
5408       return N1;
5409     if (N2C && N2C->isNullValue())
5410       return N1;
5411     break;
5412   case ISD::FP_ROUND:
5413     assert(VT.isFloatingPoint() &&
5414            N1.getValueType().isFloatingPoint() &&
5415            VT.bitsLE(N1.getValueType()) &&
5416            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5417            "Invalid FP_ROUND!");
5418     if (N1.getValueType() == VT) return N1;  // noop conversion.
5419     break;
5420   case ISD::AssertSext:
5421   case ISD::AssertZext: {
5422     EVT EVT = cast<VTSDNode>(N2)->getVT();
5423     assert(VT == N1.getValueType() && "Not an inreg extend!");
5424     assert(VT.isInteger() && EVT.isInteger() &&
5425            "Cannot *_EXTEND_INREG FP types");
5426     assert(!EVT.isVector() &&
5427            "AssertSExt/AssertZExt type should be the vector element type "
5428            "rather than the vector type!");
5429     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5430     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5431     break;
5432   }
5433   case ISD::SIGN_EXTEND_INREG: {
5434     EVT EVT = cast<VTSDNode>(N2)->getVT();
5435     assert(VT == N1.getValueType() && "Not an inreg extend!");
5436     assert(VT.isInteger() && EVT.isInteger() &&
5437            "Cannot *_EXTEND_INREG FP types");
5438     assert(EVT.isVector() == VT.isVector() &&
5439            "SIGN_EXTEND_INREG type should be vector iff the operand "
5440            "type is vector!");
5441     assert((!EVT.isVector() ||
5442             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5443            "Vector element counts must match in SIGN_EXTEND_INREG");
5444     assert(EVT.bitsLE(VT) && "Not extending!");
5445     if (EVT == VT) return N1;  // Not actually extending
5446 
5447     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5448       unsigned FromBits = EVT.getScalarSizeInBits();
5449       Val <<= Val.getBitWidth() - FromBits;
5450       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5451       return getConstant(Val, DL, ConstantVT);
5452     };
5453 
5454     if (N1C) {
5455       const APInt &Val = N1C->getAPIntValue();
5456       return SignExtendInReg(Val, VT);
5457     }
5458     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5459       SmallVector<SDValue, 8> Ops;
5460       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5461       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5462         SDValue Op = N1.getOperand(i);
5463         if (Op.isUndef()) {
5464           Ops.push_back(getUNDEF(OpVT));
5465           continue;
5466         }
5467         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5468         APInt Val = C->getAPIntValue();
5469         Ops.push_back(SignExtendInReg(Val, OpVT));
5470       }
5471       return getBuildVector(VT, DL, Ops);
5472     }
5473     break;
5474   }
5475   case ISD::EXTRACT_VECTOR_ELT:
5476     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5477            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5478              element type of the vector.");
5479 
5480     // Extract from an undefined value or using an undefined index is undefined.
5481     if (N1.isUndef() || N2.isUndef())
5482       return getUNDEF(VT);
5483 
5484     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5485     // vectors. For scalable vectors we will provide appropriate support for
5486     // dealing with arbitrary indices.
5487     if (N2C && N1.getValueType().isFixedLengthVector() &&
5488         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5489       return getUNDEF(VT);
5490 
5491     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5492     // expanding copies of large vectors from registers. This only works for
5493     // fixed length vectors, since we need to know the exact number of
5494     // elements.
5495     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5496         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5497       unsigned Factor =
5498         N1.getOperand(0).getValueType().getVectorNumElements();
5499       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5500                      N1.getOperand(N2C->getZExtValue() / Factor),
5501                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5502     }
5503 
5504     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5505     // lowering is expanding large vector constants.
5506     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5507                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5508       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5509               N1.getValueType().isFixedLengthVector()) &&
5510              "BUILD_VECTOR used for scalable vectors");
5511       unsigned Index =
5512           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5513       SDValue Elt = N1.getOperand(Index);
5514 
5515       if (VT != Elt.getValueType())
5516         // If the vector element type is not legal, the BUILD_VECTOR operands
5517         // are promoted and implicitly truncated, and the result implicitly
5518         // extended. Make that explicit here.
5519         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5520 
5521       return Elt;
5522     }
5523 
5524     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5525     // operations are lowered to scalars.
5526     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5527       // If the indices are the same, return the inserted element else
5528       // if the indices are known different, extract the element from
5529       // the original vector.
5530       SDValue N1Op2 = N1.getOperand(2);
5531       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5532 
5533       if (N1Op2C && N2C) {
5534         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5535           if (VT == N1.getOperand(1).getValueType())
5536             return N1.getOperand(1);
5537           else
5538             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5539         }
5540 
5541         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5542       }
5543     }
5544 
5545     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5546     // when vector types are scalarized and v1iX is legal.
5547     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5548     // Here we are completely ignoring the extract element index (N2),
5549     // which is fine for fixed width vectors, since any index other than 0
5550     // is undefined anyway. However, this cannot be ignored for scalable
5551     // vectors - in theory we could support this, but we don't want to do this
5552     // without a profitability check.
5553     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5554         N1.getValueType().isFixedLengthVector() &&
5555         N1.getValueType().getVectorNumElements() == 1) {
5556       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5557                      N1.getOperand(1));
5558     }
5559     break;
5560   case ISD::EXTRACT_ELEMENT:
5561     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5562     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5563            (N1.getValueType().isInteger() == VT.isInteger()) &&
5564            N1.getValueType() != VT &&
5565            "Wrong types for EXTRACT_ELEMENT!");
5566 
5567     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5568     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5569     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5570     if (N1.getOpcode() == ISD::BUILD_PAIR)
5571       return N1.getOperand(N2C->getZExtValue());
5572 
5573     // EXTRACT_ELEMENT of a constant int is also very common.
5574     if (N1C) {
5575       unsigned ElementSize = VT.getSizeInBits();
5576       unsigned Shift = ElementSize * N2C->getZExtValue();
5577       const APInt &Val = N1C->getAPIntValue();
5578       return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
5579     }
5580     break;
5581   case ISD::EXTRACT_SUBVECTOR:
5582     EVT N1VT = N1.getValueType();
5583     assert(VT.isVector() && N1VT.isVector() &&
5584            "Extract subvector VTs must be vectors!");
5585     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
5586            "Extract subvector VTs must have the same element type!");
5587     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
5588            "Cannot extract a scalable vector from a fixed length vector!");
5589     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5590             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
5591            "Extract subvector must be from larger vector to smaller vector!");
5592     assert(N2C && "Extract subvector index must be a constant");
5593     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5594             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
5595                 N1VT.getVectorMinNumElements()) &&
5596            "Extract subvector overflow!");
5597     assert(N2C->getAPIntValue().getBitWidth() ==
5598                TLI->getVectorIdxTy(getDataLayout())
5599                    .getSizeInBits()
5600                    .getFixedSize() &&
5601            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
5602 
5603     // Trivial extraction.
5604     if (VT == N1VT)
5605       return N1;
5606 
5607     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5608     if (N1.isUndef())
5609       return getUNDEF(VT);
5610 
5611     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5612     // the concat have the same type as the extract.
5613     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
5614         VT == N1.getOperand(0).getValueType()) {
5615       unsigned Factor = VT.getVectorMinNumElements();
5616       return N1.getOperand(N2C->getZExtValue() / Factor);
5617     }
5618 
5619     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5620     // during shuffle legalization.
5621     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5622         VT == N1.getOperand(1).getValueType())
5623       return N1.getOperand(1);
5624     break;
5625   }
5626 
5627   // Perform trivial constant folding.
5628   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
5629     return SV;
5630 
5631   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5632     return V;
5633 
5634   // Canonicalize an UNDEF to the RHS, even over a constant.
5635   if (N1.isUndef()) {
5636     if (TLI->isCommutativeBinOp(Opcode)) {
5637       std::swap(N1, N2);
5638     } else {
5639       switch (Opcode) {
5640       case ISD::SIGN_EXTEND_INREG:
5641       case ISD::SUB:
5642         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5643       case ISD::UDIV:
5644       case ISD::SDIV:
5645       case ISD::UREM:
5646       case ISD::SREM:
5647       case ISD::SSUBSAT:
5648       case ISD::USUBSAT:
5649         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5650       }
5651     }
5652   }
5653 
5654   // Fold a bunch of operators when the RHS is undef.
5655   if (N2.isUndef()) {
5656     switch (Opcode) {
5657     case ISD::XOR:
5658       if (N1.isUndef())
5659         // Handle undef ^ undef -> 0 special case. This is a common
5660         // idiom (misuse).
5661         return getConstant(0, DL, VT);
5662       LLVM_FALLTHROUGH;
5663     case ISD::ADD:
5664     case ISD::SUB:
5665     case ISD::UDIV:
5666     case ISD::SDIV:
5667     case ISD::UREM:
5668     case ISD::SREM:
5669       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5670     case ISD::MUL:
5671     case ISD::AND:
5672     case ISD::SSUBSAT:
5673     case ISD::USUBSAT:
5674       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5675     case ISD::OR:
5676     case ISD::SADDSAT:
5677     case ISD::UADDSAT:
5678       return getAllOnesConstant(DL, VT);
5679     }
5680   }
5681 
5682   // Memoize this node if possible.
5683   SDNode *N;
5684   SDVTList VTs = getVTList(VT);
5685   SDValue Ops[] = {N1, N2};
5686   if (VT != MVT::Glue) {
5687     FoldingSetNodeID ID;
5688     AddNodeIDNode(ID, Opcode, VTs, Ops);
5689     void *IP = nullptr;
5690     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5691       E->intersectFlagsWith(Flags);
5692       return SDValue(E, 0);
5693     }
5694 
5695     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5696     N->setFlags(Flags);
5697     createOperands(N, Ops);
5698     CSEMap.InsertNode(N, IP);
5699   } else {
5700     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5701     createOperands(N, Ops);
5702   }
5703 
5704   InsertNode(N);
5705   SDValue V = SDValue(N, 0);
5706   NewSDValueDbgMsg(V, "Creating new node: ", this);
5707   return V;
5708 }
5709 
5710 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5711                               SDValue N1, SDValue N2, SDValue N3) {
5712   SDNodeFlags Flags;
5713   if (Inserter)
5714     Flags = Inserter->getFlags();
5715   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
5716 }
5717 
5718 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5719                               SDValue N1, SDValue N2, SDValue N3,
5720                               const SDNodeFlags Flags) {
5721   // Perform various simplifications.
5722   switch (Opcode) {
5723   case ISD::FMA: {
5724     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5725     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5726            N3.getValueType() == VT && "FMA types must match!");
5727     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5728     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5729     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5730     if (N1CFP && N2CFP && N3CFP) {
5731       APFloat  V1 = N1CFP->getValueAPF();
5732       const APFloat &V2 = N2CFP->getValueAPF();
5733       const APFloat &V3 = N3CFP->getValueAPF();
5734       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5735       return getConstantFP(V1, DL, VT);
5736     }
5737     break;
5738   }
5739   case ISD::BUILD_VECTOR: {
5740     // Attempt to simplify BUILD_VECTOR.
5741     SDValue Ops[] = {N1, N2, N3};
5742     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5743       return V;
5744     break;
5745   }
5746   case ISD::CONCAT_VECTORS: {
5747     SDValue Ops[] = {N1, N2, N3};
5748     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5749       return V;
5750     break;
5751   }
5752   case ISD::SETCC: {
5753     assert(VT.isInteger() && "SETCC result type must be an integer!");
5754     assert(N1.getValueType() == N2.getValueType() &&
5755            "SETCC operands must have the same type!");
5756     assert(VT.isVector() == N1.getValueType().isVector() &&
5757            "SETCC type should be vector iff the operand type is vector!");
5758     assert((!VT.isVector() || VT.getVectorElementCount() ==
5759                                   N1.getValueType().getVectorElementCount()) &&
5760            "SETCC vector element counts must match!");
5761     // Use FoldSetCC to simplify SETCC's.
5762     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5763       return V;
5764     // Vector constant folding.
5765     SDValue Ops[] = {N1, N2, N3};
5766     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5767       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5768       return V;
5769     }
5770     break;
5771   }
5772   case ISD::SELECT:
5773   case ISD::VSELECT:
5774     if (SDValue V = simplifySelect(N1, N2, N3))
5775       return V;
5776     break;
5777   case ISD::VECTOR_SHUFFLE:
5778     llvm_unreachable("should use getVectorShuffle constructor!");
5779   case ISD::INSERT_VECTOR_ELT: {
5780     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5781     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
5782     // for scalable vectors where we will generate appropriate code to
5783     // deal with out-of-bounds cases correctly.
5784     if (N3C && N1.getValueType().isFixedLengthVector() &&
5785         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5786       return getUNDEF(VT);
5787 
5788     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
5789     if (N3.isUndef())
5790       return getUNDEF(VT);
5791 
5792     // If the inserted element is an UNDEF, just use the input vector.
5793     if (N2.isUndef())
5794       return N1;
5795 
5796     break;
5797   }
5798   case ISD::INSERT_SUBVECTOR: {
5799     // Inserting undef into undef is still undef.
5800     if (N1.isUndef() && N2.isUndef())
5801       return getUNDEF(VT);
5802 
5803     EVT N2VT = N2.getValueType();
5804     assert(VT == N1.getValueType() &&
5805            "Dest and insert subvector source types must match!");
5806     assert(VT.isVector() && N2VT.isVector() &&
5807            "Insert subvector VTs must be vectors!");
5808     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
5809            "Cannot insert a scalable vector into a fixed length vector!");
5810     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5811             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
5812            "Insert subvector must be from smaller vector to larger vector!");
5813     assert(isa<ConstantSDNode>(N3) &&
5814            "Insert subvector index must be constant");
5815     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5816             (N2VT.getVectorMinNumElements() +
5817              cast<ConstantSDNode>(N3)->getZExtValue()) <=
5818                 VT.getVectorMinNumElements()) &&
5819            "Insert subvector overflow!");
5820 
5821     // Trivial insertion.
5822     if (VT == N2VT)
5823       return N2;
5824 
5825     // If this is an insert of an extracted vector into an undef vector, we
5826     // can just use the input to the extract.
5827     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5828         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5829       return N2.getOperand(0);
5830     break;
5831   }
5832   case ISD::BITCAST:
5833     // Fold bit_convert nodes from a type to themselves.
5834     if (N1.getValueType() == VT)
5835       return N1;
5836     break;
5837   }
5838 
5839   // Memoize node if it doesn't produce a flag.
5840   SDNode *N;
5841   SDVTList VTs = getVTList(VT);
5842   SDValue Ops[] = {N1, N2, N3};
5843   if (VT != MVT::Glue) {
5844     FoldingSetNodeID ID;
5845     AddNodeIDNode(ID, Opcode, VTs, Ops);
5846     void *IP = nullptr;
5847     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5848       E->intersectFlagsWith(Flags);
5849       return SDValue(E, 0);
5850     }
5851 
5852     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5853     N->setFlags(Flags);
5854     createOperands(N, Ops);
5855     CSEMap.InsertNode(N, IP);
5856   } else {
5857     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5858     createOperands(N, Ops);
5859   }
5860 
5861   InsertNode(N);
5862   SDValue V = SDValue(N, 0);
5863   NewSDValueDbgMsg(V, "Creating new node: ", this);
5864   return V;
5865 }
5866 
5867 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5868                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5869   SDValue Ops[] = { N1, N2, N3, N4 };
5870   return getNode(Opcode, DL, VT, Ops);
5871 }
5872 
5873 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5874                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5875                               SDValue N5) {
5876   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5877   return getNode(Opcode, DL, VT, Ops);
5878 }
5879 
5880 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5881 /// the incoming stack arguments to be loaded from the stack.
5882 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5883   SmallVector<SDValue, 8> ArgChains;
5884 
5885   // Include the original chain at the beginning of the list. When this is
5886   // used by target LowerCall hooks, this helps legalize find the
5887   // CALLSEQ_BEGIN node.
5888   ArgChains.push_back(Chain);
5889 
5890   // Add a chain value for each stack argument.
5891   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5892        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5893     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5894       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5895         if (FI->getIndex() < 0)
5896           ArgChains.push_back(SDValue(L, 1));
5897 
5898   // Build a tokenfactor for all the chains.
5899   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5900 }
5901 
5902 /// getMemsetValue - Vectorized representation of the memset value
5903 /// operand.
5904 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5905                               const SDLoc &dl) {
5906   assert(!Value.isUndef());
5907 
5908   unsigned NumBits = VT.getScalarSizeInBits();
5909   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5910     assert(C->getAPIntValue().getBitWidth() == 8);
5911     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5912     if (VT.isInteger()) {
5913       bool IsOpaque = VT.getSizeInBits() > 64 ||
5914           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5915       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5916     }
5917     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5918                              VT);
5919   }
5920 
5921   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5922   EVT IntVT = VT.getScalarType();
5923   if (!IntVT.isInteger())
5924     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5925 
5926   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5927   if (NumBits > 8) {
5928     // Use a multiplication with 0x010101... to extend the input to the
5929     // required length.
5930     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5931     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5932                         DAG.getConstant(Magic, dl, IntVT));
5933   }
5934 
5935   if (VT != Value.getValueType() && !VT.isInteger())
5936     Value = DAG.getBitcast(VT.getScalarType(), Value);
5937   if (VT != Value.getValueType())
5938     Value = DAG.getSplatBuildVector(VT, dl, Value);
5939 
5940   return Value;
5941 }
5942 
5943 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5944 /// used when a memcpy is turned into a memset when the source is a constant
5945 /// string ptr.
5946 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5947                                   const TargetLowering &TLI,
5948                                   const ConstantDataArraySlice &Slice) {
5949   // Handle vector with all elements zero.
5950   if (Slice.Array == nullptr) {
5951     if (VT.isInteger())
5952       return DAG.getConstant(0, dl, VT);
5953     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5954       return DAG.getConstantFP(0.0, dl, VT);
5955     else if (VT.isVector()) {
5956       unsigned NumElts = VT.getVectorNumElements();
5957       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5958       return DAG.getNode(ISD::BITCAST, dl, VT,
5959                          DAG.getConstant(0, dl,
5960                                          EVT::getVectorVT(*DAG.getContext(),
5961                                                           EltVT, NumElts)));
5962     } else
5963       llvm_unreachable("Expected type!");
5964   }
5965 
5966   assert(!VT.isVector() && "Can't handle vector type here!");
5967   unsigned NumVTBits = VT.getSizeInBits();
5968   unsigned NumVTBytes = NumVTBits / 8;
5969   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5970 
5971   APInt Val(NumVTBits, 0);
5972   if (DAG.getDataLayout().isLittleEndian()) {
5973     for (unsigned i = 0; i != NumBytes; ++i)
5974       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5975   } else {
5976     for (unsigned i = 0; i != NumBytes; ++i)
5977       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5978   }
5979 
5980   // If the "cost" of materializing the integer immediate is less than the cost
5981   // of a load, then it is cost effective to turn the load into the immediate.
5982   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5983   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5984     return DAG.getConstant(Val, dl, VT);
5985   return SDValue(nullptr, 0);
5986 }
5987 
5988 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
5989                                            const SDLoc &DL,
5990                                            const SDNodeFlags Flags) {
5991   EVT VT = Base.getValueType();
5992   SDValue Index;
5993 
5994   if (Offset.isScalable())
5995     Index = getVScale(DL, Base.getValueType(),
5996                       APInt(Base.getValueSizeInBits().getFixedSize(),
5997                             Offset.getKnownMinSize()));
5998   else
5999     Index = getConstant(Offset.getFixedSize(), DL, VT);
6000 
6001   return getMemBasePlusOffset(Base, Index, DL, Flags);
6002 }
6003 
6004 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
6005                                            const SDLoc &DL,
6006                                            const SDNodeFlags Flags) {
6007   assert(Offset.getValueType().isInteger());
6008   EVT BasePtrVT = Ptr.getValueType();
6009   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6010 }
6011 
6012 /// Returns true if memcpy source is constant data.
6013 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6014   uint64_t SrcDelta = 0;
6015   GlobalAddressSDNode *G = nullptr;
6016   if (Src.getOpcode() == ISD::GlobalAddress)
6017     G = cast<GlobalAddressSDNode>(Src);
6018   else if (Src.getOpcode() == ISD::ADD &&
6019            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6020            Src.getOperand(1).getOpcode() == ISD::Constant) {
6021     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6022     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6023   }
6024   if (!G)
6025     return false;
6026 
6027   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6028                                   SrcDelta + G->getOffset());
6029 }
6030 
6031 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6032                                       SelectionDAG &DAG) {
6033   // On Darwin, -Os means optimize for size without hurting performance, so
6034   // only really optimize for size when -Oz (MinSize) is used.
6035   if (MF.getTarget().getTargetTriple().isOSDarwin())
6036     return MF.getFunction().hasMinSize();
6037   return DAG.shouldOptForSize();
6038 }
6039 
6040 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6041                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6042                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6043                           SmallVector<SDValue, 16> &OutStoreChains) {
6044   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6045   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6046   SmallVector<SDValue, 16> GluedLoadChains;
6047   for (unsigned i = From; i < To; ++i) {
6048     OutChains.push_back(OutLoadChains[i]);
6049     GluedLoadChains.push_back(OutLoadChains[i]);
6050   }
6051 
6052   // Chain for all loads.
6053   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6054                                   GluedLoadChains);
6055 
6056   for (unsigned i = From; i < To; ++i) {
6057     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6058     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6059                                   ST->getBasePtr(), ST->getMemoryVT(),
6060                                   ST->getMemOperand());
6061     OutChains.push_back(NewStore);
6062   }
6063 }
6064 
6065 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6066                                        SDValue Chain, SDValue Dst, SDValue Src,
6067                                        uint64_t Size, Align Alignment,
6068                                        bool isVol, bool AlwaysInline,
6069                                        MachinePointerInfo DstPtrInfo,
6070                                        MachinePointerInfo SrcPtrInfo) {
6071   // Turn a memcpy of undef to nop.
6072   // FIXME: We need to honor volatile even is Src is undef.
6073   if (Src.isUndef())
6074     return Chain;
6075 
6076   // Expand memcpy to a series of load and store ops if the size operand falls
6077   // below a certain threshold.
6078   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6079   // rather than maybe a humongous number of loads and stores.
6080   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6081   const DataLayout &DL = DAG.getDataLayout();
6082   LLVMContext &C = *DAG.getContext();
6083   std::vector<EVT> MemOps;
6084   bool DstAlignCanChange = false;
6085   MachineFunction &MF = DAG.getMachineFunction();
6086   MachineFrameInfo &MFI = MF.getFrameInfo();
6087   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6088   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6089   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6090     DstAlignCanChange = true;
6091   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6092   if (!SrcAlign || Alignment > *SrcAlign)
6093     SrcAlign = Alignment;
6094   assert(SrcAlign && "SrcAlign must be set");
6095   ConstantDataArraySlice Slice;
6096   // If marked as volatile, perform a copy even when marked as constant.
6097   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6098   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6099   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6100   const MemOp Op = isZeroConstant
6101                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6102                                     /*IsZeroMemset*/ true, isVol)
6103                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6104                                      *SrcAlign, isVol, CopyFromConstant);
6105   if (!TLI.findOptimalMemOpLowering(
6106           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6107           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6108     return SDValue();
6109 
6110   if (DstAlignCanChange) {
6111     Type *Ty = MemOps[0].getTypeForEVT(C);
6112     Align NewAlign = DL.getABITypeAlign(Ty);
6113 
6114     // Don't promote to an alignment that would require dynamic stack
6115     // realignment.
6116     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6117     if (!TRI->needsStackRealignment(MF))
6118       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6119         NewAlign = NewAlign / 2;
6120 
6121     if (NewAlign > Alignment) {
6122       // Give the stack frame object a larger alignment if needed.
6123       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6124         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6125       Alignment = NewAlign;
6126     }
6127   }
6128 
6129   MachineMemOperand::Flags MMOFlags =
6130       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6131   SmallVector<SDValue, 16> OutLoadChains;
6132   SmallVector<SDValue, 16> OutStoreChains;
6133   SmallVector<SDValue, 32> OutChains;
6134   unsigned NumMemOps = MemOps.size();
6135   uint64_t SrcOff = 0, DstOff = 0;
6136   for (unsigned i = 0; i != NumMemOps; ++i) {
6137     EVT VT = MemOps[i];
6138     unsigned VTSize = VT.getSizeInBits() / 8;
6139     SDValue Value, Store;
6140 
6141     if (VTSize > Size) {
6142       // Issuing an unaligned load / store pair  that overlaps with the previous
6143       // pair. Adjust the offset accordingly.
6144       assert(i == NumMemOps-1 && i != 0);
6145       SrcOff -= VTSize - Size;
6146       DstOff -= VTSize - Size;
6147     }
6148 
6149     if (CopyFromConstant &&
6150         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6151       // It's unlikely a store of a vector immediate can be done in a single
6152       // instruction. It would require a load from a constantpool first.
6153       // We only handle zero vectors here.
6154       // FIXME: Handle other cases where store of vector immediate is done in
6155       // a single instruction.
6156       ConstantDataArraySlice SubSlice;
6157       if (SrcOff < Slice.Length) {
6158         SubSlice = Slice;
6159         SubSlice.move(SrcOff);
6160       } else {
6161         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6162         SubSlice.Array = nullptr;
6163         SubSlice.Offset = 0;
6164         SubSlice.Length = VTSize;
6165       }
6166       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6167       if (Value.getNode()) {
6168         Store = DAG.getStore(
6169             Chain, dl, Value,
6170             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6171             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6172         OutChains.push_back(Store);
6173       }
6174     }
6175 
6176     if (!Store.getNode()) {
6177       // The type might not be legal for the target.  This should only happen
6178       // if the type is smaller than a legal type, as on PPC, so the right
6179       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6180       // to Load/Store if NVT==VT.
6181       // FIXME does the case above also need this?
6182       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6183       assert(NVT.bitsGE(VT));
6184 
6185       bool isDereferenceable =
6186         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6187       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6188       if (isDereferenceable)
6189         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6190 
6191       Value = DAG.getExtLoad(
6192           ISD::EXTLOAD, dl, NVT, Chain,
6193           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6194           SrcPtrInfo.getWithOffset(SrcOff), VT,
6195           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags);
6196       OutLoadChains.push_back(Value.getValue(1));
6197 
6198       Store = DAG.getTruncStore(
6199           Chain, dl, Value,
6200           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6201           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags);
6202       OutStoreChains.push_back(Store);
6203     }
6204     SrcOff += VTSize;
6205     DstOff += VTSize;
6206     Size -= VTSize;
6207   }
6208 
6209   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6210                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6211   unsigned NumLdStInMemcpy = OutStoreChains.size();
6212 
6213   if (NumLdStInMemcpy) {
6214     // It may be that memcpy might be converted to memset if it's memcpy
6215     // of constants. In such a case, we won't have loads and stores, but
6216     // just stores. In the absence of loads, there is nothing to gang up.
6217     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6218       // If target does not care, just leave as it.
6219       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6220         OutChains.push_back(OutLoadChains[i]);
6221         OutChains.push_back(OutStoreChains[i]);
6222       }
6223     } else {
6224       // Ld/St less than/equal limit set by target.
6225       if (NumLdStInMemcpy <= GluedLdStLimit) {
6226           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6227                                         NumLdStInMemcpy, OutLoadChains,
6228                                         OutStoreChains);
6229       } else {
6230         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6231         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6232         unsigned GlueIter = 0;
6233 
6234         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6235           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6236           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6237 
6238           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6239                                        OutLoadChains, OutStoreChains);
6240           GlueIter += GluedLdStLimit;
6241         }
6242 
6243         // Residual ld/st.
6244         if (RemainingLdStInMemcpy) {
6245           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6246                                         RemainingLdStInMemcpy, OutLoadChains,
6247                                         OutStoreChains);
6248         }
6249       }
6250     }
6251   }
6252   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6253 }
6254 
6255 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6256                                         SDValue Chain, SDValue Dst, SDValue Src,
6257                                         uint64_t Size, Align Alignment,
6258                                         bool isVol, bool AlwaysInline,
6259                                         MachinePointerInfo DstPtrInfo,
6260                                         MachinePointerInfo SrcPtrInfo) {
6261   // Turn a memmove of undef to nop.
6262   // FIXME: We need to honor volatile even is Src is undef.
6263   if (Src.isUndef())
6264     return Chain;
6265 
6266   // Expand memmove to a series of load and store ops if the size operand falls
6267   // below a certain threshold.
6268   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6269   const DataLayout &DL = DAG.getDataLayout();
6270   LLVMContext &C = *DAG.getContext();
6271   std::vector<EVT> MemOps;
6272   bool DstAlignCanChange = false;
6273   MachineFunction &MF = DAG.getMachineFunction();
6274   MachineFrameInfo &MFI = MF.getFrameInfo();
6275   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6276   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6277   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6278     DstAlignCanChange = true;
6279   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6280   if (!SrcAlign || Alignment > *SrcAlign)
6281     SrcAlign = Alignment;
6282   assert(SrcAlign && "SrcAlign must be set");
6283   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6284   if (!TLI.findOptimalMemOpLowering(
6285           MemOps, Limit,
6286           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6287                       /*IsVolatile*/ true),
6288           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6289           MF.getFunction().getAttributes()))
6290     return SDValue();
6291 
6292   if (DstAlignCanChange) {
6293     Type *Ty = MemOps[0].getTypeForEVT(C);
6294     Align NewAlign = DL.getABITypeAlign(Ty);
6295     if (NewAlign > Alignment) {
6296       // Give the stack frame object a larger alignment if needed.
6297       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6298         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6299       Alignment = NewAlign;
6300     }
6301   }
6302 
6303   MachineMemOperand::Flags MMOFlags =
6304       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6305   uint64_t SrcOff = 0, DstOff = 0;
6306   SmallVector<SDValue, 8> LoadValues;
6307   SmallVector<SDValue, 8> LoadChains;
6308   SmallVector<SDValue, 8> OutChains;
6309   unsigned NumMemOps = MemOps.size();
6310   for (unsigned i = 0; i < NumMemOps; i++) {
6311     EVT VT = MemOps[i];
6312     unsigned VTSize = VT.getSizeInBits() / 8;
6313     SDValue Value;
6314 
6315     bool isDereferenceable =
6316       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6317     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6318     if (isDereferenceable)
6319       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6320 
6321     Value =
6322         DAG.getLoad(VT, dl, Chain,
6323                     DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6324                     SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags);
6325     LoadValues.push_back(Value);
6326     LoadChains.push_back(Value.getValue(1));
6327     SrcOff += VTSize;
6328   }
6329   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6330   OutChains.clear();
6331   for (unsigned i = 0; i < NumMemOps; i++) {
6332     EVT VT = MemOps[i];
6333     unsigned VTSize = VT.getSizeInBits() / 8;
6334     SDValue Store;
6335 
6336     Store =
6337         DAG.getStore(Chain, dl, LoadValues[i],
6338                      DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6339                      DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6340     OutChains.push_back(Store);
6341     DstOff += VTSize;
6342   }
6343 
6344   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6345 }
6346 
6347 /// Lower the call to 'memset' intrinsic function into a series of store
6348 /// operations.
6349 ///
6350 /// \param DAG Selection DAG where lowered code is placed.
6351 /// \param dl Link to corresponding IR location.
6352 /// \param Chain Control flow dependency.
6353 /// \param Dst Pointer to destination memory location.
6354 /// \param Src Value of byte to write into the memory.
6355 /// \param Size Number of bytes to write.
6356 /// \param Alignment Alignment of the destination in bytes.
6357 /// \param isVol True if destination is volatile.
6358 /// \param DstPtrInfo IR information on the memory pointer.
6359 /// \returns New head in the control flow, if lowering was successful, empty
6360 /// SDValue otherwise.
6361 ///
6362 /// The function tries to replace 'llvm.memset' intrinsic with several store
6363 /// operations and value calculation code. This is usually profitable for small
6364 /// memory size.
6365 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6366                                SDValue Chain, SDValue Dst, SDValue Src,
6367                                uint64_t Size, Align Alignment, bool isVol,
6368                                MachinePointerInfo DstPtrInfo) {
6369   // Turn a memset of undef to nop.
6370   // FIXME: We need to honor volatile even is Src is undef.
6371   if (Src.isUndef())
6372     return Chain;
6373 
6374   // Expand memset to a series of load/store ops if the size operand
6375   // falls below a certain threshold.
6376   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6377   std::vector<EVT> MemOps;
6378   bool DstAlignCanChange = false;
6379   MachineFunction &MF = DAG.getMachineFunction();
6380   MachineFrameInfo &MFI = MF.getFrameInfo();
6381   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6382   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6383   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6384     DstAlignCanChange = true;
6385   bool IsZeroVal =
6386     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6387   if (!TLI.findOptimalMemOpLowering(
6388           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6389           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6390           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6391     return SDValue();
6392 
6393   if (DstAlignCanChange) {
6394     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6395     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6396     if (NewAlign > Alignment) {
6397       // Give the stack frame object a larger alignment if needed.
6398       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6399         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6400       Alignment = NewAlign;
6401     }
6402   }
6403 
6404   SmallVector<SDValue, 8> OutChains;
6405   uint64_t DstOff = 0;
6406   unsigned NumMemOps = MemOps.size();
6407 
6408   // Find the largest store and generate the bit pattern for it.
6409   EVT LargestVT = MemOps[0];
6410   for (unsigned i = 1; i < NumMemOps; i++)
6411     if (MemOps[i].bitsGT(LargestVT))
6412       LargestVT = MemOps[i];
6413   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6414 
6415   for (unsigned i = 0; i < NumMemOps; i++) {
6416     EVT VT = MemOps[i];
6417     unsigned VTSize = VT.getSizeInBits() / 8;
6418     if (VTSize > Size) {
6419       // Issuing an unaligned load / store pair  that overlaps with the previous
6420       // pair. Adjust the offset accordingly.
6421       assert(i == NumMemOps-1 && i != 0);
6422       DstOff -= VTSize - Size;
6423     }
6424 
6425     // If this store is smaller than the largest store see whether we can get
6426     // the smaller value for free with a truncate.
6427     SDValue Value = MemSetValue;
6428     if (VT.bitsLT(LargestVT)) {
6429       if (!LargestVT.isVector() && !VT.isVector() &&
6430           TLI.isTruncateFree(LargestVT, VT))
6431         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6432       else
6433         Value = getMemsetValue(Src, VT, DAG, dl);
6434     }
6435     assert(Value.getValueType() == VT && "Value with wrong type.");
6436     SDValue Store = DAG.getStore(
6437         Chain, dl, Value,
6438         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6439         DstPtrInfo.getWithOffset(DstOff), Alignment,
6440         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6441     OutChains.push_back(Store);
6442     DstOff += VT.getSizeInBits() / 8;
6443     Size -= VTSize;
6444   }
6445 
6446   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6447 }
6448 
6449 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6450                                             unsigned AS) {
6451   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6452   // pointer operands can be losslessly bitcasted to pointers of address space 0
6453   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
6454     report_fatal_error("cannot lower memory intrinsic in address space " +
6455                        Twine(AS));
6456   }
6457 }
6458 
6459 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6460                                 SDValue Src, SDValue Size, Align Alignment,
6461                                 bool isVol, bool AlwaysInline, bool isTailCall,
6462                                 MachinePointerInfo DstPtrInfo,
6463                                 MachinePointerInfo SrcPtrInfo) {
6464   // Check to see if we should lower the memcpy to loads and stores first.
6465   // For cases within the target-specified limits, this is the best choice.
6466   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6467   if (ConstantSize) {
6468     // Memcpy with size zero? Just return the original chain.
6469     if (ConstantSize->isNullValue())
6470       return Chain;
6471 
6472     SDValue Result = getMemcpyLoadsAndStores(
6473         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6474         isVol, false, DstPtrInfo, SrcPtrInfo);
6475     if (Result.getNode())
6476       return Result;
6477   }
6478 
6479   // Then check to see if we should lower the memcpy with target-specific
6480   // code. If the target chooses to do this, this is the next best.
6481   if (TSI) {
6482     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6483         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
6484         DstPtrInfo, SrcPtrInfo);
6485     if (Result.getNode())
6486       return Result;
6487   }
6488 
6489   // If we really need inline code and the target declined to provide it,
6490   // use a (potentially long) sequence of loads and stores.
6491   if (AlwaysInline) {
6492     assert(ConstantSize && "AlwaysInline requires a constant size!");
6493     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6494                                    ConstantSize->getZExtValue(), Alignment,
6495                                    isVol, true, DstPtrInfo, SrcPtrInfo);
6496   }
6497 
6498   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6499   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6500 
6501   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6502   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6503   // respect volatile, so they may do things like read or write memory
6504   // beyond the given memory regions. But fixing this isn't easy, and most
6505   // people don't care.
6506 
6507   // Emit a library call.
6508   TargetLowering::ArgListTy Args;
6509   TargetLowering::ArgListEntry Entry;
6510   Entry.Ty = Type::getInt8PtrTy(*getContext());
6511   Entry.Node = Dst; Args.push_back(Entry);
6512   Entry.Node = Src; Args.push_back(Entry);
6513 
6514   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6515   Entry.Node = Size; Args.push_back(Entry);
6516   // FIXME: pass in SDLoc
6517   TargetLowering::CallLoweringInfo CLI(*this);
6518   CLI.setDebugLoc(dl)
6519       .setChain(Chain)
6520       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6521                     Dst.getValueType().getTypeForEVT(*getContext()),
6522                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6523                                       TLI->getPointerTy(getDataLayout())),
6524                     std::move(Args))
6525       .setDiscardResult()
6526       .setTailCall(isTailCall);
6527 
6528   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6529   return CallResult.second;
6530 }
6531 
6532 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6533                                       SDValue Dst, unsigned DstAlign,
6534                                       SDValue Src, unsigned SrcAlign,
6535                                       SDValue Size, Type *SizeTy,
6536                                       unsigned ElemSz, bool isTailCall,
6537                                       MachinePointerInfo DstPtrInfo,
6538                                       MachinePointerInfo SrcPtrInfo) {
6539   // Emit a library call.
6540   TargetLowering::ArgListTy Args;
6541   TargetLowering::ArgListEntry Entry;
6542   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6543   Entry.Node = Dst;
6544   Args.push_back(Entry);
6545 
6546   Entry.Node = Src;
6547   Args.push_back(Entry);
6548 
6549   Entry.Ty = SizeTy;
6550   Entry.Node = Size;
6551   Args.push_back(Entry);
6552 
6553   RTLIB::Libcall LibraryCall =
6554       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6555   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6556     report_fatal_error("Unsupported element size");
6557 
6558   TargetLowering::CallLoweringInfo CLI(*this);
6559   CLI.setDebugLoc(dl)
6560       .setChain(Chain)
6561       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6562                     Type::getVoidTy(*getContext()),
6563                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6564                                       TLI->getPointerTy(getDataLayout())),
6565                     std::move(Args))
6566       .setDiscardResult()
6567       .setTailCall(isTailCall);
6568 
6569   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6570   return CallResult.second;
6571 }
6572 
6573 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6574                                  SDValue Src, SDValue Size, Align Alignment,
6575                                  bool isVol, bool isTailCall,
6576                                  MachinePointerInfo DstPtrInfo,
6577                                  MachinePointerInfo SrcPtrInfo) {
6578   // Check to see if we should lower the memmove to loads and stores first.
6579   // For cases within the target-specified limits, this is the best choice.
6580   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6581   if (ConstantSize) {
6582     // Memmove with size zero? Just return the original chain.
6583     if (ConstantSize->isNullValue())
6584       return Chain;
6585 
6586     SDValue Result = getMemmoveLoadsAndStores(
6587         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6588         isVol, false, DstPtrInfo, SrcPtrInfo);
6589     if (Result.getNode())
6590       return Result;
6591   }
6592 
6593   // Then check to see if we should lower the memmove with target-specific
6594   // code. If the target chooses to do this, this is the next best.
6595   if (TSI) {
6596     SDValue Result =
6597         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
6598                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
6599     if (Result.getNode())
6600       return Result;
6601   }
6602 
6603   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6604   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6605 
6606   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6607   // not be safe.  See memcpy above for more details.
6608 
6609   // Emit a library call.
6610   TargetLowering::ArgListTy Args;
6611   TargetLowering::ArgListEntry Entry;
6612   Entry.Ty = Type::getInt8PtrTy(*getContext());
6613   Entry.Node = Dst; Args.push_back(Entry);
6614   Entry.Node = Src; Args.push_back(Entry);
6615 
6616   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6617   Entry.Node = Size; Args.push_back(Entry);
6618   // FIXME:  pass in SDLoc
6619   TargetLowering::CallLoweringInfo CLI(*this);
6620   CLI.setDebugLoc(dl)
6621       .setChain(Chain)
6622       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6623                     Dst.getValueType().getTypeForEVT(*getContext()),
6624                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6625                                       TLI->getPointerTy(getDataLayout())),
6626                     std::move(Args))
6627       .setDiscardResult()
6628       .setTailCall(isTailCall);
6629 
6630   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6631   return CallResult.second;
6632 }
6633 
6634 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6635                                        SDValue Dst, unsigned DstAlign,
6636                                        SDValue Src, unsigned SrcAlign,
6637                                        SDValue Size, Type *SizeTy,
6638                                        unsigned ElemSz, bool isTailCall,
6639                                        MachinePointerInfo DstPtrInfo,
6640                                        MachinePointerInfo SrcPtrInfo) {
6641   // Emit a library call.
6642   TargetLowering::ArgListTy Args;
6643   TargetLowering::ArgListEntry Entry;
6644   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6645   Entry.Node = Dst;
6646   Args.push_back(Entry);
6647 
6648   Entry.Node = Src;
6649   Args.push_back(Entry);
6650 
6651   Entry.Ty = SizeTy;
6652   Entry.Node = Size;
6653   Args.push_back(Entry);
6654 
6655   RTLIB::Libcall LibraryCall =
6656       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6657   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6658     report_fatal_error("Unsupported element size");
6659 
6660   TargetLowering::CallLoweringInfo CLI(*this);
6661   CLI.setDebugLoc(dl)
6662       .setChain(Chain)
6663       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6664                     Type::getVoidTy(*getContext()),
6665                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6666                                       TLI->getPointerTy(getDataLayout())),
6667                     std::move(Args))
6668       .setDiscardResult()
6669       .setTailCall(isTailCall);
6670 
6671   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6672   return CallResult.second;
6673 }
6674 
6675 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6676                                 SDValue Src, SDValue Size, Align Alignment,
6677                                 bool isVol, bool isTailCall,
6678                                 MachinePointerInfo DstPtrInfo) {
6679   // Check to see if we should lower the memset to stores first.
6680   // For cases within the target-specified limits, this is the best choice.
6681   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6682   if (ConstantSize) {
6683     // Memset with size zero? Just return the original chain.
6684     if (ConstantSize->isNullValue())
6685       return Chain;
6686 
6687     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
6688                                      ConstantSize->getZExtValue(), Alignment,
6689                                      isVol, DstPtrInfo);
6690 
6691     if (Result.getNode())
6692       return Result;
6693   }
6694 
6695   // Then check to see if we should lower the memset with target-specific
6696   // code. If the target chooses to do this, this is the next best.
6697   if (TSI) {
6698     SDValue Result = TSI->EmitTargetCodeForMemset(
6699         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
6700     if (Result.getNode())
6701       return Result;
6702   }
6703 
6704   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6705 
6706   // Emit a library call.
6707   TargetLowering::ArgListTy Args;
6708   TargetLowering::ArgListEntry Entry;
6709   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6710   Args.push_back(Entry);
6711   Entry.Node = Src;
6712   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6713   Args.push_back(Entry);
6714   Entry.Node = Size;
6715   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6716   Args.push_back(Entry);
6717 
6718   // FIXME: pass in SDLoc
6719   TargetLowering::CallLoweringInfo CLI(*this);
6720   CLI.setDebugLoc(dl)
6721       .setChain(Chain)
6722       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6723                     Dst.getValueType().getTypeForEVT(*getContext()),
6724                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6725                                       TLI->getPointerTy(getDataLayout())),
6726                     std::move(Args))
6727       .setDiscardResult()
6728       .setTailCall(isTailCall);
6729 
6730   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6731   return CallResult.second;
6732 }
6733 
6734 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6735                                       SDValue Dst, unsigned DstAlign,
6736                                       SDValue Value, SDValue Size, Type *SizeTy,
6737                                       unsigned ElemSz, bool isTailCall,
6738                                       MachinePointerInfo DstPtrInfo) {
6739   // Emit a library call.
6740   TargetLowering::ArgListTy Args;
6741   TargetLowering::ArgListEntry Entry;
6742   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6743   Entry.Node = Dst;
6744   Args.push_back(Entry);
6745 
6746   Entry.Ty = Type::getInt8Ty(*getContext());
6747   Entry.Node = Value;
6748   Args.push_back(Entry);
6749 
6750   Entry.Ty = SizeTy;
6751   Entry.Node = Size;
6752   Args.push_back(Entry);
6753 
6754   RTLIB::Libcall LibraryCall =
6755       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6756   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6757     report_fatal_error("Unsupported element size");
6758 
6759   TargetLowering::CallLoweringInfo CLI(*this);
6760   CLI.setDebugLoc(dl)
6761       .setChain(Chain)
6762       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6763                     Type::getVoidTy(*getContext()),
6764                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6765                                       TLI->getPointerTy(getDataLayout())),
6766                     std::move(Args))
6767       .setDiscardResult()
6768       .setTailCall(isTailCall);
6769 
6770   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6771   return CallResult.second;
6772 }
6773 
6774 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6775                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6776                                 MachineMemOperand *MMO) {
6777   FoldingSetNodeID ID;
6778   ID.AddInteger(MemVT.getRawBits());
6779   AddNodeIDNode(ID, Opcode, VTList, Ops);
6780   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6781   void* IP = nullptr;
6782   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6783     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6784     return SDValue(E, 0);
6785   }
6786 
6787   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6788                                     VTList, MemVT, MMO);
6789   createOperands(N, Ops);
6790 
6791   CSEMap.InsertNode(N, IP);
6792   InsertNode(N);
6793   return SDValue(N, 0);
6794 }
6795 
6796 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6797                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6798                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6799                                        MachineMemOperand *MMO) {
6800   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6801          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6802   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6803 
6804   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6805   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6806 }
6807 
6808 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6809                                 SDValue Chain, SDValue Ptr, SDValue Val,
6810                                 MachineMemOperand *MMO) {
6811   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6812           Opcode == ISD::ATOMIC_LOAD_SUB ||
6813           Opcode == ISD::ATOMIC_LOAD_AND ||
6814           Opcode == ISD::ATOMIC_LOAD_CLR ||
6815           Opcode == ISD::ATOMIC_LOAD_OR ||
6816           Opcode == ISD::ATOMIC_LOAD_XOR ||
6817           Opcode == ISD::ATOMIC_LOAD_NAND ||
6818           Opcode == ISD::ATOMIC_LOAD_MIN ||
6819           Opcode == ISD::ATOMIC_LOAD_MAX ||
6820           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6821           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6822           Opcode == ISD::ATOMIC_LOAD_FADD ||
6823           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6824           Opcode == ISD::ATOMIC_SWAP ||
6825           Opcode == ISD::ATOMIC_STORE) &&
6826          "Invalid Atomic Op");
6827 
6828   EVT VT = Val.getValueType();
6829 
6830   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6831                                                getVTList(VT, MVT::Other);
6832   SDValue Ops[] = {Chain, Ptr, Val};
6833   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6834 }
6835 
6836 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6837                                 EVT VT, SDValue Chain, SDValue Ptr,
6838                                 MachineMemOperand *MMO) {
6839   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6840 
6841   SDVTList VTs = getVTList(VT, MVT::Other);
6842   SDValue Ops[] = {Chain, Ptr};
6843   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6844 }
6845 
6846 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6847 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6848   if (Ops.size() == 1)
6849     return Ops[0];
6850 
6851   SmallVector<EVT, 4> VTs;
6852   VTs.reserve(Ops.size());
6853   for (const SDValue &Op : Ops)
6854     VTs.push_back(Op.getValueType());
6855   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6856 }
6857 
6858 SDValue SelectionDAG::getMemIntrinsicNode(
6859     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6860     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
6861     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
6862   if (!Size && MemVT.isScalableVector())
6863     Size = MemoryLocation::UnknownSize;
6864   else if (!Size)
6865     Size = MemVT.getStoreSize();
6866 
6867   MachineFunction &MF = getMachineFunction();
6868   MachineMemOperand *MMO =
6869       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
6870 
6871   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6872 }
6873 
6874 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6875                                           SDVTList VTList,
6876                                           ArrayRef<SDValue> Ops, EVT MemVT,
6877                                           MachineMemOperand *MMO) {
6878   assert((Opcode == ISD::INTRINSIC_VOID ||
6879           Opcode == ISD::INTRINSIC_W_CHAIN ||
6880           Opcode == ISD::PREFETCH ||
6881           ((int)Opcode <= std::numeric_limits<int>::max() &&
6882            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6883          "Opcode is not a memory-accessing opcode!");
6884 
6885   // Memoize the node unless it returns a flag.
6886   MemIntrinsicSDNode *N;
6887   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6888     FoldingSetNodeID ID;
6889     AddNodeIDNode(ID, Opcode, VTList, Ops);
6890     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6891         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6892     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6893     void *IP = nullptr;
6894     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6895       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6896       return SDValue(E, 0);
6897     }
6898 
6899     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6900                                       VTList, MemVT, MMO);
6901     createOperands(N, Ops);
6902 
6903   CSEMap.InsertNode(N, IP);
6904   } else {
6905     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6906                                       VTList, MemVT, MMO);
6907     createOperands(N, Ops);
6908   }
6909   InsertNode(N);
6910   SDValue V(N, 0);
6911   NewSDValueDbgMsg(V, "Creating new node: ", this);
6912   return V;
6913 }
6914 
6915 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6916                                       SDValue Chain, int FrameIndex,
6917                                       int64_t Size, int64_t Offset) {
6918   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6919   const auto VTs = getVTList(MVT::Other);
6920   SDValue Ops[2] = {
6921       Chain,
6922       getFrameIndex(FrameIndex,
6923                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6924                     true)};
6925 
6926   FoldingSetNodeID ID;
6927   AddNodeIDNode(ID, Opcode, VTs, Ops);
6928   ID.AddInteger(FrameIndex);
6929   ID.AddInteger(Size);
6930   ID.AddInteger(Offset);
6931   void *IP = nullptr;
6932   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6933     return SDValue(E, 0);
6934 
6935   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6936       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6937   createOperands(N, Ops);
6938   CSEMap.InsertNode(N, IP);
6939   InsertNode(N);
6940   SDValue V(N, 0);
6941   NewSDValueDbgMsg(V, "Creating new node: ", this);
6942   return V;
6943 }
6944 
6945 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
6946                                          uint64_t Guid, uint64_t Index,
6947                                          uint32_t Attr) {
6948   const unsigned Opcode = ISD::PSEUDO_PROBE;
6949   const auto VTs = getVTList(MVT::Other);
6950   SDValue Ops[] = {Chain};
6951   FoldingSetNodeID ID;
6952   AddNodeIDNode(ID, Opcode, VTs, Ops);
6953   ID.AddInteger(Guid);
6954   ID.AddInteger(Index);
6955   void *IP = nullptr;
6956   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
6957     return SDValue(E, 0);
6958 
6959   auto *N = newSDNode<PseudoProbeSDNode>(
6960       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
6961   createOperands(N, Ops);
6962   CSEMap.InsertNode(N, IP);
6963   InsertNode(N);
6964   SDValue V(N, 0);
6965   NewSDValueDbgMsg(V, "Creating new node: ", this);
6966   return V;
6967 }
6968 
6969 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6970 /// MachinePointerInfo record from it.  This is particularly useful because the
6971 /// code generator has many cases where it doesn't bother passing in a
6972 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6973 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6974                                            SelectionDAG &DAG, SDValue Ptr,
6975                                            int64_t Offset = 0) {
6976   // If this is FI+Offset, we can model it.
6977   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6978     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6979                                              FI->getIndex(), Offset);
6980 
6981   // If this is (FI+Offset1)+Offset2, we can model it.
6982   if (Ptr.getOpcode() != ISD::ADD ||
6983       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6984       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6985     return Info;
6986 
6987   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6988   return MachinePointerInfo::getFixedStack(
6989       DAG.getMachineFunction(), FI,
6990       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6991 }
6992 
6993 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6994 /// MachinePointerInfo record from it.  This is particularly useful because the
6995 /// code generator has many cases where it doesn't bother passing in a
6996 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6997 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6998                                            SelectionDAG &DAG, SDValue Ptr,
6999                                            SDValue OffsetOp) {
7000   // If the 'Offset' value isn't a constant, we can't handle this.
7001   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
7002     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
7003   if (OffsetOp.isUndef())
7004     return InferPointerInfo(Info, DAG, Ptr);
7005   return Info;
7006 }
7007 
7008 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7009                               EVT VT, const SDLoc &dl, SDValue Chain,
7010                               SDValue Ptr, SDValue Offset,
7011                               MachinePointerInfo PtrInfo, EVT MemVT,
7012                               Align Alignment,
7013                               MachineMemOperand::Flags MMOFlags,
7014                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7015   assert(Chain.getValueType() == MVT::Other &&
7016         "Invalid chain type");
7017 
7018   MMOFlags |= MachineMemOperand::MOLoad;
7019   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7020   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7021   // clients.
7022   if (PtrInfo.V.isNull())
7023     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7024 
7025   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7026   MachineFunction &MF = getMachineFunction();
7027   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7028                                                    Alignment, AAInfo, Ranges);
7029   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7030 }
7031 
7032 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7033                               EVT VT, const SDLoc &dl, SDValue Chain,
7034                               SDValue Ptr, SDValue Offset, EVT MemVT,
7035                               MachineMemOperand *MMO) {
7036   if (VT == MemVT) {
7037     ExtType = ISD::NON_EXTLOAD;
7038   } else if (ExtType == ISD::NON_EXTLOAD) {
7039     assert(VT == MemVT && "Non-extending load from different memory type!");
7040   } else {
7041     // Extending load.
7042     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7043            "Should only be an extending load, not truncating!");
7044     assert(VT.isInteger() == MemVT.isInteger() &&
7045            "Cannot convert from FP to Int or Int -> FP!");
7046     assert(VT.isVector() == MemVT.isVector() &&
7047            "Cannot use an ext load to convert to or from a vector!");
7048     assert((!VT.isVector() ||
7049             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7050            "Cannot use an ext load to change the number of vector elements!");
7051   }
7052 
7053   bool Indexed = AM != ISD::UNINDEXED;
7054   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7055 
7056   SDVTList VTs = Indexed ?
7057     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7058   SDValue Ops[] = { Chain, Ptr, Offset };
7059   FoldingSetNodeID ID;
7060   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7061   ID.AddInteger(MemVT.getRawBits());
7062   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7063       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7064   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7065   void *IP = nullptr;
7066   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7067     cast<LoadSDNode>(E)->refineAlignment(MMO);
7068     return SDValue(E, 0);
7069   }
7070   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7071                                   ExtType, MemVT, MMO);
7072   createOperands(N, Ops);
7073 
7074   CSEMap.InsertNode(N, IP);
7075   InsertNode(N);
7076   SDValue V(N, 0);
7077   NewSDValueDbgMsg(V, "Creating new node: ", this);
7078   return V;
7079 }
7080 
7081 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7082                               SDValue Ptr, MachinePointerInfo PtrInfo,
7083                               MaybeAlign Alignment,
7084                               MachineMemOperand::Flags MMOFlags,
7085                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7086   SDValue Undef = getUNDEF(Ptr.getValueType());
7087   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7088                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7089 }
7090 
7091 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7092                               SDValue Ptr, MachineMemOperand *MMO) {
7093   SDValue Undef = getUNDEF(Ptr.getValueType());
7094   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7095                  VT, MMO);
7096 }
7097 
7098 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7099                                  EVT VT, SDValue Chain, SDValue Ptr,
7100                                  MachinePointerInfo PtrInfo, EVT MemVT,
7101                                  MaybeAlign Alignment,
7102                                  MachineMemOperand::Flags MMOFlags,
7103                                  const AAMDNodes &AAInfo) {
7104   SDValue Undef = getUNDEF(Ptr.getValueType());
7105   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7106                  MemVT, Alignment, MMOFlags, AAInfo);
7107 }
7108 
7109 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7110                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7111                                  MachineMemOperand *MMO) {
7112   SDValue Undef = getUNDEF(Ptr.getValueType());
7113   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7114                  MemVT, MMO);
7115 }
7116 
7117 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7118                                      SDValue Base, SDValue Offset,
7119                                      ISD::MemIndexedMode AM) {
7120   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7121   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7122   // Don't propagate the invariant or dereferenceable flags.
7123   auto MMOFlags =
7124       LD->getMemOperand()->getFlags() &
7125       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7126   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7127                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7128                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7129 }
7130 
7131 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7132                                SDValue Ptr, MachinePointerInfo PtrInfo,
7133                                Align Alignment,
7134                                MachineMemOperand::Flags MMOFlags,
7135                                const AAMDNodes &AAInfo) {
7136   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7137 
7138   MMOFlags |= MachineMemOperand::MOStore;
7139   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7140 
7141   if (PtrInfo.V.isNull())
7142     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7143 
7144   MachineFunction &MF = getMachineFunction();
7145   uint64_t Size =
7146       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7147   MachineMemOperand *MMO =
7148       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7149   return getStore(Chain, dl, Val, Ptr, MMO);
7150 }
7151 
7152 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7153                                SDValue Ptr, MachineMemOperand *MMO) {
7154   assert(Chain.getValueType() == MVT::Other &&
7155         "Invalid chain type");
7156   EVT VT = Val.getValueType();
7157   SDVTList VTs = getVTList(MVT::Other);
7158   SDValue Undef = getUNDEF(Ptr.getValueType());
7159   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7160   FoldingSetNodeID ID;
7161   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7162   ID.AddInteger(VT.getRawBits());
7163   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7164       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7165   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7166   void *IP = nullptr;
7167   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7168     cast<StoreSDNode>(E)->refineAlignment(MMO);
7169     return SDValue(E, 0);
7170   }
7171   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7172                                    ISD::UNINDEXED, false, VT, MMO);
7173   createOperands(N, Ops);
7174 
7175   CSEMap.InsertNode(N, IP);
7176   InsertNode(N);
7177   SDValue V(N, 0);
7178   NewSDValueDbgMsg(V, "Creating new node: ", this);
7179   return V;
7180 }
7181 
7182 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7183                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7184                                     EVT SVT, Align Alignment,
7185                                     MachineMemOperand::Flags MMOFlags,
7186                                     const AAMDNodes &AAInfo) {
7187   assert(Chain.getValueType() == MVT::Other &&
7188         "Invalid chain type");
7189 
7190   MMOFlags |= MachineMemOperand::MOStore;
7191   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7192 
7193   if (PtrInfo.V.isNull())
7194     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7195 
7196   MachineFunction &MF = getMachineFunction();
7197   MachineMemOperand *MMO = MF.getMachineMemOperand(
7198       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7199       Alignment, AAInfo);
7200   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7201 }
7202 
7203 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7204                                     SDValue Ptr, EVT SVT,
7205                                     MachineMemOperand *MMO) {
7206   EVT VT = Val.getValueType();
7207 
7208   assert(Chain.getValueType() == MVT::Other &&
7209         "Invalid chain type");
7210   if (VT == SVT)
7211     return getStore(Chain, dl, Val, Ptr, MMO);
7212 
7213   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7214          "Should only be a truncating store, not extending!");
7215   assert(VT.isInteger() == SVT.isInteger() &&
7216          "Can't do FP-INT conversion!");
7217   assert(VT.isVector() == SVT.isVector() &&
7218          "Cannot use trunc store to convert to or from a vector!");
7219   assert((!VT.isVector() ||
7220           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7221          "Cannot use trunc store to change the number of vector elements!");
7222 
7223   SDVTList VTs = getVTList(MVT::Other);
7224   SDValue Undef = getUNDEF(Ptr.getValueType());
7225   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7226   FoldingSetNodeID ID;
7227   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7228   ID.AddInteger(SVT.getRawBits());
7229   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7230       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7231   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7232   void *IP = nullptr;
7233   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7234     cast<StoreSDNode>(E)->refineAlignment(MMO);
7235     return SDValue(E, 0);
7236   }
7237   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7238                                    ISD::UNINDEXED, true, SVT, MMO);
7239   createOperands(N, Ops);
7240 
7241   CSEMap.InsertNode(N, IP);
7242   InsertNode(N);
7243   SDValue V(N, 0);
7244   NewSDValueDbgMsg(V, "Creating new node: ", this);
7245   return V;
7246 }
7247 
7248 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7249                                       SDValue Base, SDValue Offset,
7250                                       ISD::MemIndexedMode AM) {
7251   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7252   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7253   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7254   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7255   FoldingSetNodeID ID;
7256   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7257   ID.AddInteger(ST->getMemoryVT().getRawBits());
7258   ID.AddInteger(ST->getRawSubclassData());
7259   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7260   void *IP = nullptr;
7261   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7262     return SDValue(E, 0);
7263 
7264   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7265                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7266                                    ST->getMemOperand());
7267   createOperands(N, Ops);
7268 
7269   CSEMap.InsertNode(N, IP);
7270   InsertNode(N);
7271   SDValue V(N, 0);
7272   NewSDValueDbgMsg(V, "Creating new node: ", this);
7273   return V;
7274 }
7275 
7276 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7277                                     SDValue Base, SDValue Offset, SDValue Mask,
7278                                     SDValue PassThru, EVT MemVT,
7279                                     MachineMemOperand *MMO,
7280                                     ISD::MemIndexedMode AM,
7281                                     ISD::LoadExtType ExtTy, bool isExpanding) {
7282   bool Indexed = AM != ISD::UNINDEXED;
7283   assert((Indexed || Offset.isUndef()) &&
7284          "Unindexed masked load with an offset!");
7285   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7286                          : getVTList(VT, MVT::Other);
7287   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7288   FoldingSetNodeID ID;
7289   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7290   ID.AddInteger(MemVT.getRawBits());
7291   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7292       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7293   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7294   void *IP = nullptr;
7295   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7296     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7297     return SDValue(E, 0);
7298   }
7299   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7300                                         AM, ExtTy, isExpanding, MemVT, MMO);
7301   createOperands(N, Ops);
7302 
7303   CSEMap.InsertNode(N, IP);
7304   InsertNode(N);
7305   SDValue V(N, 0);
7306   NewSDValueDbgMsg(V, "Creating new node: ", this);
7307   return V;
7308 }
7309 
7310 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7311                                            SDValue Base, SDValue Offset,
7312                                            ISD::MemIndexedMode AM) {
7313   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7314   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7315   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7316                        Offset, LD->getMask(), LD->getPassThru(),
7317                        LD->getMemoryVT(), LD->getMemOperand(), AM,
7318                        LD->getExtensionType(), LD->isExpandingLoad());
7319 }
7320 
7321 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7322                                      SDValue Val, SDValue Base, SDValue Offset,
7323                                      SDValue Mask, EVT MemVT,
7324                                      MachineMemOperand *MMO,
7325                                      ISD::MemIndexedMode AM, bool IsTruncating,
7326                                      bool IsCompressing) {
7327   assert(Chain.getValueType() == MVT::Other &&
7328         "Invalid chain type");
7329   bool Indexed = AM != ISD::UNINDEXED;
7330   assert((Indexed || Offset.isUndef()) &&
7331          "Unindexed masked store with an offset!");
7332   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7333                          : getVTList(MVT::Other);
7334   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7335   FoldingSetNodeID ID;
7336   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7337   ID.AddInteger(MemVT.getRawBits());
7338   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7339       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7340   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7341   void *IP = nullptr;
7342   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7343     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7344     return SDValue(E, 0);
7345   }
7346   auto *N =
7347       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7348                                    IsTruncating, IsCompressing, MemVT, MMO);
7349   createOperands(N, Ops);
7350 
7351   CSEMap.InsertNode(N, IP);
7352   InsertNode(N);
7353   SDValue V(N, 0);
7354   NewSDValueDbgMsg(V, "Creating new node: ", this);
7355   return V;
7356 }
7357 
7358 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7359                                             SDValue Base, SDValue Offset,
7360                                             ISD::MemIndexedMode AM) {
7361   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7362   assert(ST->getOffset().isUndef() &&
7363          "Masked store is already a indexed store!");
7364   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7365                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7366                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
7367 }
7368 
7369 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7370                                       ArrayRef<SDValue> Ops,
7371                                       MachineMemOperand *MMO,
7372                                       ISD::MemIndexType IndexType,
7373                                       ISD::LoadExtType ExtTy) {
7374   assert(Ops.size() == 6 && "Incompatible number of operands");
7375 
7376   FoldingSetNodeID ID;
7377   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7378   ID.AddInteger(VT.getRawBits());
7379   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7380       dl.getIROrder(), VTs, VT, MMO, IndexType, ExtTy));
7381   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7382   void *IP = nullptr;
7383   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7384     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7385     return SDValue(E, 0);
7386   }
7387 
7388   IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]);
7389   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7390                                           VTs, VT, MMO, IndexType, ExtTy);
7391   createOperands(N, Ops);
7392 
7393   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7394          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7395   assert(N->getMask().getValueType().getVectorElementCount() ==
7396              N->getValueType(0).getVectorElementCount() &&
7397          "Vector width mismatch between mask and data");
7398   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7399              N->getValueType(0).getVectorElementCount().isScalable() &&
7400          "Scalable flags of index and data do not match");
7401   assert(ElementCount::isKnownGE(
7402              N->getIndex().getValueType().getVectorElementCount(),
7403              N->getValueType(0).getVectorElementCount()) &&
7404          "Vector width mismatch between index and data");
7405   assert(isa<ConstantSDNode>(N->getScale()) &&
7406          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7407          "Scale should be a constant power of 2");
7408 
7409   CSEMap.InsertNode(N, IP);
7410   InsertNode(N);
7411   SDValue V(N, 0);
7412   NewSDValueDbgMsg(V, "Creating new node: ", this);
7413   return V;
7414 }
7415 
7416 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7417                                        ArrayRef<SDValue> Ops,
7418                                        MachineMemOperand *MMO,
7419                                        ISD::MemIndexType IndexType,
7420                                        bool IsTrunc) {
7421   assert(Ops.size() == 6 && "Incompatible number of operands");
7422 
7423   FoldingSetNodeID ID;
7424   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7425   ID.AddInteger(VT.getRawBits());
7426   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7427       dl.getIROrder(), VTs, VT, MMO, IndexType, IsTrunc));
7428   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7429   void *IP = nullptr;
7430   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7431     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7432     return SDValue(E, 0);
7433   }
7434 
7435   IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]);
7436   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7437                                            VTs, VT, MMO, IndexType, IsTrunc);
7438   createOperands(N, Ops);
7439 
7440   assert(N->getMask().getValueType().getVectorElementCount() ==
7441              N->getValue().getValueType().getVectorElementCount() &&
7442          "Vector width mismatch between mask and data");
7443   assert(
7444       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7445           N->getValue().getValueType().getVectorElementCount().isScalable() &&
7446       "Scalable flags of index and data do not match");
7447   assert(ElementCount::isKnownGE(
7448              N->getIndex().getValueType().getVectorElementCount(),
7449              N->getValue().getValueType().getVectorElementCount()) &&
7450          "Vector width mismatch between index and data");
7451   assert(isa<ConstantSDNode>(N->getScale()) &&
7452          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7453          "Scale should be a constant power of 2");
7454 
7455   CSEMap.InsertNode(N, IP);
7456   InsertNode(N);
7457   SDValue V(N, 0);
7458   NewSDValueDbgMsg(V, "Creating new node: ", this);
7459   return V;
7460 }
7461 
7462 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7463   // select undef, T, F --> T (if T is a constant), otherwise F
7464   // select, ?, undef, F --> F
7465   // select, ?, T, undef --> T
7466   if (Cond.isUndef())
7467     return isConstantValueOfAnyType(T) ? T : F;
7468   if (T.isUndef())
7469     return F;
7470   if (F.isUndef())
7471     return T;
7472 
7473   // select true, T, F --> T
7474   // select false, T, F --> F
7475   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7476     return CondC->isNullValue() ? F : T;
7477 
7478   // TODO: This should simplify VSELECT with constant condition using something
7479   // like this (but check boolean contents to be complete?):
7480   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7481   //    return T;
7482   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7483   //    return F;
7484 
7485   // select ?, T, T --> T
7486   if (T == F)
7487     return T;
7488 
7489   return SDValue();
7490 }
7491 
7492 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7493   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7494   if (X.isUndef())
7495     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7496   // shift X, undef --> undef (because it may shift by the bitwidth)
7497   if (Y.isUndef())
7498     return getUNDEF(X.getValueType());
7499 
7500   // shift 0, Y --> 0
7501   // shift X, 0 --> X
7502   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7503     return X;
7504 
7505   // shift X, C >= bitwidth(X) --> undef
7506   // All vector elements must be too big (or undef) to avoid partial undefs.
7507   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7508     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7509   };
7510   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7511     return getUNDEF(X.getValueType());
7512 
7513   return SDValue();
7514 }
7515 
7516 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
7517                                       SDNodeFlags Flags) {
7518   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
7519   // (an undef operand can be chosen to be Nan/Inf), then the result of this
7520   // operation is poison. That result can be relaxed to undef.
7521   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
7522   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7523   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
7524                 (YC && YC->getValueAPF().isNaN());
7525   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
7526                 (YC && YC->getValueAPF().isInfinity());
7527 
7528   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
7529     return getUNDEF(X.getValueType());
7530 
7531   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
7532     return getUNDEF(X.getValueType());
7533 
7534   if (!YC)
7535     return SDValue();
7536 
7537   // X + -0.0 --> X
7538   if (Opcode == ISD::FADD)
7539     if (YC->getValueAPF().isNegZero())
7540       return X;
7541 
7542   // X - +0.0 --> X
7543   if (Opcode == ISD::FSUB)
7544     if (YC->getValueAPF().isPosZero())
7545       return X;
7546 
7547   // X * 1.0 --> X
7548   // X / 1.0 --> X
7549   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7550     if (YC->getValueAPF().isExactlyValue(1.0))
7551       return X;
7552 
7553   // X * 0.0 --> 0.0
7554   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
7555     if (YC->getValueAPF().isZero())
7556       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
7557 
7558   return SDValue();
7559 }
7560 
7561 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7562                                SDValue Ptr, SDValue SV, unsigned Align) {
7563   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7564   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7565 }
7566 
7567 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7568                               ArrayRef<SDUse> Ops) {
7569   switch (Ops.size()) {
7570   case 0: return getNode(Opcode, DL, VT);
7571   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7572   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7573   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7574   default: break;
7575   }
7576 
7577   // Copy from an SDUse array into an SDValue array for use with
7578   // the regular getNode logic.
7579   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7580   return getNode(Opcode, DL, VT, NewOps);
7581 }
7582 
7583 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7584                               ArrayRef<SDValue> Ops) {
7585   SDNodeFlags Flags;
7586   if (Inserter)
7587     Flags = Inserter->getFlags();
7588   return getNode(Opcode, DL, VT, Ops, Flags);
7589 }
7590 
7591 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7592                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7593   unsigned NumOps = Ops.size();
7594   switch (NumOps) {
7595   case 0: return getNode(Opcode, DL, VT);
7596   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7597   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7598   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7599   default: break;
7600   }
7601 
7602   switch (Opcode) {
7603   default: break;
7604   case ISD::BUILD_VECTOR:
7605     // Attempt to simplify BUILD_VECTOR.
7606     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7607       return V;
7608     break;
7609   case ISD::CONCAT_VECTORS:
7610     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7611       return V;
7612     break;
7613   case ISD::SELECT_CC:
7614     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7615     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7616            "LHS and RHS of condition must have same type!");
7617     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7618            "True and False arms of SelectCC must have same type!");
7619     assert(Ops[2].getValueType() == VT &&
7620            "select_cc node must be of same type as true and false value!");
7621     break;
7622   case ISD::BR_CC:
7623     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7624     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7625            "LHS/RHS of comparison should match types!");
7626     break;
7627   }
7628 
7629   // Memoize nodes.
7630   SDNode *N;
7631   SDVTList VTs = getVTList(VT);
7632 
7633   if (VT != MVT::Glue) {
7634     FoldingSetNodeID ID;
7635     AddNodeIDNode(ID, Opcode, VTs, Ops);
7636     void *IP = nullptr;
7637 
7638     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7639       return SDValue(E, 0);
7640 
7641     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7642     createOperands(N, Ops);
7643 
7644     CSEMap.InsertNode(N, IP);
7645   } else {
7646     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7647     createOperands(N, Ops);
7648   }
7649 
7650   N->setFlags(Flags);
7651   InsertNode(N);
7652   SDValue V(N, 0);
7653   NewSDValueDbgMsg(V, "Creating new node: ", this);
7654   return V;
7655 }
7656 
7657 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7658                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7659   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7660 }
7661 
7662 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7663                               ArrayRef<SDValue> Ops) {
7664   SDNodeFlags Flags;
7665   if (Inserter)
7666     Flags = Inserter->getFlags();
7667   return getNode(Opcode, DL, VTList, Ops, Flags);
7668 }
7669 
7670 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7671                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7672   if (VTList.NumVTs == 1)
7673     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7674 
7675   switch (Opcode) {
7676   case ISD::STRICT_FP_EXTEND:
7677     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
7678            "Invalid STRICT_FP_EXTEND!");
7679     assert(VTList.VTs[0].isFloatingPoint() &&
7680            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
7681     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7682            "STRICT_FP_EXTEND result type should be vector iff the operand "
7683            "type is vector!");
7684     assert((!VTList.VTs[0].isVector() ||
7685             VTList.VTs[0].getVectorNumElements() ==
7686             Ops[1].getValueType().getVectorNumElements()) &&
7687            "Vector element count mismatch!");
7688     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
7689            "Invalid fpext node, dst <= src!");
7690     break;
7691   case ISD::STRICT_FP_ROUND:
7692     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
7693     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7694            "STRICT_FP_ROUND result type should be vector iff the operand "
7695            "type is vector!");
7696     assert((!VTList.VTs[0].isVector() ||
7697             VTList.VTs[0].getVectorNumElements() ==
7698             Ops[1].getValueType().getVectorNumElements()) &&
7699            "Vector element count mismatch!");
7700     assert(VTList.VTs[0].isFloatingPoint() &&
7701            Ops[1].getValueType().isFloatingPoint() &&
7702            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
7703            isa<ConstantSDNode>(Ops[2]) &&
7704            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
7705             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
7706            "Invalid STRICT_FP_ROUND!");
7707     break;
7708 #if 0
7709   // FIXME: figure out how to safely handle things like
7710   // int foo(int x) { return 1 << (x & 255); }
7711   // int bar() { return foo(256); }
7712   case ISD::SRA_PARTS:
7713   case ISD::SRL_PARTS:
7714   case ISD::SHL_PARTS:
7715     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7716         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7717       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7718     else if (N3.getOpcode() == ISD::AND)
7719       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7720         // If the and is only masking out bits that cannot effect the shift,
7721         // eliminate the and.
7722         unsigned NumBits = VT.getScalarSizeInBits()*2;
7723         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7724           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7725       }
7726     break;
7727 #endif
7728   }
7729 
7730   // Memoize the node unless it returns a flag.
7731   SDNode *N;
7732   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7733     FoldingSetNodeID ID;
7734     AddNodeIDNode(ID, Opcode, VTList, Ops);
7735     void *IP = nullptr;
7736     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7737       return SDValue(E, 0);
7738 
7739     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7740     createOperands(N, Ops);
7741     CSEMap.InsertNode(N, IP);
7742   } else {
7743     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7744     createOperands(N, Ops);
7745   }
7746 
7747   N->setFlags(Flags);
7748   InsertNode(N);
7749   SDValue V(N, 0);
7750   NewSDValueDbgMsg(V, "Creating new node: ", this);
7751   return V;
7752 }
7753 
7754 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7755                               SDVTList VTList) {
7756   return getNode(Opcode, DL, VTList, None);
7757 }
7758 
7759 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7760                               SDValue N1) {
7761   SDValue Ops[] = { N1 };
7762   return getNode(Opcode, DL, VTList, Ops);
7763 }
7764 
7765 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7766                               SDValue N1, SDValue N2) {
7767   SDValue Ops[] = { N1, N2 };
7768   return getNode(Opcode, DL, VTList, Ops);
7769 }
7770 
7771 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7772                               SDValue N1, SDValue N2, SDValue N3) {
7773   SDValue Ops[] = { N1, N2, N3 };
7774   return getNode(Opcode, DL, VTList, Ops);
7775 }
7776 
7777 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7778                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7779   SDValue Ops[] = { N1, N2, N3, N4 };
7780   return getNode(Opcode, DL, VTList, Ops);
7781 }
7782 
7783 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7784                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7785                               SDValue N5) {
7786   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7787   return getNode(Opcode, DL, VTList, Ops);
7788 }
7789 
7790 SDVTList SelectionDAG::getVTList(EVT VT) {
7791   return makeVTList(SDNode::getValueTypeList(VT), 1);
7792 }
7793 
7794 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7795   FoldingSetNodeID ID;
7796   ID.AddInteger(2U);
7797   ID.AddInteger(VT1.getRawBits());
7798   ID.AddInteger(VT2.getRawBits());
7799 
7800   void *IP = nullptr;
7801   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7802   if (!Result) {
7803     EVT *Array = Allocator.Allocate<EVT>(2);
7804     Array[0] = VT1;
7805     Array[1] = VT2;
7806     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7807     VTListMap.InsertNode(Result, IP);
7808   }
7809   return Result->getSDVTList();
7810 }
7811 
7812 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7813   FoldingSetNodeID ID;
7814   ID.AddInteger(3U);
7815   ID.AddInteger(VT1.getRawBits());
7816   ID.AddInteger(VT2.getRawBits());
7817   ID.AddInteger(VT3.getRawBits());
7818 
7819   void *IP = nullptr;
7820   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7821   if (!Result) {
7822     EVT *Array = Allocator.Allocate<EVT>(3);
7823     Array[0] = VT1;
7824     Array[1] = VT2;
7825     Array[2] = VT3;
7826     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7827     VTListMap.InsertNode(Result, IP);
7828   }
7829   return Result->getSDVTList();
7830 }
7831 
7832 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7833   FoldingSetNodeID ID;
7834   ID.AddInteger(4U);
7835   ID.AddInteger(VT1.getRawBits());
7836   ID.AddInteger(VT2.getRawBits());
7837   ID.AddInteger(VT3.getRawBits());
7838   ID.AddInteger(VT4.getRawBits());
7839 
7840   void *IP = nullptr;
7841   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7842   if (!Result) {
7843     EVT *Array = Allocator.Allocate<EVT>(4);
7844     Array[0] = VT1;
7845     Array[1] = VT2;
7846     Array[2] = VT3;
7847     Array[3] = VT4;
7848     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7849     VTListMap.InsertNode(Result, IP);
7850   }
7851   return Result->getSDVTList();
7852 }
7853 
7854 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7855   unsigned NumVTs = VTs.size();
7856   FoldingSetNodeID ID;
7857   ID.AddInteger(NumVTs);
7858   for (unsigned index = 0; index < NumVTs; index++) {
7859     ID.AddInteger(VTs[index].getRawBits());
7860   }
7861 
7862   void *IP = nullptr;
7863   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7864   if (!Result) {
7865     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7866     llvm::copy(VTs, Array);
7867     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7868     VTListMap.InsertNode(Result, IP);
7869   }
7870   return Result->getSDVTList();
7871 }
7872 
7873 
7874 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7875 /// specified operands.  If the resultant node already exists in the DAG,
7876 /// this does not modify the specified node, instead it returns the node that
7877 /// already exists.  If the resultant node does not exist in the DAG, the
7878 /// input node is returned.  As a degenerate case, if you specify the same
7879 /// input operands as the node already has, the input node is returned.
7880 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7881   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7882 
7883   // Check to see if there is no change.
7884   if (Op == N->getOperand(0)) return N;
7885 
7886   // See if the modified node already exists.
7887   void *InsertPos = nullptr;
7888   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7889     return Existing;
7890 
7891   // Nope it doesn't.  Remove the node from its current place in the maps.
7892   if (InsertPos)
7893     if (!RemoveNodeFromCSEMaps(N))
7894       InsertPos = nullptr;
7895 
7896   // Now we update the operands.
7897   N->OperandList[0].set(Op);
7898 
7899   updateDivergence(N);
7900   // If this gets put into a CSE map, add it.
7901   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7902   return N;
7903 }
7904 
7905 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7906   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7907 
7908   // Check to see if there is no change.
7909   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7910     return N;   // No operands changed, just return the input node.
7911 
7912   // See if the modified node already exists.
7913   void *InsertPos = nullptr;
7914   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7915     return Existing;
7916 
7917   // Nope it doesn't.  Remove the node from its current place in the maps.
7918   if (InsertPos)
7919     if (!RemoveNodeFromCSEMaps(N))
7920       InsertPos = nullptr;
7921 
7922   // Now we update the operands.
7923   if (N->OperandList[0] != Op1)
7924     N->OperandList[0].set(Op1);
7925   if (N->OperandList[1] != Op2)
7926     N->OperandList[1].set(Op2);
7927 
7928   updateDivergence(N);
7929   // If this gets put into a CSE map, add it.
7930   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7931   return N;
7932 }
7933 
7934 SDNode *SelectionDAG::
7935 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7936   SDValue Ops[] = { Op1, Op2, Op3 };
7937   return UpdateNodeOperands(N, Ops);
7938 }
7939 
7940 SDNode *SelectionDAG::
7941 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7942                    SDValue Op3, SDValue Op4) {
7943   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7944   return UpdateNodeOperands(N, Ops);
7945 }
7946 
7947 SDNode *SelectionDAG::
7948 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7949                    SDValue Op3, SDValue Op4, SDValue Op5) {
7950   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7951   return UpdateNodeOperands(N, Ops);
7952 }
7953 
7954 SDNode *SelectionDAG::
7955 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7956   unsigned NumOps = Ops.size();
7957   assert(N->getNumOperands() == NumOps &&
7958          "Update with wrong number of operands");
7959 
7960   // If no operands changed just return the input node.
7961   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7962     return N;
7963 
7964   // See if the modified node already exists.
7965   void *InsertPos = nullptr;
7966   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7967     return Existing;
7968 
7969   // Nope it doesn't.  Remove the node from its current place in the maps.
7970   if (InsertPos)
7971     if (!RemoveNodeFromCSEMaps(N))
7972       InsertPos = nullptr;
7973 
7974   // Now we update the operands.
7975   for (unsigned i = 0; i != NumOps; ++i)
7976     if (N->OperandList[i] != Ops[i])
7977       N->OperandList[i].set(Ops[i]);
7978 
7979   updateDivergence(N);
7980   // If this gets put into a CSE map, add it.
7981   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7982   return N;
7983 }
7984 
7985 /// DropOperands - Release the operands and set this node to have
7986 /// zero operands.
7987 void SDNode::DropOperands() {
7988   // Unlike the code in MorphNodeTo that does this, we don't need to
7989   // watch for dead nodes here.
7990   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7991     SDUse &Use = *I++;
7992     Use.set(SDValue());
7993   }
7994 }
7995 
7996 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7997                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7998   if (NewMemRefs.empty()) {
7999     N->clearMemRefs();
8000     return;
8001   }
8002 
8003   // Check if we can avoid allocating by storing a single reference directly.
8004   if (NewMemRefs.size() == 1) {
8005     N->MemRefs = NewMemRefs[0];
8006     N->NumMemRefs = 1;
8007     return;
8008   }
8009 
8010   MachineMemOperand **MemRefsBuffer =
8011       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
8012   llvm::copy(NewMemRefs, MemRefsBuffer);
8013   N->MemRefs = MemRefsBuffer;
8014   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
8015 }
8016 
8017 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
8018 /// machine opcode.
8019 ///
8020 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8021                                    EVT VT) {
8022   SDVTList VTs = getVTList(VT);
8023   return SelectNodeTo(N, MachineOpc, VTs, None);
8024 }
8025 
8026 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8027                                    EVT VT, SDValue Op1) {
8028   SDVTList VTs = getVTList(VT);
8029   SDValue Ops[] = { Op1 };
8030   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8031 }
8032 
8033 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8034                                    EVT VT, SDValue Op1,
8035                                    SDValue Op2) {
8036   SDVTList VTs = getVTList(VT);
8037   SDValue Ops[] = { Op1, Op2 };
8038   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8039 }
8040 
8041 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8042                                    EVT VT, SDValue Op1,
8043                                    SDValue Op2, SDValue Op3) {
8044   SDVTList VTs = getVTList(VT);
8045   SDValue Ops[] = { Op1, Op2, Op3 };
8046   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8047 }
8048 
8049 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8050                                    EVT VT, ArrayRef<SDValue> Ops) {
8051   SDVTList VTs = getVTList(VT);
8052   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8053 }
8054 
8055 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8056                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
8057   SDVTList VTs = getVTList(VT1, VT2);
8058   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8059 }
8060 
8061 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8062                                    EVT VT1, EVT VT2) {
8063   SDVTList VTs = getVTList(VT1, VT2);
8064   return SelectNodeTo(N, MachineOpc, VTs, None);
8065 }
8066 
8067 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8068                                    EVT VT1, EVT VT2, EVT VT3,
8069                                    ArrayRef<SDValue> Ops) {
8070   SDVTList VTs = getVTList(VT1, VT2, VT3);
8071   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8072 }
8073 
8074 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8075                                    EVT VT1, EVT VT2,
8076                                    SDValue Op1, SDValue Op2) {
8077   SDVTList VTs = getVTList(VT1, VT2);
8078   SDValue Ops[] = { Op1, Op2 };
8079   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8080 }
8081 
8082 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8083                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
8084   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
8085   // Reset the NodeID to -1.
8086   New->setNodeId(-1);
8087   if (New != N) {
8088     ReplaceAllUsesWith(N, New);
8089     RemoveDeadNode(N);
8090   }
8091   return New;
8092 }
8093 
8094 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
8095 /// the line number information on the merged node since it is not possible to
8096 /// preserve the information that operation is associated with multiple lines.
8097 /// This will make the debugger working better at -O0, were there is a higher
8098 /// probability having other instructions associated with that line.
8099 ///
8100 /// For IROrder, we keep the smaller of the two
8101 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
8102   DebugLoc NLoc = N->getDebugLoc();
8103   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
8104     N->setDebugLoc(DebugLoc());
8105   }
8106   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
8107   N->setIROrder(Order);
8108   return N;
8109 }
8110 
8111 /// MorphNodeTo - This *mutates* the specified node to have the specified
8112 /// return type, opcode, and operands.
8113 ///
8114 /// Note that MorphNodeTo returns the resultant node.  If there is already a
8115 /// node of the specified opcode and operands, it returns that node instead of
8116 /// the current one.  Note that the SDLoc need not be the same.
8117 ///
8118 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8119 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8120 /// node, and because it doesn't require CSE recalculation for any of
8121 /// the node's users.
8122 ///
8123 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8124 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8125 /// the legalizer which maintain worklists that would need to be updated when
8126 /// deleting things.
8127 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8128                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8129   // If an identical node already exists, use it.
8130   void *IP = nullptr;
8131   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8132     FoldingSetNodeID ID;
8133     AddNodeIDNode(ID, Opc, VTs, Ops);
8134     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8135       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8136   }
8137 
8138   if (!RemoveNodeFromCSEMaps(N))
8139     IP = nullptr;
8140 
8141   // Start the morphing.
8142   N->NodeType = Opc;
8143   N->ValueList = VTs.VTs;
8144   N->NumValues = VTs.NumVTs;
8145 
8146   // Clear the operands list, updating used nodes to remove this from their
8147   // use list.  Keep track of any operands that become dead as a result.
8148   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8149   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8150     SDUse &Use = *I++;
8151     SDNode *Used = Use.getNode();
8152     Use.set(SDValue());
8153     if (Used->use_empty())
8154       DeadNodeSet.insert(Used);
8155   }
8156 
8157   // For MachineNode, initialize the memory references information.
8158   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8159     MN->clearMemRefs();
8160 
8161   // Swap for an appropriately sized array from the recycler.
8162   removeOperands(N);
8163   createOperands(N, Ops);
8164 
8165   // Delete any nodes that are still dead after adding the uses for the
8166   // new operands.
8167   if (!DeadNodeSet.empty()) {
8168     SmallVector<SDNode *, 16> DeadNodes;
8169     for (SDNode *N : DeadNodeSet)
8170       if (N->use_empty())
8171         DeadNodes.push_back(N);
8172     RemoveDeadNodes(DeadNodes);
8173   }
8174 
8175   if (IP)
8176     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8177   return N;
8178 }
8179 
8180 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8181   unsigned OrigOpc = Node->getOpcode();
8182   unsigned NewOpc;
8183   switch (OrigOpc) {
8184   default:
8185     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8186 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8187   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8188 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8189   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8190 #include "llvm/IR/ConstrainedOps.def"
8191   }
8192 
8193   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8194 
8195   // We're taking this node out of the chain, so we need to re-link things.
8196   SDValue InputChain = Node->getOperand(0);
8197   SDValue OutputChain = SDValue(Node, 1);
8198   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8199 
8200   SmallVector<SDValue, 3> Ops;
8201   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8202     Ops.push_back(Node->getOperand(i));
8203 
8204   SDVTList VTs = getVTList(Node->getValueType(0));
8205   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
8206 
8207   // MorphNodeTo can operate in two ways: if an existing node with the
8208   // specified operands exists, it can just return it.  Otherwise, it
8209   // updates the node in place to have the requested operands.
8210   if (Res == Node) {
8211     // If we updated the node in place, reset the node ID.  To the isel,
8212     // this should be just like a newly allocated machine node.
8213     Res->setNodeId(-1);
8214   } else {
8215     ReplaceAllUsesWith(Node, Res);
8216     RemoveDeadNode(Node);
8217   }
8218 
8219   return Res;
8220 }
8221 
8222 /// getMachineNode - These are used for target selectors to create a new node
8223 /// with specified return type(s), MachineInstr opcode, and operands.
8224 ///
8225 /// Note that getMachineNode returns the resultant node.  If there is already a
8226 /// node of the specified opcode and operands, it returns that node instead of
8227 /// the current one.
8228 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8229                                             EVT VT) {
8230   SDVTList VTs = getVTList(VT);
8231   return getMachineNode(Opcode, dl, VTs, None);
8232 }
8233 
8234 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8235                                             EVT VT, SDValue Op1) {
8236   SDVTList VTs = getVTList(VT);
8237   SDValue Ops[] = { Op1 };
8238   return getMachineNode(Opcode, dl, VTs, Ops);
8239 }
8240 
8241 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8242                                             EVT VT, SDValue Op1, SDValue Op2) {
8243   SDVTList VTs = getVTList(VT);
8244   SDValue Ops[] = { Op1, Op2 };
8245   return getMachineNode(Opcode, dl, VTs, Ops);
8246 }
8247 
8248 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8249                                             EVT VT, SDValue Op1, SDValue Op2,
8250                                             SDValue Op3) {
8251   SDVTList VTs = getVTList(VT);
8252   SDValue Ops[] = { Op1, Op2, Op3 };
8253   return getMachineNode(Opcode, dl, VTs, Ops);
8254 }
8255 
8256 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8257                                             EVT VT, ArrayRef<SDValue> Ops) {
8258   SDVTList VTs = getVTList(VT);
8259   return getMachineNode(Opcode, dl, VTs, Ops);
8260 }
8261 
8262 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8263                                             EVT VT1, EVT VT2, SDValue Op1,
8264                                             SDValue Op2) {
8265   SDVTList VTs = getVTList(VT1, VT2);
8266   SDValue Ops[] = { Op1, Op2 };
8267   return getMachineNode(Opcode, dl, VTs, Ops);
8268 }
8269 
8270 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8271                                             EVT VT1, EVT VT2, SDValue Op1,
8272                                             SDValue Op2, SDValue Op3) {
8273   SDVTList VTs = getVTList(VT1, VT2);
8274   SDValue Ops[] = { Op1, Op2, Op3 };
8275   return getMachineNode(Opcode, dl, VTs, Ops);
8276 }
8277 
8278 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8279                                             EVT VT1, EVT VT2,
8280                                             ArrayRef<SDValue> Ops) {
8281   SDVTList VTs = getVTList(VT1, VT2);
8282   return getMachineNode(Opcode, dl, VTs, Ops);
8283 }
8284 
8285 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8286                                             EVT VT1, EVT VT2, EVT VT3,
8287                                             SDValue Op1, SDValue Op2) {
8288   SDVTList VTs = getVTList(VT1, VT2, VT3);
8289   SDValue Ops[] = { Op1, Op2 };
8290   return getMachineNode(Opcode, dl, VTs, Ops);
8291 }
8292 
8293 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8294                                             EVT VT1, EVT VT2, EVT VT3,
8295                                             SDValue Op1, SDValue Op2,
8296                                             SDValue Op3) {
8297   SDVTList VTs = getVTList(VT1, VT2, VT3);
8298   SDValue Ops[] = { Op1, Op2, Op3 };
8299   return getMachineNode(Opcode, dl, VTs, Ops);
8300 }
8301 
8302 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8303                                             EVT VT1, EVT VT2, EVT VT3,
8304                                             ArrayRef<SDValue> Ops) {
8305   SDVTList VTs = getVTList(VT1, VT2, VT3);
8306   return getMachineNode(Opcode, dl, VTs, Ops);
8307 }
8308 
8309 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8310                                             ArrayRef<EVT> ResultTys,
8311                                             ArrayRef<SDValue> Ops) {
8312   SDVTList VTs = getVTList(ResultTys);
8313   return getMachineNode(Opcode, dl, VTs, Ops);
8314 }
8315 
8316 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8317                                             SDVTList VTs,
8318                                             ArrayRef<SDValue> Ops) {
8319   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8320   MachineSDNode *N;
8321   void *IP = nullptr;
8322 
8323   if (DoCSE) {
8324     FoldingSetNodeID ID;
8325     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8326     IP = nullptr;
8327     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8328       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8329     }
8330   }
8331 
8332   // Allocate a new MachineSDNode.
8333   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8334   createOperands(N, Ops);
8335 
8336   if (DoCSE)
8337     CSEMap.InsertNode(N, IP);
8338 
8339   InsertNode(N);
8340   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8341   return N;
8342 }
8343 
8344 /// getTargetExtractSubreg - A convenience function for creating
8345 /// TargetOpcode::EXTRACT_SUBREG nodes.
8346 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8347                                              SDValue Operand) {
8348   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8349   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8350                                   VT, Operand, SRIdxVal);
8351   return SDValue(Subreg, 0);
8352 }
8353 
8354 /// getTargetInsertSubreg - A convenience function for creating
8355 /// TargetOpcode::INSERT_SUBREG nodes.
8356 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8357                                             SDValue Operand, SDValue Subreg) {
8358   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8359   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8360                                   VT, Operand, Subreg, SRIdxVal);
8361   return SDValue(Result, 0);
8362 }
8363 
8364 /// getNodeIfExists - Get the specified node if it's already available, or
8365 /// else return NULL.
8366 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8367                                       ArrayRef<SDValue> Ops) {
8368   SDNodeFlags Flags;
8369   if (Inserter)
8370     Flags = Inserter->getFlags();
8371   return getNodeIfExists(Opcode, VTList, Ops, Flags);
8372 }
8373 
8374 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8375                                       ArrayRef<SDValue> Ops,
8376                                       const SDNodeFlags Flags) {
8377   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8378     FoldingSetNodeID ID;
8379     AddNodeIDNode(ID, Opcode, VTList, Ops);
8380     void *IP = nullptr;
8381     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8382       E->intersectFlagsWith(Flags);
8383       return E;
8384     }
8385   }
8386   return nullptr;
8387 }
8388 
8389 /// doesNodeExist - Check if a node exists without modifying its flags.
8390 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
8391                                  ArrayRef<SDValue> Ops) {
8392   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8393     FoldingSetNodeID ID;
8394     AddNodeIDNode(ID, Opcode, VTList, Ops);
8395     void *IP = nullptr;
8396     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
8397       return true;
8398   }
8399   return false;
8400 }
8401 
8402 /// getDbgValue - Creates a SDDbgValue node.
8403 ///
8404 /// SDNode
8405 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8406                                       SDNode *N, unsigned R, bool IsIndirect,
8407                                       const DebugLoc &DL, unsigned O) {
8408   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8409          "Expected inlined-at fields to agree");
8410   return new (DbgInfo->getAlloc())
8411       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
8412 }
8413 
8414 /// Constant
8415 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8416                                               DIExpression *Expr,
8417                                               const Value *C,
8418                                               const DebugLoc &DL, unsigned O) {
8419   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8420          "Expected inlined-at fields to agree");
8421   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
8422 }
8423 
8424 /// FrameIndex
8425 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8426                                                 DIExpression *Expr, unsigned FI,
8427                                                 bool IsIndirect,
8428                                                 const DebugLoc &DL,
8429                                                 unsigned O) {
8430   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8431          "Expected inlined-at fields to agree");
8432   return new (DbgInfo->getAlloc())
8433       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
8434 }
8435 
8436 /// VReg
8437 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
8438                                           DIExpression *Expr,
8439                                           unsigned VReg, bool IsIndirect,
8440                                           const DebugLoc &DL, unsigned O) {
8441   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8442          "Expected inlined-at fields to agree");
8443   return new (DbgInfo->getAlloc())
8444       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
8445 }
8446 
8447 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8448                                      unsigned OffsetInBits, unsigned SizeInBits,
8449                                      bool InvalidateDbg) {
8450   SDNode *FromNode = From.getNode();
8451   SDNode *ToNode = To.getNode();
8452   assert(FromNode && ToNode && "Can't modify dbg values");
8453 
8454   // PR35338
8455   // TODO: assert(From != To && "Redundant dbg value transfer");
8456   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8457   if (From == To || FromNode == ToNode)
8458     return;
8459 
8460   if (!FromNode->getHasDebugValue())
8461     return;
8462 
8463   SmallVector<SDDbgValue *, 2> ClonedDVs;
8464   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8465     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
8466       continue;
8467 
8468     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8469 
8470     // Just transfer the dbg value attached to From.
8471     if (Dbg->getResNo() != From.getResNo())
8472       continue;
8473 
8474     DIVariable *Var = Dbg->getVariable();
8475     auto *Expr = Dbg->getExpression();
8476     // If a fragment is requested, update the expression.
8477     if (SizeInBits) {
8478       // When splitting a larger (e.g., sign-extended) value whose
8479       // lower bits are described with an SDDbgValue, do not attempt
8480       // to transfer the SDDbgValue to the upper bits.
8481       if (auto FI = Expr->getFragmentInfo())
8482         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8483           continue;
8484       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8485                                                              SizeInBits);
8486       if (!Fragment)
8487         continue;
8488       Expr = *Fragment;
8489     }
8490     // Clone the SDDbgValue and move it to To.
8491     SDDbgValue *Clone = getDbgValue(
8492         Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(),
8493         std::max(ToNode->getIROrder(), Dbg->getOrder()));
8494     ClonedDVs.push_back(Clone);
8495 
8496     if (InvalidateDbg) {
8497       // Invalidate value and indicate the SDDbgValue should not be emitted.
8498       Dbg->setIsInvalidated();
8499       Dbg->setIsEmitted();
8500     }
8501   }
8502 
8503   for (SDDbgValue *Dbg : ClonedDVs)
8504     AddDbgValue(Dbg, ToNode, false);
8505 }
8506 
8507 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8508   if (!N.getHasDebugValue())
8509     return;
8510 
8511   SmallVector<SDDbgValue *, 2> ClonedDVs;
8512   for (auto DV : GetDbgValues(&N)) {
8513     if (DV->isInvalidated())
8514       continue;
8515     switch (N.getOpcode()) {
8516     default:
8517       break;
8518     case ISD::ADD:
8519       SDValue N0 = N.getOperand(0);
8520       SDValue N1 = N.getOperand(1);
8521       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8522           isConstantIntBuildVectorOrConstantInt(N1)) {
8523         uint64_t Offset = N.getConstantOperandVal(1);
8524         // Rewrite an ADD constant node into a DIExpression. Since we are
8525         // performing arithmetic to compute the variable's *value* in the
8526         // DIExpression, we need to mark the expression with a
8527         // DW_OP_stack_value.
8528         auto *DIExpr = DV->getExpression();
8529         DIExpr =
8530             DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset);
8531         SDDbgValue *Clone =
8532             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
8533                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
8534         ClonedDVs.push_back(Clone);
8535         DV->setIsInvalidated();
8536         DV->setIsEmitted();
8537         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8538                    N0.getNode()->dumprFull(this);
8539                    dbgs() << " into " << *DIExpr << '\n');
8540       }
8541     }
8542   }
8543 
8544   for (SDDbgValue *Dbg : ClonedDVs)
8545     AddDbgValue(Dbg, Dbg->getSDNode(), false);
8546 }
8547 
8548 /// Creates a SDDbgLabel node.
8549 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8550                                       const DebugLoc &DL, unsigned O) {
8551   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8552          "Expected inlined-at fields to agree");
8553   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8554 }
8555 
8556 namespace {
8557 
8558 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8559 /// pointed to by a use iterator is deleted, increment the use iterator
8560 /// so that it doesn't dangle.
8561 ///
8562 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8563   SDNode::use_iterator &UI;
8564   SDNode::use_iterator &UE;
8565 
8566   void NodeDeleted(SDNode *N, SDNode *E) override {
8567     // Increment the iterator as needed.
8568     while (UI != UE && N == *UI)
8569       ++UI;
8570   }
8571 
8572 public:
8573   RAUWUpdateListener(SelectionDAG &d,
8574                      SDNode::use_iterator &ui,
8575                      SDNode::use_iterator &ue)
8576     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8577 };
8578 
8579 } // end anonymous namespace
8580 
8581 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8582 /// This can cause recursive merging of nodes in the DAG.
8583 ///
8584 /// This version assumes From has a single result value.
8585 ///
8586 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8587   SDNode *From = FromN.getNode();
8588   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8589          "Cannot replace with this method!");
8590   assert(From != To.getNode() && "Cannot replace uses of with self");
8591 
8592   // Preserve Debug Values
8593   transferDbgValues(FromN, To);
8594 
8595   // Iterate over all the existing uses of From. New uses will be added
8596   // to the beginning of the use list, which we avoid visiting.
8597   // This specifically avoids visiting uses of From that arise while the
8598   // replacement is happening, because any such uses would be the result
8599   // of CSE: If an existing node looks like From after one of its operands
8600   // is replaced by To, we don't want to replace of all its users with To
8601   // too. See PR3018 for more info.
8602   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8603   RAUWUpdateListener Listener(*this, UI, UE);
8604   while (UI != UE) {
8605     SDNode *User = *UI;
8606 
8607     // This node is about to morph, remove its old self from the CSE maps.
8608     RemoveNodeFromCSEMaps(User);
8609 
8610     // A user can appear in a use list multiple times, and when this
8611     // happens the uses are usually next to each other in the list.
8612     // To help reduce the number of CSE recomputations, process all
8613     // the uses of this user that we can find this way.
8614     do {
8615       SDUse &Use = UI.getUse();
8616       ++UI;
8617       Use.set(To);
8618       if (To->isDivergent() != From->isDivergent())
8619         updateDivergence(User);
8620     } while (UI != UE && *UI == User);
8621     // Now that we have modified User, add it back to the CSE maps.  If it
8622     // already exists there, recursively merge the results together.
8623     AddModifiedNodeToCSEMaps(User);
8624   }
8625 
8626   // If we just RAUW'd the root, take note.
8627   if (FromN == getRoot())
8628     setRoot(To);
8629 }
8630 
8631 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8632 /// This can cause recursive merging of nodes in the DAG.
8633 ///
8634 /// This version assumes that for each value of From, there is a
8635 /// corresponding value in To in the same position with the same type.
8636 ///
8637 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8638 #ifndef NDEBUG
8639   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8640     assert((!From->hasAnyUseOfValue(i) ||
8641             From->getValueType(i) == To->getValueType(i)) &&
8642            "Cannot use this version of ReplaceAllUsesWith!");
8643 #endif
8644 
8645   // Handle the trivial case.
8646   if (From == To)
8647     return;
8648 
8649   // Preserve Debug Info. Only do this if there's a use.
8650   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8651     if (From->hasAnyUseOfValue(i)) {
8652       assert((i < To->getNumValues()) && "Invalid To location");
8653       transferDbgValues(SDValue(From, i), SDValue(To, i));
8654     }
8655 
8656   // Iterate over just the existing users of From. See the comments in
8657   // the ReplaceAllUsesWith above.
8658   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8659   RAUWUpdateListener Listener(*this, UI, UE);
8660   while (UI != UE) {
8661     SDNode *User = *UI;
8662 
8663     // This node is about to morph, remove its old self from the CSE maps.
8664     RemoveNodeFromCSEMaps(User);
8665 
8666     // A user can appear in a use list multiple times, and when this
8667     // happens the uses are usually next to each other in the list.
8668     // To help reduce the number of CSE recomputations, process all
8669     // the uses of this user that we can find this way.
8670     do {
8671       SDUse &Use = UI.getUse();
8672       ++UI;
8673       Use.setNode(To);
8674       if (To->isDivergent() != From->isDivergent())
8675         updateDivergence(User);
8676     } while (UI != UE && *UI == User);
8677 
8678     // Now that we have modified User, add it back to the CSE maps.  If it
8679     // already exists there, recursively merge the results together.
8680     AddModifiedNodeToCSEMaps(User);
8681   }
8682 
8683   // If we just RAUW'd the root, take note.
8684   if (From == getRoot().getNode())
8685     setRoot(SDValue(To, getRoot().getResNo()));
8686 }
8687 
8688 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8689 /// This can cause recursive merging of nodes in the DAG.
8690 ///
8691 /// This version can replace From with any result values.  To must match the
8692 /// number and types of values returned by From.
8693 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8694   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8695     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8696 
8697   // Preserve Debug Info.
8698   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8699     transferDbgValues(SDValue(From, i), To[i]);
8700 
8701   // Iterate over just the existing users of From. See the comments in
8702   // the ReplaceAllUsesWith above.
8703   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8704   RAUWUpdateListener Listener(*this, UI, UE);
8705   while (UI != UE) {
8706     SDNode *User = *UI;
8707 
8708     // This node is about to morph, remove its old self from the CSE maps.
8709     RemoveNodeFromCSEMaps(User);
8710 
8711     // A user can appear in a use list multiple times, and when this happens the
8712     // uses are usually next to each other in the list.  To help reduce the
8713     // number of CSE and divergence recomputations, process all the uses of this
8714     // user that we can find this way.
8715     bool To_IsDivergent = false;
8716     do {
8717       SDUse &Use = UI.getUse();
8718       const SDValue &ToOp = To[Use.getResNo()];
8719       ++UI;
8720       Use.set(ToOp);
8721       To_IsDivergent |= ToOp->isDivergent();
8722     } while (UI != UE && *UI == User);
8723 
8724     if (To_IsDivergent != From->isDivergent())
8725       updateDivergence(User);
8726 
8727     // Now that we have modified User, add it back to the CSE maps.  If it
8728     // already exists there, recursively merge the results together.
8729     AddModifiedNodeToCSEMaps(User);
8730   }
8731 
8732   // If we just RAUW'd the root, take note.
8733   if (From == getRoot().getNode())
8734     setRoot(SDValue(To[getRoot().getResNo()]));
8735 }
8736 
8737 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8738 /// uses of other values produced by From.getNode() alone.  The Deleted
8739 /// vector is handled the same way as for ReplaceAllUsesWith.
8740 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8741   // Handle the really simple, really trivial case efficiently.
8742   if (From == To) return;
8743 
8744   // Handle the simple, trivial, case efficiently.
8745   if (From.getNode()->getNumValues() == 1) {
8746     ReplaceAllUsesWith(From, To);
8747     return;
8748   }
8749 
8750   // Preserve Debug Info.
8751   transferDbgValues(From, To);
8752 
8753   // Iterate over just the existing users of From. See the comments in
8754   // the ReplaceAllUsesWith above.
8755   SDNode::use_iterator UI = From.getNode()->use_begin(),
8756                        UE = From.getNode()->use_end();
8757   RAUWUpdateListener Listener(*this, UI, UE);
8758   while (UI != UE) {
8759     SDNode *User = *UI;
8760     bool UserRemovedFromCSEMaps = false;
8761 
8762     // A user can appear in a use list multiple times, and when this
8763     // happens the uses are usually next to each other in the list.
8764     // To help reduce the number of CSE recomputations, process all
8765     // the uses of this user that we can find this way.
8766     do {
8767       SDUse &Use = UI.getUse();
8768 
8769       // Skip uses of different values from the same node.
8770       if (Use.getResNo() != From.getResNo()) {
8771         ++UI;
8772         continue;
8773       }
8774 
8775       // If this node hasn't been modified yet, it's still in the CSE maps,
8776       // so remove its old self from the CSE maps.
8777       if (!UserRemovedFromCSEMaps) {
8778         RemoveNodeFromCSEMaps(User);
8779         UserRemovedFromCSEMaps = true;
8780       }
8781 
8782       ++UI;
8783       Use.set(To);
8784       if (To->isDivergent() != From->isDivergent())
8785         updateDivergence(User);
8786     } while (UI != UE && *UI == User);
8787     // We are iterating over all uses of the From node, so if a use
8788     // doesn't use the specific value, no changes are made.
8789     if (!UserRemovedFromCSEMaps)
8790       continue;
8791 
8792     // Now that we have modified User, add it back to the CSE maps.  If it
8793     // already exists there, recursively merge the results together.
8794     AddModifiedNodeToCSEMaps(User);
8795   }
8796 
8797   // If we just RAUW'd the root, take note.
8798   if (From == getRoot())
8799     setRoot(To);
8800 }
8801 
8802 namespace {
8803 
8804   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8805   /// to record information about a use.
8806   struct UseMemo {
8807     SDNode *User;
8808     unsigned Index;
8809     SDUse *Use;
8810   };
8811 
8812   /// operator< - Sort Memos by User.
8813   bool operator<(const UseMemo &L, const UseMemo &R) {
8814     return (intptr_t)L.User < (intptr_t)R.User;
8815   }
8816 
8817 } // end anonymous namespace
8818 
8819 bool SelectionDAG::calculateDivergence(SDNode *N) {
8820   if (TLI->isSDNodeAlwaysUniform(N)) {
8821     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
8822            "Conflicting divergence information!");
8823     return false;
8824   }
8825   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
8826     return true;
8827   for (auto &Op : N->ops()) {
8828     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
8829       return true;
8830   }
8831   return false;
8832 }
8833 
8834 void SelectionDAG::updateDivergence(SDNode *N) {
8835   SmallVector<SDNode *, 16> Worklist(1, N);
8836   do {
8837     N = Worklist.pop_back_val();
8838     bool IsDivergent = calculateDivergence(N);
8839     if (N->SDNodeBits.IsDivergent != IsDivergent) {
8840       N->SDNodeBits.IsDivergent = IsDivergent;
8841       llvm::append_range(Worklist, N->uses());
8842     }
8843   } while (!Worklist.empty());
8844 }
8845 
8846 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
8847   DenseMap<SDNode *, unsigned> Degree;
8848   Order.reserve(AllNodes.size());
8849   for (auto &N : allnodes()) {
8850     unsigned NOps = N.getNumOperands();
8851     Degree[&N] = NOps;
8852     if (0 == NOps)
8853       Order.push_back(&N);
8854   }
8855   for (size_t I = 0; I != Order.size(); ++I) {
8856     SDNode *N = Order[I];
8857     for (auto U : N->uses()) {
8858       unsigned &UnsortedOps = Degree[U];
8859       if (0 == --UnsortedOps)
8860         Order.push_back(U);
8861     }
8862   }
8863 }
8864 
8865 #ifndef NDEBUG
8866 void SelectionDAG::VerifyDAGDiverence() {
8867   std::vector<SDNode *> TopoOrder;
8868   CreateTopologicalOrder(TopoOrder);
8869   for (auto *N : TopoOrder) {
8870     assert(calculateDivergence(N) == N->isDivergent() &&
8871            "Divergence bit inconsistency detected");
8872   }
8873 }
8874 #endif
8875 
8876 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8877 /// uses of other values produced by From.getNode() alone.  The same value
8878 /// may appear in both the From and To list.  The Deleted vector is
8879 /// handled the same way as for ReplaceAllUsesWith.
8880 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8881                                               const SDValue *To,
8882                                               unsigned Num){
8883   // Handle the simple, trivial case efficiently.
8884   if (Num == 1)
8885     return ReplaceAllUsesOfValueWith(*From, *To);
8886 
8887   transferDbgValues(*From, *To);
8888 
8889   // Read up all the uses and make records of them. This helps
8890   // processing new uses that are introduced during the
8891   // replacement process.
8892   SmallVector<UseMemo, 4> Uses;
8893   for (unsigned i = 0; i != Num; ++i) {
8894     unsigned FromResNo = From[i].getResNo();
8895     SDNode *FromNode = From[i].getNode();
8896     for (SDNode::use_iterator UI = FromNode->use_begin(),
8897          E = FromNode->use_end(); UI != E; ++UI) {
8898       SDUse &Use = UI.getUse();
8899       if (Use.getResNo() == FromResNo) {
8900         UseMemo Memo = { *UI, i, &Use };
8901         Uses.push_back(Memo);
8902       }
8903     }
8904   }
8905 
8906   // Sort the uses, so that all the uses from a given User are together.
8907   llvm::sort(Uses);
8908 
8909   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8910        UseIndex != UseIndexEnd; ) {
8911     // We know that this user uses some value of From.  If it is the right
8912     // value, update it.
8913     SDNode *User = Uses[UseIndex].User;
8914 
8915     // This node is about to morph, remove its old self from the CSE maps.
8916     RemoveNodeFromCSEMaps(User);
8917 
8918     // The Uses array is sorted, so all the uses for a given User
8919     // are next to each other in the list.
8920     // To help reduce the number of CSE recomputations, process all
8921     // the uses of this user that we can find this way.
8922     do {
8923       unsigned i = Uses[UseIndex].Index;
8924       SDUse &Use = *Uses[UseIndex].Use;
8925       ++UseIndex;
8926 
8927       Use.set(To[i]);
8928     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8929 
8930     // Now that we have modified User, add it back to the CSE maps.  If it
8931     // already exists there, recursively merge the results together.
8932     AddModifiedNodeToCSEMaps(User);
8933   }
8934 }
8935 
8936 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8937 /// based on their topological order. It returns the maximum id and a vector
8938 /// of the SDNodes* in assigned order by reference.
8939 unsigned SelectionDAG::AssignTopologicalOrder() {
8940   unsigned DAGSize = 0;
8941 
8942   // SortedPos tracks the progress of the algorithm. Nodes before it are
8943   // sorted, nodes after it are unsorted. When the algorithm completes
8944   // it is at the end of the list.
8945   allnodes_iterator SortedPos = allnodes_begin();
8946 
8947   // Visit all the nodes. Move nodes with no operands to the front of
8948   // the list immediately. Annotate nodes that do have operands with their
8949   // operand count. Before we do this, the Node Id fields of the nodes
8950   // may contain arbitrary values. After, the Node Id fields for nodes
8951   // before SortedPos will contain the topological sort index, and the
8952   // Node Id fields for nodes At SortedPos and after will contain the
8953   // count of outstanding operands.
8954   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8955     SDNode *N = &*I++;
8956     checkForCycles(N, this);
8957     unsigned Degree = N->getNumOperands();
8958     if (Degree == 0) {
8959       // A node with no uses, add it to the result array immediately.
8960       N->setNodeId(DAGSize++);
8961       allnodes_iterator Q(N);
8962       if (Q != SortedPos)
8963         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8964       assert(SortedPos != AllNodes.end() && "Overran node list");
8965       ++SortedPos;
8966     } else {
8967       // Temporarily use the Node Id as scratch space for the degree count.
8968       N->setNodeId(Degree);
8969     }
8970   }
8971 
8972   // Visit all the nodes. As we iterate, move nodes into sorted order,
8973   // such that by the time the end is reached all nodes will be sorted.
8974   for (SDNode &Node : allnodes()) {
8975     SDNode *N = &Node;
8976     checkForCycles(N, this);
8977     // N is in sorted position, so all its uses have one less operand
8978     // that needs to be sorted.
8979     for (SDNode *P : N->uses()) {
8980       unsigned Degree = P->getNodeId();
8981       assert(Degree != 0 && "Invalid node degree");
8982       --Degree;
8983       if (Degree == 0) {
8984         // All of P's operands are sorted, so P may sorted now.
8985         P->setNodeId(DAGSize++);
8986         if (P->getIterator() != SortedPos)
8987           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8988         assert(SortedPos != AllNodes.end() && "Overran node list");
8989         ++SortedPos;
8990       } else {
8991         // Update P's outstanding operand count.
8992         P->setNodeId(Degree);
8993       }
8994     }
8995     if (Node.getIterator() == SortedPos) {
8996 #ifndef NDEBUG
8997       allnodes_iterator I(N);
8998       SDNode *S = &*++I;
8999       dbgs() << "Overran sorted position:\n";
9000       S->dumprFull(this); dbgs() << "\n";
9001       dbgs() << "Checking if this is due to cycles\n";
9002       checkForCycles(this, true);
9003 #endif
9004       llvm_unreachable(nullptr);
9005     }
9006   }
9007 
9008   assert(SortedPos == AllNodes.end() &&
9009          "Topological sort incomplete!");
9010   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
9011          "First node in topological sort is not the entry token!");
9012   assert(AllNodes.front().getNodeId() == 0 &&
9013          "First node in topological sort has non-zero id!");
9014   assert(AllNodes.front().getNumOperands() == 0 &&
9015          "First node in topological sort has operands!");
9016   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
9017          "Last node in topologic sort has unexpected id!");
9018   assert(AllNodes.back().use_empty() &&
9019          "Last node in topologic sort has users!");
9020   assert(DAGSize == allnodes_size() && "Node count mismatch!");
9021   return DAGSize;
9022 }
9023 
9024 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
9025 /// value is produced by SD.
9026 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
9027   if (SD) {
9028     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
9029     SD->setHasDebugValue(true);
9030   }
9031   DbgInfo->add(DB, SD, isParameter);
9032 }
9033 
9034 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
9035   DbgInfo->add(DB);
9036 }
9037 
9038 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
9039                                                    SDValue NewMemOpChain) {
9040   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
9041   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
9042   // The new memory operation must have the same position as the old load in
9043   // terms of memory dependency. Create a TokenFactor for the old load and new
9044   // memory operation and update uses of the old load's output chain to use that
9045   // TokenFactor.
9046   if (OldChain == NewMemOpChain || OldChain.use_empty())
9047     return NewMemOpChain;
9048 
9049   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
9050                                 OldChain, NewMemOpChain);
9051   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
9052   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
9053   return TokenFactor;
9054 }
9055 
9056 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
9057                                                    SDValue NewMemOp) {
9058   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
9059   SDValue OldChain = SDValue(OldLoad, 1);
9060   SDValue NewMemOpChain = NewMemOp.getValue(1);
9061   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
9062 }
9063 
9064 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
9065                                                      Function **OutFunction) {
9066   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
9067 
9068   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
9069   auto *Module = MF->getFunction().getParent();
9070   auto *Function = Module->getFunction(Symbol);
9071 
9072   if (OutFunction != nullptr)
9073       *OutFunction = Function;
9074 
9075   if (Function != nullptr) {
9076     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
9077     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
9078   }
9079 
9080   std::string ErrorStr;
9081   raw_string_ostream ErrorFormatter(ErrorStr);
9082 
9083   ErrorFormatter << "Undefined external symbol ";
9084   ErrorFormatter << '"' << Symbol << '"';
9085   ErrorFormatter.flush();
9086 
9087   report_fatal_error(ErrorStr);
9088 }
9089 
9090 //===----------------------------------------------------------------------===//
9091 //                              SDNode Class
9092 //===----------------------------------------------------------------------===//
9093 
9094 bool llvm::isNullConstant(SDValue V) {
9095   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9096   return Const != nullptr && Const->isNullValue();
9097 }
9098 
9099 bool llvm::isNullFPConstant(SDValue V) {
9100   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
9101   return Const != nullptr && Const->isZero() && !Const->isNegative();
9102 }
9103 
9104 bool llvm::isAllOnesConstant(SDValue V) {
9105   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9106   return Const != nullptr && Const->isAllOnesValue();
9107 }
9108 
9109 bool llvm::isOneConstant(SDValue V) {
9110   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9111   return Const != nullptr && Const->isOne();
9112 }
9113 
9114 SDValue llvm::peekThroughBitcasts(SDValue V) {
9115   while (V.getOpcode() == ISD::BITCAST)
9116     V = V.getOperand(0);
9117   return V;
9118 }
9119 
9120 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
9121   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
9122     V = V.getOperand(0);
9123   return V;
9124 }
9125 
9126 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
9127   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9128     V = V.getOperand(0);
9129   return V;
9130 }
9131 
9132 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
9133   if (V.getOpcode() != ISD::XOR)
9134     return false;
9135   V = peekThroughBitcasts(V.getOperand(1));
9136   unsigned NumBits = V.getScalarValueSizeInBits();
9137   ConstantSDNode *C =
9138       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
9139   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
9140 }
9141 
9142 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
9143                                           bool AllowTruncation) {
9144   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9145     return CN;
9146 
9147   // SplatVectors can truncate their operands. Ignore that case here unless
9148   // AllowTruncation is set.
9149   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
9150     EVT VecEltVT = N->getValueType(0).getVectorElementType();
9151     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9152       EVT CVT = CN->getValueType(0);
9153       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
9154       if (AllowTruncation || CVT == VecEltVT)
9155         return CN;
9156     }
9157   }
9158 
9159   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9160     BitVector UndefElements;
9161     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
9162 
9163     // BuildVectors can truncate their operands. Ignore that case here unless
9164     // AllowTruncation is set.
9165     if (CN && (UndefElements.none() || AllowUndefs)) {
9166       EVT CVT = CN->getValueType(0);
9167       EVT NSVT = N.getValueType().getScalarType();
9168       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9169       if (AllowTruncation || (CVT == NSVT))
9170         return CN;
9171     }
9172   }
9173 
9174   return nullptr;
9175 }
9176 
9177 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
9178                                           bool AllowUndefs,
9179                                           bool AllowTruncation) {
9180   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9181     return CN;
9182 
9183   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9184     BitVector UndefElements;
9185     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
9186 
9187     // BuildVectors can truncate their operands. Ignore that case here unless
9188     // AllowTruncation is set.
9189     if (CN && (UndefElements.none() || AllowUndefs)) {
9190       EVT CVT = CN->getValueType(0);
9191       EVT NSVT = N.getValueType().getScalarType();
9192       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9193       if (AllowTruncation || (CVT == NSVT))
9194         return CN;
9195     }
9196   }
9197 
9198   return nullptr;
9199 }
9200 
9201 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
9202   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9203     return CN;
9204 
9205   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9206     BitVector UndefElements;
9207     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
9208     if (CN && (UndefElements.none() || AllowUndefs))
9209       return CN;
9210   }
9211 
9212   if (N.getOpcode() == ISD::SPLAT_VECTOR)
9213     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
9214       return CN;
9215 
9216   return nullptr;
9217 }
9218 
9219 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
9220                                               const APInt &DemandedElts,
9221                                               bool AllowUndefs) {
9222   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9223     return CN;
9224 
9225   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9226     BitVector UndefElements;
9227     ConstantFPSDNode *CN =
9228         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
9229     if (CN && (UndefElements.none() || AllowUndefs))
9230       return CN;
9231   }
9232 
9233   return nullptr;
9234 }
9235 
9236 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
9237   // TODO: may want to use peekThroughBitcast() here.
9238   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9239   return C && C->isNullValue();
9240 }
9241 
9242 bool llvm::isOneOrOneSplat(SDValue N) {
9243   // TODO: may want to use peekThroughBitcast() here.
9244   unsigned BitWidth = N.getScalarValueSizeInBits();
9245   ConstantSDNode *C = isConstOrConstSplat(N);
9246   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
9247 }
9248 
9249 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
9250   N = peekThroughBitcasts(N);
9251   unsigned BitWidth = N.getScalarValueSizeInBits();
9252   ConstantSDNode *C = isConstOrConstSplat(N);
9253   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
9254 }
9255 
9256 HandleSDNode::~HandleSDNode() {
9257   DropOperands();
9258 }
9259 
9260 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
9261                                          const DebugLoc &DL,
9262                                          const GlobalValue *GA, EVT VT,
9263                                          int64_t o, unsigned TF)
9264     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
9265   TheGlobal = GA;
9266 }
9267 
9268 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
9269                                          EVT VT, unsigned SrcAS,
9270                                          unsigned DestAS)
9271     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
9272       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
9273 
9274 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
9275                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
9276     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
9277   MemSDNodeBits.IsVolatile = MMO->isVolatile();
9278   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
9279   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
9280   MemSDNodeBits.IsInvariant = MMO->isInvariant();
9281 
9282   // We check here that the size of the memory operand fits within the size of
9283   // the MMO. This is because the MMO might indicate only a possible address
9284   // range instead of specifying the affected memory addresses precisely.
9285   // TODO: Make MachineMemOperands aware of scalable vectors.
9286   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
9287          "Size mismatch!");
9288 }
9289 
9290 /// Profile - Gather unique data for the node.
9291 ///
9292 void SDNode::Profile(FoldingSetNodeID &ID) const {
9293   AddNodeIDNode(ID, this);
9294 }
9295 
9296 namespace {
9297 
9298   struct EVTArray {
9299     std::vector<EVT> VTs;
9300 
9301     EVTArray() {
9302       VTs.reserve(MVT::LAST_VALUETYPE);
9303       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
9304         VTs.push_back(MVT((MVT::SimpleValueType)i));
9305     }
9306   };
9307 
9308 } // end anonymous namespace
9309 
9310 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9311 static ManagedStatic<EVTArray> SimpleVTArray;
9312 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9313 
9314 /// getValueTypeList - Return a pointer to the specified value type.
9315 ///
9316 const EVT *SDNode::getValueTypeList(EVT VT) {
9317   if (VT.isExtended()) {
9318     sys::SmartScopedLock<true> Lock(*VTMutex);
9319     return &(*EVTs->insert(VT).first);
9320   } else {
9321     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
9322            "Value type out of range!");
9323     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9324   }
9325 }
9326 
9327 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9328 /// indicated value.  This method ignores uses of other values defined by this
9329 /// operation.
9330 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9331   assert(Value < getNumValues() && "Bad value!");
9332 
9333   // TODO: Only iterate over uses of a given value of the node
9334   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9335     if (UI.getUse().getResNo() == Value) {
9336       if (NUses == 0)
9337         return false;
9338       --NUses;
9339     }
9340   }
9341 
9342   // Found exactly the right number of uses?
9343   return NUses == 0;
9344 }
9345 
9346 /// hasAnyUseOfValue - Return true if there are any use of the indicated
9347 /// value. This method ignores uses of other values defined by this operation.
9348 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9349   assert(Value < getNumValues() && "Bad value!");
9350 
9351   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9352     if (UI.getUse().getResNo() == Value)
9353       return true;
9354 
9355   return false;
9356 }
9357 
9358 /// isOnlyUserOf - Return true if this node is the only use of N.
9359 bool SDNode::isOnlyUserOf(const SDNode *N) const {
9360   bool Seen = false;
9361   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9362     SDNode *User = *I;
9363     if (User == this)
9364       Seen = true;
9365     else
9366       return false;
9367   }
9368 
9369   return Seen;
9370 }
9371 
9372 /// Return true if the only users of N are contained in Nodes.
9373 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9374   bool Seen = false;
9375   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9376     SDNode *User = *I;
9377     if (llvm::is_contained(Nodes, User))
9378       Seen = true;
9379     else
9380       return false;
9381   }
9382 
9383   return Seen;
9384 }
9385 
9386 /// isOperand - Return true if this node is an operand of N.
9387 bool SDValue::isOperandOf(const SDNode *N) const {
9388   return is_contained(N->op_values(), *this);
9389 }
9390 
9391 bool SDNode::isOperandOf(const SDNode *N) const {
9392   return any_of(N->op_values(),
9393                 [this](SDValue Op) { return this == Op.getNode(); });
9394 }
9395 
9396 /// reachesChainWithoutSideEffects - Return true if this operand (which must
9397 /// be a chain) reaches the specified operand without crossing any
9398 /// side-effecting instructions on any chain path.  In practice, this looks
9399 /// through token factors and non-volatile loads.  In order to remain efficient,
9400 /// this only looks a couple of nodes in, it does not do an exhaustive search.
9401 ///
9402 /// Note that we only need to examine chains when we're searching for
9403 /// side-effects; SelectionDAG requires that all side-effects are represented
9404 /// by chains, even if another operand would force a specific ordering. This
9405 /// constraint is necessary to allow transformations like splitting loads.
9406 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9407                                              unsigned Depth) const {
9408   if (*this == Dest) return true;
9409 
9410   // Don't search too deeply, we just want to be able to see through
9411   // TokenFactor's etc.
9412   if (Depth == 0) return false;
9413 
9414   // If this is a token factor, all inputs to the TF happen in parallel.
9415   if (getOpcode() == ISD::TokenFactor) {
9416     // First, try a shallow search.
9417     if (is_contained((*this)->ops(), Dest)) {
9418       // We found the chain we want as an operand of this TokenFactor.
9419       // Essentially, we reach the chain without side-effects if we could
9420       // serialize the TokenFactor into a simple chain of operations with
9421       // Dest as the last operation. This is automatically true if the
9422       // chain has one use: there are no other ordering constraints.
9423       // If the chain has more than one use, we give up: some other
9424       // use of Dest might force a side-effect between Dest and the current
9425       // node.
9426       if (Dest.hasOneUse())
9427         return true;
9428     }
9429     // Next, try a deep search: check whether every operand of the TokenFactor
9430     // reaches Dest.
9431     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9432       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9433     });
9434   }
9435 
9436   // Loads don't have side effects, look through them.
9437   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9438     if (Ld->isUnordered())
9439       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9440   }
9441   return false;
9442 }
9443 
9444 bool SDNode::hasPredecessor(const SDNode *N) const {
9445   SmallPtrSet<const SDNode *, 32> Visited;
9446   SmallVector<const SDNode *, 16> Worklist;
9447   Worklist.push_back(this);
9448   return hasPredecessorHelper(N, Visited, Worklist);
9449 }
9450 
9451 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9452   this->Flags.intersectWith(Flags);
9453 }
9454 
9455 SDValue
9456 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9457                                   ArrayRef<ISD::NodeType> CandidateBinOps,
9458                                   bool AllowPartials) {
9459   // The pattern must end in an extract from index 0.
9460   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9461       !isNullConstant(Extract->getOperand(1)))
9462     return SDValue();
9463 
9464   // Match against one of the candidate binary ops.
9465   SDValue Op = Extract->getOperand(0);
9466   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9467         return Op.getOpcode() == unsigned(BinOp);
9468       }))
9469     return SDValue();
9470 
9471   // Floating-point reductions may require relaxed constraints on the final step
9472   // of the reduction because they may reorder intermediate operations.
9473   unsigned CandidateBinOp = Op.getOpcode();
9474   if (Op.getValueType().isFloatingPoint()) {
9475     SDNodeFlags Flags = Op->getFlags();
9476     switch (CandidateBinOp) {
9477     case ISD::FADD:
9478       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9479         return SDValue();
9480       break;
9481     default:
9482       llvm_unreachable("Unhandled FP opcode for binop reduction");
9483     }
9484   }
9485 
9486   // Matching failed - attempt to see if we did enough stages that a partial
9487   // reduction from a subvector is possible.
9488   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9489     if (!AllowPartials || !Op)
9490       return SDValue();
9491     EVT OpVT = Op.getValueType();
9492     EVT OpSVT = OpVT.getScalarType();
9493     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9494     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9495       return SDValue();
9496     BinOp = (ISD::NodeType)CandidateBinOp;
9497     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9498                    getVectorIdxConstant(0, SDLoc(Op)));
9499   };
9500 
9501   // At each stage, we're looking for something that looks like:
9502   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9503   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9504   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9505   // %a = binop <8 x i32> %op, %s
9506   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9507   // we expect something like:
9508   // <4,5,6,7,u,u,u,u>
9509   // <2,3,u,u,u,u,u,u>
9510   // <1,u,u,u,u,u,u,u>
9511   // While a partial reduction match would be:
9512   // <2,3,u,u,u,u,u,u>
9513   // <1,u,u,u,u,u,u,u>
9514   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9515   SDValue PrevOp;
9516   for (unsigned i = 0; i < Stages; ++i) {
9517     unsigned MaskEnd = (1 << i);
9518 
9519     if (Op.getOpcode() != CandidateBinOp)
9520       return PartialReduction(PrevOp, MaskEnd);
9521 
9522     SDValue Op0 = Op.getOperand(0);
9523     SDValue Op1 = Op.getOperand(1);
9524 
9525     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9526     if (Shuffle) {
9527       Op = Op1;
9528     } else {
9529       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9530       Op = Op0;
9531     }
9532 
9533     // The first operand of the shuffle should be the same as the other operand
9534     // of the binop.
9535     if (!Shuffle || Shuffle->getOperand(0) != Op)
9536       return PartialReduction(PrevOp, MaskEnd);
9537 
9538     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9539     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9540       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9541         return PartialReduction(PrevOp, MaskEnd);
9542 
9543     PrevOp = Op;
9544   }
9545 
9546   // Handle subvector reductions, which tend to appear after the shuffle
9547   // reduction stages.
9548   while (Op.getOpcode() == CandidateBinOp) {
9549     unsigned NumElts = Op.getValueType().getVectorNumElements();
9550     SDValue Op0 = Op.getOperand(0);
9551     SDValue Op1 = Op.getOperand(1);
9552     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9553         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9554         Op0.getOperand(0) != Op1.getOperand(0))
9555       break;
9556     SDValue Src = Op0.getOperand(0);
9557     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
9558     if (NumSrcElts != (2 * NumElts))
9559       break;
9560     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
9561           Op1.getConstantOperandAPInt(1) == NumElts) &&
9562         !(Op1.getConstantOperandAPInt(1) == 0 &&
9563           Op0.getConstantOperandAPInt(1) == NumElts))
9564       break;
9565     Op = Src;
9566   }
9567 
9568   BinOp = (ISD::NodeType)CandidateBinOp;
9569   return Op;
9570 }
9571 
9572 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9573   assert(N->getNumValues() == 1 &&
9574          "Can't unroll a vector with multiple results!");
9575 
9576   EVT VT = N->getValueType(0);
9577   unsigned NE = VT.getVectorNumElements();
9578   EVT EltVT = VT.getVectorElementType();
9579   SDLoc dl(N);
9580 
9581   SmallVector<SDValue, 8> Scalars;
9582   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9583 
9584   // If ResNE is 0, fully unroll the vector op.
9585   if (ResNE == 0)
9586     ResNE = NE;
9587   else if (NE > ResNE)
9588     NE = ResNE;
9589 
9590   unsigned i;
9591   for (i= 0; i != NE; ++i) {
9592     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9593       SDValue Operand = N->getOperand(j);
9594       EVT OperandVT = Operand.getValueType();
9595       if (OperandVT.isVector()) {
9596         // A vector operand; extract a single element.
9597         EVT OperandEltVT = OperandVT.getVectorElementType();
9598         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
9599                               Operand, getVectorIdxConstant(i, dl));
9600       } else {
9601         // A scalar operand; just use it as is.
9602         Operands[j] = Operand;
9603       }
9604     }
9605 
9606     switch (N->getOpcode()) {
9607     default: {
9608       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9609                                 N->getFlags()));
9610       break;
9611     }
9612     case ISD::VSELECT:
9613       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9614       break;
9615     case ISD::SHL:
9616     case ISD::SRA:
9617     case ISD::SRL:
9618     case ISD::ROTL:
9619     case ISD::ROTR:
9620       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9621                                getShiftAmountOperand(Operands[0].getValueType(),
9622                                                      Operands[1])));
9623       break;
9624     case ISD::SIGN_EXTEND_INREG: {
9625       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9626       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9627                                 Operands[0],
9628                                 getValueType(ExtVT)));
9629     }
9630     }
9631   }
9632 
9633   for (; i < ResNE; ++i)
9634     Scalars.push_back(getUNDEF(EltVT));
9635 
9636   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9637   return getBuildVector(VecVT, dl, Scalars);
9638 }
9639 
9640 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9641     SDNode *N, unsigned ResNE) {
9642   unsigned Opcode = N->getOpcode();
9643   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9644           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9645           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9646          "Expected an overflow opcode");
9647 
9648   EVT ResVT = N->getValueType(0);
9649   EVT OvVT = N->getValueType(1);
9650   EVT ResEltVT = ResVT.getVectorElementType();
9651   EVT OvEltVT = OvVT.getVectorElementType();
9652   SDLoc dl(N);
9653 
9654   // If ResNE is 0, fully unroll the vector op.
9655   unsigned NE = ResVT.getVectorNumElements();
9656   if (ResNE == 0)
9657     ResNE = NE;
9658   else if (NE > ResNE)
9659     NE = ResNE;
9660 
9661   SmallVector<SDValue, 8> LHSScalars;
9662   SmallVector<SDValue, 8> RHSScalars;
9663   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9664   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9665 
9666   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9667   SDVTList VTs = getVTList(ResEltVT, SVT);
9668   SmallVector<SDValue, 8> ResScalars;
9669   SmallVector<SDValue, 8> OvScalars;
9670   for (unsigned i = 0; i < NE; ++i) {
9671     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9672     SDValue Ov =
9673         getSelect(dl, OvEltVT, Res.getValue(1),
9674                   getBoolConstant(true, dl, OvEltVT, ResVT),
9675                   getConstant(0, dl, OvEltVT));
9676 
9677     ResScalars.push_back(Res);
9678     OvScalars.push_back(Ov);
9679   }
9680 
9681   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9682   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9683 
9684   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9685   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9686   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9687                         getBuildVector(NewOvVT, dl, OvScalars));
9688 }
9689 
9690 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9691                                                   LoadSDNode *Base,
9692                                                   unsigned Bytes,
9693                                                   int Dist) const {
9694   if (LD->isVolatile() || Base->isVolatile())
9695     return false;
9696   // TODO: probably too restrictive for atomics, revisit
9697   if (!LD->isSimple())
9698     return false;
9699   if (LD->isIndexed() || Base->isIndexed())
9700     return false;
9701   if (LD->getChain() != Base->getChain())
9702     return false;
9703   EVT VT = LD->getValueType(0);
9704   if (VT.getSizeInBits() / 8 != Bytes)
9705     return false;
9706 
9707   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9708   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9709 
9710   int64_t Offset = 0;
9711   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9712     return (Dist * Bytes == Offset);
9713   return false;
9714 }
9715 
9716 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
9717 /// if it cannot be inferred.
9718 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
9719   // If this is a GlobalAddress + cst, return the alignment.
9720   const GlobalValue *GV = nullptr;
9721   int64_t GVOffset = 0;
9722   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9723     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
9724     KnownBits Known(PtrWidth);
9725     llvm::computeKnownBits(GV, Known, getDataLayout());
9726     unsigned AlignBits = Known.countMinTrailingZeros();
9727     if (AlignBits)
9728       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
9729   }
9730 
9731   // If this is a direct reference to a stack slot, use information about the
9732   // stack slot's alignment.
9733   int FrameIdx = INT_MIN;
9734   int64_t FrameOffset = 0;
9735   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9736     FrameIdx = FI->getIndex();
9737   } else if (isBaseWithConstantOffset(Ptr) &&
9738              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9739     // Handle FI+Cst
9740     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9741     FrameOffset = Ptr.getConstantOperandVal(1);
9742   }
9743 
9744   if (FrameIdx != INT_MIN) {
9745     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9746     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
9747   }
9748 
9749   return None;
9750 }
9751 
9752 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9753 /// which is split (or expanded) into two not necessarily identical pieces.
9754 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9755   // Currently all types are split in half.
9756   EVT LoVT, HiVT;
9757   if (!VT.isVector())
9758     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9759   else
9760     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9761 
9762   return std::make_pair(LoVT, HiVT);
9763 }
9764 
9765 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
9766 /// type, dependent on an enveloping VT that has been split into two identical
9767 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
9768 std::pair<EVT, EVT>
9769 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
9770                                        bool *HiIsEmpty) const {
9771   EVT EltTp = VT.getVectorElementType();
9772   // Examples:
9773   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
9774   //   custom VL=9  with enveloping VL=8/8 yields 8/1
9775   //   custom VL=10 with enveloping VL=8/8 yields 8/2
9776   //   etc.
9777   ElementCount VTNumElts = VT.getVectorElementCount();
9778   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
9779   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
9780          "Mixing fixed width and scalable vectors when enveloping a type");
9781   EVT LoVT, HiVT;
9782   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
9783     LoVT = EnvVT;
9784     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
9785     *HiIsEmpty = false;
9786   } else {
9787     // Flag that hi type has zero storage size, but return split envelop type
9788     // (this would be easier if vector types with zero elements were allowed).
9789     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
9790     HiVT = EnvVT;
9791     *HiIsEmpty = true;
9792   }
9793   return std::make_pair(LoVT, HiVT);
9794 }
9795 
9796 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9797 /// low/high part.
9798 std::pair<SDValue, SDValue>
9799 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9800                           const EVT &HiVT) {
9801   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
9802          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
9803          "Splitting vector with an invalid mixture of fixed and scalable "
9804          "vector types");
9805   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
9806              N.getValueType().getVectorMinNumElements() &&
9807          "More vector elements requested than available!");
9808   SDValue Lo, Hi;
9809   Lo =
9810       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
9811   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
9812   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
9813   // IDX with the runtime scaling factor of the result vector type. For
9814   // fixed-width result vectors, that runtime scaling factor is 1.
9815   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9816                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
9817   return std::make_pair(Lo, Hi);
9818 }
9819 
9820 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
9821 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9822   EVT VT = N.getValueType();
9823   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9824                                 NextPowerOf2(VT.getVectorNumElements()));
9825   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9826                  getVectorIdxConstant(0, DL));
9827 }
9828 
9829 void SelectionDAG::ExtractVectorElements(SDValue Op,
9830                                          SmallVectorImpl<SDValue> &Args,
9831                                          unsigned Start, unsigned Count,
9832                                          EVT EltVT) {
9833   EVT VT = Op.getValueType();
9834   if (Count == 0)
9835     Count = VT.getVectorNumElements();
9836   if (EltVT == EVT())
9837     EltVT = VT.getVectorElementType();
9838   SDLoc SL(Op);
9839   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9840     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
9841                            getVectorIdxConstant(i, SL)));
9842   }
9843 }
9844 
9845 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9846 unsigned GlobalAddressSDNode::getAddressSpace() const {
9847   return getGlobal()->getType()->getAddressSpace();
9848 }
9849 
9850 Type *ConstantPoolSDNode::getType() const {
9851   if (isMachineConstantPoolEntry())
9852     return Val.MachineCPVal->getType();
9853   return Val.ConstVal->getType();
9854 }
9855 
9856 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9857                                         unsigned &SplatBitSize,
9858                                         bool &HasAnyUndefs,
9859                                         unsigned MinSplatBits,
9860                                         bool IsBigEndian) const {
9861   EVT VT = getValueType(0);
9862   assert(VT.isVector() && "Expected a vector type");
9863   unsigned VecWidth = VT.getSizeInBits();
9864   if (MinSplatBits > VecWidth)
9865     return false;
9866 
9867   // FIXME: The widths are based on this node's type, but build vectors can
9868   // truncate their operands.
9869   SplatValue = APInt(VecWidth, 0);
9870   SplatUndef = APInt(VecWidth, 0);
9871 
9872   // Get the bits. Bits with undefined values (when the corresponding element
9873   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9874   // in SplatValue. If any of the values are not constant, give up and return
9875   // false.
9876   unsigned int NumOps = getNumOperands();
9877   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9878   unsigned EltWidth = VT.getScalarSizeInBits();
9879 
9880   for (unsigned j = 0; j < NumOps; ++j) {
9881     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9882     SDValue OpVal = getOperand(i);
9883     unsigned BitPos = j * EltWidth;
9884 
9885     if (OpVal.isUndef())
9886       SplatUndef.setBits(BitPos, BitPos + EltWidth);
9887     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9888       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9889     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9890       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9891     else
9892       return false;
9893   }
9894 
9895   // The build_vector is all constants or undefs. Find the smallest element
9896   // size that splats the vector.
9897   HasAnyUndefs = (SplatUndef != 0);
9898 
9899   // FIXME: This does not work for vectors with elements less than 8 bits.
9900   while (VecWidth > 8) {
9901     unsigned HalfSize = VecWidth / 2;
9902     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9903     APInt LowValue = SplatValue.trunc(HalfSize);
9904     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9905     APInt LowUndef = SplatUndef.trunc(HalfSize);
9906 
9907     // If the two halves do not match (ignoring undef bits), stop here.
9908     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9909         MinSplatBits > HalfSize)
9910       break;
9911 
9912     SplatValue = HighValue | LowValue;
9913     SplatUndef = HighUndef & LowUndef;
9914 
9915     VecWidth = HalfSize;
9916   }
9917 
9918   SplatBitSize = VecWidth;
9919   return true;
9920 }
9921 
9922 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9923                                          BitVector *UndefElements) const {
9924   unsigned NumOps = getNumOperands();
9925   if (UndefElements) {
9926     UndefElements->clear();
9927     UndefElements->resize(NumOps);
9928   }
9929   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
9930   if (!DemandedElts)
9931     return SDValue();
9932   SDValue Splatted;
9933   for (unsigned i = 0; i != NumOps; ++i) {
9934     if (!DemandedElts[i])
9935       continue;
9936     SDValue Op = getOperand(i);
9937     if (Op.isUndef()) {
9938       if (UndefElements)
9939         (*UndefElements)[i] = true;
9940     } else if (!Splatted) {
9941       Splatted = Op;
9942     } else if (Splatted != Op) {
9943       return SDValue();
9944     }
9945   }
9946 
9947   if (!Splatted) {
9948     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
9949     assert(getOperand(FirstDemandedIdx).isUndef() &&
9950            "Can only have a splat without a constant for all undefs.");
9951     return getOperand(FirstDemandedIdx);
9952   }
9953 
9954   return Splatted;
9955 }
9956 
9957 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9958   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9959   return getSplatValue(DemandedElts, UndefElements);
9960 }
9961 
9962 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
9963                                             SmallVectorImpl<SDValue> &Sequence,
9964                                             BitVector *UndefElements) const {
9965   unsigned NumOps = getNumOperands();
9966   Sequence.clear();
9967   if (UndefElements) {
9968     UndefElements->clear();
9969     UndefElements->resize(NumOps);
9970   }
9971   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
9972   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
9973     return false;
9974 
9975   // Set the undefs even if we don't find a sequence (like getSplatValue).
9976   if (UndefElements)
9977     for (unsigned I = 0; I != NumOps; ++I)
9978       if (DemandedElts[I] && getOperand(I).isUndef())
9979         (*UndefElements)[I] = true;
9980 
9981   // Iteratively widen the sequence length looking for repetitions.
9982   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
9983     Sequence.append(SeqLen, SDValue());
9984     for (unsigned I = 0; I != NumOps; ++I) {
9985       if (!DemandedElts[I])
9986         continue;
9987       SDValue &SeqOp = Sequence[I % SeqLen];
9988       SDValue Op = getOperand(I);
9989       if (Op.isUndef()) {
9990         if (!SeqOp)
9991           SeqOp = Op;
9992         continue;
9993       }
9994       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
9995         Sequence.clear();
9996         break;
9997       }
9998       SeqOp = Op;
9999     }
10000     if (!Sequence.empty())
10001       return true;
10002   }
10003 
10004   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
10005   return false;
10006 }
10007 
10008 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
10009                                             BitVector *UndefElements) const {
10010   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
10011   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
10012 }
10013 
10014 ConstantSDNode *
10015 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
10016                                         BitVector *UndefElements) const {
10017   return dyn_cast_or_null<ConstantSDNode>(
10018       getSplatValue(DemandedElts, UndefElements));
10019 }
10020 
10021 ConstantSDNode *
10022 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
10023   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
10024 }
10025 
10026 ConstantFPSDNode *
10027 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
10028                                           BitVector *UndefElements) const {
10029   return dyn_cast_or_null<ConstantFPSDNode>(
10030       getSplatValue(DemandedElts, UndefElements));
10031 }
10032 
10033 ConstantFPSDNode *
10034 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
10035   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
10036 }
10037 
10038 int32_t
10039 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
10040                                                    uint32_t BitWidth) const {
10041   if (ConstantFPSDNode *CN =
10042           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
10043     bool IsExact;
10044     APSInt IntVal(BitWidth);
10045     const APFloat &APF = CN->getValueAPF();
10046     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
10047             APFloat::opOK ||
10048         !IsExact)
10049       return -1;
10050 
10051     return IntVal.exactLogBase2();
10052   }
10053   return -1;
10054 }
10055 
10056 bool BuildVectorSDNode::isConstant() const {
10057   for (const SDValue &Op : op_values()) {
10058     unsigned Opc = Op.getOpcode();
10059     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
10060       return false;
10061   }
10062   return true;
10063 }
10064 
10065 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
10066   // Find the first non-undef value in the shuffle mask.
10067   unsigned i, e;
10068   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
10069     /* search */;
10070 
10071   // If all elements are undefined, this shuffle can be considered a splat
10072   // (although it should eventually get simplified away completely).
10073   if (i == e)
10074     return true;
10075 
10076   // Make sure all remaining elements are either undef or the same as the first
10077   // non-undef value.
10078   for (int Idx = Mask[i]; i != e; ++i)
10079     if (Mask[i] >= 0 && Mask[i] != Idx)
10080       return false;
10081   return true;
10082 }
10083 
10084 // Returns the SDNode if it is a constant integer BuildVector
10085 // or constant integer.
10086 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
10087   if (isa<ConstantSDNode>(N))
10088     return N.getNode();
10089   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
10090     return N.getNode();
10091   // Treat a GlobalAddress supporting constant offset folding as a
10092   // constant integer.
10093   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
10094     if (GA->getOpcode() == ISD::GlobalAddress &&
10095         TLI->isOffsetFoldingLegal(GA))
10096       return GA;
10097   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
10098       isa<ConstantSDNode>(N.getOperand(0)))
10099     return N.getNode();
10100   return nullptr;
10101 }
10102 
10103 // Returns the SDNode if it is a constant float BuildVector
10104 // or constant float.
10105 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
10106   if (isa<ConstantFPSDNode>(N))
10107     return N.getNode();
10108 
10109   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
10110     return N.getNode();
10111 
10112   return nullptr;
10113 }
10114 
10115 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
10116   assert(!Node->OperandList && "Node already has operands");
10117   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
10118          "too many operands to fit into SDNode");
10119   SDUse *Ops = OperandRecycler.allocate(
10120       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
10121 
10122   bool IsDivergent = false;
10123   for (unsigned I = 0; I != Vals.size(); ++I) {
10124     Ops[I].setUser(Node);
10125     Ops[I].setInitial(Vals[I]);
10126     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
10127       IsDivergent |= Ops[I].getNode()->isDivergent();
10128   }
10129   Node->NumOperands = Vals.size();
10130   Node->OperandList = Ops;
10131   if (!TLI->isSDNodeAlwaysUniform(Node)) {
10132     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
10133     Node->SDNodeBits.IsDivergent = IsDivergent;
10134   }
10135   checkForCycles(Node);
10136 }
10137 
10138 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
10139                                      SmallVectorImpl<SDValue> &Vals) {
10140   size_t Limit = SDNode::getMaxNumOperands();
10141   while (Vals.size() > Limit) {
10142     unsigned SliceIdx = Vals.size() - Limit;
10143     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
10144     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
10145     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
10146     Vals.emplace_back(NewTF);
10147   }
10148   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
10149 }
10150 
10151 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
10152                                         EVT VT, SDNodeFlags Flags) {
10153   switch (Opcode) {
10154   default:
10155     return SDValue();
10156   case ISD::ADD:
10157   case ISD::OR:
10158   case ISD::XOR:
10159   case ISD::UMAX:
10160     return getConstant(0, DL, VT);
10161   case ISD::MUL:
10162     return getConstant(1, DL, VT);
10163   case ISD::AND:
10164   case ISD::UMIN:
10165     return getAllOnesConstant(DL, VT);
10166   case ISD::SMAX:
10167     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
10168   case ISD::SMIN:
10169     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
10170   case ISD::FADD:
10171     return getConstantFP(-0.0, DL, VT);
10172   case ISD::FMUL:
10173     return getConstantFP(1.0, DL, VT);
10174   case ISD::FMINNUM:
10175   case ISD::FMAXNUM: {
10176     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
10177     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
10178     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
10179                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
10180                         APFloat::getLargest(Semantics);
10181     if (Opcode == ISD::FMAXNUM)
10182       NeutralAF.changeSign();
10183 
10184     return getConstantFP(NeutralAF, DL, VT);
10185   }
10186   }
10187 }
10188 
10189 #ifndef NDEBUG
10190 static void checkForCyclesHelper(const SDNode *N,
10191                                  SmallPtrSetImpl<const SDNode*> &Visited,
10192                                  SmallPtrSetImpl<const SDNode*> &Checked,
10193                                  const llvm::SelectionDAG *DAG) {
10194   // If this node has already been checked, don't check it again.
10195   if (Checked.count(N))
10196     return;
10197 
10198   // If a node has already been visited on this depth-first walk, reject it as
10199   // a cycle.
10200   if (!Visited.insert(N).second) {
10201     errs() << "Detected cycle in SelectionDAG\n";
10202     dbgs() << "Offending node:\n";
10203     N->dumprFull(DAG); dbgs() << "\n";
10204     abort();
10205   }
10206 
10207   for (const SDValue &Op : N->op_values())
10208     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
10209 
10210   Checked.insert(N);
10211   Visited.erase(N);
10212 }
10213 #endif
10214 
10215 void llvm::checkForCycles(const llvm::SDNode *N,
10216                           const llvm::SelectionDAG *DAG,
10217                           bool force) {
10218 #ifndef NDEBUG
10219   bool check = force;
10220 #ifdef EXPENSIVE_CHECKS
10221   check = true;
10222 #endif  // EXPENSIVE_CHECKS
10223   if (check) {
10224     assert(N && "Checking nonexistent SDNode");
10225     SmallPtrSet<const SDNode*, 32> visited;
10226     SmallPtrSet<const SDNode*, 32> checked;
10227     checkForCyclesHelper(N, visited, checked, DAG);
10228   }
10229 #endif  // !NDEBUG
10230 }
10231 
10232 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
10233   checkForCycles(DAG->getRoot().getNode(), DAG, force);
10234 }
10235