1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/CodeGen/Analysis.h"
30 #include "llvm/CodeGen/FunctionLoweringInfo.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineConstantPool.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/RuntimeLibcalls.h"
38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
41 #include "llvm/CodeGen/TargetFrameLowering.h"
42 #include "llvm/CodeGen/TargetLowering.h"
43 #include "llvm/CodeGen/TargetRegisterInfo.h"
44 #include "llvm/CodeGen/TargetSubtargetInfo.h"
45 #include "llvm/CodeGen/ValueTypes.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GlobalValue.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/CodeGen.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/KnownBits.h"
62 #include "llvm/Support/MachineValueType.h"
63 #include "llvm/Support/ManagedStatic.h"
64 #include "llvm/Support/MathExtras.h"
65 #include "llvm/Support/Mutex.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include "llvm/Target/TargetOptions.h"
69 #include "llvm/Transforms/Utils/SizeOpts.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstdint>
73 #include <cstdlib>
74 #include <limits>
75 #include <set>
76 #include <string>
77 #include <utility>
78 #include <vector>
79 
80 using namespace llvm;
81 
82 /// makeVTList - Return an instance of the SDVTList struct initialized with the
83 /// specified members.
84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
85   SDVTList Res = {VTs, NumVTs};
86   return Res;
87 }
88 
89 // Default null implementations of the callbacks.
90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
93 
94 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
95 
96 #define DEBUG_TYPE "selectiondag"
97 
98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
99        cl::Hidden, cl::init(true),
100        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
101 
102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
103        cl::desc("Number limit for gluing ld/st of memcpy."),
104        cl::Hidden, cl::init(0));
105 
106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
107   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
108 }
109 
110 //===----------------------------------------------------------------------===//
111 //                              ConstantFPSDNode Class
112 //===----------------------------------------------------------------------===//
113 
114 /// isExactlyValue - We don't rely on operator== working on double values, as
115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
116 /// As such, this method can be used to do an exact bit-for-bit comparison of
117 /// two floating point values.
118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
119   return getValueAPF().bitwiseIsEqual(V);
120 }
121 
122 bool ConstantFPSDNode::isValueValidForType(EVT VT,
123                                            const APFloat& Val) {
124   assert(VT.isFloatingPoint() && "Can only convert between FP types");
125 
126   // convert modifies in place, so make a copy.
127   APFloat Val2 = APFloat(Val);
128   bool losesInfo;
129   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
130                       APFloat::rmNearestTiesToEven,
131                       &losesInfo);
132   return !losesInfo;
133 }
134 
135 //===----------------------------------------------------------------------===//
136 //                              ISD Namespace
137 //===----------------------------------------------------------------------===//
138 
139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
140   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
141     unsigned EltSize =
142         N->getValueType(0).getVectorElementType().getSizeInBits();
143     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
144       SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize);
145       return true;
146     }
147     if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
148       SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize);
149       return true;
150     }
151   }
152 
153   auto *BV = dyn_cast<BuildVectorSDNode>(N);
154   if (!BV)
155     return false;
156 
157   APInt SplatUndef;
158   unsigned SplatBitSize;
159   bool HasUndefs;
160   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
161   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
162                              EltSize) &&
163          EltSize == SplatBitSize;
164 }
165 
166 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
167 // specializations of the more general isConstantSplatVector()?
168 
169 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
170   // Look through a bit convert.
171   while (N->getOpcode() == ISD::BITCAST)
172     N = N->getOperand(0).getNode();
173 
174   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
175     APInt SplatVal;
176     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes();
177   }
178 
179   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
180 
181   unsigned i = 0, e = N->getNumOperands();
182 
183   // Skip over all of the undef values.
184   while (i != e && N->getOperand(i).isUndef())
185     ++i;
186 
187   // Do not accept an all-undef vector.
188   if (i == e) return false;
189 
190   // Do not accept build_vectors that aren't all constants or which have non-~0
191   // elements. We have to be a bit careful here, as the type of the constant
192   // may not be the same as the type of the vector elements due to type
193   // legalization (the elements are promoted to a legal type for the target and
194   // a vector of a type may be legal when the base element type is not).
195   // We only want to check enough bits to cover the vector elements, because
196   // we care if the resultant vector is all ones, not whether the individual
197   // constants are.
198   SDValue NotZero = N->getOperand(i);
199   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
200   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
201     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
202       return false;
203   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
204     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
205       return false;
206   } else
207     return false;
208 
209   // Okay, we have at least one ~0 value, check to see if the rest match or are
210   // undefs. Even with the above element type twiddling, this should be OK, as
211   // the same type legalization should have applied to all the elements.
212   for (++i; i != e; ++i)
213     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
214       return false;
215   return true;
216 }
217 
218 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
219   // Look through a bit convert.
220   while (N->getOpcode() == ISD::BITCAST)
221     N = N->getOperand(0).getNode();
222 
223   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
224     APInt SplatVal;
225     return isConstantSplatVector(N, SplatVal) && SplatVal.isZero();
226   }
227 
228   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
229 
230   bool IsAllUndef = true;
231   for (const SDValue &Op : N->op_values()) {
232     if (Op.isUndef())
233       continue;
234     IsAllUndef = false;
235     // Do not accept build_vectors that aren't all constants or which have non-0
236     // elements. We have to be a bit careful here, as the type of the constant
237     // may not be the same as the type of the vector elements due to type
238     // legalization (the elements are promoted to a legal type for the target
239     // and a vector of a type may be legal when the base element type is not).
240     // We only want to check enough bits to cover the vector elements, because
241     // we care if the resultant vector is all zeros, not whether the individual
242     // constants are.
243     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
244     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
245       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
246         return false;
247     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
248       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
249         return false;
250     } else
251       return false;
252   }
253 
254   // Do not accept an all-undef vector.
255   if (IsAllUndef)
256     return false;
257   return true;
258 }
259 
260 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
261   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
262 }
263 
264 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
265   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
266 }
267 
268 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
269   if (N->getOpcode() != ISD::BUILD_VECTOR)
270     return false;
271 
272   for (const SDValue &Op : N->op_values()) {
273     if (Op.isUndef())
274       continue;
275     if (!isa<ConstantSDNode>(Op))
276       return false;
277   }
278   return true;
279 }
280 
281 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
282   if (N->getOpcode() != ISD::BUILD_VECTOR)
283     return false;
284 
285   for (const SDValue &Op : N->op_values()) {
286     if (Op.isUndef())
287       continue;
288     if (!isa<ConstantFPSDNode>(Op))
289       return false;
290   }
291   return true;
292 }
293 
294 bool ISD::allOperandsUndef(const SDNode *N) {
295   // Return false if the node has no operands.
296   // This is "logically inconsistent" with the definition of "all" but
297   // is probably the desired behavior.
298   if (N->getNumOperands() == 0)
299     return false;
300   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
301 }
302 
303 bool ISD::matchUnaryPredicate(SDValue Op,
304                               std::function<bool(ConstantSDNode *)> Match,
305                               bool AllowUndefs) {
306   // FIXME: Add support for scalar UNDEF cases?
307   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
308     return Match(Cst);
309 
310   // FIXME: Add support for vector UNDEF cases?
311   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
312       ISD::SPLAT_VECTOR != Op.getOpcode())
313     return false;
314 
315   EVT SVT = Op.getValueType().getScalarType();
316   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
317     if (AllowUndefs && Op.getOperand(i).isUndef()) {
318       if (!Match(nullptr))
319         return false;
320       continue;
321     }
322 
323     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
324     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
325       return false;
326   }
327   return true;
328 }
329 
330 bool ISD::matchBinaryPredicate(
331     SDValue LHS, SDValue RHS,
332     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
333     bool AllowUndefs, bool AllowTypeMismatch) {
334   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
335     return false;
336 
337   // TODO: Add support for scalar UNDEF cases?
338   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
339     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
340       return Match(LHSCst, RHSCst);
341 
342   // TODO: Add support for vector UNDEF cases?
343   if (LHS.getOpcode() != RHS.getOpcode() ||
344       (LHS.getOpcode() != ISD::BUILD_VECTOR &&
345        LHS.getOpcode() != ISD::SPLAT_VECTOR))
346     return false;
347 
348   EVT SVT = LHS.getValueType().getScalarType();
349   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
350     SDValue LHSOp = LHS.getOperand(i);
351     SDValue RHSOp = RHS.getOperand(i);
352     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
353     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
354     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
355     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
356     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
357       return false;
358     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
359                                LHSOp.getValueType() != RHSOp.getValueType()))
360       return false;
361     if (!Match(LHSCst, RHSCst))
362       return false;
363   }
364   return true;
365 }
366 
367 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
368   switch (VecReduceOpcode) {
369   default:
370     llvm_unreachable("Expected VECREDUCE opcode");
371   case ISD::VECREDUCE_FADD:
372   case ISD::VECREDUCE_SEQ_FADD:
373   case ISD::VP_REDUCE_FADD:
374   case ISD::VP_REDUCE_SEQ_FADD:
375     return ISD::FADD;
376   case ISD::VECREDUCE_FMUL:
377   case ISD::VECREDUCE_SEQ_FMUL:
378   case ISD::VP_REDUCE_FMUL:
379   case ISD::VP_REDUCE_SEQ_FMUL:
380     return ISD::FMUL;
381   case ISD::VECREDUCE_ADD:
382   case ISD::VP_REDUCE_ADD:
383     return ISD::ADD;
384   case ISD::VECREDUCE_MUL:
385   case ISD::VP_REDUCE_MUL:
386     return ISD::MUL;
387   case ISD::VECREDUCE_AND:
388   case ISD::VP_REDUCE_AND:
389     return ISD::AND;
390   case ISD::VECREDUCE_OR:
391   case ISD::VP_REDUCE_OR:
392     return ISD::OR;
393   case ISD::VECREDUCE_XOR:
394   case ISD::VP_REDUCE_XOR:
395     return ISD::XOR;
396   case ISD::VECREDUCE_SMAX:
397   case ISD::VP_REDUCE_SMAX:
398     return ISD::SMAX;
399   case ISD::VECREDUCE_SMIN:
400   case ISD::VP_REDUCE_SMIN:
401     return ISD::SMIN;
402   case ISD::VECREDUCE_UMAX:
403   case ISD::VP_REDUCE_UMAX:
404     return ISD::UMAX;
405   case ISD::VECREDUCE_UMIN:
406   case ISD::VP_REDUCE_UMIN:
407     return ISD::UMIN;
408   case ISD::VECREDUCE_FMAX:
409   case ISD::VP_REDUCE_FMAX:
410     return ISD::FMAXNUM;
411   case ISD::VECREDUCE_FMIN:
412   case ISD::VP_REDUCE_FMIN:
413     return ISD::FMINNUM;
414   }
415 }
416 
417 bool ISD::isVPOpcode(unsigned Opcode) {
418   switch (Opcode) {
419   default:
420     return false;
421 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...)                                    \
422   case ISD::VPSD:                                                              \
423     return true;
424 #include "llvm/IR/VPIntrinsics.def"
425   }
426 }
427 
428 bool ISD::isVPBinaryOp(unsigned Opcode) {
429   switch (Opcode) {
430   default:
431     break;
432 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
433 #define VP_PROPERTY_BINARYOP return true;
434 #define END_REGISTER_VP_SDNODE(VPSD) break;
435 #include "llvm/IR/VPIntrinsics.def"
436   }
437   return false;
438 }
439 
440 bool ISD::isVPReduction(unsigned Opcode) {
441   switch (Opcode) {
442   default:
443     break;
444 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
445 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true;
446 #define END_REGISTER_VP_SDNODE(VPSD) break;
447 #include "llvm/IR/VPIntrinsics.def"
448   }
449   return false;
450 }
451 
452 /// The operand position of the vector mask.
453 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
454   switch (Opcode) {
455   default:
456     return None;
457 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...)         \
458   case ISD::VPSD:                                                              \
459     return MASKPOS;
460 #include "llvm/IR/VPIntrinsics.def"
461   }
462 }
463 
464 /// The operand position of the explicit vector length parameter.
465 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
466   switch (Opcode) {
467   default:
468     return None;
469 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS)      \
470   case ISD::VPSD:                                                              \
471     return EVLPOS;
472 #include "llvm/IR/VPIntrinsics.def"
473   }
474 }
475 
476 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
477   switch (ExtType) {
478   case ISD::EXTLOAD:
479     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
480   case ISD::SEXTLOAD:
481     return ISD::SIGN_EXTEND;
482   case ISD::ZEXTLOAD:
483     return ISD::ZERO_EXTEND;
484   default:
485     break;
486   }
487 
488   llvm_unreachable("Invalid LoadExtType");
489 }
490 
491 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
492   // To perform this operation, we just need to swap the L and G bits of the
493   // operation.
494   unsigned OldL = (Operation >> 2) & 1;
495   unsigned OldG = (Operation >> 1) & 1;
496   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
497                        (OldL << 1) |       // New G bit
498                        (OldG << 2));       // New L bit.
499 }
500 
501 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
502   unsigned Operation = Op;
503   if (isIntegerLike)
504     Operation ^= 7;   // Flip L, G, E bits, but not U.
505   else
506     Operation ^= 15;  // Flip all of the condition bits.
507 
508   if (Operation > ISD::SETTRUE2)
509     Operation &= ~8;  // Don't let N and U bits get set.
510 
511   return ISD::CondCode(Operation);
512 }
513 
514 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
515   return getSetCCInverseImpl(Op, Type.isInteger());
516 }
517 
518 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
519                                                bool isIntegerLike) {
520   return getSetCCInverseImpl(Op, isIntegerLike);
521 }
522 
523 /// For an integer comparison, return 1 if the comparison is a signed operation
524 /// and 2 if the result is an unsigned comparison. Return zero if the operation
525 /// does not depend on the sign of the input (setne and seteq).
526 static int isSignedOp(ISD::CondCode Opcode) {
527   switch (Opcode) {
528   default: llvm_unreachable("Illegal integer setcc operation!");
529   case ISD::SETEQ:
530   case ISD::SETNE: return 0;
531   case ISD::SETLT:
532   case ISD::SETLE:
533   case ISD::SETGT:
534   case ISD::SETGE: return 1;
535   case ISD::SETULT:
536   case ISD::SETULE:
537   case ISD::SETUGT:
538   case ISD::SETUGE: return 2;
539   }
540 }
541 
542 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
543                                        EVT Type) {
544   bool IsInteger = Type.isInteger();
545   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
546     // Cannot fold a signed integer setcc with an unsigned integer setcc.
547     return ISD::SETCC_INVALID;
548 
549   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
550 
551   // If the N and U bits get set, then the resultant comparison DOES suddenly
552   // care about orderedness, and it is true when ordered.
553   if (Op > ISD::SETTRUE2)
554     Op &= ~16;     // Clear the U bit if the N bit is set.
555 
556   // Canonicalize illegal integer setcc's.
557   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
558     Op = ISD::SETNE;
559 
560   return ISD::CondCode(Op);
561 }
562 
563 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
564                                         EVT Type) {
565   bool IsInteger = Type.isInteger();
566   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
567     // Cannot fold a signed setcc with an unsigned setcc.
568     return ISD::SETCC_INVALID;
569 
570   // Combine all of the condition bits.
571   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
572 
573   // Canonicalize illegal integer setcc's.
574   if (IsInteger) {
575     switch (Result) {
576     default: break;
577     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
578     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
579     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
580     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
581     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
582     }
583   }
584 
585   return Result;
586 }
587 
588 //===----------------------------------------------------------------------===//
589 //                           SDNode Profile Support
590 //===----------------------------------------------------------------------===//
591 
592 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
593 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
594   ID.AddInteger(OpC);
595 }
596 
597 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
598 /// solely with their pointer.
599 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
600   ID.AddPointer(VTList.VTs);
601 }
602 
603 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
604 static void AddNodeIDOperands(FoldingSetNodeID &ID,
605                               ArrayRef<SDValue> Ops) {
606   for (auto& Op : Ops) {
607     ID.AddPointer(Op.getNode());
608     ID.AddInteger(Op.getResNo());
609   }
610 }
611 
612 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
613 static void AddNodeIDOperands(FoldingSetNodeID &ID,
614                               ArrayRef<SDUse> Ops) {
615   for (auto& Op : Ops) {
616     ID.AddPointer(Op.getNode());
617     ID.AddInteger(Op.getResNo());
618   }
619 }
620 
621 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
622                           SDVTList VTList, ArrayRef<SDValue> OpList) {
623   AddNodeIDOpcode(ID, OpC);
624   AddNodeIDValueTypes(ID, VTList);
625   AddNodeIDOperands(ID, OpList);
626 }
627 
628 /// If this is an SDNode with special info, add this info to the NodeID data.
629 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
630   switch (N->getOpcode()) {
631   case ISD::TargetExternalSymbol:
632   case ISD::ExternalSymbol:
633   case ISD::MCSymbol:
634     llvm_unreachable("Should only be used on nodes with operands");
635   default: break;  // Normal nodes don't need extra info.
636   case ISD::TargetConstant:
637   case ISD::Constant: {
638     const ConstantSDNode *C = cast<ConstantSDNode>(N);
639     ID.AddPointer(C->getConstantIntValue());
640     ID.AddBoolean(C->isOpaque());
641     break;
642   }
643   case ISD::TargetConstantFP:
644   case ISD::ConstantFP:
645     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
646     break;
647   case ISD::TargetGlobalAddress:
648   case ISD::GlobalAddress:
649   case ISD::TargetGlobalTLSAddress:
650   case ISD::GlobalTLSAddress: {
651     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
652     ID.AddPointer(GA->getGlobal());
653     ID.AddInteger(GA->getOffset());
654     ID.AddInteger(GA->getTargetFlags());
655     break;
656   }
657   case ISD::BasicBlock:
658     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
659     break;
660   case ISD::Register:
661     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
662     break;
663   case ISD::RegisterMask:
664     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
665     break;
666   case ISD::SRCVALUE:
667     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
668     break;
669   case ISD::FrameIndex:
670   case ISD::TargetFrameIndex:
671     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
672     break;
673   case ISD::LIFETIME_START:
674   case ISD::LIFETIME_END:
675     if (cast<LifetimeSDNode>(N)->hasOffset()) {
676       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
677       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
678     }
679     break;
680   case ISD::PSEUDO_PROBE:
681     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
682     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
683     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
684     break;
685   case ISD::JumpTable:
686   case ISD::TargetJumpTable:
687     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
688     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
689     break;
690   case ISD::ConstantPool:
691   case ISD::TargetConstantPool: {
692     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
693     ID.AddInteger(CP->getAlign().value());
694     ID.AddInteger(CP->getOffset());
695     if (CP->isMachineConstantPoolEntry())
696       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
697     else
698       ID.AddPointer(CP->getConstVal());
699     ID.AddInteger(CP->getTargetFlags());
700     break;
701   }
702   case ISD::TargetIndex: {
703     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
704     ID.AddInteger(TI->getIndex());
705     ID.AddInteger(TI->getOffset());
706     ID.AddInteger(TI->getTargetFlags());
707     break;
708   }
709   case ISD::LOAD: {
710     const LoadSDNode *LD = cast<LoadSDNode>(N);
711     ID.AddInteger(LD->getMemoryVT().getRawBits());
712     ID.AddInteger(LD->getRawSubclassData());
713     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
714     ID.AddInteger(LD->getMemOperand()->getFlags());
715     break;
716   }
717   case ISD::STORE: {
718     const StoreSDNode *ST = cast<StoreSDNode>(N);
719     ID.AddInteger(ST->getMemoryVT().getRawBits());
720     ID.AddInteger(ST->getRawSubclassData());
721     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
722     ID.AddInteger(ST->getMemOperand()->getFlags());
723     break;
724   }
725   case ISD::VP_LOAD: {
726     const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N);
727     ID.AddInteger(ELD->getMemoryVT().getRawBits());
728     ID.AddInteger(ELD->getRawSubclassData());
729     ID.AddInteger(ELD->getPointerInfo().getAddrSpace());
730     ID.AddInteger(ELD->getMemOperand()->getFlags());
731     break;
732   }
733   case ISD::VP_STORE: {
734     const VPStoreSDNode *EST = cast<VPStoreSDNode>(N);
735     ID.AddInteger(EST->getMemoryVT().getRawBits());
736     ID.AddInteger(EST->getRawSubclassData());
737     ID.AddInteger(EST->getPointerInfo().getAddrSpace());
738     ID.AddInteger(EST->getMemOperand()->getFlags());
739     break;
740   }
741   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: {
742     const VPStridedLoadSDNode *SLD = cast<VPStridedLoadSDNode>(N);
743     ID.AddInteger(SLD->getMemoryVT().getRawBits());
744     ID.AddInteger(SLD->getRawSubclassData());
745     ID.AddInteger(SLD->getPointerInfo().getAddrSpace());
746     break;
747   }
748   case ISD::EXPERIMENTAL_VP_STRIDED_STORE: {
749     const VPStridedStoreSDNode *SST = cast<VPStridedStoreSDNode>(N);
750     ID.AddInteger(SST->getMemoryVT().getRawBits());
751     ID.AddInteger(SST->getRawSubclassData());
752     ID.AddInteger(SST->getPointerInfo().getAddrSpace());
753     break;
754   }
755   case ISD::VP_GATHER: {
756     const VPGatherSDNode *EG = cast<VPGatherSDNode>(N);
757     ID.AddInteger(EG->getMemoryVT().getRawBits());
758     ID.AddInteger(EG->getRawSubclassData());
759     ID.AddInteger(EG->getPointerInfo().getAddrSpace());
760     ID.AddInteger(EG->getMemOperand()->getFlags());
761     break;
762   }
763   case ISD::VP_SCATTER: {
764     const VPScatterSDNode *ES = cast<VPScatterSDNode>(N);
765     ID.AddInteger(ES->getMemoryVT().getRawBits());
766     ID.AddInteger(ES->getRawSubclassData());
767     ID.AddInteger(ES->getPointerInfo().getAddrSpace());
768     ID.AddInteger(ES->getMemOperand()->getFlags());
769     break;
770   }
771   case ISD::MLOAD: {
772     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
773     ID.AddInteger(MLD->getMemoryVT().getRawBits());
774     ID.AddInteger(MLD->getRawSubclassData());
775     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
776     ID.AddInteger(MLD->getMemOperand()->getFlags());
777     break;
778   }
779   case ISD::MSTORE: {
780     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
781     ID.AddInteger(MST->getMemoryVT().getRawBits());
782     ID.AddInteger(MST->getRawSubclassData());
783     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
784     ID.AddInteger(MST->getMemOperand()->getFlags());
785     break;
786   }
787   case ISD::MGATHER: {
788     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
789     ID.AddInteger(MG->getMemoryVT().getRawBits());
790     ID.AddInteger(MG->getRawSubclassData());
791     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
792     ID.AddInteger(MG->getMemOperand()->getFlags());
793     break;
794   }
795   case ISD::MSCATTER: {
796     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
797     ID.AddInteger(MS->getMemoryVT().getRawBits());
798     ID.AddInteger(MS->getRawSubclassData());
799     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
800     ID.AddInteger(MS->getMemOperand()->getFlags());
801     break;
802   }
803   case ISD::ATOMIC_CMP_SWAP:
804   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
805   case ISD::ATOMIC_SWAP:
806   case ISD::ATOMIC_LOAD_ADD:
807   case ISD::ATOMIC_LOAD_SUB:
808   case ISD::ATOMIC_LOAD_AND:
809   case ISD::ATOMIC_LOAD_CLR:
810   case ISD::ATOMIC_LOAD_OR:
811   case ISD::ATOMIC_LOAD_XOR:
812   case ISD::ATOMIC_LOAD_NAND:
813   case ISD::ATOMIC_LOAD_MIN:
814   case ISD::ATOMIC_LOAD_MAX:
815   case ISD::ATOMIC_LOAD_UMIN:
816   case ISD::ATOMIC_LOAD_UMAX:
817   case ISD::ATOMIC_LOAD:
818   case ISD::ATOMIC_STORE: {
819     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
820     ID.AddInteger(AT->getMemoryVT().getRawBits());
821     ID.AddInteger(AT->getRawSubclassData());
822     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
823     ID.AddInteger(AT->getMemOperand()->getFlags());
824     break;
825   }
826   case ISD::PREFETCH: {
827     const MemSDNode *PF = cast<MemSDNode>(N);
828     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
829     ID.AddInteger(PF->getMemOperand()->getFlags());
830     break;
831   }
832   case ISD::VECTOR_SHUFFLE: {
833     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
834     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
835          i != e; ++i)
836       ID.AddInteger(SVN->getMaskElt(i));
837     break;
838   }
839   case ISD::TargetBlockAddress:
840   case ISD::BlockAddress: {
841     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
842     ID.AddPointer(BA->getBlockAddress());
843     ID.AddInteger(BA->getOffset());
844     ID.AddInteger(BA->getTargetFlags());
845     break;
846   }
847   case ISD::AssertAlign:
848     ID.AddInteger(cast<AssertAlignSDNode>(N)->getAlign().value());
849     break;
850   } // end switch (N->getOpcode())
851 
852   // Target specific memory nodes could also have address spaces and flags
853   // to check.
854   if (N->isTargetMemoryOpcode()) {
855     const MemSDNode *MN = cast<MemSDNode>(N);
856     ID.AddInteger(MN->getPointerInfo().getAddrSpace());
857     ID.AddInteger(MN->getMemOperand()->getFlags());
858   }
859 }
860 
861 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
862 /// data.
863 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
864   AddNodeIDOpcode(ID, N->getOpcode());
865   // Add the return value info.
866   AddNodeIDValueTypes(ID, N->getVTList());
867   // Add the operand info.
868   AddNodeIDOperands(ID, N->ops());
869 
870   // Handle SDNode leafs with special info.
871   AddNodeIDCustom(ID, N);
872 }
873 
874 //===----------------------------------------------------------------------===//
875 //                              SelectionDAG Class
876 //===----------------------------------------------------------------------===//
877 
878 /// doNotCSE - Return true if CSE should not be performed for this node.
879 static bool doNotCSE(SDNode *N) {
880   if (N->getValueType(0) == MVT::Glue)
881     return true; // Never CSE anything that produces a flag.
882 
883   switch (N->getOpcode()) {
884   default: break;
885   case ISD::HANDLENODE:
886   case ISD::EH_LABEL:
887     return true;   // Never CSE these nodes.
888   }
889 
890   // Check that remaining values produced are not flags.
891   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
892     if (N->getValueType(i) == MVT::Glue)
893       return true; // Never CSE anything that produces a flag.
894 
895   return false;
896 }
897 
898 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
899 /// SelectionDAG.
900 void SelectionDAG::RemoveDeadNodes() {
901   // Create a dummy node (which is not added to allnodes), that adds a reference
902   // to the root node, preventing it from being deleted.
903   HandleSDNode Dummy(getRoot());
904 
905   SmallVector<SDNode*, 128> DeadNodes;
906 
907   // Add all obviously-dead nodes to the DeadNodes worklist.
908   for (SDNode &Node : allnodes())
909     if (Node.use_empty())
910       DeadNodes.push_back(&Node);
911 
912   RemoveDeadNodes(DeadNodes);
913 
914   // If the root changed (e.g. it was a dead load, update the root).
915   setRoot(Dummy.getValue());
916 }
917 
918 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
919 /// given list, and any nodes that become unreachable as a result.
920 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
921 
922   // Process the worklist, deleting the nodes and adding their uses to the
923   // worklist.
924   while (!DeadNodes.empty()) {
925     SDNode *N = DeadNodes.pop_back_val();
926     // Skip to next node if we've already managed to delete the node. This could
927     // happen if replacing a node causes a node previously added to the node to
928     // be deleted.
929     if (N->getOpcode() == ISD::DELETED_NODE)
930       continue;
931 
932     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
933       DUL->NodeDeleted(N, nullptr);
934 
935     // Take the node out of the appropriate CSE map.
936     RemoveNodeFromCSEMaps(N);
937 
938     // Next, brutally remove the operand list.  This is safe to do, as there are
939     // no cycles in the graph.
940     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
941       SDUse &Use = *I++;
942       SDNode *Operand = Use.getNode();
943       Use.set(SDValue());
944 
945       // Now that we removed this operand, see if there are no uses of it left.
946       if (Operand->use_empty())
947         DeadNodes.push_back(Operand);
948     }
949 
950     DeallocateNode(N);
951   }
952 }
953 
954 void SelectionDAG::RemoveDeadNode(SDNode *N){
955   SmallVector<SDNode*, 16> DeadNodes(1, N);
956 
957   // Create a dummy node that adds a reference to the root node, preventing
958   // it from being deleted.  (This matters if the root is an operand of the
959   // dead node.)
960   HandleSDNode Dummy(getRoot());
961 
962   RemoveDeadNodes(DeadNodes);
963 }
964 
965 void SelectionDAG::DeleteNode(SDNode *N) {
966   // First take this out of the appropriate CSE map.
967   RemoveNodeFromCSEMaps(N);
968 
969   // Finally, remove uses due to operands of this node, remove from the
970   // AllNodes list, and delete the node.
971   DeleteNodeNotInCSEMaps(N);
972 }
973 
974 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
975   assert(N->getIterator() != AllNodes.begin() &&
976          "Cannot delete the entry node!");
977   assert(N->use_empty() && "Cannot delete a node that is not dead!");
978 
979   // Drop all of the operands and decrement used node's use counts.
980   N->DropOperands();
981 
982   DeallocateNode(N);
983 }
984 
985 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
986   assert(!(V->isVariadic() && isParameter));
987   if (isParameter)
988     ByvalParmDbgValues.push_back(V);
989   else
990     DbgValues.push_back(V);
991   for (const SDNode *Node : V->getSDNodes())
992     if (Node)
993       DbgValMap[Node].push_back(V);
994 }
995 
996 void SDDbgInfo::erase(const SDNode *Node) {
997   DbgValMapType::iterator I = DbgValMap.find(Node);
998   if (I == DbgValMap.end())
999     return;
1000   for (auto &Val: I->second)
1001     Val->setIsInvalidated();
1002   DbgValMap.erase(I);
1003 }
1004 
1005 void SelectionDAG::DeallocateNode(SDNode *N) {
1006   // If we have operands, deallocate them.
1007   removeOperands(N);
1008 
1009   NodeAllocator.Deallocate(AllNodes.remove(N));
1010 
1011   // Set the opcode to DELETED_NODE to help catch bugs when node
1012   // memory is reallocated.
1013   // FIXME: There are places in SDag that have grown a dependency on the opcode
1014   // value in the released node.
1015   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
1016   N->NodeType = ISD::DELETED_NODE;
1017 
1018   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
1019   // them and forget about that node.
1020   DbgInfo->erase(N);
1021 }
1022 
1023 #ifndef NDEBUG
1024 /// VerifySDNode - Check the given SDNode.  Aborts if it is invalid.
1025 static void VerifySDNode(SDNode *N) {
1026   switch (N->getOpcode()) {
1027   default:
1028     break;
1029   case ISD::BUILD_PAIR: {
1030     EVT VT = N->getValueType(0);
1031     assert(N->getNumValues() == 1 && "Too many results!");
1032     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
1033            "Wrong return type!");
1034     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
1035     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
1036            "Mismatched operand types!");
1037     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
1038            "Wrong operand type!");
1039     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
1040            "Wrong return type size");
1041     break;
1042   }
1043   case ISD::BUILD_VECTOR: {
1044     assert(N->getNumValues() == 1 && "Too many results!");
1045     assert(N->getValueType(0).isVector() && "Wrong return type!");
1046     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
1047            "Wrong number of operands!");
1048     EVT EltVT = N->getValueType(0).getVectorElementType();
1049     for (const SDUse &Op : N->ops()) {
1050       assert((Op.getValueType() == EltVT ||
1051               (EltVT.isInteger() && Op.getValueType().isInteger() &&
1052                EltVT.bitsLE(Op.getValueType()))) &&
1053              "Wrong operand type!");
1054       assert(Op.getValueType() == N->getOperand(0).getValueType() &&
1055              "Operands must all have the same type");
1056     }
1057     break;
1058   }
1059   }
1060 }
1061 #endif // NDEBUG
1062 
1063 /// Insert a newly allocated node into the DAG.
1064 ///
1065 /// Handles insertion into the all nodes list and CSE map, as well as
1066 /// verification and other common operations when a new node is allocated.
1067 void SelectionDAG::InsertNode(SDNode *N) {
1068   AllNodes.push_back(N);
1069 #ifndef NDEBUG
1070   N->PersistentId = NextPersistentId++;
1071   VerifySDNode(N);
1072 #endif
1073   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1074     DUL->NodeInserted(N);
1075 }
1076 
1077 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
1078 /// correspond to it.  This is useful when we're about to delete or repurpose
1079 /// the node.  We don't want future request for structurally identical nodes
1080 /// to return N anymore.
1081 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
1082   bool Erased = false;
1083   switch (N->getOpcode()) {
1084   case ISD::HANDLENODE: return false;  // noop.
1085   case ISD::CONDCODE:
1086     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
1087            "Cond code doesn't exist!");
1088     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
1089     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
1090     break;
1091   case ISD::ExternalSymbol:
1092     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
1093     break;
1094   case ISD::TargetExternalSymbol: {
1095     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
1096     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1097         ESN->getSymbol(), ESN->getTargetFlags()));
1098     break;
1099   }
1100   case ISD::MCSymbol: {
1101     auto *MCSN = cast<MCSymbolSDNode>(N);
1102     Erased = MCSymbols.erase(MCSN->getMCSymbol());
1103     break;
1104   }
1105   case ISD::VALUETYPE: {
1106     EVT VT = cast<VTSDNode>(N)->getVT();
1107     if (VT.isExtended()) {
1108       Erased = ExtendedValueTypeNodes.erase(VT);
1109     } else {
1110       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1111       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1112     }
1113     break;
1114   }
1115   default:
1116     // Remove it from the CSE Map.
1117     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1118     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1119     Erased = CSEMap.RemoveNode(N);
1120     break;
1121   }
1122 #ifndef NDEBUG
1123   // Verify that the node was actually in one of the CSE maps, unless it has a
1124   // flag result (which cannot be CSE'd) or is one of the special cases that are
1125   // not subject to CSE.
1126   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1127       !N->isMachineOpcode() && !doNotCSE(N)) {
1128     N->dump(this);
1129     dbgs() << "\n";
1130     llvm_unreachable("Node is not in map!");
1131   }
1132 #endif
1133   return Erased;
1134 }
1135 
1136 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1137 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1138 /// node already exists, in which case transfer all its users to the existing
1139 /// node. This transfer can potentially trigger recursive merging.
1140 void
1141 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1142   // For node types that aren't CSE'd, just act as if no identical node
1143   // already exists.
1144   if (!doNotCSE(N)) {
1145     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1146     if (Existing != N) {
1147       // If there was already an existing matching node, use ReplaceAllUsesWith
1148       // to replace the dead one with the existing one.  This can cause
1149       // recursive merging of other unrelated nodes down the line.
1150       ReplaceAllUsesWith(N, Existing);
1151 
1152       // N is now dead. Inform the listeners and delete it.
1153       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1154         DUL->NodeDeleted(N, Existing);
1155       DeleteNodeNotInCSEMaps(N);
1156       return;
1157     }
1158   }
1159 
1160   // If the node doesn't already exist, we updated it.  Inform listeners.
1161   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1162     DUL->NodeUpdated(N);
1163 }
1164 
1165 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1166 /// were replaced with those specified.  If this node is never memoized,
1167 /// return null, otherwise return a pointer to the slot it would take.  If a
1168 /// node already exists with these operands, the slot will be non-null.
1169 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1170                                            void *&InsertPos) {
1171   if (doNotCSE(N))
1172     return nullptr;
1173 
1174   SDValue Ops[] = { Op };
1175   FoldingSetNodeID ID;
1176   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1177   AddNodeIDCustom(ID, N);
1178   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1179   if (Node)
1180     Node->intersectFlagsWith(N->getFlags());
1181   return Node;
1182 }
1183 
1184 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1185 /// were replaced with those specified.  If this node is never memoized,
1186 /// return null, otherwise return a pointer to the slot it would take.  If a
1187 /// node already exists with these operands, the slot will be non-null.
1188 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1189                                            SDValue Op1, SDValue Op2,
1190                                            void *&InsertPos) {
1191   if (doNotCSE(N))
1192     return nullptr;
1193 
1194   SDValue Ops[] = { Op1, Op2 };
1195   FoldingSetNodeID ID;
1196   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1197   AddNodeIDCustom(ID, N);
1198   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1199   if (Node)
1200     Node->intersectFlagsWith(N->getFlags());
1201   return Node;
1202 }
1203 
1204 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1205 /// were replaced with those specified.  If this node is never memoized,
1206 /// return null, otherwise return a pointer to the slot it would take.  If a
1207 /// node already exists with these operands, the slot will be non-null.
1208 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1209                                            void *&InsertPos) {
1210   if (doNotCSE(N))
1211     return nullptr;
1212 
1213   FoldingSetNodeID ID;
1214   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1215   AddNodeIDCustom(ID, N);
1216   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1217   if (Node)
1218     Node->intersectFlagsWith(N->getFlags());
1219   return Node;
1220 }
1221 
1222 Align SelectionDAG::getEVTAlign(EVT VT) const {
1223   Type *Ty = VT == MVT::iPTR ?
1224                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1225                    VT.getTypeForEVT(*getContext());
1226 
1227   return getDataLayout().getABITypeAlign(Ty);
1228 }
1229 
1230 // EntryNode could meaningfully have debug info if we can find it...
1231 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1232     : TM(tm), OptLevel(OL),
1233       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1234       Root(getEntryNode()) {
1235   InsertNode(&EntryNode);
1236   DbgInfo = new SDDbgInfo();
1237 }
1238 
1239 void SelectionDAG::init(MachineFunction &NewMF,
1240                         OptimizationRemarkEmitter &NewORE,
1241                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1242                         LegacyDivergenceAnalysis * Divergence,
1243                         ProfileSummaryInfo *PSIin,
1244                         BlockFrequencyInfo *BFIin) {
1245   MF = &NewMF;
1246   SDAGISelPass = PassPtr;
1247   ORE = &NewORE;
1248   TLI = getSubtarget().getTargetLowering();
1249   TSI = getSubtarget().getSelectionDAGInfo();
1250   LibInfo = LibraryInfo;
1251   Context = &MF->getFunction().getContext();
1252   DA = Divergence;
1253   PSI = PSIin;
1254   BFI = BFIin;
1255 }
1256 
1257 SelectionDAG::~SelectionDAG() {
1258   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1259   allnodes_clear();
1260   OperandRecycler.clear(OperandAllocator);
1261   delete DbgInfo;
1262 }
1263 
1264 bool SelectionDAG::shouldOptForSize() const {
1265   return MF->getFunction().hasOptSize() ||
1266       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1267 }
1268 
1269 void SelectionDAG::allnodes_clear() {
1270   assert(&*AllNodes.begin() == &EntryNode);
1271   AllNodes.remove(AllNodes.begin());
1272   while (!AllNodes.empty())
1273     DeallocateNode(&AllNodes.front());
1274 #ifndef NDEBUG
1275   NextPersistentId = 0;
1276 #endif
1277 }
1278 
1279 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1280                                           void *&InsertPos) {
1281   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1282   if (N) {
1283     switch (N->getOpcode()) {
1284     default: break;
1285     case ISD::Constant:
1286     case ISD::ConstantFP:
1287       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1288                        "debug location.  Use another overload.");
1289     }
1290   }
1291   return N;
1292 }
1293 
1294 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1295                                           const SDLoc &DL, void *&InsertPos) {
1296   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1297   if (N) {
1298     switch (N->getOpcode()) {
1299     case ISD::Constant:
1300     case ISD::ConstantFP:
1301       // Erase debug location from the node if the node is used at several
1302       // different places. Do not propagate one location to all uses as it
1303       // will cause a worse single stepping debugging experience.
1304       if (N->getDebugLoc() != DL.getDebugLoc())
1305         N->setDebugLoc(DebugLoc());
1306       break;
1307     default:
1308       // When the node's point of use is located earlier in the instruction
1309       // sequence than its prior point of use, update its debug info to the
1310       // earlier location.
1311       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1312         N->setDebugLoc(DL.getDebugLoc());
1313       break;
1314     }
1315   }
1316   return N;
1317 }
1318 
1319 void SelectionDAG::clear() {
1320   allnodes_clear();
1321   OperandRecycler.clear(OperandAllocator);
1322   OperandAllocator.Reset();
1323   CSEMap.clear();
1324 
1325   ExtendedValueTypeNodes.clear();
1326   ExternalSymbols.clear();
1327   TargetExternalSymbols.clear();
1328   MCSymbols.clear();
1329   SDCallSiteDbgInfo.clear();
1330   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1331             static_cast<CondCodeSDNode*>(nullptr));
1332   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1333             static_cast<SDNode*>(nullptr));
1334 
1335   EntryNode.UseList = nullptr;
1336   InsertNode(&EntryNode);
1337   Root = getEntryNode();
1338   DbgInfo->clear();
1339 }
1340 
1341 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1342   return VT.bitsGT(Op.getValueType())
1343              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1344              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1345 }
1346 
1347 std::pair<SDValue, SDValue>
1348 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1349                                        const SDLoc &DL, EVT VT) {
1350   assert(!VT.bitsEq(Op.getValueType()) &&
1351          "Strict no-op FP extend/round not allowed.");
1352   SDValue Res =
1353       VT.bitsGT(Op.getValueType())
1354           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1355           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1356                     {Chain, Op, getIntPtrConstant(0, DL)});
1357 
1358   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1359 }
1360 
1361 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1362   return VT.bitsGT(Op.getValueType()) ?
1363     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1364     getNode(ISD::TRUNCATE, DL, VT, Op);
1365 }
1366 
1367 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1368   return VT.bitsGT(Op.getValueType()) ?
1369     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1370     getNode(ISD::TRUNCATE, DL, VT, Op);
1371 }
1372 
1373 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1374   return VT.bitsGT(Op.getValueType()) ?
1375     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1376     getNode(ISD::TRUNCATE, DL, VT, Op);
1377 }
1378 
1379 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1380                                         EVT OpVT) {
1381   if (VT.bitsLE(Op.getValueType()))
1382     return getNode(ISD::TRUNCATE, SL, VT, Op);
1383 
1384   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1385   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1386 }
1387 
1388 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1389   EVT OpVT = Op.getValueType();
1390   assert(VT.isInteger() && OpVT.isInteger() &&
1391          "Cannot getZeroExtendInReg FP types");
1392   assert(VT.isVector() == OpVT.isVector() &&
1393          "getZeroExtendInReg type should be vector iff the operand "
1394          "type is vector!");
1395   assert((!VT.isVector() ||
1396           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1397          "Vector element counts must match in getZeroExtendInReg");
1398   assert(VT.bitsLE(OpVT) && "Not extending!");
1399   if (OpVT == VT)
1400     return Op;
1401   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1402                                    VT.getScalarSizeInBits());
1403   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1404 }
1405 
1406 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1407   // Only unsigned pointer semantics are supported right now. In the future this
1408   // might delegate to TLI to check pointer signedness.
1409   return getZExtOrTrunc(Op, DL, VT);
1410 }
1411 
1412 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1413   // Only unsigned pointer semantics are supported right now. In the future this
1414   // might delegate to TLI to check pointer signedness.
1415   return getZeroExtendInReg(Op, DL, VT);
1416 }
1417 
1418 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1419 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1420   return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT));
1421 }
1422 
1423 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1424   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1425   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1426 }
1427 
1428 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1429                                       EVT OpVT) {
1430   if (!V)
1431     return getConstant(0, DL, VT);
1432 
1433   switch (TLI->getBooleanContents(OpVT)) {
1434   case TargetLowering::ZeroOrOneBooleanContent:
1435   case TargetLowering::UndefinedBooleanContent:
1436     return getConstant(1, DL, VT);
1437   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1438     return getAllOnesConstant(DL, VT);
1439   }
1440   llvm_unreachable("Unexpected boolean content enum!");
1441 }
1442 
1443 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1444                                   bool isT, bool isO) {
1445   EVT EltVT = VT.getScalarType();
1446   assert((EltVT.getSizeInBits() >= 64 ||
1447           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1448          "getConstant with a uint64_t value that doesn't fit in the type!");
1449   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1450 }
1451 
1452 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1453                                   bool isT, bool isO) {
1454   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1455 }
1456 
1457 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1458                                   EVT VT, bool isT, bool isO) {
1459   assert(VT.isInteger() && "Cannot create FP integer constant!");
1460 
1461   EVT EltVT = VT.getScalarType();
1462   const ConstantInt *Elt = &Val;
1463 
1464   // In some cases the vector type is legal but the element type is illegal and
1465   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1466   // inserted value (the type does not need to match the vector element type).
1467   // Any extra bits introduced will be truncated away.
1468   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1469                            TargetLowering::TypePromoteInteger) {
1470     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1471     APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1472     Elt = ConstantInt::get(*getContext(), NewVal);
1473   }
1474   // In other cases the element type is illegal and needs to be expanded, for
1475   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1476   // the value into n parts and use a vector type with n-times the elements.
1477   // Then bitcast to the type requested.
1478   // Legalizing constants too early makes the DAGCombiner's job harder so we
1479   // only legalize if the DAG tells us we must produce legal types.
1480   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1481            TLI->getTypeAction(*getContext(), EltVT) ==
1482                TargetLowering::TypeExpandInteger) {
1483     const APInt &NewVal = Elt->getValue();
1484     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1485     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1486 
1487     // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1488     if (VT.isScalableVector()) {
1489       assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1490              "Can only handle an even split!");
1491       unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1492 
1493       SmallVector<SDValue, 2> ScalarParts;
1494       for (unsigned i = 0; i != Parts; ++i)
1495         ScalarParts.push_back(getConstant(
1496             NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1497             ViaEltVT, isT, isO));
1498 
1499       return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1500     }
1501 
1502     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1503     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1504 
1505     // Check the temporary vector is the correct size. If this fails then
1506     // getTypeToTransformTo() probably returned a type whose size (in bits)
1507     // isn't a power-of-2 factor of the requested type size.
1508     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1509 
1510     SmallVector<SDValue, 2> EltParts;
1511     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
1512       EltParts.push_back(getConstant(
1513           NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1514           ViaEltVT, isT, isO));
1515 
1516     // EltParts is currently in little endian order. If we actually want
1517     // big-endian order then reverse it now.
1518     if (getDataLayout().isBigEndian())
1519       std::reverse(EltParts.begin(), EltParts.end());
1520 
1521     // The elements must be reversed when the element order is different
1522     // to the endianness of the elements (because the BITCAST is itself a
1523     // vector shuffle in this situation). However, we do not need any code to
1524     // perform this reversal because getConstant() is producing a vector
1525     // splat.
1526     // This situation occurs in MIPS MSA.
1527 
1528     SmallVector<SDValue, 8> Ops;
1529     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1530       llvm::append_range(Ops, EltParts);
1531 
1532     SDValue V =
1533         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1534     return V;
1535   }
1536 
1537   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1538          "APInt size does not match type size!");
1539   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1540   FoldingSetNodeID ID;
1541   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1542   ID.AddPointer(Elt);
1543   ID.AddBoolean(isO);
1544   void *IP = nullptr;
1545   SDNode *N = nullptr;
1546   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1547     if (!VT.isVector())
1548       return SDValue(N, 0);
1549 
1550   if (!N) {
1551     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1552     CSEMap.InsertNode(N, IP);
1553     InsertNode(N);
1554     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1555   }
1556 
1557   SDValue Result(N, 0);
1558   if (VT.isScalableVector())
1559     Result = getSplatVector(VT, DL, Result);
1560   else if (VT.isVector())
1561     Result = getSplatBuildVector(VT, DL, Result);
1562 
1563   return Result;
1564 }
1565 
1566 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1567                                         bool isTarget) {
1568   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1569 }
1570 
1571 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1572                                              const SDLoc &DL, bool LegalTypes) {
1573   assert(VT.isInteger() && "Shift amount is not an integer type!");
1574   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1575   return getConstant(Val, DL, ShiftVT);
1576 }
1577 
1578 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1579                                            bool isTarget) {
1580   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1581 }
1582 
1583 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1584                                     bool isTarget) {
1585   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1586 }
1587 
1588 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1589                                     EVT VT, bool isTarget) {
1590   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1591 
1592   EVT EltVT = VT.getScalarType();
1593 
1594   // Do the map lookup using the actual bit pattern for the floating point
1595   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1596   // we don't have issues with SNANs.
1597   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1598   FoldingSetNodeID ID;
1599   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1600   ID.AddPointer(&V);
1601   void *IP = nullptr;
1602   SDNode *N = nullptr;
1603   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1604     if (!VT.isVector())
1605       return SDValue(N, 0);
1606 
1607   if (!N) {
1608     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1609     CSEMap.InsertNode(N, IP);
1610     InsertNode(N);
1611   }
1612 
1613   SDValue Result(N, 0);
1614   if (VT.isScalableVector())
1615     Result = getSplatVector(VT, DL, Result);
1616   else if (VT.isVector())
1617     Result = getSplatBuildVector(VT, DL, Result);
1618   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1619   return Result;
1620 }
1621 
1622 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1623                                     bool isTarget) {
1624   EVT EltVT = VT.getScalarType();
1625   if (EltVT == MVT::f32)
1626     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1627   if (EltVT == MVT::f64)
1628     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1629   if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1630       EltVT == MVT::f16 || EltVT == MVT::bf16) {
1631     bool Ignored;
1632     APFloat APF = APFloat(Val);
1633     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1634                 &Ignored);
1635     return getConstantFP(APF, DL, VT, isTarget);
1636   }
1637   llvm_unreachable("Unsupported type in getConstantFP");
1638 }
1639 
1640 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1641                                        EVT VT, int64_t Offset, bool isTargetGA,
1642                                        unsigned TargetFlags) {
1643   assert((TargetFlags == 0 || isTargetGA) &&
1644          "Cannot set target flags on target-independent globals");
1645 
1646   // Truncate (with sign-extension) the offset value to the pointer size.
1647   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1648   if (BitWidth < 64)
1649     Offset = SignExtend64(Offset, BitWidth);
1650 
1651   unsigned Opc;
1652   if (GV->isThreadLocal())
1653     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1654   else
1655     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1656 
1657   FoldingSetNodeID ID;
1658   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1659   ID.AddPointer(GV);
1660   ID.AddInteger(Offset);
1661   ID.AddInteger(TargetFlags);
1662   void *IP = nullptr;
1663   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1664     return SDValue(E, 0);
1665 
1666   auto *N = newSDNode<GlobalAddressSDNode>(
1667       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1668   CSEMap.InsertNode(N, IP);
1669     InsertNode(N);
1670   return SDValue(N, 0);
1671 }
1672 
1673 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1674   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1675   FoldingSetNodeID ID;
1676   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1677   ID.AddInteger(FI);
1678   void *IP = nullptr;
1679   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1680     return SDValue(E, 0);
1681 
1682   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1683   CSEMap.InsertNode(N, IP);
1684   InsertNode(N);
1685   return SDValue(N, 0);
1686 }
1687 
1688 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1689                                    unsigned TargetFlags) {
1690   assert((TargetFlags == 0 || isTarget) &&
1691          "Cannot set target flags on target-independent jump tables");
1692   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1693   FoldingSetNodeID ID;
1694   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1695   ID.AddInteger(JTI);
1696   ID.AddInteger(TargetFlags);
1697   void *IP = nullptr;
1698   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1699     return SDValue(E, 0);
1700 
1701   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1702   CSEMap.InsertNode(N, IP);
1703   InsertNode(N);
1704   return SDValue(N, 0);
1705 }
1706 
1707 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1708                                       MaybeAlign Alignment, int Offset,
1709                                       bool isTarget, unsigned TargetFlags) {
1710   assert((TargetFlags == 0 || isTarget) &&
1711          "Cannot set target flags on target-independent globals");
1712   if (!Alignment)
1713     Alignment = shouldOptForSize()
1714                     ? getDataLayout().getABITypeAlign(C->getType())
1715                     : getDataLayout().getPrefTypeAlign(C->getType());
1716   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1717   FoldingSetNodeID ID;
1718   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1719   ID.AddInteger(Alignment->value());
1720   ID.AddInteger(Offset);
1721   ID.AddPointer(C);
1722   ID.AddInteger(TargetFlags);
1723   void *IP = nullptr;
1724   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1725     return SDValue(E, 0);
1726 
1727   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1728                                           TargetFlags);
1729   CSEMap.InsertNode(N, IP);
1730   InsertNode(N);
1731   SDValue V = SDValue(N, 0);
1732   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1733   return V;
1734 }
1735 
1736 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1737                                       MaybeAlign Alignment, int Offset,
1738                                       bool isTarget, unsigned TargetFlags) {
1739   assert((TargetFlags == 0 || isTarget) &&
1740          "Cannot set target flags on target-independent globals");
1741   if (!Alignment)
1742     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1743   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1744   FoldingSetNodeID ID;
1745   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1746   ID.AddInteger(Alignment->value());
1747   ID.AddInteger(Offset);
1748   C->addSelectionDAGCSEId(ID);
1749   ID.AddInteger(TargetFlags);
1750   void *IP = nullptr;
1751   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1752     return SDValue(E, 0);
1753 
1754   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1755                                           TargetFlags);
1756   CSEMap.InsertNode(N, IP);
1757   InsertNode(N);
1758   return SDValue(N, 0);
1759 }
1760 
1761 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1762                                      unsigned TargetFlags) {
1763   FoldingSetNodeID ID;
1764   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1765   ID.AddInteger(Index);
1766   ID.AddInteger(Offset);
1767   ID.AddInteger(TargetFlags);
1768   void *IP = nullptr;
1769   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1770     return SDValue(E, 0);
1771 
1772   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1773   CSEMap.InsertNode(N, IP);
1774   InsertNode(N);
1775   return SDValue(N, 0);
1776 }
1777 
1778 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1779   FoldingSetNodeID ID;
1780   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1781   ID.AddPointer(MBB);
1782   void *IP = nullptr;
1783   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1784     return SDValue(E, 0);
1785 
1786   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1787   CSEMap.InsertNode(N, IP);
1788   InsertNode(N);
1789   return SDValue(N, 0);
1790 }
1791 
1792 SDValue SelectionDAG::getValueType(EVT VT) {
1793   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1794       ValueTypeNodes.size())
1795     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1796 
1797   SDNode *&N = VT.isExtended() ?
1798     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1799 
1800   if (N) return SDValue(N, 0);
1801   N = newSDNode<VTSDNode>(VT);
1802   InsertNode(N);
1803   return SDValue(N, 0);
1804 }
1805 
1806 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1807   SDNode *&N = ExternalSymbols[Sym];
1808   if (N) return SDValue(N, 0);
1809   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1810   InsertNode(N);
1811   return SDValue(N, 0);
1812 }
1813 
1814 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1815   SDNode *&N = MCSymbols[Sym];
1816   if (N)
1817     return SDValue(N, 0);
1818   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1819   InsertNode(N);
1820   return SDValue(N, 0);
1821 }
1822 
1823 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1824                                               unsigned TargetFlags) {
1825   SDNode *&N =
1826       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1827   if (N) return SDValue(N, 0);
1828   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1829   InsertNode(N);
1830   return SDValue(N, 0);
1831 }
1832 
1833 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1834   if ((unsigned)Cond >= CondCodeNodes.size())
1835     CondCodeNodes.resize(Cond+1);
1836 
1837   if (!CondCodeNodes[Cond]) {
1838     auto *N = newSDNode<CondCodeSDNode>(Cond);
1839     CondCodeNodes[Cond] = N;
1840     InsertNode(N);
1841   }
1842 
1843   return SDValue(CondCodeNodes[Cond], 0);
1844 }
1845 
1846 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) {
1847   APInt One(ResVT.getScalarSizeInBits(), 1);
1848   return getStepVector(DL, ResVT, One);
1849 }
1850 
1851 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) {
1852   assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
1853   if (ResVT.isScalableVector())
1854     return getNode(
1855         ISD::STEP_VECTOR, DL, ResVT,
1856         getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
1857 
1858   SmallVector<SDValue, 16> OpsStepConstants;
1859   for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
1860     OpsStepConstants.push_back(
1861         getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
1862   return getBuildVector(ResVT, DL, OpsStepConstants);
1863 }
1864 
1865 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1866 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1867 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1868   std::swap(N1, N2);
1869   ShuffleVectorSDNode::commuteMask(M);
1870 }
1871 
1872 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1873                                        SDValue N2, ArrayRef<int> Mask) {
1874   assert(VT.getVectorNumElements() == Mask.size() &&
1875          "Must have the same number of vector elements as mask elements!");
1876   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1877          "Invalid VECTOR_SHUFFLE");
1878 
1879   // Canonicalize shuffle undef, undef -> undef
1880   if (N1.isUndef() && N2.isUndef())
1881     return getUNDEF(VT);
1882 
1883   // Validate that all indices in Mask are within the range of the elements
1884   // input to the shuffle.
1885   int NElts = Mask.size();
1886   assert(llvm::all_of(Mask,
1887                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1888          "Index out of range");
1889 
1890   // Copy the mask so we can do any needed cleanup.
1891   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1892 
1893   // Canonicalize shuffle v, v -> v, undef
1894   if (N1 == N2) {
1895     N2 = getUNDEF(VT);
1896     for (int i = 0; i != NElts; ++i)
1897       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1898   }
1899 
1900   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1901   if (N1.isUndef())
1902     commuteShuffle(N1, N2, MaskVec);
1903 
1904   if (TLI->hasVectorBlend()) {
1905     // If shuffling a splat, try to blend the splat instead. We do this here so
1906     // that even when this arises during lowering we don't have to re-handle it.
1907     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1908       BitVector UndefElements;
1909       SDValue Splat = BV->getSplatValue(&UndefElements);
1910       if (!Splat)
1911         return;
1912 
1913       for (int i = 0; i < NElts; ++i) {
1914         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1915           continue;
1916 
1917         // If this input comes from undef, mark it as such.
1918         if (UndefElements[MaskVec[i] - Offset]) {
1919           MaskVec[i] = -1;
1920           continue;
1921         }
1922 
1923         // If we can blend a non-undef lane, use that instead.
1924         if (!UndefElements[i])
1925           MaskVec[i] = i + Offset;
1926       }
1927     };
1928     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1929       BlendSplat(N1BV, 0);
1930     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1931       BlendSplat(N2BV, NElts);
1932   }
1933 
1934   // Canonicalize all index into lhs, -> shuffle lhs, undef
1935   // Canonicalize all index into rhs, -> shuffle rhs, undef
1936   bool AllLHS = true, AllRHS = true;
1937   bool N2Undef = N2.isUndef();
1938   for (int i = 0; i != NElts; ++i) {
1939     if (MaskVec[i] >= NElts) {
1940       if (N2Undef)
1941         MaskVec[i] = -1;
1942       else
1943         AllLHS = false;
1944     } else if (MaskVec[i] >= 0) {
1945       AllRHS = false;
1946     }
1947   }
1948   if (AllLHS && AllRHS)
1949     return getUNDEF(VT);
1950   if (AllLHS && !N2Undef)
1951     N2 = getUNDEF(VT);
1952   if (AllRHS) {
1953     N1 = getUNDEF(VT);
1954     commuteShuffle(N1, N2, MaskVec);
1955   }
1956   // Reset our undef status after accounting for the mask.
1957   N2Undef = N2.isUndef();
1958   // Re-check whether both sides ended up undef.
1959   if (N1.isUndef() && N2Undef)
1960     return getUNDEF(VT);
1961 
1962   // If Identity shuffle return that node.
1963   bool Identity = true, AllSame = true;
1964   for (int i = 0; i != NElts; ++i) {
1965     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1966     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1967   }
1968   if (Identity && NElts)
1969     return N1;
1970 
1971   // Shuffling a constant splat doesn't change the result.
1972   if (N2Undef) {
1973     SDValue V = N1;
1974 
1975     // Look through any bitcasts. We check that these don't change the number
1976     // (and size) of elements and just changes their types.
1977     while (V.getOpcode() == ISD::BITCAST)
1978       V = V->getOperand(0);
1979 
1980     // A splat should always show up as a build vector node.
1981     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1982       BitVector UndefElements;
1983       SDValue Splat = BV->getSplatValue(&UndefElements);
1984       // If this is a splat of an undef, shuffling it is also undef.
1985       if (Splat && Splat.isUndef())
1986         return getUNDEF(VT);
1987 
1988       bool SameNumElts =
1989           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1990 
1991       // We only have a splat which can skip shuffles if there is a splatted
1992       // value and no undef lanes rearranged by the shuffle.
1993       if (Splat && UndefElements.none()) {
1994         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1995         // number of elements match or the value splatted is a zero constant.
1996         if (SameNumElts)
1997           return N1;
1998         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1999           if (C->isZero())
2000             return N1;
2001       }
2002 
2003       // If the shuffle itself creates a splat, build the vector directly.
2004       if (AllSame && SameNumElts) {
2005         EVT BuildVT = BV->getValueType(0);
2006         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
2007         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
2008 
2009         // We may have jumped through bitcasts, so the type of the
2010         // BUILD_VECTOR may not match the type of the shuffle.
2011         if (BuildVT != VT)
2012           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
2013         return NewBV;
2014       }
2015     }
2016   }
2017 
2018   FoldingSetNodeID ID;
2019   SDValue Ops[2] = { N1, N2 };
2020   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
2021   for (int i = 0; i != NElts; ++i)
2022     ID.AddInteger(MaskVec[i]);
2023 
2024   void* IP = nullptr;
2025   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2026     return SDValue(E, 0);
2027 
2028   // Allocate the mask array for the node out of the BumpPtrAllocator, since
2029   // SDNode doesn't have access to it.  This memory will be "leaked" when
2030   // the node is deallocated, but recovered when the NodeAllocator is released.
2031   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
2032   llvm::copy(MaskVec, MaskAlloc);
2033 
2034   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
2035                                            dl.getDebugLoc(), MaskAlloc);
2036   createOperands(N, Ops);
2037 
2038   CSEMap.InsertNode(N, IP);
2039   InsertNode(N);
2040   SDValue V = SDValue(N, 0);
2041   NewSDValueDbgMsg(V, "Creating new node: ", this);
2042   return V;
2043 }
2044 
2045 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
2046   EVT VT = SV.getValueType(0);
2047   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
2048   ShuffleVectorSDNode::commuteMask(MaskVec);
2049 
2050   SDValue Op0 = SV.getOperand(0);
2051   SDValue Op1 = SV.getOperand(1);
2052   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
2053 }
2054 
2055 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
2056   FoldingSetNodeID ID;
2057   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
2058   ID.AddInteger(RegNo);
2059   void *IP = nullptr;
2060   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2061     return SDValue(E, 0);
2062 
2063   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
2064   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
2065   CSEMap.InsertNode(N, IP);
2066   InsertNode(N);
2067   return SDValue(N, 0);
2068 }
2069 
2070 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
2071   FoldingSetNodeID ID;
2072   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
2073   ID.AddPointer(RegMask);
2074   void *IP = nullptr;
2075   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2076     return SDValue(E, 0);
2077 
2078   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
2079   CSEMap.InsertNode(N, IP);
2080   InsertNode(N);
2081   return SDValue(N, 0);
2082 }
2083 
2084 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
2085                                  MCSymbol *Label) {
2086   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
2087 }
2088 
2089 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
2090                                    SDValue Root, MCSymbol *Label) {
2091   FoldingSetNodeID ID;
2092   SDValue Ops[] = { Root };
2093   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
2094   ID.AddPointer(Label);
2095   void *IP = nullptr;
2096   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2097     return SDValue(E, 0);
2098 
2099   auto *N =
2100       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
2101   createOperands(N, Ops);
2102 
2103   CSEMap.InsertNode(N, IP);
2104   InsertNode(N);
2105   return SDValue(N, 0);
2106 }
2107 
2108 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
2109                                       int64_t Offset, bool isTarget,
2110                                       unsigned TargetFlags) {
2111   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2112 
2113   FoldingSetNodeID ID;
2114   AddNodeIDNode(ID, Opc, getVTList(VT), None);
2115   ID.AddPointer(BA);
2116   ID.AddInteger(Offset);
2117   ID.AddInteger(TargetFlags);
2118   void *IP = nullptr;
2119   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2120     return SDValue(E, 0);
2121 
2122   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
2123   CSEMap.InsertNode(N, IP);
2124   InsertNode(N);
2125   return SDValue(N, 0);
2126 }
2127 
2128 SDValue SelectionDAG::getSrcValue(const Value *V) {
2129   FoldingSetNodeID ID;
2130   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
2131   ID.AddPointer(V);
2132 
2133   void *IP = nullptr;
2134   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2135     return SDValue(E, 0);
2136 
2137   auto *N = newSDNode<SrcValueSDNode>(V);
2138   CSEMap.InsertNode(N, IP);
2139   InsertNode(N);
2140   return SDValue(N, 0);
2141 }
2142 
2143 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
2144   FoldingSetNodeID ID;
2145   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
2146   ID.AddPointer(MD);
2147 
2148   void *IP = nullptr;
2149   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2150     return SDValue(E, 0);
2151 
2152   auto *N = newSDNode<MDNodeSDNode>(MD);
2153   CSEMap.InsertNode(N, IP);
2154   InsertNode(N);
2155   return SDValue(N, 0);
2156 }
2157 
2158 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2159   if (VT == V.getValueType())
2160     return V;
2161 
2162   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2163 }
2164 
2165 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2166                                        unsigned SrcAS, unsigned DestAS) {
2167   SDValue Ops[] = {Ptr};
2168   FoldingSetNodeID ID;
2169   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2170   ID.AddInteger(SrcAS);
2171   ID.AddInteger(DestAS);
2172 
2173   void *IP = nullptr;
2174   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2175     return SDValue(E, 0);
2176 
2177   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2178                                            VT, SrcAS, DestAS);
2179   createOperands(N, Ops);
2180 
2181   CSEMap.InsertNode(N, IP);
2182   InsertNode(N);
2183   return SDValue(N, 0);
2184 }
2185 
2186 SDValue SelectionDAG::getFreeze(SDValue V) {
2187   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2188 }
2189 
2190 /// getShiftAmountOperand - Return the specified value casted to
2191 /// the target's desired shift amount type.
2192 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2193   EVT OpTy = Op.getValueType();
2194   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2195   if (OpTy == ShTy || OpTy.isVector()) return Op;
2196 
2197   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2198 }
2199 
2200 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2201   SDLoc dl(Node);
2202   const TargetLowering &TLI = getTargetLoweringInfo();
2203   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2204   EVT VT = Node->getValueType(0);
2205   SDValue Tmp1 = Node->getOperand(0);
2206   SDValue Tmp2 = Node->getOperand(1);
2207   const MaybeAlign MA(Node->getConstantOperandVal(3));
2208 
2209   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2210                                Tmp2, MachinePointerInfo(V));
2211   SDValue VAList = VAListLoad;
2212 
2213   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2214     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2215                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2216 
2217     VAList =
2218         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2219                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2220   }
2221 
2222   // Increment the pointer, VAList, to the next vaarg
2223   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2224                  getConstant(getDataLayout().getTypeAllocSize(
2225                                                VT.getTypeForEVT(*getContext())),
2226                              dl, VAList.getValueType()));
2227   // Store the incremented VAList to the legalized pointer
2228   Tmp1 =
2229       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2230   // Load the actual argument out of the pointer VAList
2231   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2232 }
2233 
2234 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2235   SDLoc dl(Node);
2236   const TargetLowering &TLI = getTargetLoweringInfo();
2237   // This defaults to loading a pointer from the input and storing it to the
2238   // output, returning the chain.
2239   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2240   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2241   SDValue Tmp1 =
2242       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2243               Node->getOperand(2), MachinePointerInfo(VS));
2244   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2245                   MachinePointerInfo(VD));
2246 }
2247 
2248 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2249   const DataLayout &DL = getDataLayout();
2250   Type *Ty = VT.getTypeForEVT(*getContext());
2251   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2252 
2253   if (TLI->isTypeLegal(VT) || !VT.isVector())
2254     return RedAlign;
2255 
2256   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2257   const Align StackAlign = TFI->getStackAlign();
2258 
2259   // See if we can choose a smaller ABI alignment in cases where it's an
2260   // illegal vector type that will get broken down.
2261   if (RedAlign > StackAlign) {
2262     EVT IntermediateVT;
2263     MVT RegisterVT;
2264     unsigned NumIntermediates;
2265     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2266                                 NumIntermediates, RegisterVT);
2267     Ty = IntermediateVT.getTypeForEVT(*getContext());
2268     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2269     if (RedAlign2 < RedAlign)
2270       RedAlign = RedAlign2;
2271   }
2272 
2273   return RedAlign;
2274 }
2275 
2276 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2277   MachineFrameInfo &MFI = MF->getFrameInfo();
2278   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2279   int StackID = 0;
2280   if (Bytes.isScalable())
2281     StackID = TFI->getStackIDForScalableVectors();
2282   // The stack id gives an indication of whether the object is scalable or
2283   // not, so it's safe to pass in the minimum size here.
2284   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2285                                        false, nullptr, StackID);
2286   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2287 }
2288 
2289 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2290   Type *Ty = VT.getTypeForEVT(*getContext());
2291   Align StackAlign =
2292       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2293   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2294 }
2295 
2296 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2297   TypeSize VT1Size = VT1.getStoreSize();
2298   TypeSize VT2Size = VT2.getStoreSize();
2299   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2300          "Don't know how to choose the maximum size when creating a stack "
2301          "temporary");
2302   TypeSize Bytes =
2303       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2304 
2305   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2306   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2307   const DataLayout &DL = getDataLayout();
2308   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2309   return CreateStackTemporary(Bytes, Align);
2310 }
2311 
2312 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2313                                 ISD::CondCode Cond, const SDLoc &dl) {
2314   EVT OpVT = N1.getValueType();
2315 
2316   // These setcc operations always fold.
2317   switch (Cond) {
2318   default: break;
2319   case ISD::SETFALSE:
2320   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2321   case ISD::SETTRUE:
2322   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2323 
2324   case ISD::SETOEQ:
2325   case ISD::SETOGT:
2326   case ISD::SETOGE:
2327   case ISD::SETOLT:
2328   case ISD::SETOLE:
2329   case ISD::SETONE:
2330   case ISD::SETO:
2331   case ISD::SETUO:
2332   case ISD::SETUEQ:
2333   case ISD::SETUNE:
2334     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2335     break;
2336   }
2337 
2338   if (OpVT.isInteger()) {
2339     // For EQ and NE, we can always pick a value for the undef to make the
2340     // predicate pass or fail, so we can return undef.
2341     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2342     // icmp eq/ne X, undef -> undef.
2343     if ((N1.isUndef() || N2.isUndef()) &&
2344         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2345       return getUNDEF(VT);
2346 
2347     // If both operands are undef, we can return undef for int comparison.
2348     // icmp undef, undef -> undef.
2349     if (N1.isUndef() && N2.isUndef())
2350       return getUNDEF(VT);
2351 
2352     // icmp X, X -> true/false
2353     // icmp X, undef -> true/false because undef could be X.
2354     if (N1 == N2)
2355       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2356   }
2357 
2358   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2359     const APInt &C2 = N2C->getAPIntValue();
2360     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2361       const APInt &C1 = N1C->getAPIntValue();
2362 
2363       return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)),
2364                              dl, VT, OpVT);
2365     }
2366   }
2367 
2368   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2369   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2370 
2371   if (N1CFP && N2CFP) {
2372     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2373     switch (Cond) {
2374     default: break;
2375     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2376                         return getUNDEF(VT);
2377                       LLVM_FALLTHROUGH;
2378     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2379                                              OpVT);
2380     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2381                         return getUNDEF(VT);
2382                       LLVM_FALLTHROUGH;
2383     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2384                                              R==APFloat::cmpLessThan, dl, VT,
2385                                              OpVT);
2386     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2387                         return getUNDEF(VT);
2388                       LLVM_FALLTHROUGH;
2389     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2390                                              OpVT);
2391     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2392                         return getUNDEF(VT);
2393                       LLVM_FALLTHROUGH;
2394     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2395                                              VT, OpVT);
2396     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2397                         return getUNDEF(VT);
2398                       LLVM_FALLTHROUGH;
2399     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2400                                              R==APFloat::cmpEqual, dl, VT,
2401                                              OpVT);
2402     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2403                         return getUNDEF(VT);
2404                       LLVM_FALLTHROUGH;
2405     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2406                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2407     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2408                                              OpVT);
2409     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2410                                              OpVT);
2411     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2412                                              R==APFloat::cmpEqual, dl, VT,
2413                                              OpVT);
2414     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2415                                              OpVT);
2416     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2417                                              R==APFloat::cmpLessThan, dl, VT,
2418                                              OpVT);
2419     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2420                                              R==APFloat::cmpUnordered, dl, VT,
2421                                              OpVT);
2422     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2423                                              VT, OpVT);
2424     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2425                                              OpVT);
2426     }
2427   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2428     // Ensure that the constant occurs on the RHS.
2429     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2430     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2431       return SDValue();
2432     return getSetCC(dl, VT, N2, N1, SwappedCond);
2433   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2434              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2435     // If an operand is known to be a nan (or undef that could be a nan), we can
2436     // fold it.
2437     // Choosing NaN for the undef will always make unordered comparison succeed
2438     // and ordered comparison fails.
2439     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2440     switch (ISD::getUnorderedFlavor(Cond)) {
2441     default:
2442       llvm_unreachable("Unknown flavor!");
2443     case 0: // Known false.
2444       return getBoolConstant(false, dl, VT, OpVT);
2445     case 1: // Known true.
2446       return getBoolConstant(true, dl, VT, OpVT);
2447     case 2: // Undefined.
2448       return getUNDEF(VT);
2449     }
2450   }
2451 
2452   // Could not fold it.
2453   return SDValue();
2454 }
2455 
2456 /// See if the specified operand can be simplified with the knowledge that only
2457 /// the bits specified by DemandedBits are used.
2458 /// TODO: really we should be making this into the DAG equivalent of
2459 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2460 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2461   EVT VT = V.getValueType();
2462 
2463   if (VT.isScalableVector())
2464     return SDValue();
2465 
2466   APInt DemandedElts = VT.isVector()
2467                            ? APInt::getAllOnes(VT.getVectorNumElements())
2468                            : APInt(1, 1);
2469   return GetDemandedBits(V, DemandedBits, DemandedElts);
2470 }
2471 
2472 /// See if the specified operand can be simplified with the knowledge that only
2473 /// the bits specified by DemandedBits are used in the elements specified by
2474 /// DemandedElts.
2475 /// TODO: really we should be making this into the DAG equivalent of
2476 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2477 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2478                                       const APInt &DemandedElts) {
2479   switch (V.getOpcode()) {
2480   default:
2481     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2482                                                 *this);
2483   case ISD::Constant: {
2484     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2485     APInt NewVal = CVal & DemandedBits;
2486     if (NewVal != CVal)
2487       return getConstant(NewVal, SDLoc(V), V.getValueType());
2488     break;
2489   }
2490   case ISD::SRL:
2491     // Only look at single-use SRLs.
2492     if (!V.getNode()->hasOneUse())
2493       break;
2494     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2495       // See if we can recursively simplify the LHS.
2496       unsigned Amt = RHSC->getZExtValue();
2497 
2498       // Watch out for shift count overflow though.
2499       if (Amt >= DemandedBits.getBitWidth())
2500         break;
2501       APInt SrcDemandedBits = DemandedBits << Amt;
2502       if (SDValue SimplifyLHS =
2503               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2504         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2505                        V.getOperand(1));
2506     }
2507     break;
2508   }
2509   return SDValue();
2510 }
2511 
2512 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2513 /// use this predicate to simplify operations downstream.
2514 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2515   unsigned BitWidth = Op.getScalarValueSizeInBits();
2516   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2517 }
2518 
2519 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2520 /// this predicate to simplify operations downstream.  Mask is known to be zero
2521 /// for bits that V cannot have.
2522 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2523                                      unsigned Depth) const {
2524   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2525 }
2526 
2527 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2528 /// DemandedElts.  We use this predicate to simplify operations downstream.
2529 /// Mask is known to be zero for bits that V cannot have.
2530 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2531                                      const APInt &DemandedElts,
2532                                      unsigned Depth) const {
2533   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2534 }
2535 
2536 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2537 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2538                                         unsigned Depth) const {
2539   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2540 }
2541 
2542 /// isSplatValue - Return true if the vector V has the same value
2543 /// across all DemandedElts. For scalable vectors it does not make
2544 /// sense to specify which elements are demanded or undefined, therefore
2545 /// they are simply ignored.
2546 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2547                                 APInt &UndefElts, unsigned Depth) const {
2548   unsigned Opcode = V.getOpcode();
2549   EVT VT = V.getValueType();
2550   assert(VT.isVector() && "Vector type expected");
2551 
2552   if (!VT.isScalableVector() && !DemandedElts)
2553     return false; // No demanded elts, better to assume we don't know anything.
2554 
2555   if (Depth >= MaxRecursionDepth)
2556     return false; // Limit search depth.
2557 
2558   // Deal with some common cases here that work for both fixed and scalable
2559   // vector types.
2560   switch (Opcode) {
2561   case ISD::SPLAT_VECTOR:
2562     UndefElts = V.getOperand(0).isUndef()
2563                     ? APInt::getAllOnes(DemandedElts.getBitWidth())
2564                     : APInt(DemandedElts.getBitWidth(), 0);
2565     return true;
2566   case ISD::ADD:
2567   case ISD::SUB:
2568   case ISD::AND:
2569   case ISD::XOR:
2570   case ISD::OR: {
2571     APInt UndefLHS, UndefRHS;
2572     SDValue LHS = V.getOperand(0);
2573     SDValue RHS = V.getOperand(1);
2574     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2575         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2576       UndefElts = UndefLHS | UndefRHS;
2577       return true;
2578     }
2579     return false;
2580   }
2581   case ISD::ABS:
2582   case ISD::TRUNCATE:
2583   case ISD::SIGN_EXTEND:
2584   case ISD::ZERO_EXTEND:
2585     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2586   default:
2587     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
2588         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
2589       return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth);
2590     break;
2591 }
2592 
2593   // We don't support other cases than those above for scalable vectors at
2594   // the moment.
2595   if (VT.isScalableVector())
2596     return false;
2597 
2598   unsigned NumElts = VT.getVectorNumElements();
2599   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2600   UndefElts = APInt::getZero(NumElts);
2601 
2602   switch (Opcode) {
2603   case ISD::BUILD_VECTOR: {
2604     SDValue Scl;
2605     for (unsigned i = 0; i != NumElts; ++i) {
2606       SDValue Op = V.getOperand(i);
2607       if (Op.isUndef()) {
2608         UndefElts.setBit(i);
2609         continue;
2610       }
2611       if (!DemandedElts[i])
2612         continue;
2613       if (Scl && Scl != Op)
2614         return false;
2615       Scl = Op;
2616     }
2617     return true;
2618   }
2619   case ISD::VECTOR_SHUFFLE: {
2620     // Check if this is a shuffle node doing a splat or a shuffle of a splat.
2621     APInt DemandedLHS = APInt::getNullValue(NumElts);
2622     APInt DemandedRHS = APInt::getNullValue(NumElts);
2623     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2624     for (int i = 0; i != (int)NumElts; ++i) {
2625       int M = Mask[i];
2626       if (M < 0) {
2627         UndefElts.setBit(i);
2628         continue;
2629       }
2630       if (!DemandedElts[i])
2631         continue;
2632       if (M < (int)NumElts)
2633         DemandedLHS.setBit(M);
2634       else
2635         DemandedRHS.setBit(M - NumElts);
2636     }
2637 
2638     // If we aren't demanding either op, assume there's no splat.
2639     // If we are demanding both ops, assume there's no splat.
2640     if ((DemandedLHS.isZero() && DemandedRHS.isZero()) ||
2641         (!DemandedLHS.isZero() && !DemandedRHS.isZero()))
2642       return false;
2643 
2644     // See if the demanded elts of the source op is a splat or we only demand
2645     // one element, which should always be a splat.
2646     // TODO: Handle source ops splats with undefs.
2647     auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) {
2648       APInt SrcUndefs;
2649       return (SrcElts.countPopulation() == 1) ||
2650              (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) &&
2651               (SrcElts & SrcUndefs).isZero());
2652     };
2653     if (!DemandedLHS.isZero())
2654       return CheckSplatSrc(V.getOperand(0), DemandedLHS);
2655     return CheckSplatSrc(V.getOperand(1), DemandedRHS);
2656   }
2657   case ISD::EXTRACT_SUBVECTOR: {
2658     // Offset the demanded elts by the subvector index.
2659     SDValue Src = V.getOperand(0);
2660     // We don't support scalable vectors at the moment.
2661     if (Src.getValueType().isScalableVector())
2662       return false;
2663     uint64_t Idx = V.getConstantOperandVal(1);
2664     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2665     APInt UndefSrcElts;
2666     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2667     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2668       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2669       return true;
2670     }
2671     break;
2672   }
2673   case ISD::ANY_EXTEND_VECTOR_INREG:
2674   case ISD::SIGN_EXTEND_VECTOR_INREG:
2675   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2676     // Widen the demanded elts by the src element count.
2677     SDValue Src = V.getOperand(0);
2678     // We don't support scalable vectors at the moment.
2679     if (Src.getValueType().isScalableVector())
2680       return false;
2681     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2682     APInt UndefSrcElts;
2683     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2684     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2685       UndefElts = UndefSrcElts.truncOrSelf(NumElts);
2686       return true;
2687     }
2688     break;
2689   }
2690   case ISD::BITCAST: {
2691     SDValue Src = V.getOperand(0);
2692     EVT SrcVT = Src.getValueType();
2693     unsigned SrcBitWidth = SrcVT.getScalarSizeInBits();
2694     unsigned BitWidth = VT.getScalarSizeInBits();
2695 
2696     // Ignore bitcasts from unsupported types.
2697     // TODO: Add fp support?
2698     if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger())
2699       break;
2700 
2701     // Bitcast 'small element' vector to 'large element' vector.
2702     if ((BitWidth % SrcBitWidth) == 0) {
2703       // See if each sub element is a splat.
2704       unsigned Scale = BitWidth / SrcBitWidth;
2705       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2706       APInt ScaledDemandedElts =
2707           APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2708       for (unsigned I = 0; I != Scale; ++I) {
2709         APInt SubUndefElts;
2710         APInt SubDemandedElt = APInt::getOneBitSet(Scale, I);
2711         APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt);
2712         SubDemandedElts &= ScaledDemandedElts;
2713         if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1))
2714           return false;
2715         // TODO: Add support for merging sub undef elements.
2716         if (SubDemandedElts.isSubsetOf(SubUndefElts))
2717           return false;
2718       }
2719       return true;
2720     }
2721     break;
2722   }
2723   }
2724 
2725   return false;
2726 }
2727 
2728 /// Helper wrapper to main isSplatValue function.
2729 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const {
2730   EVT VT = V.getValueType();
2731   assert(VT.isVector() && "Vector type expected");
2732 
2733   APInt UndefElts;
2734   APInt DemandedElts;
2735 
2736   // For now we don't support this with scalable vectors.
2737   if (!VT.isScalableVector())
2738     DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2739   return isSplatValue(V, DemandedElts, UndefElts) &&
2740          (AllowUndefs || !UndefElts);
2741 }
2742 
2743 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2744   V = peekThroughExtractSubvectors(V);
2745 
2746   EVT VT = V.getValueType();
2747   unsigned Opcode = V.getOpcode();
2748   switch (Opcode) {
2749   default: {
2750     APInt UndefElts;
2751     APInt DemandedElts;
2752 
2753     if (!VT.isScalableVector())
2754       DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2755 
2756     if (isSplatValue(V, DemandedElts, UndefElts)) {
2757       if (VT.isScalableVector()) {
2758         // DemandedElts and UndefElts are ignored for scalable vectors, since
2759         // the only supported cases are SPLAT_VECTOR nodes.
2760         SplatIdx = 0;
2761       } else {
2762         // Handle case where all demanded elements are UNDEF.
2763         if (DemandedElts.isSubsetOf(UndefElts)) {
2764           SplatIdx = 0;
2765           return getUNDEF(VT);
2766         }
2767         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2768       }
2769       return V;
2770     }
2771     break;
2772   }
2773   case ISD::SPLAT_VECTOR:
2774     SplatIdx = 0;
2775     return V;
2776   case ISD::VECTOR_SHUFFLE: {
2777     if (VT.isScalableVector())
2778       return SDValue();
2779 
2780     // Check if this is a shuffle node doing a splat.
2781     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2782     // getTargetVShiftNode currently struggles without the splat source.
2783     auto *SVN = cast<ShuffleVectorSDNode>(V);
2784     if (!SVN->isSplat())
2785       break;
2786     int Idx = SVN->getSplatIndex();
2787     int NumElts = V.getValueType().getVectorNumElements();
2788     SplatIdx = Idx % NumElts;
2789     return V.getOperand(Idx / NumElts);
2790   }
2791   }
2792 
2793   return SDValue();
2794 }
2795 
2796 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) {
2797   int SplatIdx;
2798   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
2799     EVT SVT = SrcVector.getValueType().getScalarType();
2800     EVT LegalSVT = SVT;
2801     if (LegalTypes && !TLI->isTypeLegal(SVT)) {
2802       if (!SVT.isInteger())
2803         return SDValue();
2804       LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
2805       if (LegalSVT.bitsLT(SVT))
2806         return SDValue();
2807     }
2808     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector,
2809                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2810   }
2811   return SDValue();
2812 }
2813 
2814 const APInt *
2815 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2816                                           const APInt &DemandedElts) const {
2817   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2818           V.getOpcode() == ISD::SRA) &&
2819          "Unknown shift node");
2820   unsigned BitWidth = V.getScalarValueSizeInBits();
2821   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2822     // Shifting more than the bitwidth is not valid.
2823     const APInt &ShAmt = SA->getAPIntValue();
2824     if (ShAmt.ult(BitWidth))
2825       return &ShAmt;
2826   }
2827   return nullptr;
2828 }
2829 
2830 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2831     SDValue V, const APInt &DemandedElts) const {
2832   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2833           V.getOpcode() == ISD::SRA) &&
2834          "Unknown shift node");
2835   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2836     return ValidAmt;
2837   unsigned BitWidth = V.getScalarValueSizeInBits();
2838   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2839   if (!BV)
2840     return nullptr;
2841   const APInt *MinShAmt = nullptr;
2842   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2843     if (!DemandedElts[i])
2844       continue;
2845     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2846     if (!SA)
2847       return nullptr;
2848     // Shifting more than the bitwidth is not valid.
2849     const APInt &ShAmt = SA->getAPIntValue();
2850     if (ShAmt.uge(BitWidth))
2851       return nullptr;
2852     if (MinShAmt && MinShAmt->ule(ShAmt))
2853       continue;
2854     MinShAmt = &ShAmt;
2855   }
2856   return MinShAmt;
2857 }
2858 
2859 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2860     SDValue V, const APInt &DemandedElts) const {
2861   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2862           V.getOpcode() == ISD::SRA) &&
2863          "Unknown shift node");
2864   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2865     return ValidAmt;
2866   unsigned BitWidth = V.getScalarValueSizeInBits();
2867   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2868   if (!BV)
2869     return nullptr;
2870   const APInt *MaxShAmt = nullptr;
2871   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2872     if (!DemandedElts[i])
2873       continue;
2874     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2875     if (!SA)
2876       return nullptr;
2877     // Shifting more than the bitwidth is not valid.
2878     const APInt &ShAmt = SA->getAPIntValue();
2879     if (ShAmt.uge(BitWidth))
2880       return nullptr;
2881     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2882       continue;
2883     MaxShAmt = &ShAmt;
2884   }
2885   return MaxShAmt;
2886 }
2887 
2888 /// Determine which bits of Op are known to be either zero or one and return
2889 /// them in Known. For vectors, the known bits are those that are shared by
2890 /// every vector element.
2891 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2892   EVT VT = Op.getValueType();
2893 
2894   // TOOD: Until we have a plan for how to represent demanded elements for
2895   // scalable vectors, we can just bail out for now.
2896   if (Op.getValueType().isScalableVector()) {
2897     unsigned BitWidth = Op.getScalarValueSizeInBits();
2898     return KnownBits(BitWidth);
2899   }
2900 
2901   APInt DemandedElts = VT.isVector()
2902                            ? APInt::getAllOnes(VT.getVectorNumElements())
2903                            : APInt(1, 1);
2904   return computeKnownBits(Op, DemandedElts, Depth);
2905 }
2906 
2907 /// Determine which bits of Op are known to be either zero or one and return
2908 /// them in Known. The DemandedElts argument allows us to only collect the known
2909 /// bits that are shared by the requested vector elements.
2910 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2911                                          unsigned Depth) const {
2912   unsigned BitWidth = Op.getScalarValueSizeInBits();
2913 
2914   KnownBits Known(BitWidth);   // Don't know anything.
2915 
2916   // TOOD: Until we have a plan for how to represent demanded elements for
2917   // scalable vectors, we can just bail out for now.
2918   if (Op.getValueType().isScalableVector())
2919     return Known;
2920 
2921   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2922     // We know all of the bits for a constant!
2923     return KnownBits::makeConstant(C->getAPIntValue());
2924   }
2925   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2926     // We know all of the bits for a constant fp!
2927     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2928   }
2929 
2930   if (Depth >= MaxRecursionDepth)
2931     return Known;  // Limit search depth.
2932 
2933   KnownBits Known2;
2934   unsigned NumElts = DemandedElts.getBitWidth();
2935   assert((!Op.getValueType().isVector() ||
2936           NumElts == Op.getValueType().getVectorNumElements()) &&
2937          "Unexpected vector size");
2938 
2939   if (!DemandedElts)
2940     return Known;  // No demanded elts, better to assume we don't know anything.
2941 
2942   unsigned Opcode = Op.getOpcode();
2943   switch (Opcode) {
2944   case ISD::BUILD_VECTOR:
2945     // Collect the known bits that are shared by every demanded vector element.
2946     Known.Zero.setAllBits(); Known.One.setAllBits();
2947     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2948       if (!DemandedElts[i])
2949         continue;
2950 
2951       SDValue SrcOp = Op.getOperand(i);
2952       Known2 = computeKnownBits(SrcOp, Depth + 1);
2953 
2954       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2955       if (SrcOp.getValueSizeInBits() != BitWidth) {
2956         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2957                "Expected BUILD_VECTOR implicit truncation");
2958         Known2 = Known2.trunc(BitWidth);
2959       }
2960 
2961       // Known bits are the values that are shared by every demanded element.
2962       Known = KnownBits::commonBits(Known, Known2);
2963 
2964       // If we don't know any bits, early out.
2965       if (Known.isUnknown())
2966         break;
2967     }
2968     break;
2969   case ISD::VECTOR_SHUFFLE: {
2970     // Collect the known bits that are shared by every vector element referenced
2971     // by the shuffle.
2972     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2973     Known.Zero.setAllBits(); Known.One.setAllBits();
2974     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2975     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2976     for (unsigned i = 0; i != NumElts; ++i) {
2977       if (!DemandedElts[i])
2978         continue;
2979 
2980       int M = SVN->getMaskElt(i);
2981       if (M < 0) {
2982         // For UNDEF elements, we don't know anything about the common state of
2983         // the shuffle result.
2984         Known.resetAll();
2985         DemandedLHS.clearAllBits();
2986         DemandedRHS.clearAllBits();
2987         break;
2988       }
2989 
2990       if ((unsigned)M < NumElts)
2991         DemandedLHS.setBit((unsigned)M % NumElts);
2992       else
2993         DemandedRHS.setBit((unsigned)M % NumElts);
2994     }
2995     // Known bits are the values that are shared by every demanded element.
2996     if (!!DemandedLHS) {
2997       SDValue LHS = Op.getOperand(0);
2998       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2999       Known = KnownBits::commonBits(Known, Known2);
3000     }
3001     // If we don't know any bits, early out.
3002     if (Known.isUnknown())
3003       break;
3004     if (!!DemandedRHS) {
3005       SDValue RHS = Op.getOperand(1);
3006       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
3007       Known = KnownBits::commonBits(Known, Known2);
3008     }
3009     break;
3010   }
3011   case ISD::CONCAT_VECTORS: {
3012     // Split DemandedElts and test each of the demanded subvectors.
3013     Known.Zero.setAllBits(); Known.One.setAllBits();
3014     EVT SubVectorVT = Op.getOperand(0).getValueType();
3015     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3016     unsigned NumSubVectors = Op.getNumOperands();
3017     for (unsigned i = 0; i != NumSubVectors; ++i) {
3018       APInt DemandedSub =
3019           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
3020       if (!!DemandedSub) {
3021         SDValue Sub = Op.getOperand(i);
3022         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
3023         Known = KnownBits::commonBits(Known, Known2);
3024       }
3025       // If we don't know any bits, early out.
3026       if (Known.isUnknown())
3027         break;
3028     }
3029     break;
3030   }
3031   case ISD::INSERT_SUBVECTOR: {
3032     // Demand any elements from the subvector and the remainder from the src its
3033     // inserted into.
3034     SDValue Src = Op.getOperand(0);
3035     SDValue Sub = Op.getOperand(1);
3036     uint64_t Idx = Op.getConstantOperandVal(2);
3037     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3038     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3039     APInt DemandedSrcElts = DemandedElts;
3040     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
3041 
3042     Known.One.setAllBits();
3043     Known.Zero.setAllBits();
3044     if (!!DemandedSubElts) {
3045       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
3046       if (Known.isUnknown())
3047         break; // early-out.
3048     }
3049     if (!!DemandedSrcElts) {
3050       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3051       Known = KnownBits::commonBits(Known, Known2);
3052     }
3053     break;
3054   }
3055   case ISD::EXTRACT_SUBVECTOR: {
3056     // Offset the demanded elts by the subvector index.
3057     SDValue Src = Op.getOperand(0);
3058     // Bail until we can represent demanded elements for scalable vectors.
3059     if (Src.getValueType().isScalableVector())
3060       break;
3061     uint64_t Idx = Op.getConstantOperandVal(1);
3062     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3063     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3064     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3065     break;
3066   }
3067   case ISD::SCALAR_TO_VECTOR: {
3068     // We know about scalar_to_vector as much as we know about it source,
3069     // which becomes the first element of otherwise unknown vector.
3070     if (DemandedElts != 1)
3071       break;
3072 
3073     SDValue N0 = Op.getOperand(0);
3074     Known = computeKnownBits(N0, Depth + 1);
3075     if (N0.getValueSizeInBits() != BitWidth)
3076       Known = Known.trunc(BitWidth);
3077 
3078     break;
3079   }
3080   case ISD::BITCAST: {
3081     SDValue N0 = Op.getOperand(0);
3082     EVT SubVT = N0.getValueType();
3083     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
3084 
3085     // Ignore bitcasts from unsupported types.
3086     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
3087       break;
3088 
3089     // Fast handling of 'identity' bitcasts.
3090     if (BitWidth == SubBitWidth) {
3091       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
3092       break;
3093     }
3094 
3095     bool IsLE = getDataLayout().isLittleEndian();
3096 
3097     // Bitcast 'small element' vector to 'large element' scalar/vector.
3098     if ((BitWidth % SubBitWidth) == 0) {
3099       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
3100 
3101       // Collect known bits for the (larger) output by collecting the known
3102       // bits from each set of sub elements and shift these into place.
3103       // We need to separately call computeKnownBits for each set of
3104       // sub elements as the knownbits for each is likely to be different.
3105       unsigned SubScale = BitWidth / SubBitWidth;
3106       APInt SubDemandedElts(NumElts * SubScale, 0);
3107       for (unsigned i = 0; i != NumElts; ++i)
3108         if (DemandedElts[i])
3109           SubDemandedElts.setBit(i * SubScale);
3110 
3111       for (unsigned i = 0; i != SubScale; ++i) {
3112         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
3113                          Depth + 1);
3114         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3115         Known.insertBits(Known2, SubBitWidth * Shifts);
3116       }
3117     }
3118 
3119     // Bitcast 'large element' scalar/vector to 'small element' vector.
3120     if ((SubBitWidth % BitWidth) == 0) {
3121       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
3122 
3123       // Collect known bits for the (smaller) output by collecting the known
3124       // bits from the overlapping larger input elements and extracting the
3125       // sub sections we actually care about.
3126       unsigned SubScale = SubBitWidth / BitWidth;
3127       APInt SubDemandedElts =
3128           APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale);
3129       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
3130 
3131       Known.Zero.setAllBits(); Known.One.setAllBits();
3132       for (unsigned i = 0; i != NumElts; ++i)
3133         if (DemandedElts[i]) {
3134           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3135           unsigned Offset = (Shifts % SubScale) * BitWidth;
3136           Known = KnownBits::commonBits(Known,
3137                                         Known2.extractBits(BitWidth, Offset));
3138           // If we don't know any bits, early out.
3139           if (Known.isUnknown())
3140             break;
3141         }
3142     }
3143     break;
3144   }
3145   case ISD::AND:
3146     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3147     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3148 
3149     Known &= Known2;
3150     break;
3151   case ISD::OR:
3152     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3153     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3154 
3155     Known |= Known2;
3156     break;
3157   case ISD::XOR:
3158     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3159     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3160 
3161     Known ^= Known2;
3162     break;
3163   case ISD::MUL: {
3164     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3165     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3166     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3167     // TODO: SelfMultiply can be poison, but not undef.
3168     if (SelfMultiply)
3169       SelfMultiply &= isGuaranteedNotToBeUndefOrPoison(
3170           Op.getOperand(0), DemandedElts, false, Depth + 1);
3171     Known = KnownBits::mul(Known, Known2, SelfMultiply);
3172     break;
3173   }
3174   case ISD::MULHU: {
3175     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3176     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3177     Known = KnownBits::mulhu(Known, Known2);
3178     break;
3179   }
3180   case ISD::MULHS: {
3181     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3182     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3183     Known = KnownBits::mulhs(Known, Known2);
3184     break;
3185   }
3186   case ISD::UMUL_LOHI: {
3187     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3188     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3189     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3190     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3191     if (Op.getResNo() == 0)
3192       Known = KnownBits::mul(Known, Known2, SelfMultiply);
3193     else
3194       Known = KnownBits::mulhu(Known, Known2);
3195     break;
3196   }
3197   case ISD::SMUL_LOHI: {
3198     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3199     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3200     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3201     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3202     if (Op.getResNo() == 0)
3203       Known = KnownBits::mul(Known, Known2, SelfMultiply);
3204     else
3205       Known = KnownBits::mulhs(Known, Known2);
3206     break;
3207   }
3208   case ISD::UDIV: {
3209     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3210     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3211     Known = KnownBits::udiv(Known, Known2);
3212     break;
3213   }
3214   case ISD::AVGCEILU: {
3215     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3216     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3217     Known = Known.zext(BitWidth + 1);
3218     Known2 = Known2.zext(BitWidth + 1);
3219     KnownBits One = KnownBits::makeConstant(APInt(1, 1));
3220     Known = KnownBits::computeForAddCarry(Known, Known2, One);
3221     Known = Known.extractBits(BitWidth, 1);
3222     break;
3223   }
3224   case ISD::SELECT:
3225   case ISD::VSELECT:
3226     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3227     // If we don't know any bits, early out.
3228     if (Known.isUnknown())
3229       break;
3230     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3231 
3232     // Only known if known in both the LHS and RHS.
3233     Known = KnownBits::commonBits(Known, Known2);
3234     break;
3235   case ISD::SELECT_CC:
3236     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3237     // If we don't know any bits, early out.
3238     if (Known.isUnknown())
3239       break;
3240     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3241 
3242     // Only known if known in both the LHS and RHS.
3243     Known = KnownBits::commonBits(Known, Known2);
3244     break;
3245   case ISD::SMULO:
3246   case ISD::UMULO:
3247     if (Op.getResNo() != 1)
3248       break;
3249     // The boolean result conforms to getBooleanContents.
3250     // If we know the result of a setcc has the top bits zero, use this info.
3251     // We know that we have an integer-based boolean since these operations
3252     // are only available for integer.
3253     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3254             TargetLowering::ZeroOrOneBooleanContent &&
3255         BitWidth > 1)
3256       Known.Zero.setBitsFrom(1);
3257     break;
3258   case ISD::SETCC:
3259   case ISD::STRICT_FSETCC:
3260   case ISD::STRICT_FSETCCS: {
3261     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3262     // If we know the result of a setcc has the top bits zero, use this info.
3263     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3264             TargetLowering::ZeroOrOneBooleanContent &&
3265         BitWidth > 1)
3266       Known.Zero.setBitsFrom(1);
3267     break;
3268   }
3269   case ISD::SHL:
3270     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3271     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3272     Known = KnownBits::shl(Known, Known2);
3273 
3274     // Minimum shift low bits are known zero.
3275     if (const APInt *ShMinAmt =
3276             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3277       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3278     break;
3279   case ISD::SRL:
3280     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3281     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3282     Known = KnownBits::lshr(Known, Known2);
3283 
3284     // Minimum shift high bits are known zero.
3285     if (const APInt *ShMinAmt =
3286             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3287       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3288     break;
3289   case ISD::SRA:
3290     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3291     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3292     Known = KnownBits::ashr(Known, Known2);
3293     // TODO: Add minimum shift high known sign bits.
3294     break;
3295   case ISD::FSHL:
3296   case ISD::FSHR:
3297     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3298       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3299 
3300       // For fshl, 0-shift returns the 1st arg.
3301       // For fshr, 0-shift returns the 2nd arg.
3302       if (Amt == 0) {
3303         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3304                                  DemandedElts, Depth + 1);
3305         break;
3306       }
3307 
3308       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3309       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3310       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3311       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3312       if (Opcode == ISD::FSHL) {
3313         Known.One <<= Amt;
3314         Known.Zero <<= Amt;
3315         Known2.One.lshrInPlace(BitWidth - Amt);
3316         Known2.Zero.lshrInPlace(BitWidth - Amt);
3317       } else {
3318         Known.One <<= BitWidth - Amt;
3319         Known.Zero <<= BitWidth - Amt;
3320         Known2.One.lshrInPlace(Amt);
3321         Known2.Zero.lshrInPlace(Amt);
3322       }
3323       Known.One |= Known2.One;
3324       Known.Zero |= Known2.Zero;
3325     }
3326     break;
3327   case ISD::SIGN_EXTEND_INREG: {
3328     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3329     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3330     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3331     break;
3332   }
3333   case ISD::CTTZ:
3334   case ISD::CTTZ_ZERO_UNDEF: {
3335     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3336     // If we have a known 1, its position is our upper bound.
3337     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3338     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3339     Known.Zero.setBitsFrom(LowBits);
3340     break;
3341   }
3342   case ISD::CTLZ:
3343   case ISD::CTLZ_ZERO_UNDEF: {
3344     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3345     // If we have a known 1, its position is our upper bound.
3346     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3347     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3348     Known.Zero.setBitsFrom(LowBits);
3349     break;
3350   }
3351   case ISD::CTPOP: {
3352     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3353     // If we know some of the bits are zero, they can't be one.
3354     unsigned PossibleOnes = Known2.countMaxPopulation();
3355     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3356     break;
3357   }
3358   case ISD::PARITY: {
3359     // Parity returns 0 everywhere but the LSB.
3360     Known.Zero.setBitsFrom(1);
3361     break;
3362   }
3363   case ISD::LOAD: {
3364     LoadSDNode *LD = cast<LoadSDNode>(Op);
3365     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3366     if (ISD::isNON_EXTLoad(LD) && Cst) {
3367       // Determine any common known bits from the loaded constant pool value.
3368       Type *CstTy = Cst->getType();
3369       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3370         // If its a vector splat, then we can (quickly) reuse the scalar path.
3371         // NOTE: We assume all elements match and none are UNDEF.
3372         if (CstTy->isVectorTy()) {
3373           if (const Constant *Splat = Cst->getSplatValue()) {
3374             Cst = Splat;
3375             CstTy = Cst->getType();
3376           }
3377         }
3378         // TODO - do we need to handle different bitwidths?
3379         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3380           // Iterate across all vector elements finding common known bits.
3381           Known.One.setAllBits();
3382           Known.Zero.setAllBits();
3383           for (unsigned i = 0; i != NumElts; ++i) {
3384             if (!DemandedElts[i])
3385               continue;
3386             if (Constant *Elt = Cst->getAggregateElement(i)) {
3387               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3388                 const APInt &Value = CInt->getValue();
3389                 Known.One &= Value;
3390                 Known.Zero &= ~Value;
3391                 continue;
3392               }
3393               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3394                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3395                 Known.One &= Value;
3396                 Known.Zero &= ~Value;
3397                 continue;
3398               }
3399             }
3400             Known.One.clearAllBits();
3401             Known.Zero.clearAllBits();
3402             break;
3403           }
3404         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3405           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3406             Known = KnownBits::makeConstant(CInt->getValue());
3407           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3408             Known =
3409                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3410           }
3411         }
3412       }
3413     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3414       // If this is a ZEXTLoad and we are looking at the loaded value.
3415       EVT VT = LD->getMemoryVT();
3416       unsigned MemBits = VT.getScalarSizeInBits();
3417       Known.Zero.setBitsFrom(MemBits);
3418     } else if (const MDNode *Ranges = LD->getRanges()) {
3419       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3420         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3421     }
3422     break;
3423   }
3424   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3425     EVT InVT = Op.getOperand(0).getValueType();
3426     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3427     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3428     Known = Known.zext(BitWidth);
3429     break;
3430   }
3431   case ISD::ZERO_EXTEND: {
3432     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3433     Known = Known.zext(BitWidth);
3434     break;
3435   }
3436   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3437     EVT InVT = Op.getOperand(0).getValueType();
3438     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3439     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3440     // If the sign bit is known to be zero or one, then sext will extend
3441     // it to the top bits, else it will just zext.
3442     Known = Known.sext(BitWidth);
3443     break;
3444   }
3445   case ISD::SIGN_EXTEND: {
3446     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3447     // If the sign bit is known to be zero or one, then sext will extend
3448     // it to the top bits, else it will just zext.
3449     Known = Known.sext(BitWidth);
3450     break;
3451   }
3452   case ISD::ANY_EXTEND_VECTOR_INREG: {
3453     EVT InVT = Op.getOperand(0).getValueType();
3454     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3455     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3456     Known = Known.anyext(BitWidth);
3457     break;
3458   }
3459   case ISD::ANY_EXTEND: {
3460     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3461     Known = Known.anyext(BitWidth);
3462     break;
3463   }
3464   case ISD::TRUNCATE: {
3465     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3466     Known = Known.trunc(BitWidth);
3467     break;
3468   }
3469   case ISD::AssertZext: {
3470     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3471     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3472     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3473     Known.Zero |= (~InMask);
3474     Known.One  &= (~Known.Zero);
3475     break;
3476   }
3477   case ISD::AssertAlign: {
3478     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3479     assert(LogOfAlign != 0);
3480 
3481     // TODO: Should use maximum with source
3482     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3483     // well as clearing one bits.
3484     Known.Zero.setLowBits(LogOfAlign);
3485     Known.One.clearLowBits(LogOfAlign);
3486     break;
3487   }
3488   case ISD::FGETSIGN:
3489     // All bits are zero except the low bit.
3490     Known.Zero.setBitsFrom(1);
3491     break;
3492   case ISD::USUBO:
3493   case ISD::SSUBO:
3494     if (Op.getResNo() == 1) {
3495       // If we know the result of a setcc has the top bits zero, use this info.
3496       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3497               TargetLowering::ZeroOrOneBooleanContent &&
3498           BitWidth > 1)
3499         Known.Zero.setBitsFrom(1);
3500       break;
3501     }
3502     LLVM_FALLTHROUGH;
3503   case ISD::SUB:
3504   case ISD::SUBC: {
3505     assert(Op.getResNo() == 0 &&
3506            "We only compute knownbits for the difference here.");
3507 
3508     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3509     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3510     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3511                                         Known, Known2);
3512     break;
3513   }
3514   case ISD::UADDO:
3515   case ISD::SADDO:
3516   case ISD::ADDCARRY:
3517     if (Op.getResNo() == 1) {
3518       // If we know the result of a setcc has the top bits zero, use this info.
3519       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3520               TargetLowering::ZeroOrOneBooleanContent &&
3521           BitWidth > 1)
3522         Known.Zero.setBitsFrom(1);
3523       break;
3524     }
3525     LLVM_FALLTHROUGH;
3526   case ISD::ADD:
3527   case ISD::ADDC:
3528   case ISD::ADDE: {
3529     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3530 
3531     // With ADDE and ADDCARRY, a carry bit may be added in.
3532     KnownBits Carry(1);
3533     if (Opcode == ISD::ADDE)
3534       // Can't track carry from glue, set carry to unknown.
3535       Carry.resetAll();
3536     else if (Opcode == ISD::ADDCARRY)
3537       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3538       // the trouble (how often will we find a known carry bit). And I haven't
3539       // tested this very much yet, but something like this might work:
3540       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3541       //   Carry = Carry.zextOrTrunc(1, false);
3542       Carry.resetAll();
3543     else
3544       Carry.setAllZero();
3545 
3546     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3547     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3548     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3549     break;
3550   }
3551   case ISD::SREM: {
3552     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3553     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3554     Known = KnownBits::srem(Known, Known2);
3555     break;
3556   }
3557   case ISD::UREM: {
3558     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3559     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3560     Known = KnownBits::urem(Known, Known2);
3561     break;
3562   }
3563   case ISD::EXTRACT_ELEMENT: {
3564     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3565     const unsigned Index = Op.getConstantOperandVal(1);
3566     const unsigned EltBitWidth = Op.getValueSizeInBits();
3567 
3568     // Remove low part of known bits mask
3569     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3570     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3571 
3572     // Remove high part of known bit mask
3573     Known = Known.trunc(EltBitWidth);
3574     break;
3575   }
3576   case ISD::EXTRACT_VECTOR_ELT: {
3577     SDValue InVec = Op.getOperand(0);
3578     SDValue EltNo = Op.getOperand(1);
3579     EVT VecVT = InVec.getValueType();
3580     // computeKnownBits not yet implemented for scalable vectors.
3581     if (VecVT.isScalableVector())
3582       break;
3583     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3584     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3585 
3586     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3587     // anything about the extended bits.
3588     if (BitWidth > EltBitWidth)
3589       Known = Known.trunc(EltBitWidth);
3590 
3591     // If we know the element index, just demand that vector element, else for
3592     // an unknown element index, ignore DemandedElts and demand them all.
3593     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
3594     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3595     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3596       DemandedSrcElts =
3597           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3598 
3599     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3600     if (BitWidth > EltBitWidth)
3601       Known = Known.anyext(BitWidth);
3602     break;
3603   }
3604   case ISD::INSERT_VECTOR_ELT: {
3605     // If we know the element index, split the demand between the
3606     // source vector and the inserted element, otherwise assume we need
3607     // the original demanded vector elements and the value.
3608     SDValue InVec = Op.getOperand(0);
3609     SDValue InVal = Op.getOperand(1);
3610     SDValue EltNo = Op.getOperand(2);
3611     bool DemandedVal = true;
3612     APInt DemandedVecElts = DemandedElts;
3613     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3614     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3615       unsigned EltIdx = CEltNo->getZExtValue();
3616       DemandedVal = !!DemandedElts[EltIdx];
3617       DemandedVecElts.clearBit(EltIdx);
3618     }
3619     Known.One.setAllBits();
3620     Known.Zero.setAllBits();
3621     if (DemandedVal) {
3622       Known2 = computeKnownBits(InVal, Depth + 1);
3623       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3624     }
3625     if (!!DemandedVecElts) {
3626       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3627       Known = KnownBits::commonBits(Known, Known2);
3628     }
3629     break;
3630   }
3631   case ISD::BITREVERSE: {
3632     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3633     Known = Known2.reverseBits();
3634     break;
3635   }
3636   case ISD::BSWAP: {
3637     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3638     Known = Known2.byteSwap();
3639     break;
3640   }
3641   case ISD::ABS: {
3642     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3643     Known = Known2.abs();
3644     break;
3645   }
3646   case ISD::USUBSAT: {
3647     // The result of usubsat will never be larger than the LHS.
3648     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3649     Known.Zero.setHighBits(Known2.countMinLeadingZeros());
3650     break;
3651   }
3652   case ISD::UMIN: {
3653     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3654     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3655     Known = KnownBits::umin(Known, Known2);
3656     break;
3657   }
3658   case ISD::UMAX: {
3659     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3660     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3661     Known = KnownBits::umax(Known, Known2);
3662     break;
3663   }
3664   case ISD::SMIN:
3665   case ISD::SMAX: {
3666     // If we have a clamp pattern, we know that the number of sign bits will be
3667     // the minimum of the clamp min/max range.
3668     bool IsMax = (Opcode == ISD::SMAX);
3669     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3670     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3671       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3672         CstHigh =
3673             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3674     if (CstLow && CstHigh) {
3675       if (!IsMax)
3676         std::swap(CstLow, CstHigh);
3677 
3678       const APInt &ValueLow = CstLow->getAPIntValue();
3679       const APInt &ValueHigh = CstHigh->getAPIntValue();
3680       if (ValueLow.sle(ValueHigh)) {
3681         unsigned LowSignBits = ValueLow.getNumSignBits();
3682         unsigned HighSignBits = ValueHigh.getNumSignBits();
3683         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3684         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3685           Known.One.setHighBits(MinSignBits);
3686           break;
3687         }
3688         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3689           Known.Zero.setHighBits(MinSignBits);
3690           break;
3691         }
3692       }
3693     }
3694 
3695     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3696     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3697     if (IsMax)
3698       Known = KnownBits::smax(Known, Known2);
3699     else
3700       Known = KnownBits::smin(Known, Known2);
3701     break;
3702   }
3703   case ISD::FP_TO_UINT_SAT: {
3704     // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT.
3705     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3706     Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits());
3707     break;
3708   }
3709   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
3710     if (Op.getResNo() == 1) {
3711       // The boolean result conforms to getBooleanContents.
3712       // If we know the result of a setcc has the top bits zero, use this info.
3713       // We know that we have an integer-based boolean since these operations
3714       // are only available for integer.
3715       if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3716               TargetLowering::ZeroOrOneBooleanContent &&
3717           BitWidth > 1)
3718         Known.Zero.setBitsFrom(1);
3719       break;
3720     }
3721     LLVM_FALLTHROUGH;
3722   case ISD::ATOMIC_CMP_SWAP:
3723   case ISD::ATOMIC_SWAP:
3724   case ISD::ATOMIC_LOAD_ADD:
3725   case ISD::ATOMIC_LOAD_SUB:
3726   case ISD::ATOMIC_LOAD_AND:
3727   case ISD::ATOMIC_LOAD_CLR:
3728   case ISD::ATOMIC_LOAD_OR:
3729   case ISD::ATOMIC_LOAD_XOR:
3730   case ISD::ATOMIC_LOAD_NAND:
3731   case ISD::ATOMIC_LOAD_MIN:
3732   case ISD::ATOMIC_LOAD_MAX:
3733   case ISD::ATOMIC_LOAD_UMIN:
3734   case ISD::ATOMIC_LOAD_UMAX:
3735   case ISD::ATOMIC_LOAD: {
3736     unsigned MemBits =
3737         cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
3738     // If we are looking at the loaded value.
3739     if (Op.getResNo() == 0) {
3740       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
3741         Known.Zero.setBitsFrom(MemBits);
3742     }
3743     break;
3744   }
3745   case ISD::FrameIndex:
3746   case ISD::TargetFrameIndex:
3747     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3748                                        Known, getMachineFunction());
3749     break;
3750 
3751   default:
3752     if (Opcode < ISD::BUILTIN_OP_END)
3753       break;
3754     LLVM_FALLTHROUGH;
3755   case ISD::INTRINSIC_WO_CHAIN:
3756   case ISD::INTRINSIC_W_CHAIN:
3757   case ISD::INTRINSIC_VOID:
3758     // Allow the target to implement this method for its nodes.
3759     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3760     break;
3761   }
3762 
3763   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3764   return Known;
3765 }
3766 
3767 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3768                                                              SDValue N1) const {
3769   // X + 0 never overflow
3770   if (isNullConstant(N1))
3771     return OFK_Never;
3772 
3773   KnownBits N1Known = computeKnownBits(N1);
3774   if (N1Known.Zero.getBoolValue()) {
3775     KnownBits N0Known = computeKnownBits(N0);
3776 
3777     bool overflow;
3778     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3779     if (!overflow)
3780       return OFK_Never;
3781   }
3782 
3783   // mulhi + 1 never overflow
3784   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3785       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3786     return OFK_Never;
3787 
3788   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3789     KnownBits N0Known = computeKnownBits(N0);
3790 
3791     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3792       return OFK_Never;
3793   }
3794 
3795   return OFK_Sometime;
3796 }
3797 
3798 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3799   EVT OpVT = Val.getValueType();
3800   unsigned BitWidth = OpVT.getScalarSizeInBits();
3801 
3802   // Is the constant a known power of 2?
3803   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3804     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3805 
3806   // A left-shift of a constant one will have exactly one bit set because
3807   // shifting the bit off the end is undefined.
3808   if (Val.getOpcode() == ISD::SHL) {
3809     auto *C = isConstOrConstSplat(Val.getOperand(0));
3810     if (C && C->getAPIntValue() == 1)
3811       return true;
3812   }
3813 
3814   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3815   // one bit set.
3816   if (Val.getOpcode() == ISD::SRL) {
3817     auto *C = isConstOrConstSplat(Val.getOperand(0));
3818     if (C && C->getAPIntValue().isSignMask())
3819       return true;
3820   }
3821 
3822   // Are all operands of a build vector constant powers of two?
3823   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3824     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3825           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3826             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3827           return false;
3828         }))
3829       return true;
3830 
3831   // Is the operand of a splat vector a constant power of two?
3832   if (Val.getOpcode() == ISD::SPLAT_VECTOR)
3833     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0)))
3834       if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2())
3835         return true;
3836 
3837   // More could be done here, though the above checks are enough
3838   // to handle some common cases.
3839 
3840   // Fall back to computeKnownBits to catch other known cases.
3841   KnownBits Known = computeKnownBits(Val);
3842   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3843 }
3844 
3845 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3846   EVT VT = Op.getValueType();
3847 
3848   // TODO: Assume we don't know anything for now.
3849   if (VT.isScalableVector())
3850     return 1;
3851 
3852   APInt DemandedElts = VT.isVector()
3853                            ? APInt::getAllOnes(VT.getVectorNumElements())
3854                            : APInt(1, 1);
3855   return ComputeNumSignBits(Op, DemandedElts, Depth);
3856 }
3857 
3858 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3859                                           unsigned Depth) const {
3860   EVT VT = Op.getValueType();
3861   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3862   unsigned VTBits = VT.getScalarSizeInBits();
3863   unsigned NumElts = DemandedElts.getBitWidth();
3864   unsigned Tmp, Tmp2;
3865   unsigned FirstAnswer = 1;
3866 
3867   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3868     const APInt &Val = C->getAPIntValue();
3869     return Val.getNumSignBits();
3870   }
3871 
3872   if (Depth >= MaxRecursionDepth)
3873     return 1;  // Limit search depth.
3874 
3875   if (!DemandedElts || VT.isScalableVector())
3876     return 1;  // No demanded elts, better to assume we don't know anything.
3877 
3878   unsigned Opcode = Op.getOpcode();
3879   switch (Opcode) {
3880   default: break;
3881   case ISD::AssertSext:
3882     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3883     return VTBits-Tmp+1;
3884   case ISD::AssertZext:
3885     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3886     return VTBits-Tmp;
3887 
3888   case ISD::BUILD_VECTOR:
3889     Tmp = VTBits;
3890     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3891       if (!DemandedElts[i])
3892         continue;
3893 
3894       SDValue SrcOp = Op.getOperand(i);
3895       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3896 
3897       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3898       if (SrcOp.getValueSizeInBits() != VTBits) {
3899         assert(SrcOp.getValueSizeInBits() > VTBits &&
3900                "Expected BUILD_VECTOR implicit truncation");
3901         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3902         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3903       }
3904       Tmp = std::min(Tmp, Tmp2);
3905     }
3906     return Tmp;
3907 
3908   case ISD::VECTOR_SHUFFLE: {
3909     // Collect the minimum number of sign bits that are shared by every vector
3910     // element referenced by the shuffle.
3911     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3912     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3913     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3914     for (unsigned i = 0; i != NumElts; ++i) {
3915       int M = SVN->getMaskElt(i);
3916       if (!DemandedElts[i])
3917         continue;
3918       // For UNDEF elements, we don't know anything about the common state of
3919       // the shuffle result.
3920       if (M < 0)
3921         return 1;
3922       if ((unsigned)M < NumElts)
3923         DemandedLHS.setBit((unsigned)M % NumElts);
3924       else
3925         DemandedRHS.setBit((unsigned)M % NumElts);
3926     }
3927     Tmp = std::numeric_limits<unsigned>::max();
3928     if (!!DemandedLHS)
3929       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3930     if (!!DemandedRHS) {
3931       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3932       Tmp = std::min(Tmp, Tmp2);
3933     }
3934     // If we don't know anything, early out and try computeKnownBits fall-back.
3935     if (Tmp == 1)
3936       break;
3937     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3938     return Tmp;
3939   }
3940 
3941   case ISD::BITCAST: {
3942     SDValue N0 = Op.getOperand(0);
3943     EVT SrcVT = N0.getValueType();
3944     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3945 
3946     // Ignore bitcasts from unsupported types..
3947     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3948       break;
3949 
3950     // Fast handling of 'identity' bitcasts.
3951     if (VTBits == SrcBits)
3952       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3953 
3954     bool IsLE = getDataLayout().isLittleEndian();
3955 
3956     // Bitcast 'large element' scalar/vector to 'small element' vector.
3957     if ((SrcBits % VTBits) == 0) {
3958       assert(VT.isVector() && "Expected bitcast to vector");
3959 
3960       unsigned Scale = SrcBits / VTBits;
3961       APInt SrcDemandedElts =
3962           APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale);
3963 
3964       // Fast case - sign splat can be simply split across the small elements.
3965       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3966       if (Tmp == SrcBits)
3967         return VTBits;
3968 
3969       // Slow case - determine how far the sign extends into each sub-element.
3970       Tmp2 = VTBits;
3971       for (unsigned i = 0; i != NumElts; ++i)
3972         if (DemandedElts[i]) {
3973           unsigned SubOffset = i % Scale;
3974           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3975           SubOffset = SubOffset * VTBits;
3976           if (Tmp <= SubOffset)
3977             return 1;
3978           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3979         }
3980       return Tmp2;
3981     }
3982     break;
3983   }
3984 
3985   case ISD::FP_TO_SINT_SAT:
3986     // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT.
3987     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3988     return VTBits - Tmp + 1;
3989   case ISD::SIGN_EXTEND:
3990     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3991     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3992   case ISD::SIGN_EXTEND_INREG:
3993     // Max of the input and what this extends.
3994     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3995     Tmp = VTBits-Tmp+1;
3996     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3997     return std::max(Tmp, Tmp2);
3998   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3999     SDValue Src = Op.getOperand(0);
4000     EVT SrcVT = Src.getValueType();
4001     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
4002     Tmp = VTBits - SrcVT.getScalarSizeInBits();
4003     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
4004   }
4005   case ISD::SRA:
4006     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4007     // SRA X, C -> adds C sign bits.
4008     if (const APInt *ShAmt =
4009             getValidMinimumShiftAmountConstant(Op, DemandedElts))
4010       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
4011     return Tmp;
4012   case ISD::SHL:
4013     if (const APInt *ShAmt =
4014             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
4015       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
4016       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4017       if (ShAmt->ult(Tmp))
4018         return Tmp - ShAmt->getZExtValue();
4019     }
4020     break;
4021   case ISD::AND:
4022   case ISD::OR:
4023   case ISD::XOR:    // NOT is handled here.
4024     // Logical binary ops preserve the number of sign bits at the worst.
4025     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4026     if (Tmp != 1) {
4027       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4028       FirstAnswer = std::min(Tmp, Tmp2);
4029       // We computed what we know about the sign bits as our first
4030       // answer. Now proceed to the generic code that uses
4031       // computeKnownBits, and pick whichever answer is better.
4032     }
4033     break;
4034 
4035   case ISD::SELECT:
4036   case ISD::VSELECT:
4037     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4038     if (Tmp == 1) return 1;  // Early out.
4039     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4040     return std::min(Tmp, Tmp2);
4041   case ISD::SELECT_CC:
4042     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4043     if (Tmp == 1) return 1;  // Early out.
4044     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
4045     return std::min(Tmp, Tmp2);
4046 
4047   case ISD::SMIN:
4048   case ISD::SMAX: {
4049     // If we have a clamp pattern, we know that the number of sign bits will be
4050     // the minimum of the clamp min/max range.
4051     bool IsMax = (Opcode == ISD::SMAX);
4052     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
4053     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
4054       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
4055         CstHigh =
4056             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
4057     if (CstLow && CstHigh) {
4058       if (!IsMax)
4059         std::swap(CstLow, CstHigh);
4060       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
4061         Tmp = CstLow->getAPIntValue().getNumSignBits();
4062         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
4063         return std::min(Tmp, Tmp2);
4064       }
4065     }
4066 
4067     // Fallback - just get the minimum number of sign bits of the operands.
4068     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4069     if (Tmp == 1)
4070       return 1;  // Early out.
4071     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4072     return std::min(Tmp, Tmp2);
4073   }
4074   case ISD::UMIN:
4075   case ISD::UMAX:
4076     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4077     if (Tmp == 1)
4078       return 1;  // Early out.
4079     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4080     return std::min(Tmp, Tmp2);
4081   case ISD::SADDO:
4082   case ISD::UADDO:
4083   case ISD::SSUBO:
4084   case ISD::USUBO:
4085   case ISD::SMULO:
4086   case ISD::UMULO:
4087     if (Op.getResNo() != 1)
4088       break;
4089     // The boolean result conforms to getBooleanContents.  Fall through.
4090     // If setcc returns 0/-1, all bits are sign bits.
4091     // We know that we have an integer-based boolean since these operations
4092     // are only available for integer.
4093     if (TLI->getBooleanContents(VT.isVector(), false) ==
4094         TargetLowering::ZeroOrNegativeOneBooleanContent)
4095       return VTBits;
4096     break;
4097   case ISD::SETCC:
4098   case ISD::STRICT_FSETCC:
4099   case ISD::STRICT_FSETCCS: {
4100     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
4101     // If setcc returns 0/-1, all bits are sign bits.
4102     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
4103         TargetLowering::ZeroOrNegativeOneBooleanContent)
4104       return VTBits;
4105     break;
4106   }
4107   case ISD::ROTL:
4108   case ISD::ROTR:
4109     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4110 
4111     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
4112     if (Tmp == VTBits)
4113       return VTBits;
4114 
4115     if (ConstantSDNode *C =
4116             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
4117       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
4118 
4119       // Handle rotate right by N like a rotate left by 32-N.
4120       if (Opcode == ISD::ROTR)
4121         RotAmt = (VTBits - RotAmt) % VTBits;
4122 
4123       // If we aren't rotating out all of the known-in sign bits, return the
4124       // number that are left.  This handles rotl(sext(x), 1) for example.
4125       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
4126     }
4127     break;
4128   case ISD::ADD:
4129   case ISD::ADDC:
4130     // Add can have at most one carry bit.  Thus we know that the output
4131     // is, at worst, one more bit than the inputs.
4132     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4133     if (Tmp == 1) return 1; // Early out.
4134 
4135     // Special case decrementing a value (ADD X, -1):
4136     if (ConstantSDNode *CRHS =
4137             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
4138       if (CRHS->isAllOnes()) {
4139         KnownBits Known =
4140             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4141 
4142         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4143         // sign bits set.
4144         if ((Known.Zero | 1).isAllOnes())
4145           return VTBits;
4146 
4147         // If we are subtracting one from a positive number, there is no carry
4148         // out of the result.
4149         if (Known.isNonNegative())
4150           return Tmp;
4151       }
4152 
4153     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4154     if (Tmp2 == 1) return 1; // Early out.
4155     return std::min(Tmp, Tmp2) - 1;
4156   case ISD::SUB:
4157     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4158     if (Tmp2 == 1) return 1; // Early out.
4159 
4160     // Handle NEG.
4161     if (ConstantSDNode *CLHS =
4162             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
4163       if (CLHS->isZero()) {
4164         KnownBits Known =
4165             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4166         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4167         // sign bits set.
4168         if ((Known.Zero | 1).isAllOnes())
4169           return VTBits;
4170 
4171         // If the input is known to be positive (the sign bit is known clear),
4172         // the output of the NEG has the same number of sign bits as the input.
4173         if (Known.isNonNegative())
4174           return Tmp2;
4175 
4176         // Otherwise, we treat this like a SUB.
4177       }
4178 
4179     // Sub can have at most one carry bit.  Thus we know that the output
4180     // is, at worst, one more bit than the inputs.
4181     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4182     if (Tmp == 1) return 1; // Early out.
4183     return std::min(Tmp, Tmp2) - 1;
4184   case ISD::MUL: {
4185     // The output of the Mul can be at most twice the valid bits in the inputs.
4186     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4187     if (SignBitsOp0 == 1)
4188       break;
4189     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
4190     if (SignBitsOp1 == 1)
4191       break;
4192     unsigned OutValidBits =
4193         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
4194     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
4195   }
4196   case ISD::SREM:
4197     // The sign bit is the LHS's sign bit, except when the result of the
4198     // remainder is zero. The magnitude of the result should be less than or
4199     // equal to the magnitude of the LHS. Therefore, the result should have
4200     // at least as many sign bits as the left hand side.
4201     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4202   case ISD::TRUNCATE: {
4203     // Check if the sign bits of source go down as far as the truncated value.
4204     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
4205     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4206     if (NumSrcSignBits > (NumSrcBits - VTBits))
4207       return NumSrcSignBits - (NumSrcBits - VTBits);
4208     break;
4209   }
4210   case ISD::EXTRACT_ELEMENT: {
4211     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
4212     const int BitWidth = Op.getValueSizeInBits();
4213     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
4214 
4215     // Get reverse index (starting from 1), Op1 value indexes elements from
4216     // little end. Sign starts at big end.
4217     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
4218 
4219     // If the sign portion ends in our element the subtraction gives correct
4220     // result. Otherwise it gives either negative or > bitwidth result
4221     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
4222   }
4223   case ISD::INSERT_VECTOR_ELT: {
4224     // If we know the element index, split the demand between the
4225     // source vector and the inserted element, otherwise assume we need
4226     // the original demanded vector elements and the value.
4227     SDValue InVec = Op.getOperand(0);
4228     SDValue InVal = Op.getOperand(1);
4229     SDValue EltNo = Op.getOperand(2);
4230     bool DemandedVal = true;
4231     APInt DemandedVecElts = DemandedElts;
4232     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4233     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4234       unsigned EltIdx = CEltNo->getZExtValue();
4235       DemandedVal = !!DemandedElts[EltIdx];
4236       DemandedVecElts.clearBit(EltIdx);
4237     }
4238     Tmp = std::numeric_limits<unsigned>::max();
4239     if (DemandedVal) {
4240       // TODO - handle implicit truncation of inserted elements.
4241       if (InVal.getScalarValueSizeInBits() != VTBits)
4242         break;
4243       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
4244       Tmp = std::min(Tmp, Tmp2);
4245     }
4246     if (!!DemandedVecElts) {
4247       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
4248       Tmp = std::min(Tmp, Tmp2);
4249     }
4250     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4251     return Tmp;
4252   }
4253   case ISD::EXTRACT_VECTOR_ELT: {
4254     SDValue InVec = Op.getOperand(0);
4255     SDValue EltNo = Op.getOperand(1);
4256     EVT VecVT = InVec.getValueType();
4257     // ComputeNumSignBits not yet implemented for scalable vectors.
4258     if (VecVT.isScalableVector())
4259       break;
4260     const unsigned BitWidth = Op.getValueSizeInBits();
4261     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
4262     const unsigned NumSrcElts = VecVT.getVectorNumElements();
4263 
4264     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
4265     // anything about sign bits. But if the sizes match we can derive knowledge
4266     // about sign bits from the vector operand.
4267     if (BitWidth != EltBitWidth)
4268       break;
4269 
4270     // If we know the element index, just demand that vector element, else for
4271     // an unknown element index, ignore DemandedElts and demand them all.
4272     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
4273     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4274     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4275       DemandedSrcElts =
4276           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4277 
4278     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
4279   }
4280   case ISD::EXTRACT_SUBVECTOR: {
4281     // Offset the demanded elts by the subvector index.
4282     SDValue Src = Op.getOperand(0);
4283     // Bail until we can represent demanded elements for scalable vectors.
4284     if (Src.getValueType().isScalableVector())
4285       break;
4286     uint64_t Idx = Op.getConstantOperandVal(1);
4287     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
4288     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
4289     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4290   }
4291   case ISD::CONCAT_VECTORS: {
4292     // Determine the minimum number of sign bits across all demanded
4293     // elts of the input vectors. Early out if the result is already 1.
4294     Tmp = std::numeric_limits<unsigned>::max();
4295     EVT SubVectorVT = Op.getOperand(0).getValueType();
4296     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4297     unsigned NumSubVectors = Op.getNumOperands();
4298     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4299       APInt DemandedSub =
4300           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
4301       if (!DemandedSub)
4302         continue;
4303       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4304       Tmp = std::min(Tmp, Tmp2);
4305     }
4306     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4307     return Tmp;
4308   }
4309   case ISD::INSERT_SUBVECTOR: {
4310     // Demand any elements from the subvector and the remainder from the src its
4311     // inserted into.
4312     SDValue Src = Op.getOperand(0);
4313     SDValue Sub = Op.getOperand(1);
4314     uint64_t Idx = Op.getConstantOperandVal(2);
4315     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4316     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4317     APInt DemandedSrcElts = DemandedElts;
4318     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
4319 
4320     Tmp = std::numeric_limits<unsigned>::max();
4321     if (!!DemandedSubElts) {
4322       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4323       if (Tmp == 1)
4324         return 1; // early-out
4325     }
4326     if (!!DemandedSrcElts) {
4327       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4328       Tmp = std::min(Tmp, Tmp2);
4329     }
4330     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4331     return Tmp;
4332   }
4333   case ISD::ATOMIC_CMP_SWAP:
4334   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4335   case ISD::ATOMIC_SWAP:
4336   case ISD::ATOMIC_LOAD_ADD:
4337   case ISD::ATOMIC_LOAD_SUB:
4338   case ISD::ATOMIC_LOAD_AND:
4339   case ISD::ATOMIC_LOAD_CLR:
4340   case ISD::ATOMIC_LOAD_OR:
4341   case ISD::ATOMIC_LOAD_XOR:
4342   case ISD::ATOMIC_LOAD_NAND:
4343   case ISD::ATOMIC_LOAD_MIN:
4344   case ISD::ATOMIC_LOAD_MAX:
4345   case ISD::ATOMIC_LOAD_UMIN:
4346   case ISD::ATOMIC_LOAD_UMAX:
4347   case ISD::ATOMIC_LOAD: {
4348     Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
4349     // If we are looking at the loaded value.
4350     if (Op.getResNo() == 0) {
4351       if (Tmp == VTBits)
4352         return 1; // early-out
4353       if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
4354         return VTBits - Tmp + 1;
4355       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4356         return VTBits - Tmp;
4357     }
4358     break;
4359   }
4360   }
4361 
4362   // If we are looking at the loaded value of the SDNode.
4363   if (Op.getResNo() == 0) {
4364     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4365     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4366       unsigned ExtType = LD->getExtensionType();
4367       switch (ExtType) {
4368       default: break;
4369       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4370         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4371         return VTBits - Tmp + 1;
4372       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4373         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4374         return VTBits - Tmp;
4375       case ISD::NON_EXTLOAD:
4376         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4377           // We only need to handle vectors - computeKnownBits should handle
4378           // scalar cases.
4379           Type *CstTy = Cst->getType();
4380           if (CstTy->isVectorTy() &&
4381               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() &&
4382               VTBits == CstTy->getScalarSizeInBits()) {
4383             Tmp = VTBits;
4384             for (unsigned i = 0; i != NumElts; ++i) {
4385               if (!DemandedElts[i])
4386                 continue;
4387               if (Constant *Elt = Cst->getAggregateElement(i)) {
4388                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4389                   const APInt &Value = CInt->getValue();
4390                   Tmp = std::min(Tmp, Value.getNumSignBits());
4391                   continue;
4392                 }
4393                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4394                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4395                   Tmp = std::min(Tmp, Value.getNumSignBits());
4396                   continue;
4397                 }
4398               }
4399               // Unknown type. Conservatively assume no bits match sign bit.
4400               return 1;
4401             }
4402             return Tmp;
4403           }
4404         }
4405         break;
4406       }
4407     }
4408   }
4409 
4410   // Allow the target to implement this method for its nodes.
4411   if (Opcode >= ISD::BUILTIN_OP_END ||
4412       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4413       Opcode == ISD::INTRINSIC_W_CHAIN ||
4414       Opcode == ISD::INTRINSIC_VOID) {
4415     unsigned NumBits =
4416         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4417     if (NumBits > 1)
4418       FirstAnswer = std::max(FirstAnswer, NumBits);
4419   }
4420 
4421   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4422   // use this information.
4423   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4424   return std::max(FirstAnswer, Known.countMinSignBits());
4425 }
4426 
4427 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
4428                                                  unsigned Depth) const {
4429   unsigned SignBits = ComputeNumSignBits(Op, Depth);
4430   return Op.getScalarValueSizeInBits() - SignBits + 1;
4431 }
4432 
4433 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
4434                                                  const APInt &DemandedElts,
4435                                                  unsigned Depth) const {
4436   unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth);
4437   return Op.getScalarValueSizeInBits() - SignBits + 1;
4438 }
4439 
4440 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly,
4441                                                     unsigned Depth) const {
4442   // Early out for FREEZE.
4443   if (Op.getOpcode() == ISD::FREEZE)
4444     return true;
4445 
4446   // TODO: Assume we don't know anything for now.
4447   EVT VT = Op.getValueType();
4448   if (VT.isScalableVector())
4449     return false;
4450 
4451   APInt DemandedElts = VT.isVector()
4452                            ? APInt::getAllOnes(VT.getVectorNumElements())
4453                            : APInt(1, 1);
4454   return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
4455 }
4456 
4457 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op,
4458                                                     const APInt &DemandedElts,
4459                                                     bool PoisonOnly,
4460                                                     unsigned Depth) const {
4461   unsigned Opcode = Op.getOpcode();
4462 
4463   // Early out for FREEZE.
4464   if (Opcode == ISD::FREEZE)
4465     return true;
4466 
4467   if (Depth >= MaxRecursionDepth)
4468     return false; // Limit search depth.
4469 
4470   if (isIntOrFPConstant(Op))
4471     return true;
4472 
4473   switch (Opcode) {
4474   case ISD::UNDEF:
4475     return PoisonOnly;
4476 
4477   case ISD::BUILD_VECTOR:
4478     // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements -
4479     // this shouldn't affect the result.
4480     for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) {
4481       if (!DemandedElts[i])
4482         continue;
4483       if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly,
4484                                             Depth + 1))
4485         return false;
4486     }
4487     return true;
4488 
4489   // TODO: Search for noundef attributes from library functions.
4490 
4491   // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
4492 
4493   default:
4494     // Allow the target to implement this method for its nodes.
4495     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
4496         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
4497       return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
4498           Op, DemandedElts, *this, PoisonOnly, Depth);
4499     break;
4500   }
4501 
4502   return false;
4503 }
4504 
4505 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4506   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4507       !isa<ConstantSDNode>(Op.getOperand(1)))
4508     return false;
4509 
4510   if (Op.getOpcode() == ISD::OR &&
4511       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4512     return false;
4513 
4514   return true;
4515 }
4516 
4517 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4518   // If we're told that NaNs won't happen, assume they won't.
4519   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4520     return true;
4521 
4522   if (Depth >= MaxRecursionDepth)
4523     return false; // Limit search depth.
4524 
4525   // TODO: Handle vectors.
4526   // If the value is a constant, we can obviously see if it is a NaN or not.
4527   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4528     return !C->getValueAPF().isNaN() ||
4529            (SNaN && !C->getValueAPF().isSignaling());
4530   }
4531 
4532   unsigned Opcode = Op.getOpcode();
4533   switch (Opcode) {
4534   case ISD::FADD:
4535   case ISD::FSUB:
4536   case ISD::FMUL:
4537   case ISD::FDIV:
4538   case ISD::FREM:
4539   case ISD::FSIN:
4540   case ISD::FCOS: {
4541     if (SNaN)
4542       return true;
4543     // TODO: Need isKnownNeverInfinity
4544     return false;
4545   }
4546   case ISD::FCANONICALIZE:
4547   case ISD::FEXP:
4548   case ISD::FEXP2:
4549   case ISD::FTRUNC:
4550   case ISD::FFLOOR:
4551   case ISD::FCEIL:
4552   case ISD::FROUND:
4553   case ISD::FROUNDEVEN:
4554   case ISD::FRINT:
4555   case ISD::FNEARBYINT: {
4556     if (SNaN)
4557       return true;
4558     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4559   }
4560   case ISD::FABS:
4561   case ISD::FNEG:
4562   case ISD::FCOPYSIGN: {
4563     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4564   }
4565   case ISD::SELECT:
4566     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4567            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4568   case ISD::FP_EXTEND:
4569   case ISD::FP_ROUND: {
4570     if (SNaN)
4571       return true;
4572     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4573   }
4574   case ISD::SINT_TO_FP:
4575   case ISD::UINT_TO_FP:
4576     return true;
4577   case ISD::FMA:
4578   case ISD::FMAD: {
4579     if (SNaN)
4580       return true;
4581     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4582            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4583            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4584   }
4585   case ISD::FSQRT: // Need is known positive
4586   case ISD::FLOG:
4587   case ISD::FLOG2:
4588   case ISD::FLOG10:
4589   case ISD::FPOWI:
4590   case ISD::FPOW: {
4591     if (SNaN)
4592       return true;
4593     // TODO: Refine on operand
4594     return false;
4595   }
4596   case ISD::FMINNUM:
4597   case ISD::FMAXNUM: {
4598     // Only one needs to be known not-nan, since it will be returned if the
4599     // other ends up being one.
4600     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4601            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4602   }
4603   case ISD::FMINNUM_IEEE:
4604   case ISD::FMAXNUM_IEEE: {
4605     if (SNaN)
4606       return true;
4607     // This can return a NaN if either operand is an sNaN, or if both operands
4608     // are NaN.
4609     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4610             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4611            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4612             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4613   }
4614   case ISD::FMINIMUM:
4615   case ISD::FMAXIMUM: {
4616     // TODO: Does this quiet or return the origina NaN as-is?
4617     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4618            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4619   }
4620   case ISD::EXTRACT_VECTOR_ELT: {
4621     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4622   }
4623   default:
4624     if (Opcode >= ISD::BUILTIN_OP_END ||
4625         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4626         Opcode == ISD::INTRINSIC_W_CHAIN ||
4627         Opcode == ISD::INTRINSIC_VOID) {
4628       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4629     }
4630 
4631     return false;
4632   }
4633 }
4634 
4635 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4636   assert(Op.getValueType().isFloatingPoint() &&
4637          "Floating point type expected");
4638 
4639   // If the value is a constant, we can obviously see if it is a zero or not.
4640   // TODO: Add BuildVector support.
4641   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4642     return !C->isZero();
4643   return false;
4644 }
4645 
4646 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4647   assert(!Op.getValueType().isFloatingPoint() &&
4648          "Floating point types unsupported - use isKnownNeverZeroFloat");
4649 
4650   // If the value is a constant, we can obviously see if it is a zero or not.
4651   if (ISD::matchUnaryPredicate(Op,
4652                                [](ConstantSDNode *C) { return !C->isZero(); }))
4653     return true;
4654 
4655   // TODO: Recognize more cases here.
4656   switch (Op.getOpcode()) {
4657   default: break;
4658   case ISD::OR:
4659     if (isKnownNeverZero(Op.getOperand(1)) ||
4660         isKnownNeverZero(Op.getOperand(0)))
4661       return true;
4662     break;
4663   }
4664 
4665   return false;
4666 }
4667 
4668 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4669   // Check the obvious case.
4670   if (A == B) return true;
4671 
4672   // For for negative and positive zero.
4673   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4674     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4675       if (CA->isZero() && CB->isZero()) return true;
4676 
4677   // Otherwise they may not be equal.
4678   return false;
4679 }
4680 
4681 // FIXME: unify with llvm::haveNoCommonBitsSet.
4682 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4683   assert(A.getValueType() == B.getValueType() &&
4684          "Values must have the same type");
4685   // Match masked merge pattern (X & ~M) op (Y & M)
4686   if (A->getOpcode() == ISD::AND && B->getOpcode() == ISD::AND) {
4687     auto MatchNoCommonBitsPattern = [&](SDValue NotM, SDValue And) {
4688       if (isBitwiseNot(NotM, true)) {
4689         SDValue NotOperand = NotM->getOperand(0);
4690         return NotOperand == And->getOperand(0) ||
4691                NotOperand == And->getOperand(1);
4692       }
4693       return false;
4694     };
4695     if (MatchNoCommonBitsPattern(A->getOperand(0), B) ||
4696         MatchNoCommonBitsPattern(A->getOperand(1), B) ||
4697         MatchNoCommonBitsPattern(B->getOperand(0), A) ||
4698         MatchNoCommonBitsPattern(B->getOperand(1), A))
4699       return true;
4700   }
4701   return KnownBits::haveNoCommonBitsSet(computeKnownBits(A),
4702                                         computeKnownBits(B));
4703 }
4704 
4705 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
4706                                SelectionDAG &DAG) {
4707   if (cast<ConstantSDNode>(Step)->isZero())
4708     return DAG.getConstant(0, DL, VT);
4709 
4710   return SDValue();
4711 }
4712 
4713 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4714                                 ArrayRef<SDValue> Ops,
4715                                 SelectionDAG &DAG) {
4716   int NumOps = Ops.size();
4717   assert(NumOps != 0 && "Can't build an empty vector!");
4718   assert(!VT.isScalableVector() &&
4719          "BUILD_VECTOR cannot be used with scalable types");
4720   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4721          "Incorrect element count in BUILD_VECTOR!");
4722 
4723   // BUILD_VECTOR of UNDEFs is UNDEF.
4724   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4725     return DAG.getUNDEF(VT);
4726 
4727   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4728   SDValue IdentitySrc;
4729   bool IsIdentity = true;
4730   for (int i = 0; i != NumOps; ++i) {
4731     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4732         Ops[i].getOperand(0).getValueType() != VT ||
4733         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4734         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4735         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4736       IsIdentity = false;
4737       break;
4738     }
4739     IdentitySrc = Ops[i].getOperand(0);
4740   }
4741   if (IsIdentity)
4742     return IdentitySrc;
4743 
4744   return SDValue();
4745 }
4746 
4747 /// Try to simplify vector concatenation to an input value, undef, or build
4748 /// vector.
4749 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4750                                   ArrayRef<SDValue> Ops,
4751                                   SelectionDAG &DAG) {
4752   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4753   assert(llvm::all_of(Ops,
4754                       [Ops](SDValue Op) {
4755                         return Ops[0].getValueType() == Op.getValueType();
4756                       }) &&
4757          "Concatenation of vectors with inconsistent value types!");
4758   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4759              VT.getVectorElementCount() &&
4760          "Incorrect element count in vector concatenation!");
4761 
4762   if (Ops.size() == 1)
4763     return Ops[0];
4764 
4765   // Concat of UNDEFs is UNDEF.
4766   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4767     return DAG.getUNDEF(VT);
4768 
4769   // Scan the operands and look for extract operations from a single source
4770   // that correspond to insertion at the same location via this concatenation:
4771   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4772   SDValue IdentitySrc;
4773   bool IsIdentity = true;
4774   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4775     SDValue Op = Ops[i];
4776     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4777     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4778         Op.getOperand(0).getValueType() != VT ||
4779         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4780         Op.getConstantOperandVal(1) != IdentityIndex) {
4781       IsIdentity = false;
4782       break;
4783     }
4784     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4785            "Unexpected identity source vector for concat of extracts");
4786     IdentitySrc = Op.getOperand(0);
4787   }
4788   if (IsIdentity) {
4789     assert(IdentitySrc && "Failed to set source vector of extracts");
4790     return IdentitySrc;
4791   }
4792 
4793   // The code below this point is only designed to work for fixed width
4794   // vectors, so we bail out for now.
4795   if (VT.isScalableVector())
4796     return SDValue();
4797 
4798   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4799   // simplified to one big BUILD_VECTOR.
4800   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4801   EVT SVT = VT.getScalarType();
4802   SmallVector<SDValue, 16> Elts;
4803   for (SDValue Op : Ops) {
4804     EVT OpVT = Op.getValueType();
4805     if (Op.isUndef())
4806       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4807     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4808       Elts.append(Op->op_begin(), Op->op_end());
4809     else
4810       return SDValue();
4811   }
4812 
4813   // BUILD_VECTOR requires all inputs to be of the same type, find the
4814   // maximum type and extend them all.
4815   for (SDValue Op : Elts)
4816     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4817 
4818   if (SVT.bitsGT(VT.getScalarType())) {
4819     for (SDValue &Op : Elts) {
4820       if (Op.isUndef())
4821         Op = DAG.getUNDEF(SVT);
4822       else
4823         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4824                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4825                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4826     }
4827   }
4828 
4829   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4830   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4831   return V;
4832 }
4833 
4834 /// Gets or creates the specified node.
4835 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4836   FoldingSetNodeID ID;
4837   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4838   void *IP = nullptr;
4839   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4840     return SDValue(E, 0);
4841 
4842   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4843                               getVTList(VT));
4844   CSEMap.InsertNode(N, IP);
4845 
4846   InsertNode(N);
4847   SDValue V = SDValue(N, 0);
4848   NewSDValueDbgMsg(V, "Creating new node: ", this);
4849   return V;
4850 }
4851 
4852 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4853                               SDValue Operand) {
4854   SDNodeFlags Flags;
4855   if (Inserter)
4856     Flags = Inserter->getFlags();
4857   return getNode(Opcode, DL, VT, Operand, Flags);
4858 }
4859 
4860 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4861                               SDValue Operand, const SDNodeFlags Flags) {
4862   assert(Operand.getOpcode() != ISD::DELETED_NODE &&
4863          "Operand is DELETED_NODE!");
4864   // Constant fold unary operations with an integer constant operand. Even
4865   // opaque constant will be folded, because the folding of unary operations
4866   // doesn't create new constants with different values. Nevertheless, the
4867   // opaque flag is preserved during folding to prevent future folding with
4868   // other constants.
4869   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4870     const APInt &Val = C->getAPIntValue();
4871     switch (Opcode) {
4872     default: break;
4873     case ISD::SIGN_EXTEND:
4874       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4875                          C->isTargetOpcode(), C->isOpaque());
4876     case ISD::TRUNCATE:
4877       if (C->isOpaque())
4878         break;
4879       LLVM_FALLTHROUGH;
4880     case ISD::ZERO_EXTEND:
4881       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4882                          C->isTargetOpcode(), C->isOpaque());
4883     case ISD::ANY_EXTEND:
4884       // Some targets like RISCV prefer to sign extend some types.
4885       if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT))
4886         return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4887                            C->isTargetOpcode(), C->isOpaque());
4888       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4889                          C->isTargetOpcode(), C->isOpaque());
4890     case ISD::UINT_TO_FP:
4891     case ISD::SINT_TO_FP: {
4892       APFloat apf(EVTToAPFloatSemantics(VT),
4893                   APInt::getZero(VT.getSizeInBits()));
4894       (void)apf.convertFromAPInt(Val,
4895                                  Opcode==ISD::SINT_TO_FP,
4896                                  APFloat::rmNearestTiesToEven);
4897       return getConstantFP(apf, DL, VT);
4898     }
4899     case ISD::BITCAST:
4900       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4901         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4902       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4903         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4904       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4905         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4906       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4907         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4908       break;
4909     case ISD::ABS:
4910       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4911                          C->isOpaque());
4912     case ISD::BITREVERSE:
4913       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4914                          C->isOpaque());
4915     case ISD::BSWAP:
4916       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4917                          C->isOpaque());
4918     case ISD::CTPOP:
4919       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4920                          C->isOpaque());
4921     case ISD::CTLZ:
4922     case ISD::CTLZ_ZERO_UNDEF:
4923       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4924                          C->isOpaque());
4925     case ISD::CTTZ:
4926     case ISD::CTTZ_ZERO_UNDEF:
4927       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4928                          C->isOpaque());
4929     case ISD::FP16_TO_FP: {
4930       bool Ignored;
4931       APFloat FPV(APFloat::IEEEhalf(),
4932                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4933 
4934       // This can return overflow, underflow, or inexact; we don't care.
4935       // FIXME need to be more flexible about rounding mode.
4936       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4937                         APFloat::rmNearestTiesToEven, &Ignored);
4938       return getConstantFP(FPV, DL, VT);
4939     }
4940     case ISD::STEP_VECTOR: {
4941       if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this))
4942         return V;
4943       break;
4944     }
4945     }
4946   }
4947 
4948   // Constant fold unary operations with a floating point constant operand.
4949   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4950     APFloat V = C->getValueAPF();    // make copy
4951     switch (Opcode) {
4952     case ISD::FNEG:
4953       V.changeSign();
4954       return getConstantFP(V, DL, VT);
4955     case ISD::FABS:
4956       V.clearSign();
4957       return getConstantFP(V, DL, VT);
4958     case ISD::FCEIL: {
4959       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4960       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4961         return getConstantFP(V, DL, VT);
4962       break;
4963     }
4964     case ISD::FTRUNC: {
4965       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4966       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4967         return getConstantFP(V, DL, VT);
4968       break;
4969     }
4970     case ISD::FFLOOR: {
4971       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4972       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4973         return getConstantFP(V, DL, VT);
4974       break;
4975     }
4976     case ISD::FP_EXTEND: {
4977       bool ignored;
4978       // This can return overflow, underflow, or inexact; we don't care.
4979       // FIXME need to be more flexible about rounding mode.
4980       (void)V.convert(EVTToAPFloatSemantics(VT),
4981                       APFloat::rmNearestTiesToEven, &ignored);
4982       return getConstantFP(V, DL, VT);
4983     }
4984     case ISD::FP_TO_SINT:
4985     case ISD::FP_TO_UINT: {
4986       bool ignored;
4987       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4988       // FIXME need to be more flexible about rounding mode.
4989       APFloat::opStatus s =
4990           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4991       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4992         break;
4993       return getConstant(IntVal, DL, VT);
4994     }
4995     case ISD::BITCAST:
4996       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4997         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4998       if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
4999         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
5000       if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
5001         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
5002       if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
5003         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
5004       break;
5005     case ISD::FP_TO_FP16: {
5006       bool Ignored;
5007       // This can return overflow, underflow, or inexact; we don't care.
5008       // FIXME need to be more flexible about rounding mode.
5009       (void)V.convert(APFloat::IEEEhalf(),
5010                       APFloat::rmNearestTiesToEven, &Ignored);
5011       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
5012     }
5013     }
5014   }
5015 
5016   // Constant fold unary operations with a vector integer or float operand.
5017   switch (Opcode) {
5018   default:
5019     // FIXME: Entirely reasonable to perform folding of other unary
5020     // operations here as the need arises.
5021     break;
5022   case ISD::FNEG:
5023   case ISD::FABS:
5024   case ISD::FCEIL:
5025   case ISD::FTRUNC:
5026   case ISD::FFLOOR:
5027   case ISD::FP_EXTEND:
5028   case ISD::FP_TO_SINT:
5029   case ISD::FP_TO_UINT:
5030   case ISD::TRUNCATE:
5031   case ISD::ANY_EXTEND:
5032   case ISD::ZERO_EXTEND:
5033   case ISD::SIGN_EXTEND:
5034   case ISD::UINT_TO_FP:
5035   case ISD::SINT_TO_FP:
5036   case ISD::ABS:
5037   case ISD::BITREVERSE:
5038   case ISD::BSWAP:
5039   case ISD::CTLZ:
5040   case ISD::CTLZ_ZERO_UNDEF:
5041   case ISD::CTTZ:
5042   case ISD::CTTZ_ZERO_UNDEF:
5043   case ISD::CTPOP: {
5044     SDValue Ops = {Operand};
5045     if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops))
5046       return Fold;
5047   }
5048   }
5049 
5050   unsigned OpOpcode = Operand.getNode()->getOpcode();
5051   switch (Opcode) {
5052   case ISD::STEP_VECTOR:
5053     assert(VT.isScalableVector() &&
5054            "STEP_VECTOR can only be used with scalable types");
5055     assert(OpOpcode == ISD::TargetConstant &&
5056            VT.getVectorElementType() == Operand.getValueType() &&
5057            "Unexpected step operand");
5058     break;
5059   case ISD::FREEZE:
5060     assert(VT == Operand.getValueType() && "Unexpected VT!");
5061     if (isGuaranteedNotToBeUndefOrPoison(Operand))
5062       return Operand;
5063     break;
5064   case ISD::TokenFactor:
5065   case ISD::MERGE_VALUES:
5066   case ISD::CONCAT_VECTORS:
5067     return Operand;         // Factor, merge or concat of one node?  No need.
5068   case ISD::BUILD_VECTOR: {
5069     // Attempt to simplify BUILD_VECTOR.
5070     SDValue Ops[] = {Operand};
5071     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5072       return V;
5073     break;
5074   }
5075   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
5076   case ISD::FP_EXTEND:
5077     assert(VT.isFloatingPoint() &&
5078            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
5079     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
5080     assert((!VT.isVector() ||
5081             VT.getVectorElementCount() ==
5082             Operand.getValueType().getVectorElementCount()) &&
5083            "Vector element count mismatch!");
5084     assert(Operand.getValueType().bitsLT(VT) &&
5085            "Invalid fpext node, dst < src!");
5086     if (Operand.isUndef())
5087       return getUNDEF(VT);
5088     break;
5089   case ISD::FP_TO_SINT:
5090   case ISD::FP_TO_UINT:
5091     if (Operand.isUndef())
5092       return getUNDEF(VT);
5093     break;
5094   case ISD::SINT_TO_FP:
5095   case ISD::UINT_TO_FP:
5096     // [us]itofp(undef) = 0, because the result value is bounded.
5097     if (Operand.isUndef())
5098       return getConstantFP(0.0, DL, VT);
5099     break;
5100   case ISD::SIGN_EXTEND:
5101     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5102            "Invalid SIGN_EXTEND!");
5103     assert(VT.isVector() == Operand.getValueType().isVector() &&
5104            "SIGN_EXTEND result type type should be vector iff the operand "
5105            "type is vector!");
5106     if (Operand.getValueType() == VT) return Operand;   // noop extension
5107     assert((!VT.isVector() ||
5108             VT.getVectorElementCount() ==
5109                 Operand.getValueType().getVectorElementCount()) &&
5110            "Vector element count mismatch!");
5111     assert(Operand.getValueType().bitsLT(VT) &&
5112            "Invalid sext node, dst < src!");
5113     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
5114       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5115     if (OpOpcode == ISD::UNDEF)
5116       // sext(undef) = 0, because the top bits will all be the same.
5117       return getConstant(0, DL, VT);
5118     break;
5119   case ISD::ZERO_EXTEND:
5120     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5121            "Invalid ZERO_EXTEND!");
5122     assert(VT.isVector() == Operand.getValueType().isVector() &&
5123            "ZERO_EXTEND result type type should be vector iff the operand "
5124            "type is vector!");
5125     if (Operand.getValueType() == VT) return Operand;   // noop extension
5126     assert((!VT.isVector() ||
5127             VT.getVectorElementCount() ==
5128                 Operand.getValueType().getVectorElementCount()) &&
5129            "Vector element count mismatch!");
5130     assert(Operand.getValueType().bitsLT(VT) &&
5131            "Invalid zext node, dst < src!");
5132     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
5133       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
5134     if (OpOpcode == ISD::UNDEF)
5135       // zext(undef) = 0, because the top bits will be zero.
5136       return getConstant(0, DL, VT);
5137     break;
5138   case ISD::ANY_EXTEND:
5139     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5140            "Invalid ANY_EXTEND!");
5141     assert(VT.isVector() == Operand.getValueType().isVector() &&
5142            "ANY_EXTEND result type type should be vector iff the operand "
5143            "type is vector!");
5144     if (Operand.getValueType() == VT) return Operand;   // noop extension
5145     assert((!VT.isVector() ||
5146             VT.getVectorElementCount() ==
5147                 Operand.getValueType().getVectorElementCount()) &&
5148            "Vector element count mismatch!");
5149     assert(Operand.getValueType().bitsLT(VT) &&
5150            "Invalid anyext node, dst < src!");
5151 
5152     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5153         OpOpcode == ISD::ANY_EXTEND)
5154       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
5155       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5156     if (OpOpcode == ISD::UNDEF)
5157       return getUNDEF(VT);
5158 
5159     // (ext (trunc x)) -> x
5160     if (OpOpcode == ISD::TRUNCATE) {
5161       SDValue OpOp = Operand.getOperand(0);
5162       if (OpOp.getValueType() == VT) {
5163         transferDbgValues(Operand, OpOp);
5164         return OpOp;
5165       }
5166     }
5167     break;
5168   case ISD::TRUNCATE:
5169     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5170            "Invalid TRUNCATE!");
5171     assert(VT.isVector() == Operand.getValueType().isVector() &&
5172            "TRUNCATE result type type should be vector iff the operand "
5173            "type is vector!");
5174     if (Operand.getValueType() == VT) return Operand;   // noop truncate
5175     assert((!VT.isVector() ||
5176             VT.getVectorElementCount() ==
5177                 Operand.getValueType().getVectorElementCount()) &&
5178            "Vector element count mismatch!");
5179     assert(Operand.getValueType().bitsGT(VT) &&
5180            "Invalid truncate node, src < dst!");
5181     if (OpOpcode == ISD::TRUNCATE)
5182       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5183     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5184         OpOpcode == ISD::ANY_EXTEND) {
5185       // If the source is smaller than the dest, we still need an extend.
5186       if (Operand.getOperand(0).getValueType().getScalarType()
5187             .bitsLT(VT.getScalarType()))
5188         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5189       if (Operand.getOperand(0).getValueType().bitsGT(VT))
5190         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5191       return Operand.getOperand(0);
5192     }
5193     if (OpOpcode == ISD::UNDEF)
5194       return getUNDEF(VT);
5195     if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes)
5196       return getVScale(DL, VT, Operand.getConstantOperandAPInt(0));
5197     break;
5198   case ISD::ANY_EXTEND_VECTOR_INREG:
5199   case ISD::ZERO_EXTEND_VECTOR_INREG:
5200   case ISD::SIGN_EXTEND_VECTOR_INREG:
5201     assert(VT.isVector() && "This DAG node is restricted to vector types.");
5202     assert(Operand.getValueType().bitsLE(VT) &&
5203            "The input must be the same size or smaller than the result.");
5204     assert(VT.getVectorMinNumElements() <
5205                Operand.getValueType().getVectorMinNumElements() &&
5206            "The destination vector type must have fewer lanes than the input.");
5207     break;
5208   case ISD::ABS:
5209     assert(VT.isInteger() && VT == Operand.getValueType() &&
5210            "Invalid ABS!");
5211     if (OpOpcode == ISD::UNDEF)
5212       return getUNDEF(VT);
5213     break;
5214   case ISD::BSWAP:
5215     assert(VT.isInteger() && VT == Operand.getValueType() &&
5216            "Invalid BSWAP!");
5217     assert((VT.getScalarSizeInBits() % 16 == 0) &&
5218            "BSWAP types must be a multiple of 16 bits!");
5219     if (OpOpcode == ISD::UNDEF)
5220       return getUNDEF(VT);
5221     // bswap(bswap(X)) -> X.
5222     if (OpOpcode == ISD::BSWAP)
5223       return Operand.getOperand(0);
5224     break;
5225   case ISD::BITREVERSE:
5226     assert(VT.isInteger() && VT == Operand.getValueType() &&
5227            "Invalid BITREVERSE!");
5228     if (OpOpcode == ISD::UNDEF)
5229       return getUNDEF(VT);
5230     break;
5231   case ISD::BITCAST:
5232     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
5233            "Cannot BITCAST between types of different sizes!");
5234     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
5235     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
5236       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
5237     if (OpOpcode == ISD::UNDEF)
5238       return getUNDEF(VT);
5239     break;
5240   case ISD::SCALAR_TO_VECTOR:
5241     assert(VT.isVector() && !Operand.getValueType().isVector() &&
5242            (VT.getVectorElementType() == Operand.getValueType() ||
5243             (VT.getVectorElementType().isInteger() &&
5244              Operand.getValueType().isInteger() &&
5245              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
5246            "Illegal SCALAR_TO_VECTOR node!");
5247     if (OpOpcode == ISD::UNDEF)
5248       return getUNDEF(VT);
5249     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
5250     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
5251         isa<ConstantSDNode>(Operand.getOperand(1)) &&
5252         Operand.getConstantOperandVal(1) == 0 &&
5253         Operand.getOperand(0).getValueType() == VT)
5254       return Operand.getOperand(0);
5255     break;
5256   case ISD::FNEG:
5257     // Negation of an unknown bag of bits is still completely undefined.
5258     if (OpOpcode == ISD::UNDEF)
5259       return getUNDEF(VT);
5260 
5261     if (OpOpcode == ISD::FNEG)  // --X -> X
5262       return Operand.getOperand(0);
5263     break;
5264   case ISD::FABS:
5265     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
5266       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
5267     break;
5268   case ISD::VSCALE:
5269     assert(VT == Operand.getValueType() && "Unexpected VT!");
5270     break;
5271   case ISD::CTPOP:
5272     if (Operand.getValueType().getScalarType() == MVT::i1)
5273       return Operand;
5274     break;
5275   case ISD::CTLZ:
5276   case ISD::CTTZ:
5277     if (Operand.getValueType().getScalarType() == MVT::i1)
5278       return getNOT(DL, Operand, Operand.getValueType());
5279     break;
5280   case ISD::VECREDUCE_SMIN:
5281   case ISD::VECREDUCE_UMAX:
5282     if (Operand.getValueType().getScalarType() == MVT::i1)
5283       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
5284     break;
5285   case ISD::VECREDUCE_SMAX:
5286   case ISD::VECREDUCE_UMIN:
5287     if (Operand.getValueType().getScalarType() == MVT::i1)
5288       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
5289     break;
5290   }
5291 
5292   SDNode *N;
5293   SDVTList VTs = getVTList(VT);
5294   SDValue Ops[] = {Operand};
5295   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
5296     FoldingSetNodeID ID;
5297     AddNodeIDNode(ID, Opcode, VTs, Ops);
5298     void *IP = nullptr;
5299     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5300       E->intersectFlagsWith(Flags);
5301       return SDValue(E, 0);
5302     }
5303 
5304     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5305     N->setFlags(Flags);
5306     createOperands(N, Ops);
5307     CSEMap.InsertNode(N, IP);
5308   } else {
5309     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5310     createOperands(N, Ops);
5311   }
5312 
5313   InsertNode(N);
5314   SDValue V = SDValue(N, 0);
5315   NewSDValueDbgMsg(V, "Creating new node: ", this);
5316   return V;
5317 }
5318 
5319 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
5320                                        const APInt &C2) {
5321   switch (Opcode) {
5322   case ISD::ADD:  return C1 + C2;
5323   case ISD::SUB:  return C1 - C2;
5324   case ISD::MUL:  return C1 * C2;
5325   case ISD::AND:  return C1 & C2;
5326   case ISD::OR:   return C1 | C2;
5327   case ISD::XOR:  return C1 ^ C2;
5328   case ISD::SHL:  return C1 << C2;
5329   case ISD::SRL:  return C1.lshr(C2);
5330   case ISD::SRA:  return C1.ashr(C2);
5331   case ISD::ROTL: return C1.rotl(C2);
5332   case ISD::ROTR: return C1.rotr(C2);
5333   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
5334   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
5335   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
5336   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
5337   case ISD::SADDSAT: return C1.sadd_sat(C2);
5338   case ISD::UADDSAT: return C1.uadd_sat(C2);
5339   case ISD::SSUBSAT: return C1.ssub_sat(C2);
5340   case ISD::USUBSAT: return C1.usub_sat(C2);
5341   case ISD::SSHLSAT: return C1.sshl_sat(C2);
5342   case ISD::USHLSAT: return C1.ushl_sat(C2);
5343   case ISD::UDIV:
5344     if (!C2.getBoolValue())
5345       break;
5346     return C1.udiv(C2);
5347   case ISD::UREM:
5348     if (!C2.getBoolValue())
5349       break;
5350     return C1.urem(C2);
5351   case ISD::SDIV:
5352     if (!C2.getBoolValue())
5353       break;
5354     return C1.sdiv(C2);
5355   case ISD::SREM:
5356     if (!C2.getBoolValue())
5357       break;
5358     return C1.srem(C2);
5359   case ISD::MULHS: {
5360     unsigned FullWidth = C1.getBitWidth() * 2;
5361     APInt C1Ext = C1.sext(FullWidth);
5362     APInt C2Ext = C2.sext(FullWidth);
5363     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5364   }
5365   case ISD::MULHU: {
5366     unsigned FullWidth = C1.getBitWidth() * 2;
5367     APInt C1Ext = C1.zext(FullWidth);
5368     APInt C2Ext = C2.zext(FullWidth);
5369     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5370   }
5371   case ISD::AVGFLOORS: {
5372     unsigned FullWidth = C1.getBitWidth() + 1;
5373     APInt C1Ext = C1.sext(FullWidth);
5374     APInt C2Ext = C2.sext(FullWidth);
5375     return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1);
5376   }
5377   case ISD::AVGFLOORU: {
5378     unsigned FullWidth = C1.getBitWidth() + 1;
5379     APInt C1Ext = C1.zext(FullWidth);
5380     APInt C2Ext = C2.zext(FullWidth);
5381     return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1);
5382   }
5383   case ISD::AVGCEILS: {
5384     unsigned FullWidth = C1.getBitWidth() + 1;
5385     APInt C1Ext = C1.sext(FullWidth);
5386     APInt C2Ext = C2.sext(FullWidth);
5387     return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1);
5388   }
5389   case ISD::AVGCEILU: {
5390     unsigned FullWidth = C1.getBitWidth() + 1;
5391     APInt C1Ext = C1.zext(FullWidth);
5392     APInt C2Ext = C2.zext(FullWidth);
5393     return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1);
5394   }
5395   }
5396   return llvm::None;
5397 }
5398 
5399 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
5400                                        const GlobalAddressSDNode *GA,
5401                                        const SDNode *N2) {
5402   if (GA->getOpcode() != ISD::GlobalAddress)
5403     return SDValue();
5404   if (!TLI->isOffsetFoldingLegal(GA))
5405     return SDValue();
5406   auto *C2 = dyn_cast<ConstantSDNode>(N2);
5407   if (!C2)
5408     return SDValue();
5409   int64_t Offset = C2->getSExtValue();
5410   switch (Opcode) {
5411   case ISD::ADD: break;
5412   case ISD::SUB: Offset = -uint64_t(Offset); break;
5413   default: return SDValue();
5414   }
5415   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
5416                           GA->getOffset() + uint64_t(Offset));
5417 }
5418 
5419 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
5420   switch (Opcode) {
5421   case ISD::SDIV:
5422   case ISD::UDIV:
5423   case ISD::SREM:
5424   case ISD::UREM: {
5425     // If a divisor is zero/undef or any element of a divisor vector is
5426     // zero/undef, the whole op is undef.
5427     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
5428     SDValue Divisor = Ops[1];
5429     if (Divisor.isUndef() || isNullConstant(Divisor))
5430       return true;
5431 
5432     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
5433            llvm::any_of(Divisor->op_values(),
5434                         [](SDValue V) { return V.isUndef() ||
5435                                         isNullConstant(V); });
5436     // TODO: Handle signed overflow.
5437   }
5438   // TODO: Handle oversized shifts.
5439   default:
5440     return false;
5441   }
5442 }
5443 
5444 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
5445                                              EVT VT, ArrayRef<SDValue> Ops) {
5446   // If the opcode is a target-specific ISD node, there's nothing we can
5447   // do here and the operand rules may not line up with the below, so
5448   // bail early.
5449   // We can't create a scalar CONCAT_VECTORS so skip it. It will break
5450   // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
5451   // foldCONCAT_VECTORS in getNode before this is called.
5452   if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
5453     return SDValue();
5454 
5455   unsigned NumOps = Ops.size();
5456   if (NumOps == 0)
5457     return SDValue();
5458 
5459   if (isUndef(Opcode, Ops))
5460     return getUNDEF(VT);
5461 
5462   // Handle binops special cases.
5463   if (NumOps == 2) {
5464     if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1]))
5465       return CFP;
5466 
5467     if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
5468       if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) {
5469         if (C1->isOpaque() || C2->isOpaque())
5470           return SDValue();
5471 
5472         Optional<APInt> FoldAttempt =
5473             FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
5474         if (!FoldAttempt)
5475           return SDValue();
5476 
5477         SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
5478         assert((!Folded || !VT.isVector()) &&
5479                "Can't fold vectors ops with scalar operands");
5480         return Folded;
5481       }
5482     }
5483 
5484     // fold (add Sym, c) -> Sym+c
5485     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0]))
5486       return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode());
5487     if (TLI->isCommutativeBinOp(Opcode))
5488       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1]))
5489         return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode());
5490   }
5491 
5492   // This is for vector folding only from here on.
5493   if (!VT.isVector())
5494     return SDValue();
5495 
5496   ElementCount NumElts = VT.getVectorElementCount();
5497 
5498   // See if we can fold through bitcasted integer ops.
5499   // TODO: Can we handle undef elements?
5500   if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() &&
5501       Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
5502       Ops[0].getOpcode() == ISD::BITCAST &&
5503       Ops[1].getOpcode() == ISD::BITCAST) {
5504     SDValue N1 = peekThroughBitcasts(Ops[0]);
5505     SDValue N2 = peekThroughBitcasts(Ops[1]);
5506     auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
5507     auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
5508     EVT BVVT = N1.getValueType();
5509     if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) {
5510       bool IsLE = getDataLayout().isLittleEndian();
5511       unsigned EltBits = VT.getScalarSizeInBits();
5512       SmallVector<APInt> RawBits1, RawBits2;
5513       BitVector UndefElts1, UndefElts2;
5514       if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
5515           BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) &&
5516           UndefElts1.none() && UndefElts2.none()) {
5517         SmallVector<APInt> RawBits;
5518         for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) {
5519           Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]);
5520           if (!Fold)
5521             break;
5522           RawBits.push_back(Fold.getValue());
5523         }
5524         if (RawBits.size() == NumElts.getFixedValue()) {
5525           // We have constant folded, but we need to cast this again back to
5526           // the original (possibly legalized) type.
5527           SmallVector<APInt> DstBits;
5528           BitVector DstUndefs;
5529           BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(),
5530                                            DstBits, RawBits, DstUndefs,
5531                                            BitVector(RawBits.size(), false));
5532           EVT BVEltVT = BV1->getOperand(0).getValueType();
5533           unsigned BVEltBits = BVEltVT.getSizeInBits();
5534           SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT));
5535           for (unsigned I = 0, E = DstBits.size(); I != E; ++I) {
5536             if (DstUndefs[I])
5537               continue;
5538             Ops[I] = getConstant(DstBits[I].sextOrSelf(BVEltBits), DL, BVEltVT);
5539           }
5540           return getBitcast(VT, getBuildVector(BVVT, DL, Ops));
5541         }
5542       }
5543     }
5544   }
5545 
5546   // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
5547   //      (shl step_vector(C0), C1) -> (step_vector(C0 << C1))
5548   if ((Opcode == ISD::MUL || Opcode == ISD::SHL) &&
5549       Ops[0].getOpcode() == ISD::STEP_VECTOR) {
5550     APInt RHSVal;
5551     if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) {
5552       APInt NewStep = Opcode == ISD::MUL
5553                           ? Ops[0].getConstantOperandAPInt(0) * RHSVal
5554                           : Ops[0].getConstantOperandAPInt(0) << RHSVal;
5555       return getStepVector(DL, VT, NewStep);
5556     }
5557   }
5558 
5559   auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
5560     return !Op.getValueType().isVector() ||
5561            Op.getValueType().getVectorElementCount() == NumElts;
5562   };
5563 
5564   auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
5565     return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
5566            Op.getOpcode() == ISD::BUILD_VECTOR ||
5567            Op.getOpcode() == ISD::SPLAT_VECTOR;
5568   };
5569 
5570   // All operands must be vector types with the same number of elements as
5571   // the result type and must be either UNDEF or a build/splat vector
5572   // or UNDEF scalars.
5573   if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) ||
5574       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5575     return SDValue();
5576 
5577   // If we are comparing vectors, then the result needs to be a i1 boolean
5578   // that is then sign-extended back to the legal result type.
5579   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5580 
5581   // Find legal integer scalar type for constant promotion and
5582   // ensure that its scalar size is at least as large as source.
5583   EVT LegalSVT = VT.getScalarType();
5584   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5585     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5586     if (LegalSVT.bitsLT(VT.getScalarType()))
5587       return SDValue();
5588   }
5589 
5590   // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
5591   // only have one operand to check. For fixed-length vector types we may have
5592   // a combination of BUILD_VECTOR and SPLAT_VECTOR.
5593   unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
5594 
5595   // Constant fold each scalar lane separately.
5596   SmallVector<SDValue, 4> ScalarResults;
5597   for (unsigned I = 0; I != NumVectorElts; I++) {
5598     SmallVector<SDValue, 4> ScalarOps;
5599     for (SDValue Op : Ops) {
5600       EVT InSVT = Op.getValueType().getScalarType();
5601       if (Op.getOpcode() != ISD::BUILD_VECTOR &&
5602           Op.getOpcode() != ISD::SPLAT_VECTOR) {
5603         if (Op.isUndef())
5604           ScalarOps.push_back(getUNDEF(InSVT));
5605         else
5606           ScalarOps.push_back(Op);
5607         continue;
5608       }
5609 
5610       SDValue ScalarOp =
5611           Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
5612       EVT ScalarVT = ScalarOp.getValueType();
5613 
5614       // Build vector (integer) scalar operands may need implicit
5615       // truncation - do this before constant folding.
5616       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) {
5617         // Don't create illegally-typed nodes unless they're constants or undef
5618         // - if we fail to constant fold we can't guarantee the (dead) nodes
5619         // we're creating will be cleaned up before being visited for
5620         // legalization.
5621         if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() &&
5622             !isa<ConstantSDNode>(ScalarOp) &&
5623             TLI->getTypeAction(*getContext(), InSVT) !=
5624                 TargetLowering::TypeLegal)
5625           return SDValue();
5626         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5627       }
5628 
5629       ScalarOps.push_back(ScalarOp);
5630     }
5631 
5632     // Constant fold the scalar operands.
5633     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps);
5634 
5635     // Legalize the (integer) scalar constant if necessary.
5636     if (LegalSVT != SVT)
5637       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5638 
5639     // Scalar folding only succeeded if the result is a constant or UNDEF.
5640     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5641         ScalarResult.getOpcode() != ISD::ConstantFP)
5642       return SDValue();
5643     ScalarResults.push_back(ScalarResult);
5644   }
5645 
5646   SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
5647                                    : getBuildVector(VT, DL, ScalarResults);
5648   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5649   return V;
5650 }
5651 
5652 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5653                                          EVT VT, SDValue N1, SDValue N2) {
5654   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5655   //       should. That will require dealing with a potentially non-default
5656   //       rounding mode, checking the "opStatus" return value from the APFloat
5657   //       math calculations, and possibly other variations.
5658   ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false);
5659   ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false);
5660   if (N1CFP && N2CFP) {
5661     APFloat C1 = N1CFP->getValueAPF(); // make copy
5662     const APFloat &C2 = N2CFP->getValueAPF();
5663     switch (Opcode) {
5664     case ISD::FADD:
5665       C1.add(C2, APFloat::rmNearestTiesToEven);
5666       return getConstantFP(C1, DL, VT);
5667     case ISD::FSUB:
5668       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5669       return getConstantFP(C1, DL, VT);
5670     case ISD::FMUL:
5671       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5672       return getConstantFP(C1, DL, VT);
5673     case ISD::FDIV:
5674       C1.divide(C2, APFloat::rmNearestTiesToEven);
5675       return getConstantFP(C1, DL, VT);
5676     case ISD::FREM:
5677       C1.mod(C2);
5678       return getConstantFP(C1, DL, VT);
5679     case ISD::FCOPYSIGN:
5680       C1.copySign(C2);
5681       return getConstantFP(C1, DL, VT);
5682     case ISD::FMINNUM:
5683       return getConstantFP(minnum(C1, C2), DL, VT);
5684     case ISD::FMAXNUM:
5685       return getConstantFP(maxnum(C1, C2), DL, VT);
5686     case ISD::FMINIMUM:
5687       return getConstantFP(minimum(C1, C2), DL, VT);
5688     case ISD::FMAXIMUM:
5689       return getConstantFP(maximum(C1, C2), DL, VT);
5690     default: break;
5691     }
5692   }
5693   if (N1CFP && Opcode == ISD::FP_ROUND) {
5694     APFloat C1 = N1CFP->getValueAPF();    // make copy
5695     bool Unused;
5696     // This can return overflow, underflow, or inexact; we don't care.
5697     // FIXME need to be more flexible about rounding mode.
5698     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5699                       &Unused);
5700     return getConstantFP(C1, DL, VT);
5701   }
5702 
5703   switch (Opcode) {
5704   case ISD::FSUB:
5705     // -0.0 - undef --> undef (consistent with "fneg undef")
5706     if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true))
5707       if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef())
5708         return getUNDEF(VT);
5709     LLVM_FALLTHROUGH;
5710 
5711   case ISD::FADD:
5712   case ISD::FMUL:
5713   case ISD::FDIV:
5714   case ISD::FREM:
5715     // If both operands are undef, the result is undef. If 1 operand is undef,
5716     // the result is NaN. This should match the behavior of the IR optimizer.
5717     if (N1.isUndef() && N2.isUndef())
5718       return getUNDEF(VT);
5719     if (N1.isUndef() || N2.isUndef())
5720       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5721   }
5722   return SDValue();
5723 }
5724 
5725 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5726   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5727 
5728   // There's no need to assert on a byte-aligned pointer. All pointers are at
5729   // least byte aligned.
5730   if (A == Align(1))
5731     return Val;
5732 
5733   FoldingSetNodeID ID;
5734   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5735   ID.AddInteger(A.value());
5736 
5737   void *IP = nullptr;
5738   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5739     return SDValue(E, 0);
5740 
5741   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5742                                          Val.getValueType(), A);
5743   createOperands(N, {Val});
5744 
5745   CSEMap.InsertNode(N, IP);
5746   InsertNode(N);
5747 
5748   SDValue V(N, 0);
5749   NewSDValueDbgMsg(V, "Creating new node: ", this);
5750   return V;
5751 }
5752 
5753 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5754                               SDValue N1, SDValue N2) {
5755   SDNodeFlags Flags;
5756   if (Inserter)
5757     Flags = Inserter->getFlags();
5758   return getNode(Opcode, DL, VT, N1, N2, Flags);
5759 }
5760 
5761 void SelectionDAG::canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1,
5762                                                 SDValue &N2) const {
5763   if (!TLI->isCommutativeBinOp(Opcode))
5764     return;
5765 
5766   // Canonicalize:
5767   //   binop(const, nonconst) -> binop(nonconst, const)
5768   bool IsN1C = isConstantIntBuildVectorOrConstantInt(N1);
5769   bool IsN2C = isConstantIntBuildVectorOrConstantInt(N2);
5770   bool IsN1CFP = isConstantFPBuildVectorOrConstantFP(N1);
5771   bool IsN2CFP = isConstantFPBuildVectorOrConstantFP(N2);
5772   if ((IsN1C && !IsN2C) || (IsN1CFP && !IsN2CFP))
5773     std::swap(N1, N2);
5774 
5775   // Canonicalize:
5776   //  binop(splat(x), step_vector) -> binop(step_vector, splat(x))
5777   else if (N1.getOpcode() == ISD::SPLAT_VECTOR &&
5778            N2.getOpcode() == ISD::STEP_VECTOR)
5779     std::swap(N1, N2);
5780 }
5781 
5782 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5783                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5784   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5785          N2.getOpcode() != ISD::DELETED_NODE &&
5786          "Operand is DELETED_NODE!");
5787 
5788   canonicalizeCommutativeBinop(Opcode, N1, N2);
5789 
5790   auto *N1C = dyn_cast<ConstantSDNode>(N1);
5791   auto *N2C = dyn_cast<ConstantSDNode>(N2);
5792 
5793   // Don't allow undefs in vector splats - we might be returning N2 when folding
5794   // to zero etc.
5795   ConstantSDNode *N2CV =
5796       isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true);
5797 
5798   switch (Opcode) {
5799   default: break;
5800   case ISD::TokenFactor:
5801     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5802            N2.getValueType() == MVT::Other && "Invalid token factor!");
5803     // Fold trivial token factors.
5804     if (N1.getOpcode() == ISD::EntryToken) return N2;
5805     if (N2.getOpcode() == ISD::EntryToken) return N1;
5806     if (N1 == N2) return N1;
5807     break;
5808   case ISD::BUILD_VECTOR: {
5809     // Attempt to simplify BUILD_VECTOR.
5810     SDValue Ops[] = {N1, N2};
5811     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5812       return V;
5813     break;
5814   }
5815   case ISD::CONCAT_VECTORS: {
5816     SDValue Ops[] = {N1, N2};
5817     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5818       return V;
5819     break;
5820   }
5821   case ISD::AND:
5822     assert(VT.isInteger() && "This operator does not apply to FP types!");
5823     assert(N1.getValueType() == N2.getValueType() &&
5824            N1.getValueType() == VT && "Binary operator types must match!");
5825     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5826     // worth handling here.
5827     if (N2CV && N2CV->isZero())
5828       return N2;
5829     if (N2CV && N2CV->isAllOnes()) // X & -1 -> X
5830       return N1;
5831     break;
5832   case ISD::OR:
5833   case ISD::XOR:
5834   case ISD::ADD:
5835   case ISD::SUB:
5836     assert(VT.isInteger() && "This operator does not apply to FP types!");
5837     assert(N1.getValueType() == N2.getValueType() &&
5838            N1.getValueType() == VT && "Binary operator types must match!");
5839     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5840     // it's worth handling here.
5841     if (N2CV && N2CV->isZero())
5842       return N1;
5843     if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
5844         VT.getVectorElementType() == MVT::i1)
5845       return getNode(ISD::XOR, DL, VT, N1, N2);
5846     break;
5847   case ISD::MUL:
5848     assert(VT.isInteger() && "This operator does not apply to FP types!");
5849     assert(N1.getValueType() == N2.getValueType() &&
5850            N1.getValueType() == VT && "Binary operator types must match!");
5851     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5852       return getNode(ISD::AND, DL, VT, N1, N2);
5853     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5854       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5855       const APInt &N2CImm = N2C->getAPIntValue();
5856       return getVScale(DL, VT, MulImm * N2CImm);
5857     }
5858     break;
5859   case ISD::UDIV:
5860   case ISD::UREM:
5861   case ISD::MULHU:
5862   case ISD::MULHS:
5863   case ISD::SDIV:
5864   case ISD::SREM:
5865   case ISD::SADDSAT:
5866   case ISD::SSUBSAT:
5867   case ISD::UADDSAT:
5868   case ISD::USUBSAT:
5869     assert(VT.isInteger() && "This operator does not apply to FP types!");
5870     assert(N1.getValueType() == N2.getValueType() &&
5871            N1.getValueType() == VT && "Binary operator types must match!");
5872     if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
5873       // fold (add_sat x, y) -> (or x, y) for bool types.
5874       if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
5875         return getNode(ISD::OR, DL, VT, N1, N2);
5876       // fold (sub_sat x, y) -> (and x, ~y) for bool types.
5877       if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
5878         return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
5879     }
5880     break;
5881   case ISD::SMIN:
5882   case ISD::UMAX:
5883     assert(VT.isInteger() && "This operator does not apply to FP types!");
5884     assert(N1.getValueType() == N2.getValueType() &&
5885            N1.getValueType() == VT && "Binary operator types must match!");
5886     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5887       return getNode(ISD::OR, DL, VT, N1, N2);
5888     break;
5889   case ISD::SMAX:
5890   case ISD::UMIN:
5891     assert(VT.isInteger() && "This operator does not apply to FP types!");
5892     assert(N1.getValueType() == N2.getValueType() &&
5893            N1.getValueType() == VT && "Binary operator types must match!");
5894     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5895       return getNode(ISD::AND, DL, VT, N1, N2);
5896     break;
5897   case ISD::FADD:
5898   case ISD::FSUB:
5899   case ISD::FMUL:
5900   case ISD::FDIV:
5901   case ISD::FREM:
5902     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5903     assert(N1.getValueType() == N2.getValueType() &&
5904            N1.getValueType() == VT && "Binary operator types must match!");
5905     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5906       return V;
5907     break;
5908   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5909     assert(N1.getValueType() == VT &&
5910            N1.getValueType().isFloatingPoint() &&
5911            N2.getValueType().isFloatingPoint() &&
5912            "Invalid FCOPYSIGN!");
5913     break;
5914   case ISD::SHL:
5915     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5916       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5917       const APInt &ShiftImm = N2C->getAPIntValue();
5918       return getVScale(DL, VT, MulImm << ShiftImm);
5919     }
5920     LLVM_FALLTHROUGH;
5921   case ISD::SRA:
5922   case ISD::SRL:
5923     if (SDValue V = simplifyShift(N1, N2))
5924       return V;
5925     LLVM_FALLTHROUGH;
5926   case ISD::ROTL:
5927   case ISD::ROTR:
5928     assert(VT == N1.getValueType() &&
5929            "Shift operators return type must be the same as their first arg");
5930     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5931            "Shifts only work on integers");
5932     assert((!VT.isVector() || VT == N2.getValueType()) &&
5933            "Vector shift amounts must be in the same as their first arg");
5934     // Verify that the shift amount VT is big enough to hold valid shift
5935     // amounts.  This catches things like trying to shift an i1024 value by an
5936     // i8, which is easy to fall into in generic code that uses
5937     // TLI.getShiftAmount().
5938     assert(N2.getValueType().getScalarSizeInBits() >=
5939                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5940            "Invalid use of small shift amount with oversized value!");
5941 
5942     // Always fold shifts of i1 values so the code generator doesn't need to
5943     // handle them.  Since we know the size of the shift has to be less than the
5944     // size of the value, the shift/rotate count is guaranteed to be zero.
5945     if (VT == MVT::i1)
5946       return N1;
5947     if (N2CV && N2CV->isZero())
5948       return N1;
5949     break;
5950   case ISD::FP_ROUND:
5951     assert(VT.isFloatingPoint() &&
5952            N1.getValueType().isFloatingPoint() &&
5953            VT.bitsLE(N1.getValueType()) &&
5954            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5955            "Invalid FP_ROUND!");
5956     if (N1.getValueType() == VT) return N1;  // noop conversion.
5957     break;
5958   case ISD::AssertSext:
5959   case ISD::AssertZext: {
5960     EVT EVT = cast<VTSDNode>(N2)->getVT();
5961     assert(VT == N1.getValueType() && "Not an inreg extend!");
5962     assert(VT.isInteger() && EVT.isInteger() &&
5963            "Cannot *_EXTEND_INREG FP types");
5964     assert(!EVT.isVector() &&
5965            "AssertSExt/AssertZExt type should be the vector element type "
5966            "rather than the vector type!");
5967     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5968     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5969     break;
5970   }
5971   case ISD::SIGN_EXTEND_INREG: {
5972     EVT EVT = cast<VTSDNode>(N2)->getVT();
5973     assert(VT == N1.getValueType() && "Not an inreg extend!");
5974     assert(VT.isInteger() && EVT.isInteger() &&
5975            "Cannot *_EXTEND_INREG FP types");
5976     assert(EVT.isVector() == VT.isVector() &&
5977            "SIGN_EXTEND_INREG type should be vector iff the operand "
5978            "type is vector!");
5979     assert((!EVT.isVector() ||
5980             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5981            "Vector element counts must match in SIGN_EXTEND_INREG");
5982     assert(EVT.bitsLE(VT) && "Not extending!");
5983     if (EVT == VT) return N1;  // Not actually extending
5984 
5985     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5986       unsigned FromBits = EVT.getScalarSizeInBits();
5987       Val <<= Val.getBitWidth() - FromBits;
5988       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5989       return getConstant(Val, DL, ConstantVT);
5990     };
5991 
5992     if (N1C) {
5993       const APInt &Val = N1C->getAPIntValue();
5994       return SignExtendInReg(Val, VT);
5995     }
5996 
5997     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5998       SmallVector<SDValue, 8> Ops;
5999       llvm::EVT OpVT = N1.getOperand(0).getValueType();
6000       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
6001         SDValue Op = N1.getOperand(i);
6002         if (Op.isUndef()) {
6003           Ops.push_back(getUNDEF(OpVT));
6004           continue;
6005         }
6006         ConstantSDNode *C = cast<ConstantSDNode>(Op);
6007         APInt Val = C->getAPIntValue();
6008         Ops.push_back(SignExtendInReg(Val, OpVT));
6009       }
6010       return getBuildVector(VT, DL, Ops);
6011     }
6012     break;
6013   }
6014   case ISD::FP_TO_SINT_SAT:
6015   case ISD::FP_TO_UINT_SAT: {
6016     assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
6017            N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
6018     assert(N1.getValueType().isVector() == VT.isVector() &&
6019            "FP_TO_*INT_SAT type should be vector iff the operand type is "
6020            "vector!");
6021     assert((!VT.isVector() || VT.getVectorNumElements() ==
6022                                   N1.getValueType().getVectorNumElements()) &&
6023            "Vector element counts must match in FP_TO_*INT_SAT");
6024     assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
6025            "Type to saturate to must be a scalar.");
6026     assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
6027            "Not extending!");
6028     break;
6029   }
6030   case ISD::EXTRACT_VECTOR_ELT:
6031     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
6032            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
6033              element type of the vector.");
6034 
6035     // Extract from an undefined value or using an undefined index is undefined.
6036     if (N1.isUndef() || N2.isUndef())
6037       return getUNDEF(VT);
6038 
6039     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
6040     // vectors. For scalable vectors we will provide appropriate support for
6041     // dealing with arbitrary indices.
6042     if (N2C && N1.getValueType().isFixedLengthVector() &&
6043         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
6044       return getUNDEF(VT);
6045 
6046     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
6047     // expanding copies of large vectors from registers. This only works for
6048     // fixed length vectors, since we need to know the exact number of
6049     // elements.
6050     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
6051         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
6052       unsigned Factor =
6053         N1.getOperand(0).getValueType().getVectorNumElements();
6054       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
6055                      N1.getOperand(N2C->getZExtValue() / Factor),
6056                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
6057     }
6058 
6059     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
6060     // lowering is expanding large vector constants.
6061     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
6062                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
6063       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
6064               N1.getValueType().isFixedLengthVector()) &&
6065              "BUILD_VECTOR used for scalable vectors");
6066       unsigned Index =
6067           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
6068       SDValue Elt = N1.getOperand(Index);
6069 
6070       if (VT != Elt.getValueType())
6071         // If the vector element type is not legal, the BUILD_VECTOR operands
6072         // are promoted and implicitly truncated, and the result implicitly
6073         // extended. Make that explicit here.
6074         Elt = getAnyExtOrTrunc(Elt, DL, VT);
6075 
6076       return Elt;
6077     }
6078 
6079     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
6080     // operations are lowered to scalars.
6081     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
6082       // If the indices are the same, return the inserted element else
6083       // if the indices are known different, extract the element from
6084       // the original vector.
6085       SDValue N1Op2 = N1.getOperand(2);
6086       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
6087 
6088       if (N1Op2C && N2C) {
6089         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
6090           if (VT == N1.getOperand(1).getValueType())
6091             return N1.getOperand(1);
6092           return getSExtOrTrunc(N1.getOperand(1), DL, VT);
6093         }
6094         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
6095       }
6096     }
6097 
6098     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
6099     // when vector types are scalarized and v1iX is legal.
6100     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
6101     // Here we are completely ignoring the extract element index (N2),
6102     // which is fine for fixed width vectors, since any index other than 0
6103     // is undefined anyway. However, this cannot be ignored for scalable
6104     // vectors - in theory we could support this, but we don't want to do this
6105     // without a profitability check.
6106     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6107         N1.getValueType().isFixedLengthVector() &&
6108         N1.getValueType().getVectorNumElements() == 1) {
6109       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
6110                      N1.getOperand(1));
6111     }
6112     break;
6113   case ISD::EXTRACT_ELEMENT:
6114     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
6115     assert(!N1.getValueType().isVector() && !VT.isVector() &&
6116            (N1.getValueType().isInteger() == VT.isInteger()) &&
6117            N1.getValueType() != VT &&
6118            "Wrong types for EXTRACT_ELEMENT!");
6119 
6120     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
6121     // 64-bit integers into 32-bit parts.  Instead of building the extract of
6122     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
6123     if (N1.getOpcode() == ISD::BUILD_PAIR)
6124       return N1.getOperand(N2C->getZExtValue());
6125 
6126     // EXTRACT_ELEMENT of a constant int is also very common.
6127     if (N1C) {
6128       unsigned ElementSize = VT.getSizeInBits();
6129       unsigned Shift = ElementSize * N2C->getZExtValue();
6130       const APInt &Val = N1C->getAPIntValue();
6131       return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
6132     }
6133     break;
6134   case ISD::EXTRACT_SUBVECTOR: {
6135     EVT N1VT = N1.getValueType();
6136     assert(VT.isVector() && N1VT.isVector() &&
6137            "Extract subvector VTs must be vectors!");
6138     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
6139            "Extract subvector VTs must have the same element type!");
6140     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
6141            "Cannot extract a scalable vector from a fixed length vector!");
6142     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
6143             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
6144            "Extract subvector must be from larger vector to smaller vector!");
6145     assert(N2C && "Extract subvector index must be a constant");
6146     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
6147             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
6148                 N1VT.getVectorMinNumElements()) &&
6149            "Extract subvector overflow!");
6150     assert(N2C->getAPIntValue().getBitWidth() ==
6151                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6152            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
6153 
6154     // Trivial extraction.
6155     if (VT == N1VT)
6156       return N1;
6157 
6158     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
6159     if (N1.isUndef())
6160       return getUNDEF(VT);
6161 
6162     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
6163     // the concat have the same type as the extract.
6164     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
6165         VT == N1.getOperand(0).getValueType()) {
6166       unsigned Factor = VT.getVectorMinNumElements();
6167       return N1.getOperand(N2C->getZExtValue() / Factor);
6168     }
6169 
6170     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
6171     // during shuffle legalization.
6172     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
6173         VT == N1.getOperand(1).getValueType())
6174       return N1.getOperand(1);
6175     break;
6176   }
6177   }
6178 
6179   // Perform trivial constant folding.
6180   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
6181     return SV;
6182 
6183   // Canonicalize an UNDEF to the RHS, even over a constant.
6184   if (N1.isUndef()) {
6185     if (TLI->isCommutativeBinOp(Opcode)) {
6186       std::swap(N1, N2);
6187     } else {
6188       switch (Opcode) {
6189       case ISD::SIGN_EXTEND_INREG:
6190       case ISD::SUB:
6191         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
6192       case ISD::UDIV:
6193       case ISD::SDIV:
6194       case ISD::UREM:
6195       case ISD::SREM:
6196       case ISD::SSUBSAT:
6197       case ISD::USUBSAT:
6198         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
6199       }
6200     }
6201   }
6202 
6203   // Fold a bunch of operators when the RHS is undef.
6204   if (N2.isUndef()) {
6205     switch (Opcode) {
6206     case ISD::XOR:
6207       if (N1.isUndef())
6208         // Handle undef ^ undef -> 0 special case. This is a common
6209         // idiom (misuse).
6210         return getConstant(0, DL, VT);
6211       LLVM_FALLTHROUGH;
6212     case ISD::ADD:
6213     case ISD::SUB:
6214     case ISD::UDIV:
6215     case ISD::SDIV:
6216     case ISD::UREM:
6217     case ISD::SREM:
6218       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
6219     case ISD::MUL:
6220     case ISD::AND:
6221     case ISD::SSUBSAT:
6222     case ISD::USUBSAT:
6223       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
6224     case ISD::OR:
6225     case ISD::SADDSAT:
6226     case ISD::UADDSAT:
6227       return getAllOnesConstant(DL, VT);
6228     }
6229   }
6230 
6231   // Memoize this node if possible.
6232   SDNode *N;
6233   SDVTList VTs = getVTList(VT);
6234   SDValue Ops[] = {N1, N2};
6235   if (VT != MVT::Glue) {
6236     FoldingSetNodeID ID;
6237     AddNodeIDNode(ID, Opcode, VTs, Ops);
6238     void *IP = nullptr;
6239     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6240       E->intersectFlagsWith(Flags);
6241       return SDValue(E, 0);
6242     }
6243 
6244     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6245     N->setFlags(Flags);
6246     createOperands(N, Ops);
6247     CSEMap.InsertNode(N, IP);
6248   } else {
6249     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6250     createOperands(N, Ops);
6251   }
6252 
6253   InsertNode(N);
6254   SDValue V = SDValue(N, 0);
6255   NewSDValueDbgMsg(V, "Creating new node: ", this);
6256   return V;
6257 }
6258 
6259 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6260                               SDValue N1, SDValue N2, SDValue N3) {
6261   SDNodeFlags Flags;
6262   if (Inserter)
6263     Flags = Inserter->getFlags();
6264   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
6265 }
6266 
6267 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6268                               SDValue N1, SDValue N2, SDValue N3,
6269                               const SDNodeFlags Flags) {
6270   assert(N1.getOpcode() != ISD::DELETED_NODE &&
6271          N2.getOpcode() != ISD::DELETED_NODE &&
6272          N3.getOpcode() != ISD::DELETED_NODE &&
6273          "Operand is DELETED_NODE!");
6274   // Perform various simplifications.
6275   switch (Opcode) {
6276   case ISD::FMA: {
6277     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
6278     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
6279            N3.getValueType() == VT && "FMA types must match!");
6280     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6281     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
6282     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
6283     if (N1CFP && N2CFP && N3CFP) {
6284       APFloat  V1 = N1CFP->getValueAPF();
6285       const APFloat &V2 = N2CFP->getValueAPF();
6286       const APFloat &V3 = N3CFP->getValueAPF();
6287       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
6288       return getConstantFP(V1, DL, VT);
6289     }
6290     break;
6291   }
6292   case ISD::BUILD_VECTOR: {
6293     // Attempt to simplify BUILD_VECTOR.
6294     SDValue Ops[] = {N1, N2, N3};
6295     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6296       return V;
6297     break;
6298   }
6299   case ISD::CONCAT_VECTORS: {
6300     SDValue Ops[] = {N1, N2, N3};
6301     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
6302       return V;
6303     break;
6304   }
6305   case ISD::SETCC: {
6306     assert(VT.isInteger() && "SETCC result type must be an integer!");
6307     assert(N1.getValueType() == N2.getValueType() &&
6308            "SETCC operands must have the same type!");
6309     assert(VT.isVector() == N1.getValueType().isVector() &&
6310            "SETCC type should be vector iff the operand type is vector!");
6311     assert((!VT.isVector() || VT.getVectorElementCount() ==
6312                                   N1.getValueType().getVectorElementCount()) &&
6313            "SETCC vector element counts must match!");
6314     // Use FoldSetCC to simplify SETCC's.
6315     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
6316       return V;
6317     // Vector constant folding.
6318     SDValue Ops[] = {N1, N2, N3};
6319     if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) {
6320       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
6321       return V;
6322     }
6323     break;
6324   }
6325   case ISD::SELECT:
6326   case ISD::VSELECT:
6327     if (SDValue V = simplifySelect(N1, N2, N3))
6328       return V;
6329     break;
6330   case ISD::VECTOR_SHUFFLE:
6331     llvm_unreachable("should use getVectorShuffle constructor!");
6332   case ISD::VECTOR_SPLICE: {
6333     if (cast<ConstantSDNode>(N3)->isNullValue())
6334       return N1;
6335     break;
6336   }
6337   case ISD::INSERT_VECTOR_ELT: {
6338     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
6339     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
6340     // for scalable vectors where we will generate appropriate code to
6341     // deal with out-of-bounds cases correctly.
6342     if (N3C && N1.getValueType().isFixedLengthVector() &&
6343         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
6344       return getUNDEF(VT);
6345 
6346     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
6347     if (N3.isUndef())
6348       return getUNDEF(VT);
6349 
6350     // If the inserted element is an UNDEF, just use the input vector.
6351     if (N2.isUndef())
6352       return N1;
6353 
6354     break;
6355   }
6356   case ISD::INSERT_SUBVECTOR: {
6357     // Inserting undef into undef is still undef.
6358     if (N1.isUndef() && N2.isUndef())
6359       return getUNDEF(VT);
6360 
6361     EVT N2VT = N2.getValueType();
6362     assert(VT == N1.getValueType() &&
6363            "Dest and insert subvector source types must match!");
6364     assert(VT.isVector() && N2VT.isVector() &&
6365            "Insert subvector VTs must be vectors!");
6366     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
6367            "Cannot insert a scalable vector into a fixed length vector!");
6368     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6369             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
6370            "Insert subvector must be from smaller vector to larger vector!");
6371     assert(isa<ConstantSDNode>(N3) &&
6372            "Insert subvector index must be constant");
6373     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6374             (N2VT.getVectorMinNumElements() +
6375              cast<ConstantSDNode>(N3)->getZExtValue()) <=
6376                 VT.getVectorMinNumElements()) &&
6377            "Insert subvector overflow!");
6378     assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() ==
6379                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6380            "Constant index for INSERT_SUBVECTOR has an invalid size");
6381 
6382     // Trivial insertion.
6383     if (VT == N2VT)
6384       return N2;
6385 
6386     // If this is an insert of an extracted vector into an undef vector, we
6387     // can just use the input to the extract.
6388     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6389         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
6390       return N2.getOperand(0);
6391     break;
6392   }
6393   case ISD::BITCAST:
6394     // Fold bit_convert nodes from a type to themselves.
6395     if (N1.getValueType() == VT)
6396       return N1;
6397     break;
6398   }
6399 
6400   // Memoize node if it doesn't produce a flag.
6401   SDNode *N;
6402   SDVTList VTs = getVTList(VT);
6403   SDValue Ops[] = {N1, N2, N3};
6404   if (VT != MVT::Glue) {
6405     FoldingSetNodeID ID;
6406     AddNodeIDNode(ID, Opcode, VTs, Ops);
6407     void *IP = nullptr;
6408     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6409       E->intersectFlagsWith(Flags);
6410       return SDValue(E, 0);
6411     }
6412 
6413     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6414     N->setFlags(Flags);
6415     createOperands(N, Ops);
6416     CSEMap.InsertNode(N, IP);
6417   } else {
6418     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6419     createOperands(N, Ops);
6420   }
6421 
6422   InsertNode(N);
6423   SDValue V = SDValue(N, 0);
6424   NewSDValueDbgMsg(V, "Creating new node: ", this);
6425   return V;
6426 }
6427 
6428 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6429                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6430   SDValue Ops[] = { N1, N2, N3, N4 };
6431   return getNode(Opcode, DL, VT, Ops);
6432 }
6433 
6434 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6435                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6436                               SDValue N5) {
6437   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6438   return getNode(Opcode, DL, VT, Ops);
6439 }
6440 
6441 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
6442 /// the incoming stack arguments to be loaded from the stack.
6443 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
6444   SmallVector<SDValue, 8> ArgChains;
6445 
6446   // Include the original chain at the beginning of the list. When this is
6447   // used by target LowerCall hooks, this helps legalize find the
6448   // CALLSEQ_BEGIN node.
6449   ArgChains.push_back(Chain);
6450 
6451   // Add a chain value for each stack argument.
6452   for (SDNode *U : getEntryNode().getNode()->uses())
6453     if (LoadSDNode *L = dyn_cast<LoadSDNode>(U))
6454       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
6455         if (FI->getIndex() < 0)
6456           ArgChains.push_back(SDValue(L, 1));
6457 
6458   // Build a tokenfactor for all the chains.
6459   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
6460 }
6461 
6462 /// getMemsetValue - Vectorized representation of the memset value
6463 /// operand.
6464 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
6465                               const SDLoc &dl) {
6466   assert(!Value.isUndef());
6467 
6468   unsigned NumBits = VT.getScalarSizeInBits();
6469   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
6470     assert(C->getAPIntValue().getBitWidth() == 8);
6471     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
6472     if (VT.isInteger()) {
6473       bool IsOpaque = VT.getSizeInBits() > 64 ||
6474           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
6475       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
6476     }
6477     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
6478                              VT);
6479   }
6480 
6481   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
6482   EVT IntVT = VT.getScalarType();
6483   if (!IntVT.isInteger())
6484     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
6485 
6486   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
6487   if (NumBits > 8) {
6488     // Use a multiplication with 0x010101... to extend the input to the
6489     // required length.
6490     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
6491     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
6492                         DAG.getConstant(Magic, dl, IntVT));
6493   }
6494 
6495   if (VT != Value.getValueType() && !VT.isInteger())
6496     Value = DAG.getBitcast(VT.getScalarType(), Value);
6497   if (VT != Value.getValueType())
6498     Value = DAG.getSplatBuildVector(VT, dl, Value);
6499 
6500   return Value;
6501 }
6502 
6503 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
6504 /// used when a memcpy is turned into a memset when the source is a constant
6505 /// string ptr.
6506 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
6507                                   const TargetLowering &TLI,
6508                                   const ConstantDataArraySlice &Slice) {
6509   // Handle vector with all elements zero.
6510   if (Slice.Array == nullptr) {
6511     if (VT.isInteger())
6512       return DAG.getConstant(0, dl, VT);
6513     if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
6514       return DAG.getConstantFP(0.0, dl, VT);
6515     if (VT.isVector()) {
6516       unsigned NumElts = VT.getVectorNumElements();
6517       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
6518       return DAG.getNode(ISD::BITCAST, dl, VT,
6519                          DAG.getConstant(0, dl,
6520                                          EVT::getVectorVT(*DAG.getContext(),
6521                                                           EltVT, NumElts)));
6522     }
6523     llvm_unreachable("Expected type!");
6524   }
6525 
6526   assert(!VT.isVector() && "Can't handle vector type here!");
6527   unsigned NumVTBits = VT.getSizeInBits();
6528   unsigned NumVTBytes = NumVTBits / 8;
6529   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
6530 
6531   APInt Val(NumVTBits, 0);
6532   if (DAG.getDataLayout().isLittleEndian()) {
6533     for (unsigned i = 0; i != NumBytes; ++i)
6534       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
6535   } else {
6536     for (unsigned i = 0; i != NumBytes; ++i)
6537       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
6538   }
6539 
6540   // If the "cost" of materializing the integer immediate is less than the cost
6541   // of a load, then it is cost effective to turn the load into the immediate.
6542   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
6543   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
6544     return DAG.getConstant(Val, dl, VT);
6545   return SDValue();
6546 }
6547 
6548 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
6549                                            const SDLoc &DL,
6550                                            const SDNodeFlags Flags) {
6551   EVT VT = Base.getValueType();
6552   SDValue Index;
6553 
6554   if (Offset.isScalable())
6555     Index = getVScale(DL, Base.getValueType(),
6556                       APInt(Base.getValueSizeInBits().getFixedSize(),
6557                             Offset.getKnownMinSize()));
6558   else
6559     Index = getConstant(Offset.getFixedSize(), DL, VT);
6560 
6561   return getMemBasePlusOffset(Base, Index, DL, Flags);
6562 }
6563 
6564 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
6565                                            const SDLoc &DL,
6566                                            const SDNodeFlags Flags) {
6567   assert(Offset.getValueType().isInteger());
6568   EVT BasePtrVT = Ptr.getValueType();
6569   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6570 }
6571 
6572 /// Returns true if memcpy source is constant data.
6573 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6574   uint64_t SrcDelta = 0;
6575   GlobalAddressSDNode *G = nullptr;
6576   if (Src.getOpcode() == ISD::GlobalAddress)
6577     G = cast<GlobalAddressSDNode>(Src);
6578   else if (Src.getOpcode() == ISD::ADD &&
6579            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6580            Src.getOperand(1).getOpcode() == ISD::Constant) {
6581     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6582     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6583   }
6584   if (!G)
6585     return false;
6586 
6587   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6588                                   SrcDelta + G->getOffset());
6589 }
6590 
6591 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6592                                       SelectionDAG &DAG) {
6593   // On Darwin, -Os means optimize for size without hurting performance, so
6594   // only really optimize for size when -Oz (MinSize) is used.
6595   if (MF.getTarget().getTargetTriple().isOSDarwin())
6596     return MF.getFunction().hasMinSize();
6597   return DAG.shouldOptForSize();
6598 }
6599 
6600 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6601                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6602                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6603                           SmallVector<SDValue, 16> &OutStoreChains) {
6604   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6605   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6606   SmallVector<SDValue, 16> GluedLoadChains;
6607   for (unsigned i = From; i < To; ++i) {
6608     OutChains.push_back(OutLoadChains[i]);
6609     GluedLoadChains.push_back(OutLoadChains[i]);
6610   }
6611 
6612   // Chain for all loads.
6613   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6614                                   GluedLoadChains);
6615 
6616   for (unsigned i = From; i < To; ++i) {
6617     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6618     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6619                                   ST->getBasePtr(), ST->getMemoryVT(),
6620                                   ST->getMemOperand());
6621     OutChains.push_back(NewStore);
6622   }
6623 }
6624 
6625 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6626                                        SDValue Chain, SDValue Dst, SDValue Src,
6627                                        uint64_t Size, Align Alignment,
6628                                        bool isVol, bool AlwaysInline,
6629                                        MachinePointerInfo DstPtrInfo,
6630                                        MachinePointerInfo SrcPtrInfo,
6631                                        const AAMDNodes &AAInfo) {
6632   // Turn a memcpy of undef to nop.
6633   // FIXME: We need to honor volatile even is Src is undef.
6634   if (Src.isUndef())
6635     return Chain;
6636 
6637   // Expand memcpy to a series of load and store ops if the size operand falls
6638   // below a certain threshold.
6639   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6640   // rather than maybe a humongous number of loads and stores.
6641   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6642   const DataLayout &DL = DAG.getDataLayout();
6643   LLVMContext &C = *DAG.getContext();
6644   std::vector<EVT> MemOps;
6645   bool DstAlignCanChange = false;
6646   MachineFunction &MF = DAG.getMachineFunction();
6647   MachineFrameInfo &MFI = MF.getFrameInfo();
6648   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6649   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6650   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6651     DstAlignCanChange = true;
6652   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6653   if (!SrcAlign || Alignment > *SrcAlign)
6654     SrcAlign = Alignment;
6655   assert(SrcAlign && "SrcAlign must be set");
6656   ConstantDataArraySlice Slice;
6657   // If marked as volatile, perform a copy even when marked as constant.
6658   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6659   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6660   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6661   const MemOp Op = isZeroConstant
6662                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6663                                     /*IsZeroMemset*/ true, isVol)
6664                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6665                                      *SrcAlign, isVol, CopyFromConstant);
6666   if (!TLI.findOptimalMemOpLowering(
6667           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6668           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6669     return SDValue();
6670 
6671   if (DstAlignCanChange) {
6672     Type *Ty = MemOps[0].getTypeForEVT(C);
6673     Align NewAlign = DL.getABITypeAlign(Ty);
6674 
6675     // Don't promote to an alignment that would require dynamic stack
6676     // realignment.
6677     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6678     if (!TRI->hasStackRealignment(MF))
6679       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6680         NewAlign = NewAlign / 2;
6681 
6682     if (NewAlign > Alignment) {
6683       // Give the stack frame object a larger alignment if needed.
6684       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6685         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6686       Alignment = NewAlign;
6687     }
6688   }
6689 
6690   // Prepare AAInfo for loads/stores after lowering this memcpy.
6691   AAMDNodes NewAAInfo = AAInfo;
6692   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6693 
6694   MachineMemOperand::Flags MMOFlags =
6695       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6696   SmallVector<SDValue, 16> OutLoadChains;
6697   SmallVector<SDValue, 16> OutStoreChains;
6698   SmallVector<SDValue, 32> OutChains;
6699   unsigned NumMemOps = MemOps.size();
6700   uint64_t SrcOff = 0, DstOff = 0;
6701   for (unsigned i = 0; i != NumMemOps; ++i) {
6702     EVT VT = MemOps[i];
6703     unsigned VTSize = VT.getSizeInBits() / 8;
6704     SDValue Value, Store;
6705 
6706     if (VTSize > Size) {
6707       // Issuing an unaligned load / store pair  that overlaps with the previous
6708       // pair. Adjust the offset accordingly.
6709       assert(i == NumMemOps-1 && i != 0);
6710       SrcOff -= VTSize - Size;
6711       DstOff -= VTSize - Size;
6712     }
6713 
6714     if (CopyFromConstant &&
6715         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6716       // It's unlikely a store of a vector immediate can be done in a single
6717       // instruction. It would require a load from a constantpool first.
6718       // We only handle zero vectors here.
6719       // FIXME: Handle other cases where store of vector immediate is done in
6720       // a single instruction.
6721       ConstantDataArraySlice SubSlice;
6722       if (SrcOff < Slice.Length) {
6723         SubSlice = Slice;
6724         SubSlice.move(SrcOff);
6725       } else {
6726         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6727         SubSlice.Array = nullptr;
6728         SubSlice.Offset = 0;
6729         SubSlice.Length = VTSize;
6730       }
6731       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6732       if (Value.getNode()) {
6733         Store = DAG.getStore(
6734             Chain, dl, Value,
6735             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6736             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6737         OutChains.push_back(Store);
6738       }
6739     }
6740 
6741     if (!Store.getNode()) {
6742       // The type might not be legal for the target.  This should only happen
6743       // if the type is smaller than a legal type, as on PPC, so the right
6744       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6745       // to Load/Store if NVT==VT.
6746       // FIXME does the case above also need this?
6747       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6748       assert(NVT.bitsGE(VT));
6749 
6750       bool isDereferenceable =
6751         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6752       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6753       if (isDereferenceable)
6754         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6755 
6756       Value = DAG.getExtLoad(
6757           ISD::EXTLOAD, dl, NVT, Chain,
6758           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6759           SrcPtrInfo.getWithOffset(SrcOff), VT,
6760           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
6761       OutLoadChains.push_back(Value.getValue(1));
6762 
6763       Store = DAG.getTruncStore(
6764           Chain, dl, Value,
6765           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6766           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
6767       OutStoreChains.push_back(Store);
6768     }
6769     SrcOff += VTSize;
6770     DstOff += VTSize;
6771     Size -= VTSize;
6772   }
6773 
6774   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6775                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6776   unsigned NumLdStInMemcpy = OutStoreChains.size();
6777 
6778   if (NumLdStInMemcpy) {
6779     // It may be that memcpy might be converted to memset if it's memcpy
6780     // of constants. In such a case, we won't have loads and stores, but
6781     // just stores. In the absence of loads, there is nothing to gang up.
6782     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6783       // If target does not care, just leave as it.
6784       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6785         OutChains.push_back(OutLoadChains[i]);
6786         OutChains.push_back(OutStoreChains[i]);
6787       }
6788     } else {
6789       // Ld/St less than/equal limit set by target.
6790       if (NumLdStInMemcpy <= GluedLdStLimit) {
6791           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6792                                         NumLdStInMemcpy, OutLoadChains,
6793                                         OutStoreChains);
6794       } else {
6795         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6796         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6797         unsigned GlueIter = 0;
6798 
6799         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6800           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6801           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6802 
6803           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6804                                        OutLoadChains, OutStoreChains);
6805           GlueIter += GluedLdStLimit;
6806         }
6807 
6808         // Residual ld/st.
6809         if (RemainingLdStInMemcpy) {
6810           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6811                                         RemainingLdStInMemcpy, OutLoadChains,
6812                                         OutStoreChains);
6813         }
6814       }
6815     }
6816   }
6817   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6818 }
6819 
6820 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6821                                         SDValue Chain, SDValue Dst, SDValue Src,
6822                                         uint64_t Size, Align Alignment,
6823                                         bool isVol, bool AlwaysInline,
6824                                         MachinePointerInfo DstPtrInfo,
6825                                         MachinePointerInfo SrcPtrInfo,
6826                                         const AAMDNodes &AAInfo) {
6827   // Turn a memmove of undef to nop.
6828   // FIXME: We need to honor volatile even is Src is undef.
6829   if (Src.isUndef())
6830     return Chain;
6831 
6832   // Expand memmove to a series of load and store ops if the size operand falls
6833   // below a certain threshold.
6834   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6835   const DataLayout &DL = DAG.getDataLayout();
6836   LLVMContext &C = *DAG.getContext();
6837   std::vector<EVT> MemOps;
6838   bool DstAlignCanChange = false;
6839   MachineFunction &MF = DAG.getMachineFunction();
6840   MachineFrameInfo &MFI = MF.getFrameInfo();
6841   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6842   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6843   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6844     DstAlignCanChange = true;
6845   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6846   if (!SrcAlign || Alignment > *SrcAlign)
6847     SrcAlign = Alignment;
6848   assert(SrcAlign && "SrcAlign must be set");
6849   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6850   if (!TLI.findOptimalMemOpLowering(
6851           MemOps, Limit,
6852           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6853                       /*IsVolatile*/ true),
6854           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6855           MF.getFunction().getAttributes()))
6856     return SDValue();
6857 
6858   if (DstAlignCanChange) {
6859     Type *Ty = MemOps[0].getTypeForEVT(C);
6860     Align NewAlign = DL.getABITypeAlign(Ty);
6861     if (NewAlign > Alignment) {
6862       // Give the stack frame object a larger alignment if needed.
6863       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6864         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6865       Alignment = NewAlign;
6866     }
6867   }
6868 
6869   // Prepare AAInfo for loads/stores after lowering this memmove.
6870   AAMDNodes NewAAInfo = AAInfo;
6871   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6872 
6873   MachineMemOperand::Flags MMOFlags =
6874       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6875   uint64_t SrcOff = 0, DstOff = 0;
6876   SmallVector<SDValue, 8> LoadValues;
6877   SmallVector<SDValue, 8> LoadChains;
6878   SmallVector<SDValue, 8> OutChains;
6879   unsigned NumMemOps = MemOps.size();
6880   for (unsigned i = 0; i < NumMemOps; i++) {
6881     EVT VT = MemOps[i];
6882     unsigned VTSize = VT.getSizeInBits() / 8;
6883     SDValue Value;
6884 
6885     bool isDereferenceable =
6886       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6887     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6888     if (isDereferenceable)
6889       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6890 
6891     Value = DAG.getLoad(
6892         VT, dl, Chain,
6893         DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6894         SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
6895     LoadValues.push_back(Value);
6896     LoadChains.push_back(Value.getValue(1));
6897     SrcOff += VTSize;
6898   }
6899   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6900   OutChains.clear();
6901   for (unsigned i = 0; i < NumMemOps; i++) {
6902     EVT VT = MemOps[i];
6903     unsigned VTSize = VT.getSizeInBits() / 8;
6904     SDValue Store;
6905 
6906     Store = DAG.getStore(
6907         Chain, dl, LoadValues[i],
6908         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6909         DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6910     OutChains.push_back(Store);
6911     DstOff += VTSize;
6912   }
6913 
6914   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6915 }
6916 
6917 /// Lower the call to 'memset' intrinsic function into a series of store
6918 /// operations.
6919 ///
6920 /// \param DAG Selection DAG where lowered code is placed.
6921 /// \param dl Link to corresponding IR location.
6922 /// \param Chain Control flow dependency.
6923 /// \param Dst Pointer to destination memory location.
6924 /// \param Src Value of byte to write into the memory.
6925 /// \param Size Number of bytes to write.
6926 /// \param Alignment Alignment of the destination in bytes.
6927 /// \param isVol True if destination is volatile.
6928 /// \param DstPtrInfo IR information on the memory pointer.
6929 /// \returns New head in the control flow, if lowering was successful, empty
6930 /// SDValue otherwise.
6931 ///
6932 /// The function tries to replace 'llvm.memset' intrinsic with several store
6933 /// operations and value calculation code. This is usually profitable for small
6934 /// memory size.
6935 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6936                                SDValue Chain, SDValue Dst, SDValue Src,
6937                                uint64_t Size, Align Alignment, bool isVol,
6938                                MachinePointerInfo DstPtrInfo,
6939                                const AAMDNodes &AAInfo) {
6940   // Turn a memset of undef to nop.
6941   // FIXME: We need to honor volatile even is Src is undef.
6942   if (Src.isUndef())
6943     return Chain;
6944 
6945   // Expand memset to a series of load/store ops if the size operand
6946   // falls below a certain threshold.
6947   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6948   std::vector<EVT> MemOps;
6949   bool DstAlignCanChange = false;
6950   MachineFunction &MF = DAG.getMachineFunction();
6951   MachineFrameInfo &MFI = MF.getFrameInfo();
6952   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6953   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6954   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6955     DstAlignCanChange = true;
6956   bool IsZeroVal =
6957       isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero();
6958   if (!TLI.findOptimalMemOpLowering(
6959           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6960           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6961           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6962     return SDValue();
6963 
6964   if (DstAlignCanChange) {
6965     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6966     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6967     if (NewAlign > Alignment) {
6968       // Give the stack frame object a larger alignment if needed.
6969       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6970         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6971       Alignment = NewAlign;
6972     }
6973   }
6974 
6975   SmallVector<SDValue, 8> OutChains;
6976   uint64_t DstOff = 0;
6977   unsigned NumMemOps = MemOps.size();
6978 
6979   // Find the largest store and generate the bit pattern for it.
6980   EVT LargestVT = MemOps[0];
6981   for (unsigned i = 1; i < NumMemOps; i++)
6982     if (MemOps[i].bitsGT(LargestVT))
6983       LargestVT = MemOps[i];
6984   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6985 
6986   // Prepare AAInfo for loads/stores after lowering this memset.
6987   AAMDNodes NewAAInfo = AAInfo;
6988   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6989 
6990   for (unsigned i = 0; i < NumMemOps; i++) {
6991     EVT VT = MemOps[i];
6992     unsigned VTSize = VT.getSizeInBits() / 8;
6993     if (VTSize > Size) {
6994       // Issuing an unaligned load / store pair  that overlaps with the previous
6995       // pair. Adjust the offset accordingly.
6996       assert(i == NumMemOps-1 && i != 0);
6997       DstOff -= VTSize - Size;
6998     }
6999 
7000     // If this store is smaller than the largest store see whether we can get
7001     // the smaller value for free with a truncate.
7002     SDValue Value = MemSetValue;
7003     if (VT.bitsLT(LargestVT)) {
7004       if (!LargestVT.isVector() && !VT.isVector() &&
7005           TLI.isTruncateFree(LargestVT, VT))
7006         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
7007       else
7008         Value = getMemsetValue(Src, VT, DAG, dl);
7009     }
7010     assert(Value.getValueType() == VT && "Value with wrong type.");
7011     SDValue Store = DAG.getStore(
7012         Chain, dl, Value,
7013         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
7014         DstPtrInfo.getWithOffset(DstOff), Alignment,
7015         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone,
7016         NewAAInfo);
7017     OutChains.push_back(Store);
7018     DstOff += VT.getSizeInBits() / 8;
7019     Size -= VTSize;
7020   }
7021 
7022   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
7023 }
7024 
7025 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
7026                                             unsigned AS) {
7027   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
7028   // pointer operands can be losslessly bitcasted to pointers of address space 0
7029   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
7030     report_fatal_error("cannot lower memory intrinsic in address space " +
7031                        Twine(AS));
7032   }
7033 }
7034 
7035 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
7036                                 SDValue Src, SDValue Size, Align Alignment,
7037                                 bool isVol, bool AlwaysInline, bool isTailCall,
7038                                 MachinePointerInfo DstPtrInfo,
7039                                 MachinePointerInfo SrcPtrInfo,
7040                                 const AAMDNodes &AAInfo) {
7041   // Check to see if we should lower the memcpy to loads and stores first.
7042   // For cases within the target-specified limits, this is the best choice.
7043   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7044   if (ConstantSize) {
7045     // Memcpy with size zero? Just return the original chain.
7046     if (ConstantSize->isZero())
7047       return Chain;
7048 
7049     SDValue Result = getMemcpyLoadsAndStores(
7050         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
7051         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
7052     if (Result.getNode())
7053       return Result;
7054   }
7055 
7056   // Then check to see if we should lower the memcpy with target-specific
7057   // code. If the target chooses to do this, this is the next best.
7058   if (TSI) {
7059     SDValue Result = TSI->EmitTargetCodeForMemcpy(
7060         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
7061         DstPtrInfo, SrcPtrInfo);
7062     if (Result.getNode())
7063       return Result;
7064   }
7065 
7066   // If we really need inline code and the target declined to provide it,
7067   // use a (potentially long) sequence of loads and stores.
7068   if (AlwaysInline) {
7069     assert(ConstantSize && "AlwaysInline requires a constant size!");
7070     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
7071                                    ConstantSize->getZExtValue(), Alignment,
7072                                    isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo);
7073   }
7074 
7075   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7076   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
7077 
7078   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
7079   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
7080   // respect volatile, so they may do things like read or write memory
7081   // beyond the given memory regions. But fixing this isn't easy, and most
7082   // people don't care.
7083 
7084   // Emit a library call.
7085   TargetLowering::ArgListTy Args;
7086   TargetLowering::ArgListEntry Entry;
7087   Entry.Ty = Type::getInt8PtrTy(*getContext());
7088   Entry.Node = Dst; Args.push_back(Entry);
7089   Entry.Node = Src; Args.push_back(Entry);
7090 
7091   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7092   Entry.Node = Size; Args.push_back(Entry);
7093   // FIXME: pass in SDLoc
7094   TargetLowering::CallLoweringInfo CLI(*this);
7095   CLI.setDebugLoc(dl)
7096       .setChain(Chain)
7097       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
7098                     Dst.getValueType().getTypeForEVT(*getContext()),
7099                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
7100                                       TLI->getPointerTy(getDataLayout())),
7101                     std::move(Args))
7102       .setDiscardResult()
7103       .setTailCall(isTailCall);
7104 
7105   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7106   return CallResult.second;
7107 }
7108 
7109 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
7110                                       SDValue Dst, unsigned DstAlign,
7111                                       SDValue Src, unsigned SrcAlign,
7112                                       SDValue Size, Type *SizeTy,
7113                                       unsigned ElemSz, bool isTailCall,
7114                                       MachinePointerInfo DstPtrInfo,
7115                                       MachinePointerInfo SrcPtrInfo) {
7116   // Emit a library call.
7117   TargetLowering::ArgListTy Args;
7118   TargetLowering::ArgListEntry Entry;
7119   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7120   Entry.Node = Dst;
7121   Args.push_back(Entry);
7122 
7123   Entry.Node = Src;
7124   Args.push_back(Entry);
7125 
7126   Entry.Ty = SizeTy;
7127   Entry.Node = Size;
7128   Args.push_back(Entry);
7129 
7130   RTLIB::Libcall LibraryCall =
7131       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7132   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7133     report_fatal_error("Unsupported element size");
7134 
7135   TargetLowering::CallLoweringInfo CLI(*this);
7136   CLI.setDebugLoc(dl)
7137       .setChain(Chain)
7138       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7139                     Type::getVoidTy(*getContext()),
7140                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7141                                       TLI->getPointerTy(getDataLayout())),
7142                     std::move(Args))
7143       .setDiscardResult()
7144       .setTailCall(isTailCall);
7145 
7146   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7147   return CallResult.second;
7148 }
7149 
7150 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
7151                                  SDValue Src, SDValue Size, Align Alignment,
7152                                  bool isVol, bool isTailCall,
7153                                  MachinePointerInfo DstPtrInfo,
7154                                  MachinePointerInfo SrcPtrInfo,
7155                                  const AAMDNodes &AAInfo) {
7156   // Check to see if we should lower the memmove to loads and stores first.
7157   // For cases within the target-specified limits, this is the best choice.
7158   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7159   if (ConstantSize) {
7160     // Memmove with size zero? Just return the original chain.
7161     if (ConstantSize->isZero())
7162       return Chain;
7163 
7164     SDValue Result = getMemmoveLoadsAndStores(
7165         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
7166         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
7167     if (Result.getNode())
7168       return Result;
7169   }
7170 
7171   // Then check to see if we should lower the memmove with target-specific
7172   // code. If the target chooses to do this, this is the next best.
7173   if (TSI) {
7174     SDValue Result =
7175         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
7176                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
7177     if (Result.getNode())
7178       return Result;
7179   }
7180 
7181   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7182   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
7183 
7184   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
7185   // not be safe.  See memcpy above for more details.
7186 
7187   // Emit a library call.
7188   TargetLowering::ArgListTy Args;
7189   TargetLowering::ArgListEntry Entry;
7190   Entry.Ty = Type::getInt8PtrTy(*getContext());
7191   Entry.Node = Dst; Args.push_back(Entry);
7192   Entry.Node = Src; Args.push_back(Entry);
7193 
7194   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7195   Entry.Node = Size; Args.push_back(Entry);
7196   // FIXME:  pass in SDLoc
7197   TargetLowering::CallLoweringInfo CLI(*this);
7198   CLI.setDebugLoc(dl)
7199       .setChain(Chain)
7200       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
7201                     Dst.getValueType().getTypeForEVT(*getContext()),
7202                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
7203                                       TLI->getPointerTy(getDataLayout())),
7204                     std::move(Args))
7205       .setDiscardResult()
7206       .setTailCall(isTailCall);
7207 
7208   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7209   return CallResult.second;
7210 }
7211 
7212 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
7213                                        SDValue Dst, unsigned DstAlign,
7214                                        SDValue Src, unsigned SrcAlign,
7215                                        SDValue Size, Type *SizeTy,
7216                                        unsigned ElemSz, bool isTailCall,
7217                                        MachinePointerInfo DstPtrInfo,
7218                                        MachinePointerInfo SrcPtrInfo) {
7219   // Emit a library call.
7220   TargetLowering::ArgListTy Args;
7221   TargetLowering::ArgListEntry Entry;
7222   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7223   Entry.Node = Dst;
7224   Args.push_back(Entry);
7225 
7226   Entry.Node = Src;
7227   Args.push_back(Entry);
7228 
7229   Entry.Ty = SizeTy;
7230   Entry.Node = Size;
7231   Args.push_back(Entry);
7232 
7233   RTLIB::Libcall LibraryCall =
7234       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7235   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7236     report_fatal_error("Unsupported element size");
7237 
7238   TargetLowering::CallLoweringInfo CLI(*this);
7239   CLI.setDebugLoc(dl)
7240       .setChain(Chain)
7241       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7242                     Type::getVoidTy(*getContext()),
7243                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7244                                       TLI->getPointerTy(getDataLayout())),
7245                     std::move(Args))
7246       .setDiscardResult()
7247       .setTailCall(isTailCall);
7248 
7249   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7250   return CallResult.second;
7251 }
7252 
7253 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
7254                                 SDValue Src, SDValue Size, Align Alignment,
7255                                 bool isVol, bool isTailCall,
7256                                 MachinePointerInfo DstPtrInfo,
7257                                 const AAMDNodes &AAInfo) {
7258   // Check to see if we should lower the memset to stores first.
7259   // For cases within the target-specified limits, this is the best choice.
7260   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7261   if (ConstantSize) {
7262     // Memset with size zero? Just return the original chain.
7263     if (ConstantSize->isZero())
7264       return Chain;
7265 
7266     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
7267                                      ConstantSize->getZExtValue(), Alignment,
7268                                      isVol, DstPtrInfo, AAInfo);
7269 
7270     if (Result.getNode())
7271       return Result;
7272   }
7273 
7274   // Then check to see if we should lower the memset with target-specific
7275   // code. If the target chooses to do this, this is the next best.
7276   if (TSI) {
7277     SDValue Result = TSI->EmitTargetCodeForMemset(
7278         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
7279     if (Result.getNode())
7280       return Result;
7281   }
7282 
7283   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7284 
7285   // Emit a library call.
7286   TargetLowering::ArgListTy Args;
7287   TargetLowering::ArgListEntry Entry;
7288   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
7289   Args.push_back(Entry);
7290   Entry.Node = Src;
7291   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
7292   Args.push_back(Entry);
7293   Entry.Node = Size;
7294   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7295   Args.push_back(Entry);
7296 
7297   // FIXME: pass in SDLoc
7298   TargetLowering::CallLoweringInfo CLI(*this);
7299   CLI.setDebugLoc(dl)
7300       .setChain(Chain)
7301       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
7302                     Dst.getValueType().getTypeForEVT(*getContext()),
7303                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
7304                                       TLI->getPointerTy(getDataLayout())),
7305                     std::move(Args))
7306       .setDiscardResult()
7307       .setTailCall(isTailCall);
7308 
7309   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7310   return CallResult.second;
7311 }
7312 
7313 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
7314                                       SDValue Dst, unsigned DstAlign,
7315                                       SDValue Value, SDValue Size, Type *SizeTy,
7316                                       unsigned ElemSz, bool isTailCall,
7317                                       MachinePointerInfo DstPtrInfo) {
7318   // Emit a library call.
7319   TargetLowering::ArgListTy Args;
7320   TargetLowering::ArgListEntry Entry;
7321   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7322   Entry.Node = Dst;
7323   Args.push_back(Entry);
7324 
7325   Entry.Ty = Type::getInt8Ty(*getContext());
7326   Entry.Node = Value;
7327   Args.push_back(Entry);
7328 
7329   Entry.Ty = SizeTy;
7330   Entry.Node = Size;
7331   Args.push_back(Entry);
7332 
7333   RTLIB::Libcall LibraryCall =
7334       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7335   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7336     report_fatal_error("Unsupported element size");
7337 
7338   TargetLowering::CallLoweringInfo CLI(*this);
7339   CLI.setDebugLoc(dl)
7340       .setChain(Chain)
7341       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7342                     Type::getVoidTy(*getContext()),
7343                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7344                                       TLI->getPointerTy(getDataLayout())),
7345                     std::move(Args))
7346       .setDiscardResult()
7347       .setTailCall(isTailCall);
7348 
7349   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7350   return CallResult.second;
7351 }
7352 
7353 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7354                                 SDVTList VTList, ArrayRef<SDValue> Ops,
7355                                 MachineMemOperand *MMO) {
7356   FoldingSetNodeID ID;
7357   ID.AddInteger(MemVT.getRawBits());
7358   AddNodeIDNode(ID, Opcode, VTList, Ops);
7359   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7360   ID.AddInteger(MMO->getFlags());
7361   void* IP = nullptr;
7362   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7363     cast<AtomicSDNode>(E)->refineAlignment(MMO);
7364     return SDValue(E, 0);
7365   }
7366 
7367   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7368                                     VTList, MemVT, MMO);
7369   createOperands(N, Ops);
7370 
7371   CSEMap.InsertNode(N, IP);
7372   InsertNode(N);
7373   return SDValue(N, 0);
7374 }
7375 
7376 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
7377                                        EVT MemVT, SDVTList VTs, SDValue Chain,
7378                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
7379                                        MachineMemOperand *MMO) {
7380   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
7381          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
7382   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
7383 
7384   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
7385   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7386 }
7387 
7388 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7389                                 SDValue Chain, SDValue Ptr, SDValue Val,
7390                                 MachineMemOperand *MMO) {
7391   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
7392           Opcode == ISD::ATOMIC_LOAD_SUB ||
7393           Opcode == ISD::ATOMIC_LOAD_AND ||
7394           Opcode == ISD::ATOMIC_LOAD_CLR ||
7395           Opcode == ISD::ATOMIC_LOAD_OR ||
7396           Opcode == ISD::ATOMIC_LOAD_XOR ||
7397           Opcode == ISD::ATOMIC_LOAD_NAND ||
7398           Opcode == ISD::ATOMIC_LOAD_MIN ||
7399           Opcode == ISD::ATOMIC_LOAD_MAX ||
7400           Opcode == ISD::ATOMIC_LOAD_UMIN ||
7401           Opcode == ISD::ATOMIC_LOAD_UMAX ||
7402           Opcode == ISD::ATOMIC_LOAD_FADD ||
7403           Opcode == ISD::ATOMIC_LOAD_FSUB ||
7404           Opcode == ISD::ATOMIC_SWAP ||
7405           Opcode == ISD::ATOMIC_STORE) &&
7406          "Invalid Atomic Op");
7407 
7408   EVT VT = Val.getValueType();
7409 
7410   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
7411                                                getVTList(VT, MVT::Other);
7412   SDValue Ops[] = {Chain, Ptr, Val};
7413   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7414 }
7415 
7416 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7417                                 EVT VT, SDValue Chain, SDValue Ptr,
7418                                 MachineMemOperand *MMO) {
7419   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
7420 
7421   SDVTList VTs = getVTList(VT, MVT::Other);
7422   SDValue Ops[] = {Chain, Ptr};
7423   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7424 }
7425 
7426 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
7427 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
7428   if (Ops.size() == 1)
7429     return Ops[0];
7430 
7431   SmallVector<EVT, 4> VTs;
7432   VTs.reserve(Ops.size());
7433   for (const SDValue &Op : Ops)
7434     VTs.push_back(Op.getValueType());
7435   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
7436 }
7437 
7438 SDValue SelectionDAG::getMemIntrinsicNode(
7439     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
7440     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
7441     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
7442   if (!Size && MemVT.isScalableVector())
7443     Size = MemoryLocation::UnknownSize;
7444   else if (!Size)
7445     Size = MemVT.getStoreSize();
7446 
7447   MachineFunction &MF = getMachineFunction();
7448   MachineMemOperand *MMO =
7449       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
7450 
7451   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
7452 }
7453 
7454 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
7455                                           SDVTList VTList,
7456                                           ArrayRef<SDValue> Ops, EVT MemVT,
7457                                           MachineMemOperand *MMO) {
7458   assert((Opcode == ISD::INTRINSIC_VOID ||
7459           Opcode == ISD::INTRINSIC_W_CHAIN ||
7460           Opcode == ISD::PREFETCH ||
7461           ((int)Opcode <= std::numeric_limits<int>::max() &&
7462            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
7463          "Opcode is not a memory-accessing opcode!");
7464 
7465   // Memoize the node unless it returns a flag.
7466   MemIntrinsicSDNode *N;
7467   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7468     FoldingSetNodeID ID;
7469     AddNodeIDNode(ID, Opcode, VTList, Ops);
7470     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
7471         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
7472     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7473     ID.AddInteger(MMO->getFlags());
7474     void *IP = nullptr;
7475     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7476       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
7477       return SDValue(E, 0);
7478     }
7479 
7480     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7481                                       VTList, MemVT, MMO);
7482     createOperands(N, Ops);
7483 
7484   CSEMap.InsertNode(N, IP);
7485   } else {
7486     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7487                                       VTList, MemVT, MMO);
7488     createOperands(N, Ops);
7489   }
7490   InsertNode(N);
7491   SDValue V(N, 0);
7492   NewSDValueDbgMsg(V, "Creating new node: ", this);
7493   return V;
7494 }
7495 
7496 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
7497                                       SDValue Chain, int FrameIndex,
7498                                       int64_t Size, int64_t Offset) {
7499   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
7500   const auto VTs = getVTList(MVT::Other);
7501   SDValue Ops[2] = {
7502       Chain,
7503       getFrameIndex(FrameIndex,
7504                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
7505                     true)};
7506 
7507   FoldingSetNodeID ID;
7508   AddNodeIDNode(ID, Opcode, VTs, Ops);
7509   ID.AddInteger(FrameIndex);
7510   ID.AddInteger(Size);
7511   ID.AddInteger(Offset);
7512   void *IP = nullptr;
7513   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7514     return SDValue(E, 0);
7515 
7516   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
7517       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
7518   createOperands(N, Ops);
7519   CSEMap.InsertNode(N, IP);
7520   InsertNode(N);
7521   SDValue V(N, 0);
7522   NewSDValueDbgMsg(V, "Creating new node: ", this);
7523   return V;
7524 }
7525 
7526 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
7527                                          uint64_t Guid, uint64_t Index,
7528                                          uint32_t Attr) {
7529   const unsigned Opcode = ISD::PSEUDO_PROBE;
7530   const auto VTs = getVTList(MVT::Other);
7531   SDValue Ops[] = {Chain};
7532   FoldingSetNodeID ID;
7533   AddNodeIDNode(ID, Opcode, VTs, Ops);
7534   ID.AddInteger(Guid);
7535   ID.AddInteger(Index);
7536   void *IP = nullptr;
7537   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
7538     return SDValue(E, 0);
7539 
7540   auto *N = newSDNode<PseudoProbeSDNode>(
7541       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
7542   createOperands(N, Ops);
7543   CSEMap.InsertNode(N, IP);
7544   InsertNode(N);
7545   SDValue V(N, 0);
7546   NewSDValueDbgMsg(V, "Creating new node: ", this);
7547   return V;
7548 }
7549 
7550 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7551 /// MachinePointerInfo record from it.  This is particularly useful because the
7552 /// code generator has many cases where it doesn't bother passing in a
7553 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7554 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7555                                            SelectionDAG &DAG, SDValue Ptr,
7556                                            int64_t Offset = 0) {
7557   // If this is FI+Offset, we can model it.
7558   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
7559     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
7560                                              FI->getIndex(), Offset);
7561 
7562   // If this is (FI+Offset1)+Offset2, we can model it.
7563   if (Ptr.getOpcode() != ISD::ADD ||
7564       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
7565       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
7566     return Info;
7567 
7568   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7569   return MachinePointerInfo::getFixedStack(
7570       DAG.getMachineFunction(), FI,
7571       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
7572 }
7573 
7574 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7575 /// MachinePointerInfo record from it.  This is particularly useful because the
7576 /// code generator has many cases where it doesn't bother passing in a
7577 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7578 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7579                                            SelectionDAG &DAG, SDValue Ptr,
7580                                            SDValue OffsetOp) {
7581   // If the 'Offset' value isn't a constant, we can't handle this.
7582   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
7583     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
7584   if (OffsetOp.isUndef())
7585     return InferPointerInfo(Info, DAG, Ptr);
7586   return Info;
7587 }
7588 
7589 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7590                               EVT VT, const SDLoc &dl, SDValue Chain,
7591                               SDValue Ptr, SDValue Offset,
7592                               MachinePointerInfo PtrInfo, EVT MemVT,
7593                               Align Alignment,
7594                               MachineMemOperand::Flags MMOFlags,
7595                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7596   assert(Chain.getValueType() == MVT::Other &&
7597         "Invalid chain type");
7598 
7599   MMOFlags |= MachineMemOperand::MOLoad;
7600   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7601   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7602   // clients.
7603   if (PtrInfo.V.isNull())
7604     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7605 
7606   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7607   MachineFunction &MF = getMachineFunction();
7608   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7609                                                    Alignment, AAInfo, Ranges);
7610   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7611 }
7612 
7613 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7614                               EVT VT, const SDLoc &dl, SDValue Chain,
7615                               SDValue Ptr, SDValue Offset, EVT MemVT,
7616                               MachineMemOperand *MMO) {
7617   if (VT == MemVT) {
7618     ExtType = ISD::NON_EXTLOAD;
7619   } else if (ExtType == ISD::NON_EXTLOAD) {
7620     assert(VT == MemVT && "Non-extending load from different memory type!");
7621   } else {
7622     // Extending load.
7623     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7624            "Should only be an extending load, not truncating!");
7625     assert(VT.isInteger() == MemVT.isInteger() &&
7626            "Cannot convert from FP to Int or Int -> FP!");
7627     assert(VT.isVector() == MemVT.isVector() &&
7628            "Cannot use an ext load to convert to or from a vector!");
7629     assert((!VT.isVector() ||
7630             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7631            "Cannot use an ext load to change the number of vector elements!");
7632   }
7633 
7634   bool Indexed = AM != ISD::UNINDEXED;
7635   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7636 
7637   SDVTList VTs = Indexed ?
7638     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7639   SDValue Ops[] = { Chain, Ptr, Offset };
7640   FoldingSetNodeID ID;
7641   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7642   ID.AddInteger(MemVT.getRawBits());
7643   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7644       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7645   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7646   ID.AddInteger(MMO->getFlags());
7647   void *IP = nullptr;
7648   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7649     cast<LoadSDNode>(E)->refineAlignment(MMO);
7650     return SDValue(E, 0);
7651   }
7652   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7653                                   ExtType, MemVT, MMO);
7654   createOperands(N, Ops);
7655 
7656   CSEMap.InsertNode(N, IP);
7657   InsertNode(N);
7658   SDValue V(N, 0);
7659   NewSDValueDbgMsg(V, "Creating new node: ", this);
7660   return V;
7661 }
7662 
7663 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7664                               SDValue Ptr, MachinePointerInfo PtrInfo,
7665                               MaybeAlign Alignment,
7666                               MachineMemOperand::Flags MMOFlags,
7667                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7668   SDValue Undef = getUNDEF(Ptr.getValueType());
7669   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7670                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7671 }
7672 
7673 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7674                               SDValue Ptr, MachineMemOperand *MMO) {
7675   SDValue Undef = getUNDEF(Ptr.getValueType());
7676   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7677                  VT, MMO);
7678 }
7679 
7680 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7681                                  EVT VT, SDValue Chain, SDValue Ptr,
7682                                  MachinePointerInfo PtrInfo, EVT MemVT,
7683                                  MaybeAlign Alignment,
7684                                  MachineMemOperand::Flags MMOFlags,
7685                                  const AAMDNodes &AAInfo) {
7686   SDValue Undef = getUNDEF(Ptr.getValueType());
7687   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7688                  MemVT, Alignment, MMOFlags, AAInfo);
7689 }
7690 
7691 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7692                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7693                                  MachineMemOperand *MMO) {
7694   SDValue Undef = getUNDEF(Ptr.getValueType());
7695   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7696                  MemVT, MMO);
7697 }
7698 
7699 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7700                                      SDValue Base, SDValue Offset,
7701                                      ISD::MemIndexedMode AM) {
7702   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7703   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7704   // Don't propagate the invariant or dereferenceable flags.
7705   auto MMOFlags =
7706       LD->getMemOperand()->getFlags() &
7707       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7708   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7709                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7710                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7711 }
7712 
7713 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7714                                SDValue Ptr, MachinePointerInfo PtrInfo,
7715                                Align Alignment,
7716                                MachineMemOperand::Flags MMOFlags,
7717                                const AAMDNodes &AAInfo) {
7718   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7719 
7720   MMOFlags |= MachineMemOperand::MOStore;
7721   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7722 
7723   if (PtrInfo.V.isNull())
7724     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7725 
7726   MachineFunction &MF = getMachineFunction();
7727   uint64_t Size =
7728       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7729   MachineMemOperand *MMO =
7730       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7731   return getStore(Chain, dl, Val, Ptr, MMO);
7732 }
7733 
7734 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7735                                SDValue Ptr, MachineMemOperand *MMO) {
7736   assert(Chain.getValueType() == MVT::Other &&
7737         "Invalid chain type");
7738   EVT VT = Val.getValueType();
7739   SDVTList VTs = getVTList(MVT::Other);
7740   SDValue Undef = getUNDEF(Ptr.getValueType());
7741   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7742   FoldingSetNodeID ID;
7743   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7744   ID.AddInteger(VT.getRawBits());
7745   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7746       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7747   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7748   ID.AddInteger(MMO->getFlags());
7749   void *IP = nullptr;
7750   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7751     cast<StoreSDNode>(E)->refineAlignment(MMO);
7752     return SDValue(E, 0);
7753   }
7754   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7755                                    ISD::UNINDEXED, false, VT, MMO);
7756   createOperands(N, Ops);
7757 
7758   CSEMap.InsertNode(N, IP);
7759   InsertNode(N);
7760   SDValue V(N, 0);
7761   NewSDValueDbgMsg(V, "Creating new node: ", this);
7762   return V;
7763 }
7764 
7765 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7766                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7767                                     EVT SVT, Align Alignment,
7768                                     MachineMemOperand::Flags MMOFlags,
7769                                     const AAMDNodes &AAInfo) {
7770   assert(Chain.getValueType() == MVT::Other &&
7771         "Invalid chain type");
7772 
7773   MMOFlags |= MachineMemOperand::MOStore;
7774   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7775 
7776   if (PtrInfo.V.isNull())
7777     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7778 
7779   MachineFunction &MF = getMachineFunction();
7780   MachineMemOperand *MMO = MF.getMachineMemOperand(
7781       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7782       Alignment, AAInfo);
7783   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7784 }
7785 
7786 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7787                                     SDValue Ptr, EVT SVT,
7788                                     MachineMemOperand *MMO) {
7789   EVT VT = Val.getValueType();
7790 
7791   assert(Chain.getValueType() == MVT::Other &&
7792         "Invalid chain type");
7793   if (VT == SVT)
7794     return getStore(Chain, dl, Val, Ptr, MMO);
7795 
7796   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7797          "Should only be a truncating store, not extending!");
7798   assert(VT.isInteger() == SVT.isInteger() &&
7799          "Can't do FP-INT conversion!");
7800   assert(VT.isVector() == SVT.isVector() &&
7801          "Cannot use trunc store to convert to or from a vector!");
7802   assert((!VT.isVector() ||
7803           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7804          "Cannot use trunc store to change the number of vector elements!");
7805 
7806   SDVTList VTs = getVTList(MVT::Other);
7807   SDValue Undef = getUNDEF(Ptr.getValueType());
7808   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7809   FoldingSetNodeID ID;
7810   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7811   ID.AddInteger(SVT.getRawBits());
7812   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7813       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7814   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7815   ID.AddInteger(MMO->getFlags());
7816   void *IP = nullptr;
7817   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7818     cast<StoreSDNode>(E)->refineAlignment(MMO);
7819     return SDValue(E, 0);
7820   }
7821   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7822                                    ISD::UNINDEXED, true, SVT, MMO);
7823   createOperands(N, Ops);
7824 
7825   CSEMap.InsertNode(N, IP);
7826   InsertNode(N);
7827   SDValue V(N, 0);
7828   NewSDValueDbgMsg(V, "Creating new node: ", this);
7829   return V;
7830 }
7831 
7832 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7833                                       SDValue Base, SDValue Offset,
7834                                       ISD::MemIndexedMode AM) {
7835   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7836   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7837   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7838   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7839   FoldingSetNodeID ID;
7840   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7841   ID.AddInteger(ST->getMemoryVT().getRawBits());
7842   ID.AddInteger(ST->getRawSubclassData());
7843   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7844   ID.AddInteger(ST->getMemOperand()->getFlags());
7845   void *IP = nullptr;
7846   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7847     return SDValue(E, 0);
7848 
7849   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7850                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7851                                    ST->getMemOperand());
7852   createOperands(N, Ops);
7853 
7854   CSEMap.InsertNode(N, IP);
7855   InsertNode(N);
7856   SDValue V(N, 0);
7857   NewSDValueDbgMsg(V, "Creating new node: ", this);
7858   return V;
7859 }
7860 
7861 SDValue SelectionDAG::getLoadVP(
7862     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
7863     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL,
7864     MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
7865     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
7866     const MDNode *Ranges, bool IsExpanding) {
7867   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7868 
7869   MMOFlags |= MachineMemOperand::MOLoad;
7870   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7871   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7872   // clients.
7873   if (PtrInfo.V.isNull())
7874     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7875 
7876   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7877   MachineFunction &MF = getMachineFunction();
7878   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7879                                                    Alignment, AAInfo, Ranges);
7880   return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT,
7881                    MMO, IsExpanding);
7882 }
7883 
7884 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM,
7885                                 ISD::LoadExtType ExtType, EVT VT,
7886                                 const SDLoc &dl, SDValue Chain, SDValue Ptr,
7887                                 SDValue Offset, SDValue Mask, SDValue EVL,
7888                                 EVT MemVT, MachineMemOperand *MMO,
7889                                 bool IsExpanding) {
7890   bool Indexed = AM != ISD::UNINDEXED;
7891   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7892 
7893   SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
7894                          : getVTList(VT, MVT::Other);
7895   SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL};
7896   FoldingSetNodeID ID;
7897   AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops);
7898   ID.AddInteger(VT.getRawBits());
7899   ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
7900       dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
7901   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7902   ID.AddInteger(MMO->getFlags());
7903   void *IP = nullptr;
7904   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7905     cast<VPLoadSDNode>(E)->refineAlignment(MMO);
7906     return SDValue(E, 0);
7907   }
7908   auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7909                                     ExtType, IsExpanding, MemVT, MMO);
7910   createOperands(N, Ops);
7911 
7912   CSEMap.InsertNode(N, IP);
7913   InsertNode(N);
7914   SDValue V(N, 0);
7915   NewSDValueDbgMsg(V, "Creating new node: ", this);
7916   return V;
7917 }
7918 
7919 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
7920                                 SDValue Ptr, SDValue Mask, SDValue EVL,
7921                                 MachinePointerInfo PtrInfo,
7922                                 MaybeAlign Alignment,
7923                                 MachineMemOperand::Flags MMOFlags,
7924                                 const AAMDNodes &AAInfo, const MDNode *Ranges,
7925                                 bool IsExpanding) {
7926   SDValue Undef = getUNDEF(Ptr.getValueType());
7927   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7928                    Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
7929                    IsExpanding);
7930 }
7931 
7932 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
7933                                 SDValue Ptr, SDValue Mask, SDValue EVL,
7934                                 MachineMemOperand *MMO, bool IsExpanding) {
7935   SDValue Undef = getUNDEF(Ptr.getValueType());
7936   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7937                    Mask, EVL, VT, MMO, IsExpanding);
7938 }
7939 
7940 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
7941                                    EVT VT, SDValue Chain, SDValue Ptr,
7942                                    SDValue Mask, SDValue EVL,
7943                                    MachinePointerInfo PtrInfo, EVT MemVT,
7944                                    MaybeAlign Alignment,
7945                                    MachineMemOperand::Flags MMOFlags,
7946                                    const AAMDNodes &AAInfo, bool IsExpanding) {
7947   SDValue Undef = getUNDEF(Ptr.getValueType());
7948   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
7949                    EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr,
7950                    IsExpanding);
7951 }
7952 
7953 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
7954                                    EVT VT, SDValue Chain, SDValue Ptr,
7955                                    SDValue Mask, SDValue EVL, EVT MemVT,
7956                                    MachineMemOperand *MMO, bool IsExpanding) {
7957   SDValue Undef = getUNDEF(Ptr.getValueType());
7958   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
7959                    EVL, MemVT, MMO, IsExpanding);
7960 }
7961 
7962 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl,
7963                                        SDValue Base, SDValue Offset,
7964                                        ISD::MemIndexedMode AM) {
7965   auto *LD = cast<VPLoadSDNode>(OrigLoad);
7966   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7967   // Don't propagate the invariant or dereferenceable flags.
7968   auto MMOFlags =
7969       LD->getMemOperand()->getFlags() &
7970       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7971   return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7972                    LD->getChain(), Base, Offset, LD->getMask(),
7973                    LD->getVectorLength(), LD->getPointerInfo(),
7974                    LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
7975                    nullptr, LD->isExpandingLoad());
7976 }
7977 
7978 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
7979                                  SDValue Ptr, SDValue Offset, SDValue Mask,
7980                                  SDValue EVL, EVT MemVT, MachineMemOperand *MMO,
7981                                  ISD::MemIndexedMode AM, bool IsTruncating,
7982                                  bool IsCompressing) {
7983   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7984   bool Indexed = AM != ISD::UNINDEXED;
7985   assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
7986   SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
7987                          : getVTList(MVT::Other);
7988   SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL};
7989   FoldingSetNodeID ID;
7990   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7991   ID.AddInteger(MemVT.getRawBits());
7992   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
7993       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7994   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7995   ID.AddInteger(MMO->getFlags());
7996   void *IP = nullptr;
7997   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7998     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
7999     return SDValue(E, 0);
8000   }
8001   auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8002                                      IsTruncating, IsCompressing, MemVT, MMO);
8003   createOperands(N, Ops);
8004 
8005   CSEMap.InsertNode(N, IP);
8006   InsertNode(N);
8007   SDValue V(N, 0);
8008   NewSDValueDbgMsg(V, "Creating new node: ", this);
8009   return V;
8010 }
8011 
8012 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
8013                                       SDValue Val, SDValue Ptr, SDValue Mask,
8014                                       SDValue EVL, MachinePointerInfo PtrInfo,
8015                                       EVT SVT, Align Alignment,
8016                                       MachineMemOperand::Flags MMOFlags,
8017                                       const AAMDNodes &AAInfo,
8018                                       bool IsCompressing) {
8019   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8020 
8021   MMOFlags |= MachineMemOperand::MOStore;
8022   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
8023 
8024   if (PtrInfo.V.isNull())
8025     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
8026 
8027   MachineFunction &MF = getMachineFunction();
8028   MachineMemOperand *MMO = MF.getMachineMemOperand(
8029       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
8030       Alignment, AAInfo);
8031   return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO,
8032                          IsCompressing);
8033 }
8034 
8035 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
8036                                       SDValue Val, SDValue Ptr, SDValue Mask,
8037                                       SDValue EVL, EVT SVT,
8038                                       MachineMemOperand *MMO,
8039                                       bool IsCompressing) {
8040   EVT VT = Val.getValueType();
8041 
8042   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8043   if (VT == SVT)
8044     return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask,
8045                       EVL, VT, MMO, ISD::UNINDEXED,
8046                       /*IsTruncating*/ false, IsCompressing);
8047 
8048   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
8049          "Should only be a truncating store, not extending!");
8050   assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
8051   assert(VT.isVector() == SVT.isVector() &&
8052          "Cannot use trunc store to convert to or from a vector!");
8053   assert((!VT.isVector() ||
8054           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
8055          "Cannot use trunc store to change the number of vector elements!");
8056 
8057   SDVTList VTs = getVTList(MVT::Other);
8058   SDValue Undef = getUNDEF(Ptr.getValueType());
8059   SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
8060   FoldingSetNodeID ID;
8061   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
8062   ID.AddInteger(SVT.getRawBits());
8063   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
8064       dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
8065   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8066   ID.AddInteger(MMO->getFlags());
8067   void *IP = nullptr;
8068   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8069     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
8070     return SDValue(E, 0);
8071   }
8072   auto *N =
8073       newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8074                                ISD::UNINDEXED, true, IsCompressing, SVT, MMO);
8075   createOperands(N, Ops);
8076 
8077   CSEMap.InsertNode(N, IP);
8078   InsertNode(N);
8079   SDValue V(N, 0);
8080   NewSDValueDbgMsg(V, "Creating new node: ", this);
8081   return V;
8082 }
8083 
8084 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl,
8085                                         SDValue Base, SDValue Offset,
8086                                         ISD::MemIndexedMode AM) {
8087   auto *ST = cast<VPStoreSDNode>(OrigStore);
8088   assert(ST->getOffset().isUndef() && "Store is already an indexed store!");
8089   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
8090   SDValue Ops[] = {ST->getChain(), ST->getValue(), Base,
8091                    Offset,         ST->getMask(),  ST->getVectorLength()};
8092   FoldingSetNodeID ID;
8093   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
8094   ID.AddInteger(ST->getMemoryVT().getRawBits());
8095   ID.AddInteger(ST->getRawSubclassData());
8096   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
8097   ID.AddInteger(ST->getMemOperand()->getFlags());
8098   void *IP = nullptr;
8099   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
8100     return SDValue(E, 0);
8101 
8102   auto *N = newSDNode<VPStoreSDNode>(
8103       dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(),
8104       ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
8105   createOperands(N, Ops);
8106 
8107   CSEMap.InsertNode(N, IP);
8108   InsertNode(N);
8109   SDValue V(N, 0);
8110   NewSDValueDbgMsg(V, "Creating new node: ", this);
8111   return V;
8112 }
8113 
8114 SDValue SelectionDAG::getStridedLoadVP(
8115     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL,
8116     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask,
8117     SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
8118     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8119     const MDNode *Ranges, bool IsExpanding) {
8120   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8121 
8122   MMOFlags |= MachineMemOperand::MOLoad;
8123   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
8124   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
8125   // clients.
8126   if (PtrInfo.V.isNull())
8127     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
8128 
8129   uint64_t Size = MemoryLocation::UnknownSize;
8130   MachineFunction &MF = getMachineFunction();
8131   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
8132                                                    Alignment, AAInfo, Ranges);
8133   return getStridedLoadVP(AM, ExtType, VT, DL, Chain, Ptr, Offset, Stride, Mask,
8134                           EVL, MemVT, MMO, IsExpanding);
8135 }
8136 
8137 SDValue SelectionDAG::getStridedLoadVP(
8138     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL,
8139     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask,
8140     SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) {
8141   bool Indexed = AM != ISD::UNINDEXED;
8142   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
8143 
8144   SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL};
8145   SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
8146                          : getVTList(VT, MVT::Other);
8147   FoldingSetNodeID ID;
8148   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops);
8149   ID.AddInteger(VT.getRawBits());
8150   ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>(
8151       DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
8152   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8153 
8154   void *IP = nullptr;
8155   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8156     cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO);
8157     return SDValue(E, 0);
8158   }
8159 
8160   auto *N =
8161       newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM,
8162                                      ExtType, IsExpanding, MemVT, MMO);
8163   createOperands(N, Ops);
8164   CSEMap.InsertNode(N, IP);
8165   InsertNode(N);
8166   SDValue V(N, 0);
8167   NewSDValueDbgMsg(V, "Creating new node: ", this);
8168   return V;
8169 }
8170 
8171 SDValue SelectionDAG::getStridedLoadVP(
8172     EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Stride,
8173     SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, MaybeAlign Alignment,
8174     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8175     const MDNode *Ranges, bool IsExpanding) {
8176   SDValue Undef = getUNDEF(Ptr.getValueType());
8177   return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr,
8178                           Undef, Stride, Mask, EVL, PtrInfo, VT, Alignment,
8179                           MMOFlags, AAInfo, Ranges, IsExpanding);
8180 }
8181 
8182 SDValue SelectionDAG::getStridedLoadVP(EVT VT, const SDLoc &DL, SDValue Chain,
8183                                        SDValue Ptr, SDValue Stride,
8184                                        SDValue Mask, SDValue EVL,
8185                                        MachineMemOperand *MMO,
8186                                        bool IsExpanding) {
8187   SDValue Undef = getUNDEF(Ptr.getValueType());
8188   return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr,
8189                           Undef, Stride, Mask, EVL, VT, MMO, IsExpanding);
8190 }
8191 
8192 SDValue SelectionDAG::getExtStridedLoadVP(
8193     ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain,
8194     SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL,
8195     MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment,
8196     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8197     bool IsExpanding) {
8198   SDValue Undef = getUNDEF(Ptr.getValueType());
8199   return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef,
8200                           Stride, Mask, EVL, PtrInfo, MemVT, Alignment,
8201                           MMOFlags, AAInfo, nullptr, IsExpanding);
8202 }
8203 
8204 SDValue SelectionDAG::getExtStridedLoadVP(
8205     ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain,
8206     SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT,
8207     MachineMemOperand *MMO, bool IsExpanding) {
8208   SDValue Undef = getUNDEF(Ptr.getValueType());
8209   return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef,
8210                           Stride, Mask, EVL, MemVT, MMO, IsExpanding);
8211 }
8212 
8213 SDValue SelectionDAG::getIndexedStridedLoadVP(SDValue OrigLoad, const SDLoc &DL,
8214                                               SDValue Base, SDValue Offset,
8215                                               ISD::MemIndexedMode AM) {
8216   auto *SLD = cast<VPStridedLoadSDNode>(OrigLoad);
8217   assert(SLD->getOffset().isUndef() &&
8218          "Strided load is already a indexed load!");
8219   // Don't propagate the invariant or dereferenceable flags.
8220   auto MMOFlags =
8221       SLD->getMemOperand()->getFlags() &
8222       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
8223   return getStridedLoadVP(
8224       AM, SLD->getExtensionType(), OrigLoad.getValueType(), DL, SLD->getChain(),
8225       Base, Offset, SLD->getStride(), SLD->getMask(), SLD->getVectorLength(),
8226       SLD->getPointerInfo(), SLD->getMemoryVT(), SLD->getAlign(), MMOFlags,
8227       SLD->getAAInfo(), nullptr, SLD->isExpandingLoad());
8228 }
8229 
8230 SDValue SelectionDAG::getStridedStoreVP(SDValue Chain, const SDLoc &DL,
8231                                         SDValue Val, SDValue Ptr,
8232                                         SDValue Offset, SDValue Stride,
8233                                         SDValue Mask, SDValue EVL, EVT MemVT,
8234                                         MachineMemOperand *MMO,
8235                                         ISD::MemIndexedMode AM,
8236                                         bool IsTruncating, bool IsCompressing) {
8237   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8238   bool Indexed = AM != ISD::UNINDEXED;
8239   assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
8240   SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
8241                          : getVTList(MVT::Other);
8242   SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL};
8243   FoldingSetNodeID ID;
8244   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
8245   ID.AddInteger(MemVT.getRawBits());
8246   ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
8247       DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8248   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8249   void *IP = nullptr;
8250   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8251     cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
8252     return SDValue(E, 0);
8253   }
8254   auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
8255                                             VTs, AM, IsTruncating,
8256                                             IsCompressing, MemVT, MMO);
8257   createOperands(N, Ops);
8258 
8259   CSEMap.InsertNode(N, IP);
8260   InsertNode(N);
8261   SDValue V(N, 0);
8262   NewSDValueDbgMsg(V, "Creating new node: ", this);
8263   return V;
8264 }
8265 
8266 SDValue SelectionDAG::getTruncStridedStoreVP(
8267     SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride,
8268     SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT,
8269     Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8270     bool IsCompressing) {
8271   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8272 
8273   MMOFlags |= MachineMemOperand::MOStore;
8274   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
8275 
8276   if (PtrInfo.V.isNull())
8277     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
8278 
8279   MachineFunction &MF = getMachineFunction();
8280   MachineMemOperand *MMO = MF.getMachineMemOperand(
8281       PtrInfo, MMOFlags, MemoryLocation::UnknownSize, Alignment, AAInfo);
8282   return getTruncStridedStoreVP(Chain, DL, Val, Ptr, Stride, Mask, EVL, SVT,
8283                                 MMO, IsCompressing);
8284 }
8285 
8286 SDValue SelectionDAG::getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL,
8287                                              SDValue Val, SDValue Ptr,
8288                                              SDValue Stride, SDValue Mask,
8289                                              SDValue EVL, EVT SVT,
8290                                              MachineMemOperand *MMO,
8291                                              bool IsCompressing) {
8292   EVT VT = Val.getValueType();
8293 
8294   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8295   if (VT == SVT)
8296     return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()),
8297                              Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED,
8298                              /*IsTruncating*/ false, IsCompressing);
8299 
8300   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
8301          "Should only be a truncating store, not extending!");
8302   assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
8303   assert(VT.isVector() == SVT.isVector() &&
8304          "Cannot use trunc store to convert to or from a vector!");
8305   assert((!VT.isVector() ||
8306           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
8307          "Cannot use trunc store to change the number of vector elements!");
8308 
8309   SDVTList VTs = getVTList(MVT::Other);
8310   SDValue Undef = getUNDEF(Ptr.getValueType());
8311   SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL};
8312   FoldingSetNodeID ID;
8313   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
8314   ID.AddInteger(SVT.getRawBits());
8315   ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
8316       DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
8317   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8318   void *IP = nullptr;
8319   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8320     cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
8321     return SDValue(E, 0);
8322   }
8323   auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
8324                                             VTs, ISD::UNINDEXED, true,
8325                                             IsCompressing, SVT, MMO);
8326   createOperands(N, Ops);
8327 
8328   CSEMap.InsertNode(N, IP);
8329   InsertNode(N);
8330   SDValue V(N, 0);
8331   NewSDValueDbgMsg(V, "Creating new node: ", this);
8332   return V;
8333 }
8334 
8335 SDValue SelectionDAG::getIndexedStridedStoreVP(SDValue OrigStore,
8336                                                const SDLoc &DL, SDValue Base,
8337                                                SDValue Offset,
8338                                                ISD::MemIndexedMode AM) {
8339   auto *SST = cast<VPStridedStoreSDNode>(OrigStore);
8340   assert(SST->getOffset().isUndef() &&
8341          "Strided store is already an indexed store!");
8342   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
8343   SDValue Ops[] = {
8344       SST->getChain(), SST->getValue(),       Base, Offset, SST->getStride(),
8345       SST->getMask(),  SST->getVectorLength()};
8346   FoldingSetNodeID ID;
8347   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
8348   ID.AddInteger(SST->getMemoryVT().getRawBits());
8349   ID.AddInteger(SST->getRawSubclassData());
8350   ID.AddInteger(SST->getPointerInfo().getAddrSpace());
8351   void *IP = nullptr;
8352   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8353     return SDValue(E, 0);
8354 
8355   auto *N = newSDNode<VPStridedStoreSDNode>(
8356       DL.getIROrder(), DL.getDebugLoc(), VTs, AM, SST->isTruncatingStore(),
8357       SST->isCompressingStore(), SST->getMemoryVT(), SST->getMemOperand());
8358   createOperands(N, Ops);
8359 
8360   CSEMap.InsertNode(N, IP);
8361   InsertNode(N);
8362   SDValue V(N, 0);
8363   NewSDValueDbgMsg(V, "Creating new node: ", this);
8364   return V;
8365 }
8366 
8367 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl,
8368                                   ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
8369                                   ISD::MemIndexType IndexType) {
8370   assert(Ops.size() == 6 && "Incompatible number of operands");
8371 
8372   FoldingSetNodeID ID;
8373   AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops);
8374   ID.AddInteger(VT.getRawBits());
8375   ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
8376       dl.getIROrder(), VTs, VT, MMO, IndexType));
8377   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8378   ID.AddInteger(MMO->getFlags());
8379   void *IP = nullptr;
8380   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8381     cast<VPGatherSDNode>(E)->refineAlignment(MMO);
8382     return SDValue(E, 0);
8383   }
8384 
8385   auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8386                                       VT, MMO, IndexType);
8387   createOperands(N, Ops);
8388 
8389   assert(N->getMask().getValueType().getVectorElementCount() ==
8390              N->getValueType(0).getVectorElementCount() &&
8391          "Vector width mismatch between mask and data");
8392   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8393              N->getValueType(0).getVectorElementCount().isScalable() &&
8394          "Scalable flags of index and data do not match");
8395   assert(ElementCount::isKnownGE(
8396              N->getIndex().getValueType().getVectorElementCount(),
8397              N->getValueType(0).getVectorElementCount()) &&
8398          "Vector width mismatch between index and data");
8399   assert(isa<ConstantSDNode>(N->getScale()) &&
8400          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8401          "Scale should be a constant power of 2");
8402 
8403   CSEMap.InsertNode(N, IP);
8404   InsertNode(N);
8405   SDValue V(N, 0);
8406   NewSDValueDbgMsg(V, "Creating new node: ", this);
8407   return V;
8408 }
8409 
8410 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl,
8411                                    ArrayRef<SDValue> Ops,
8412                                    MachineMemOperand *MMO,
8413                                    ISD::MemIndexType IndexType) {
8414   assert(Ops.size() == 7 && "Incompatible number of operands");
8415 
8416   FoldingSetNodeID ID;
8417   AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops);
8418   ID.AddInteger(VT.getRawBits());
8419   ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
8420       dl.getIROrder(), VTs, VT, MMO, IndexType));
8421   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8422   ID.AddInteger(MMO->getFlags());
8423   void *IP = nullptr;
8424   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8425     cast<VPScatterSDNode>(E)->refineAlignment(MMO);
8426     return SDValue(E, 0);
8427   }
8428   auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8429                                        VT, MMO, IndexType);
8430   createOperands(N, Ops);
8431 
8432   assert(N->getMask().getValueType().getVectorElementCount() ==
8433              N->getValue().getValueType().getVectorElementCount() &&
8434          "Vector width mismatch between mask and data");
8435   assert(
8436       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8437           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8438       "Scalable flags of index and data do not match");
8439   assert(ElementCount::isKnownGE(
8440              N->getIndex().getValueType().getVectorElementCount(),
8441              N->getValue().getValueType().getVectorElementCount()) &&
8442          "Vector width mismatch between index and data");
8443   assert(isa<ConstantSDNode>(N->getScale()) &&
8444          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8445          "Scale should be a constant power of 2");
8446 
8447   CSEMap.InsertNode(N, IP);
8448   InsertNode(N);
8449   SDValue V(N, 0);
8450   NewSDValueDbgMsg(V, "Creating new node: ", this);
8451   return V;
8452 }
8453 
8454 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
8455                                     SDValue Base, SDValue Offset, SDValue Mask,
8456                                     SDValue PassThru, EVT MemVT,
8457                                     MachineMemOperand *MMO,
8458                                     ISD::MemIndexedMode AM,
8459                                     ISD::LoadExtType ExtTy, bool isExpanding) {
8460   bool Indexed = AM != ISD::UNINDEXED;
8461   assert((Indexed || Offset.isUndef()) &&
8462          "Unindexed masked load with an offset!");
8463   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
8464                          : getVTList(VT, MVT::Other);
8465   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
8466   FoldingSetNodeID ID;
8467   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
8468   ID.AddInteger(MemVT.getRawBits());
8469   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
8470       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
8471   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8472   ID.AddInteger(MMO->getFlags());
8473   void *IP = nullptr;
8474   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8475     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
8476     return SDValue(E, 0);
8477   }
8478   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8479                                         AM, ExtTy, isExpanding, MemVT, MMO);
8480   createOperands(N, Ops);
8481 
8482   CSEMap.InsertNode(N, IP);
8483   InsertNode(N);
8484   SDValue V(N, 0);
8485   NewSDValueDbgMsg(V, "Creating new node: ", this);
8486   return V;
8487 }
8488 
8489 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
8490                                            SDValue Base, SDValue Offset,
8491                                            ISD::MemIndexedMode AM) {
8492   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
8493   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
8494   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
8495                        Offset, LD->getMask(), LD->getPassThru(),
8496                        LD->getMemoryVT(), LD->getMemOperand(), AM,
8497                        LD->getExtensionType(), LD->isExpandingLoad());
8498 }
8499 
8500 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
8501                                      SDValue Val, SDValue Base, SDValue Offset,
8502                                      SDValue Mask, EVT MemVT,
8503                                      MachineMemOperand *MMO,
8504                                      ISD::MemIndexedMode AM, bool IsTruncating,
8505                                      bool IsCompressing) {
8506   assert(Chain.getValueType() == MVT::Other &&
8507         "Invalid chain type");
8508   bool Indexed = AM != ISD::UNINDEXED;
8509   assert((Indexed || Offset.isUndef()) &&
8510          "Unindexed masked store with an offset!");
8511   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
8512                          : getVTList(MVT::Other);
8513   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
8514   FoldingSetNodeID ID;
8515   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
8516   ID.AddInteger(MemVT.getRawBits());
8517   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
8518       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8519   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8520   ID.AddInteger(MMO->getFlags());
8521   void *IP = nullptr;
8522   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8523     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
8524     return SDValue(E, 0);
8525   }
8526   auto *N =
8527       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8528                                    IsTruncating, IsCompressing, MemVT, MMO);
8529   createOperands(N, Ops);
8530 
8531   CSEMap.InsertNode(N, IP);
8532   InsertNode(N);
8533   SDValue V(N, 0);
8534   NewSDValueDbgMsg(V, "Creating new node: ", this);
8535   return V;
8536 }
8537 
8538 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
8539                                             SDValue Base, SDValue Offset,
8540                                             ISD::MemIndexedMode AM) {
8541   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
8542   assert(ST->getOffset().isUndef() &&
8543          "Masked store is already a indexed store!");
8544   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
8545                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
8546                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
8547 }
8548 
8549 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8550                                       ArrayRef<SDValue> Ops,
8551                                       MachineMemOperand *MMO,
8552                                       ISD::MemIndexType IndexType,
8553                                       ISD::LoadExtType ExtTy) {
8554   assert(Ops.size() == 6 && "Incompatible number of operands");
8555 
8556   FoldingSetNodeID ID;
8557   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
8558   ID.AddInteger(MemVT.getRawBits());
8559   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
8560       dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
8561   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8562   ID.AddInteger(MMO->getFlags());
8563   void *IP = nullptr;
8564   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8565     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
8566     return SDValue(E, 0);
8567   }
8568 
8569   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
8570   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8571                                           VTs, MemVT, MMO, IndexType, ExtTy);
8572   createOperands(N, Ops);
8573 
8574   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
8575          "Incompatible type of the PassThru value in MaskedGatherSDNode");
8576   assert(N->getMask().getValueType().getVectorElementCount() ==
8577              N->getValueType(0).getVectorElementCount() &&
8578          "Vector width mismatch between mask and data");
8579   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8580              N->getValueType(0).getVectorElementCount().isScalable() &&
8581          "Scalable flags of index and data do not match");
8582   assert(ElementCount::isKnownGE(
8583              N->getIndex().getValueType().getVectorElementCount(),
8584              N->getValueType(0).getVectorElementCount()) &&
8585          "Vector width mismatch between index and data");
8586   assert(isa<ConstantSDNode>(N->getScale()) &&
8587          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8588          "Scale should be a constant power of 2");
8589 
8590   CSEMap.InsertNode(N, IP);
8591   InsertNode(N);
8592   SDValue V(N, 0);
8593   NewSDValueDbgMsg(V, "Creating new node: ", this);
8594   return V;
8595 }
8596 
8597 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8598                                        ArrayRef<SDValue> Ops,
8599                                        MachineMemOperand *MMO,
8600                                        ISD::MemIndexType IndexType,
8601                                        bool IsTrunc) {
8602   assert(Ops.size() == 6 && "Incompatible number of operands");
8603 
8604   FoldingSetNodeID ID;
8605   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
8606   ID.AddInteger(MemVT.getRawBits());
8607   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
8608       dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
8609   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8610   ID.AddInteger(MMO->getFlags());
8611   void *IP = nullptr;
8612   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8613     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
8614     return SDValue(E, 0);
8615   }
8616 
8617   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
8618   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8619                                            VTs, MemVT, MMO, IndexType, IsTrunc);
8620   createOperands(N, Ops);
8621 
8622   assert(N->getMask().getValueType().getVectorElementCount() ==
8623              N->getValue().getValueType().getVectorElementCount() &&
8624          "Vector width mismatch between mask and data");
8625   assert(
8626       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8627           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8628       "Scalable flags of index and data do not match");
8629   assert(ElementCount::isKnownGE(
8630              N->getIndex().getValueType().getVectorElementCount(),
8631              N->getValue().getValueType().getVectorElementCount()) &&
8632          "Vector width mismatch between index and data");
8633   assert(isa<ConstantSDNode>(N->getScale()) &&
8634          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8635          "Scale should be a constant power of 2");
8636 
8637   CSEMap.InsertNode(N, IP);
8638   InsertNode(N);
8639   SDValue V(N, 0);
8640   NewSDValueDbgMsg(V, "Creating new node: ", this);
8641   return V;
8642 }
8643 
8644 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
8645   // select undef, T, F --> T (if T is a constant), otherwise F
8646   // select, ?, undef, F --> F
8647   // select, ?, T, undef --> T
8648   if (Cond.isUndef())
8649     return isConstantValueOfAnyType(T) ? T : F;
8650   if (T.isUndef())
8651     return F;
8652   if (F.isUndef())
8653     return T;
8654 
8655   // select true, T, F --> T
8656   // select false, T, F --> F
8657   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
8658     return CondC->isZero() ? F : T;
8659 
8660   // TODO: This should simplify VSELECT with constant condition using something
8661   // like this (but check boolean contents to be complete?):
8662   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
8663   //    return T;
8664   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
8665   //    return F;
8666 
8667   // select ?, T, T --> T
8668   if (T == F)
8669     return T;
8670 
8671   return SDValue();
8672 }
8673 
8674 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
8675   // shift undef, Y --> 0 (can always assume that the undef value is 0)
8676   if (X.isUndef())
8677     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
8678   // shift X, undef --> undef (because it may shift by the bitwidth)
8679   if (Y.isUndef())
8680     return getUNDEF(X.getValueType());
8681 
8682   // shift 0, Y --> 0
8683   // shift X, 0 --> X
8684   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
8685     return X;
8686 
8687   // shift X, C >= bitwidth(X) --> undef
8688   // All vector elements must be too big (or undef) to avoid partial undefs.
8689   auto isShiftTooBig = [X](ConstantSDNode *Val) {
8690     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
8691   };
8692   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
8693     return getUNDEF(X.getValueType());
8694 
8695   return SDValue();
8696 }
8697 
8698 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
8699                                       SDNodeFlags Flags) {
8700   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
8701   // (an undef operand can be chosen to be Nan/Inf), then the result of this
8702   // operation is poison. That result can be relaxed to undef.
8703   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
8704   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
8705   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
8706                 (YC && YC->getValueAPF().isNaN());
8707   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
8708                 (YC && YC->getValueAPF().isInfinity());
8709 
8710   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
8711     return getUNDEF(X.getValueType());
8712 
8713   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
8714     return getUNDEF(X.getValueType());
8715 
8716   if (!YC)
8717     return SDValue();
8718 
8719   // X + -0.0 --> X
8720   if (Opcode == ISD::FADD)
8721     if (YC->getValueAPF().isNegZero())
8722       return X;
8723 
8724   // X - +0.0 --> X
8725   if (Opcode == ISD::FSUB)
8726     if (YC->getValueAPF().isPosZero())
8727       return X;
8728 
8729   // X * 1.0 --> X
8730   // X / 1.0 --> X
8731   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
8732     if (YC->getValueAPF().isExactlyValue(1.0))
8733       return X;
8734 
8735   // X * 0.0 --> 0.0
8736   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
8737     if (YC->getValueAPF().isZero())
8738       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
8739 
8740   return SDValue();
8741 }
8742 
8743 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
8744                                SDValue Ptr, SDValue SV, unsigned Align) {
8745   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
8746   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
8747 }
8748 
8749 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8750                               ArrayRef<SDUse> Ops) {
8751   switch (Ops.size()) {
8752   case 0: return getNode(Opcode, DL, VT);
8753   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
8754   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
8755   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
8756   default: break;
8757   }
8758 
8759   // Copy from an SDUse array into an SDValue array for use with
8760   // the regular getNode logic.
8761   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
8762   return getNode(Opcode, DL, VT, NewOps);
8763 }
8764 
8765 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8766                               ArrayRef<SDValue> Ops) {
8767   SDNodeFlags Flags;
8768   if (Inserter)
8769     Flags = Inserter->getFlags();
8770   return getNode(Opcode, DL, VT, Ops, Flags);
8771 }
8772 
8773 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8774                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8775   unsigned NumOps = Ops.size();
8776   switch (NumOps) {
8777   case 0: return getNode(Opcode, DL, VT);
8778   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
8779   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
8780   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
8781   default: break;
8782   }
8783 
8784 #ifndef NDEBUG
8785   for (auto &Op : Ops)
8786     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8787            "Operand is DELETED_NODE!");
8788 #endif
8789 
8790   switch (Opcode) {
8791   default: break;
8792   case ISD::BUILD_VECTOR:
8793     // Attempt to simplify BUILD_VECTOR.
8794     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
8795       return V;
8796     break;
8797   case ISD::CONCAT_VECTORS:
8798     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
8799       return V;
8800     break;
8801   case ISD::SELECT_CC:
8802     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
8803     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
8804            "LHS and RHS of condition must have same type!");
8805     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8806            "True and False arms of SelectCC must have same type!");
8807     assert(Ops[2].getValueType() == VT &&
8808            "select_cc node must be of same type as true and false value!");
8809     break;
8810   case ISD::BR_CC:
8811     assert(NumOps == 5 && "BR_CC takes 5 operands!");
8812     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8813            "LHS/RHS of comparison should match types!");
8814     break;
8815   }
8816 
8817   // Memoize nodes.
8818   SDNode *N;
8819   SDVTList VTs = getVTList(VT);
8820 
8821   if (VT != MVT::Glue) {
8822     FoldingSetNodeID ID;
8823     AddNodeIDNode(ID, Opcode, VTs, Ops);
8824     void *IP = nullptr;
8825 
8826     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8827       return SDValue(E, 0);
8828 
8829     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8830     createOperands(N, Ops);
8831 
8832     CSEMap.InsertNode(N, IP);
8833   } else {
8834     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8835     createOperands(N, Ops);
8836   }
8837 
8838   N->setFlags(Flags);
8839   InsertNode(N);
8840   SDValue V(N, 0);
8841   NewSDValueDbgMsg(V, "Creating new node: ", this);
8842   return V;
8843 }
8844 
8845 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8846                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
8847   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
8848 }
8849 
8850 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8851                               ArrayRef<SDValue> Ops) {
8852   SDNodeFlags Flags;
8853   if (Inserter)
8854     Flags = Inserter->getFlags();
8855   return getNode(Opcode, DL, VTList, Ops, Flags);
8856 }
8857 
8858 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8859                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8860   if (VTList.NumVTs == 1)
8861     return getNode(Opcode, DL, VTList.VTs[0], Ops);
8862 
8863 #ifndef NDEBUG
8864   for (auto &Op : Ops)
8865     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8866            "Operand is DELETED_NODE!");
8867 #endif
8868 
8869   switch (Opcode) {
8870   case ISD::STRICT_FP_EXTEND:
8871     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
8872            "Invalid STRICT_FP_EXTEND!");
8873     assert(VTList.VTs[0].isFloatingPoint() &&
8874            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
8875     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8876            "STRICT_FP_EXTEND result type should be vector iff the operand "
8877            "type is vector!");
8878     assert((!VTList.VTs[0].isVector() ||
8879             VTList.VTs[0].getVectorNumElements() ==
8880             Ops[1].getValueType().getVectorNumElements()) &&
8881            "Vector element count mismatch!");
8882     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
8883            "Invalid fpext node, dst <= src!");
8884     break;
8885   case ISD::STRICT_FP_ROUND:
8886     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
8887     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8888            "STRICT_FP_ROUND result type should be vector iff the operand "
8889            "type is vector!");
8890     assert((!VTList.VTs[0].isVector() ||
8891             VTList.VTs[0].getVectorNumElements() ==
8892             Ops[1].getValueType().getVectorNumElements()) &&
8893            "Vector element count mismatch!");
8894     assert(VTList.VTs[0].isFloatingPoint() &&
8895            Ops[1].getValueType().isFloatingPoint() &&
8896            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
8897            isa<ConstantSDNode>(Ops[2]) &&
8898            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
8899             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
8900            "Invalid STRICT_FP_ROUND!");
8901     break;
8902 #if 0
8903   // FIXME: figure out how to safely handle things like
8904   // int foo(int x) { return 1 << (x & 255); }
8905   // int bar() { return foo(256); }
8906   case ISD::SRA_PARTS:
8907   case ISD::SRL_PARTS:
8908   case ISD::SHL_PARTS:
8909     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
8910         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
8911       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8912     else if (N3.getOpcode() == ISD::AND)
8913       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
8914         // If the and is only masking out bits that cannot effect the shift,
8915         // eliminate the and.
8916         unsigned NumBits = VT.getScalarSizeInBits()*2;
8917         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
8918           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8919       }
8920     break;
8921 #endif
8922   }
8923 
8924   // Memoize the node unless it returns a flag.
8925   SDNode *N;
8926   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
8927     FoldingSetNodeID ID;
8928     AddNodeIDNode(ID, Opcode, VTList, Ops);
8929     void *IP = nullptr;
8930     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8931       return SDValue(E, 0);
8932 
8933     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8934     createOperands(N, Ops);
8935     CSEMap.InsertNode(N, IP);
8936   } else {
8937     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8938     createOperands(N, Ops);
8939   }
8940 
8941   N->setFlags(Flags);
8942   InsertNode(N);
8943   SDValue V(N, 0);
8944   NewSDValueDbgMsg(V, "Creating new node: ", this);
8945   return V;
8946 }
8947 
8948 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8949                               SDVTList VTList) {
8950   return getNode(Opcode, DL, VTList, None);
8951 }
8952 
8953 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8954                               SDValue N1) {
8955   SDValue Ops[] = { N1 };
8956   return getNode(Opcode, DL, VTList, Ops);
8957 }
8958 
8959 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8960                               SDValue N1, SDValue N2) {
8961   SDValue Ops[] = { N1, N2 };
8962   return getNode(Opcode, DL, VTList, Ops);
8963 }
8964 
8965 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8966                               SDValue N1, SDValue N2, SDValue N3) {
8967   SDValue Ops[] = { N1, N2, N3 };
8968   return getNode(Opcode, DL, VTList, Ops);
8969 }
8970 
8971 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8972                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
8973   SDValue Ops[] = { N1, N2, N3, N4 };
8974   return getNode(Opcode, DL, VTList, Ops);
8975 }
8976 
8977 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8978                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8979                               SDValue N5) {
8980   SDValue Ops[] = { N1, N2, N3, N4, N5 };
8981   return getNode(Opcode, DL, VTList, Ops);
8982 }
8983 
8984 SDVTList SelectionDAG::getVTList(EVT VT) {
8985   return makeVTList(SDNode::getValueTypeList(VT), 1);
8986 }
8987 
8988 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
8989   FoldingSetNodeID ID;
8990   ID.AddInteger(2U);
8991   ID.AddInteger(VT1.getRawBits());
8992   ID.AddInteger(VT2.getRawBits());
8993 
8994   void *IP = nullptr;
8995   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8996   if (!Result) {
8997     EVT *Array = Allocator.Allocate<EVT>(2);
8998     Array[0] = VT1;
8999     Array[1] = VT2;
9000     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
9001     VTListMap.InsertNode(Result, IP);
9002   }
9003   return Result->getSDVTList();
9004 }
9005 
9006 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
9007   FoldingSetNodeID ID;
9008   ID.AddInteger(3U);
9009   ID.AddInteger(VT1.getRawBits());
9010   ID.AddInteger(VT2.getRawBits());
9011   ID.AddInteger(VT3.getRawBits());
9012 
9013   void *IP = nullptr;
9014   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
9015   if (!Result) {
9016     EVT *Array = Allocator.Allocate<EVT>(3);
9017     Array[0] = VT1;
9018     Array[1] = VT2;
9019     Array[2] = VT3;
9020     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
9021     VTListMap.InsertNode(Result, IP);
9022   }
9023   return Result->getSDVTList();
9024 }
9025 
9026 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
9027   FoldingSetNodeID ID;
9028   ID.AddInteger(4U);
9029   ID.AddInteger(VT1.getRawBits());
9030   ID.AddInteger(VT2.getRawBits());
9031   ID.AddInteger(VT3.getRawBits());
9032   ID.AddInteger(VT4.getRawBits());
9033 
9034   void *IP = nullptr;
9035   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
9036   if (!Result) {
9037     EVT *Array = Allocator.Allocate<EVT>(4);
9038     Array[0] = VT1;
9039     Array[1] = VT2;
9040     Array[2] = VT3;
9041     Array[3] = VT4;
9042     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
9043     VTListMap.InsertNode(Result, IP);
9044   }
9045   return Result->getSDVTList();
9046 }
9047 
9048 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
9049   unsigned NumVTs = VTs.size();
9050   FoldingSetNodeID ID;
9051   ID.AddInteger(NumVTs);
9052   for (unsigned index = 0; index < NumVTs; index++) {
9053     ID.AddInteger(VTs[index].getRawBits());
9054   }
9055 
9056   void *IP = nullptr;
9057   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
9058   if (!Result) {
9059     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
9060     llvm::copy(VTs, Array);
9061     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
9062     VTListMap.InsertNode(Result, IP);
9063   }
9064   return Result->getSDVTList();
9065 }
9066 
9067 
9068 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
9069 /// specified operands.  If the resultant node already exists in the DAG,
9070 /// this does not modify the specified node, instead it returns the node that
9071 /// already exists.  If the resultant node does not exist in the DAG, the
9072 /// input node is returned.  As a degenerate case, if you specify the same
9073 /// input operands as the node already has, the input node is returned.
9074 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
9075   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
9076 
9077   // Check to see if there is no change.
9078   if (Op == N->getOperand(0)) return N;
9079 
9080   // See if the modified node already exists.
9081   void *InsertPos = nullptr;
9082   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
9083     return Existing;
9084 
9085   // Nope it doesn't.  Remove the node from its current place in the maps.
9086   if (InsertPos)
9087     if (!RemoveNodeFromCSEMaps(N))
9088       InsertPos = nullptr;
9089 
9090   // Now we update the operands.
9091   N->OperandList[0].set(Op);
9092 
9093   updateDivergence(N);
9094   // If this gets put into a CSE map, add it.
9095   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
9096   return N;
9097 }
9098 
9099 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
9100   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
9101 
9102   // Check to see if there is no change.
9103   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
9104     return N;   // No operands changed, just return the input node.
9105 
9106   // See if the modified node already exists.
9107   void *InsertPos = nullptr;
9108   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
9109     return Existing;
9110 
9111   // Nope it doesn't.  Remove the node from its current place in the maps.
9112   if (InsertPos)
9113     if (!RemoveNodeFromCSEMaps(N))
9114       InsertPos = nullptr;
9115 
9116   // Now we update the operands.
9117   if (N->OperandList[0] != Op1)
9118     N->OperandList[0].set(Op1);
9119   if (N->OperandList[1] != Op2)
9120     N->OperandList[1].set(Op2);
9121 
9122   updateDivergence(N);
9123   // If this gets put into a CSE map, add it.
9124   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
9125   return N;
9126 }
9127 
9128 SDNode *SelectionDAG::
9129 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
9130   SDValue Ops[] = { Op1, Op2, Op3 };
9131   return UpdateNodeOperands(N, Ops);
9132 }
9133 
9134 SDNode *SelectionDAG::
9135 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
9136                    SDValue Op3, SDValue Op4) {
9137   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
9138   return UpdateNodeOperands(N, Ops);
9139 }
9140 
9141 SDNode *SelectionDAG::
9142 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
9143                    SDValue Op3, SDValue Op4, SDValue Op5) {
9144   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
9145   return UpdateNodeOperands(N, Ops);
9146 }
9147 
9148 SDNode *SelectionDAG::
9149 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
9150   unsigned NumOps = Ops.size();
9151   assert(N->getNumOperands() == NumOps &&
9152          "Update with wrong number of operands");
9153 
9154   // If no operands changed just return the input node.
9155   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
9156     return N;
9157 
9158   // See if the modified node already exists.
9159   void *InsertPos = nullptr;
9160   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
9161     return Existing;
9162 
9163   // Nope it doesn't.  Remove the node from its current place in the maps.
9164   if (InsertPos)
9165     if (!RemoveNodeFromCSEMaps(N))
9166       InsertPos = nullptr;
9167 
9168   // Now we update the operands.
9169   for (unsigned i = 0; i != NumOps; ++i)
9170     if (N->OperandList[i] != Ops[i])
9171       N->OperandList[i].set(Ops[i]);
9172 
9173   updateDivergence(N);
9174   // If this gets put into a CSE map, add it.
9175   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
9176   return N;
9177 }
9178 
9179 /// DropOperands - Release the operands and set this node to have
9180 /// zero operands.
9181 void SDNode::DropOperands() {
9182   // Unlike the code in MorphNodeTo that does this, we don't need to
9183   // watch for dead nodes here.
9184   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
9185     SDUse &Use = *I++;
9186     Use.set(SDValue());
9187   }
9188 }
9189 
9190 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
9191                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
9192   if (NewMemRefs.empty()) {
9193     N->clearMemRefs();
9194     return;
9195   }
9196 
9197   // Check if we can avoid allocating by storing a single reference directly.
9198   if (NewMemRefs.size() == 1) {
9199     N->MemRefs = NewMemRefs[0];
9200     N->NumMemRefs = 1;
9201     return;
9202   }
9203 
9204   MachineMemOperand **MemRefsBuffer =
9205       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
9206   llvm::copy(NewMemRefs, MemRefsBuffer);
9207   N->MemRefs = MemRefsBuffer;
9208   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
9209 }
9210 
9211 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
9212 /// machine opcode.
9213 ///
9214 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9215                                    EVT VT) {
9216   SDVTList VTs = getVTList(VT);
9217   return SelectNodeTo(N, MachineOpc, VTs, None);
9218 }
9219 
9220 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9221                                    EVT VT, SDValue Op1) {
9222   SDVTList VTs = getVTList(VT);
9223   SDValue Ops[] = { Op1 };
9224   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9225 }
9226 
9227 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9228                                    EVT VT, SDValue Op1,
9229                                    SDValue Op2) {
9230   SDVTList VTs = getVTList(VT);
9231   SDValue Ops[] = { Op1, Op2 };
9232   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9233 }
9234 
9235 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9236                                    EVT VT, SDValue Op1,
9237                                    SDValue Op2, SDValue Op3) {
9238   SDVTList VTs = getVTList(VT);
9239   SDValue Ops[] = { Op1, Op2, Op3 };
9240   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9241 }
9242 
9243 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9244                                    EVT VT, ArrayRef<SDValue> Ops) {
9245   SDVTList VTs = getVTList(VT);
9246   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9247 }
9248 
9249 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9250                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
9251   SDVTList VTs = getVTList(VT1, VT2);
9252   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9253 }
9254 
9255 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9256                                    EVT VT1, EVT VT2) {
9257   SDVTList VTs = getVTList(VT1, VT2);
9258   return SelectNodeTo(N, MachineOpc, VTs, None);
9259 }
9260 
9261 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9262                                    EVT VT1, EVT VT2, EVT VT3,
9263                                    ArrayRef<SDValue> Ops) {
9264   SDVTList VTs = getVTList(VT1, VT2, VT3);
9265   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9266 }
9267 
9268 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9269                                    EVT VT1, EVT VT2,
9270                                    SDValue Op1, SDValue Op2) {
9271   SDVTList VTs = getVTList(VT1, VT2);
9272   SDValue Ops[] = { Op1, Op2 };
9273   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9274 }
9275 
9276 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9277                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
9278   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
9279   // Reset the NodeID to -1.
9280   New->setNodeId(-1);
9281   if (New != N) {
9282     ReplaceAllUsesWith(N, New);
9283     RemoveDeadNode(N);
9284   }
9285   return New;
9286 }
9287 
9288 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
9289 /// the line number information on the merged node since it is not possible to
9290 /// preserve the information that operation is associated with multiple lines.
9291 /// This will make the debugger working better at -O0, were there is a higher
9292 /// probability having other instructions associated with that line.
9293 ///
9294 /// For IROrder, we keep the smaller of the two
9295 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
9296   DebugLoc NLoc = N->getDebugLoc();
9297   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
9298     N->setDebugLoc(DebugLoc());
9299   }
9300   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
9301   N->setIROrder(Order);
9302   return N;
9303 }
9304 
9305 /// MorphNodeTo - This *mutates* the specified node to have the specified
9306 /// return type, opcode, and operands.
9307 ///
9308 /// Note that MorphNodeTo returns the resultant node.  If there is already a
9309 /// node of the specified opcode and operands, it returns that node instead of
9310 /// the current one.  Note that the SDLoc need not be the same.
9311 ///
9312 /// Using MorphNodeTo is faster than creating a new node and swapping it in
9313 /// with ReplaceAllUsesWith both because it often avoids allocating a new
9314 /// node, and because it doesn't require CSE recalculation for any of
9315 /// the node's users.
9316 ///
9317 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
9318 /// As a consequence it isn't appropriate to use from within the DAG combiner or
9319 /// the legalizer which maintain worklists that would need to be updated when
9320 /// deleting things.
9321 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
9322                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
9323   // If an identical node already exists, use it.
9324   void *IP = nullptr;
9325   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
9326     FoldingSetNodeID ID;
9327     AddNodeIDNode(ID, Opc, VTs, Ops);
9328     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
9329       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
9330   }
9331 
9332   if (!RemoveNodeFromCSEMaps(N))
9333     IP = nullptr;
9334 
9335   // Start the morphing.
9336   N->NodeType = Opc;
9337   N->ValueList = VTs.VTs;
9338   N->NumValues = VTs.NumVTs;
9339 
9340   // Clear the operands list, updating used nodes to remove this from their
9341   // use list.  Keep track of any operands that become dead as a result.
9342   SmallPtrSet<SDNode*, 16> DeadNodeSet;
9343   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
9344     SDUse &Use = *I++;
9345     SDNode *Used = Use.getNode();
9346     Use.set(SDValue());
9347     if (Used->use_empty())
9348       DeadNodeSet.insert(Used);
9349   }
9350 
9351   // For MachineNode, initialize the memory references information.
9352   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
9353     MN->clearMemRefs();
9354 
9355   // Swap for an appropriately sized array from the recycler.
9356   removeOperands(N);
9357   createOperands(N, Ops);
9358 
9359   // Delete any nodes that are still dead after adding the uses for the
9360   // new operands.
9361   if (!DeadNodeSet.empty()) {
9362     SmallVector<SDNode *, 16> DeadNodes;
9363     for (SDNode *N : DeadNodeSet)
9364       if (N->use_empty())
9365         DeadNodes.push_back(N);
9366     RemoveDeadNodes(DeadNodes);
9367   }
9368 
9369   if (IP)
9370     CSEMap.InsertNode(N, IP);   // Memoize the new node.
9371   return N;
9372 }
9373 
9374 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
9375   unsigned OrigOpc = Node->getOpcode();
9376   unsigned NewOpc;
9377   switch (OrigOpc) {
9378   default:
9379     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
9380 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
9381   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
9382 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
9383   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
9384 #include "llvm/IR/ConstrainedOps.def"
9385   }
9386 
9387   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
9388 
9389   // We're taking this node out of the chain, so we need to re-link things.
9390   SDValue InputChain = Node->getOperand(0);
9391   SDValue OutputChain = SDValue(Node, 1);
9392   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
9393 
9394   SmallVector<SDValue, 3> Ops;
9395   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
9396     Ops.push_back(Node->getOperand(i));
9397 
9398   SDVTList VTs = getVTList(Node->getValueType(0));
9399   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
9400 
9401   // MorphNodeTo can operate in two ways: if an existing node with the
9402   // specified operands exists, it can just return it.  Otherwise, it
9403   // updates the node in place to have the requested operands.
9404   if (Res == Node) {
9405     // If we updated the node in place, reset the node ID.  To the isel,
9406     // this should be just like a newly allocated machine node.
9407     Res->setNodeId(-1);
9408   } else {
9409     ReplaceAllUsesWith(Node, Res);
9410     RemoveDeadNode(Node);
9411   }
9412 
9413   return Res;
9414 }
9415 
9416 /// getMachineNode - These are used for target selectors to create a new node
9417 /// with specified return type(s), MachineInstr opcode, and operands.
9418 ///
9419 /// Note that getMachineNode returns the resultant node.  If there is already a
9420 /// node of the specified opcode and operands, it returns that node instead of
9421 /// the current one.
9422 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9423                                             EVT VT) {
9424   SDVTList VTs = getVTList(VT);
9425   return getMachineNode(Opcode, dl, VTs, None);
9426 }
9427 
9428 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9429                                             EVT VT, SDValue Op1) {
9430   SDVTList VTs = getVTList(VT);
9431   SDValue Ops[] = { Op1 };
9432   return getMachineNode(Opcode, dl, VTs, Ops);
9433 }
9434 
9435 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9436                                             EVT VT, SDValue Op1, SDValue Op2) {
9437   SDVTList VTs = getVTList(VT);
9438   SDValue Ops[] = { Op1, Op2 };
9439   return getMachineNode(Opcode, dl, VTs, Ops);
9440 }
9441 
9442 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9443                                             EVT VT, SDValue Op1, SDValue Op2,
9444                                             SDValue Op3) {
9445   SDVTList VTs = getVTList(VT);
9446   SDValue Ops[] = { Op1, Op2, Op3 };
9447   return getMachineNode(Opcode, dl, VTs, Ops);
9448 }
9449 
9450 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9451                                             EVT VT, ArrayRef<SDValue> Ops) {
9452   SDVTList VTs = getVTList(VT);
9453   return getMachineNode(Opcode, dl, VTs, Ops);
9454 }
9455 
9456 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9457                                             EVT VT1, EVT VT2, SDValue Op1,
9458                                             SDValue Op2) {
9459   SDVTList VTs = getVTList(VT1, VT2);
9460   SDValue Ops[] = { Op1, Op2 };
9461   return getMachineNode(Opcode, dl, VTs, Ops);
9462 }
9463 
9464 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9465                                             EVT VT1, EVT VT2, SDValue Op1,
9466                                             SDValue Op2, SDValue Op3) {
9467   SDVTList VTs = getVTList(VT1, VT2);
9468   SDValue Ops[] = { Op1, Op2, Op3 };
9469   return getMachineNode(Opcode, dl, VTs, Ops);
9470 }
9471 
9472 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9473                                             EVT VT1, EVT VT2,
9474                                             ArrayRef<SDValue> Ops) {
9475   SDVTList VTs = getVTList(VT1, VT2);
9476   return getMachineNode(Opcode, dl, VTs, Ops);
9477 }
9478 
9479 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9480                                             EVT VT1, EVT VT2, EVT VT3,
9481                                             SDValue Op1, SDValue Op2) {
9482   SDVTList VTs = getVTList(VT1, VT2, VT3);
9483   SDValue Ops[] = { Op1, Op2 };
9484   return getMachineNode(Opcode, dl, VTs, Ops);
9485 }
9486 
9487 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9488                                             EVT VT1, EVT VT2, EVT VT3,
9489                                             SDValue Op1, SDValue Op2,
9490                                             SDValue Op3) {
9491   SDVTList VTs = getVTList(VT1, VT2, VT3);
9492   SDValue Ops[] = { Op1, Op2, Op3 };
9493   return getMachineNode(Opcode, dl, VTs, Ops);
9494 }
9495 
9496 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9497                                             EVT VT1, EVT VT2, EVT VT3,
9498                                             ArrayRef<SDValue> Ops) {
9499   SDVTList VTs = getVTList(VT1, VT2, VT3);
9500   return getMachineNode(Opcode, dl, VTs, Ops);
9501 }
9502 
9503 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9504                                             ArrayRef<EVT> ResultTys,
9505                                             ArrayRef<SDValue> Ops) {
9506   SDVTList VTs = getVTList(ResultTys);
9507   return getMachineNode(Opcode, dl, VTs, Ops);
9508 }
9509 
9510 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
9511                                             SDVTList VTs,
9512                                             ArrayRef<SDValue> Ops) {
9513   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
9514   MachineSDNode *N;
9515   void *IP = nullptr;
9516 
9517   if (DoCSE) {
9518     FoldingSetNodeID ID;
9519     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
9520     IP = nullptr;
9521     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
9522       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
9523     }
9524   }
9525 
9526   // Allocate a new MachineSDNode.
9527   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
9528   createOperands(N, Ops);
9529 
9530   if (DoCSE)
9531     CSEMap.InsertNode(N, IP);
9532 
9533   InsertNode(N);
9534   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
9535   return N;
9536 }
9537 
9538 /// getTargetExtractSubreg - A convenience function for creating
9539 /// TargetOpcode::EXTRACT_SUBREG nodes.
9540 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9541                                              SDValue Operand) {
9542   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9543   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
9544                                   VT, Operand, SRIdxVal);
9545   return SDValue(Subreg, 0);
9546 }
9547 
9548 /// getTargetInsertSubreg - A convenience function for creating
9549 /// TargetOpcode::INSERT_SUBREG nodes.
9550 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9551                                             SDValue Operand, SDValue Subreg) {
9552   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9553   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
9554                                   VT, Operand, Subreg, SRIdxVal);
9555   return SDValue(Result, 0);
9556 }
9557 
9558 /// getNodeIfExists - Get the specified node if it's already available, or
9559 /// else return NULL.
9560 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9561                                       ArrayRef<SDValue> Ops) {
9562   SDNodeFlags Flags;
9563   if (Inserter)
9564     Flags = Inserter->getFlags();
9565   return getNodeIfExists(Opcode, VTList, Ops, Flags);
9566 }
9567 
9568 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9569                                       ArrayRef<SDValue> Ops,
9570                                       const SDNodeFlags Flags) {
9571   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9572     FoldingSetNodeID ID;
9573     AddNodeIDNode(ID, Opcode, VTList, Ops);
9574     void *IP = nullptr;
9575     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
9576       E->intersectFlagsWith(Flags);
9577       return E;
9578     }
9579   }
9580   return nullptr;
9581 }
9582 
9583 /// doesNodeExist - Check if a node exists without modifying its flags.
9584 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
9585                                  ArrayRef<SDValue> Ops) {
9586   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9587     FoldingSetNodeID ID;
9588     AddNodeIDNode(ID, Opcode, VTList, Ops);
9589     void *IP = nullptr;
9590     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
9591       return true;
9592   }
9593   return false;
9594 }
9595 
9596 /// getDbgValue - Creates a SDDbgValue node.
9597 ///
9598 /// SDNode
9599 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
9600                                       SDNode *N, unsigned R, bool IsIndirect,
9601                                       const DebugLoc &DL, unsigned O) {
9602   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9603          "Expected inlined-at fields to agree");
9604   return new (DbgInfo->getAlloc())
9605       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
9606                  {}, IsIndirect, DL, O,
9607                  /*IsVariadic=*/false);
9608 }
9609 
9610 /// Constant
9611 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
9612                                               DIExpression *Expr,
9613                                               const Value *C,
9614                                               const DebugLoc &DL, unsigned O) {
9615   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9616          "Expected inlined-at fields to agree");
9617   return new (DbgInfo->getAlloc())
9618       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
9619                  /*IsIndirect=*/false, DL, O,
9620                  /*IsVariadic=*/false);
9621 }
9622 
9623 /// FrameIndex
9624 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9625                                                 DIExpression *Expr, unsigned FI,
9626                                                 bool IsIndirect,
9627                                                 const DebugLoc &DL,
9628                                                 unsigned O) {
9629   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9630          "Expected inlined-at fields to agree");
9631   return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
9632 }
9633 
9634 /// FrameIndex with dependencies
9635 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9636                                                 DIExpression *Expr, unsigned FI,
9637                                                 ArrayRef<SDNode *> Dependencies,
9638                                                 bool IsIndirect,
9639                                                 const DebugLoc &DL,
9640                                                 unsigned O) {
9641   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9642          "Expected inlined-at fields to agree");
9643   return new (DbgInfo->getAlloc())
9644       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
9645                  Dependencies, IsIndirect, DL, O,
9646                  /*IsVariadic=*/false);
9647 }
9648 
9649 /// VReg
9650 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
9651                                           unsigned VReg, bool IsIndirect,
9652                                           const DebugLoc &DL, unsigned O) {
9653   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9654          "Expected inlined-at fields to agree");
9655   return new (DbgInfo->getAlloc())
9656       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
9657                  {}, IsIndirect, DL, O,
9658                  /*IsVariadic=*/false);
9659 }
9660 
9661 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
9662                                           ArrayRef<SDDbgOperand> Locs,
9663                                           ArrayRef<SDNode *> Dependencies,
9664                                           bool IsIndirect, const DebugLoc &DL,
9665                                           unsigned O, bool IsVariadic) {
9666   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9667          "Expected inlined-at fields to agree");
9668   return new (DbgInfo->getAlloc())
9669       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
9670                  DL, O, IsVariadic);
9671 }
9672 
9673 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
9674                                      unsigned OffsetInBits, unsigned SizeInBits,
9675                                      bool InvalidateDbg) {
9676   SDNode *FromNode = From.getNode();
9677   SDNode *ToNode = To.getNode();
9678   assert(FromNode && ToNode && "Can't modify dbg values");
9679 
9680   // PR35338
9681   // TODO: assert(From != To && "Redundant dbg value transfer");
9682   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
9683   if (From == To || FromNode == ToNode)
9684     return;
9685 
9686   if (!FromNode->getHasDebugValue())
9687     return;
9688 
9689   SDDbgOperand FromLocOp =
9690       SDDbgOperand::fromNode(From.getNode(), From.getResNo());
9691   SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
9692 
9693   SmallVector<SDDbgValue *, 2> ClonedDVs;
9694   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
9695     if (Dbg->isInvalidated())
9696       continue;
9697 
9698     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
9699 
9700     // Create a new location ops vector that is equal to the old vector, but
9701     // with each instance of FromLocOp replaced with ToLocOp.
9702     bool Changed = false;
9703     auto NewLocOps = Dbg->copyLocationOps();
9704     std::replace_if(
9705         NewLocOps.begin(), NewLocOps.end(),
9706         [&Changed, FromLocOp](const SDDbgOperand &Op) {
9707           bool Match = Op == FromLocOp;
9708           Changed |= Match;
9709           return Match;
9710         },
9711         ToLocOp);
9712     // Ignore this SDDbgValue if we didn't find a matching location.
9713     if (!Changed)
9714       continue;
9715 
9716     DIVariable *Var = Dbg->getVariable();
9717     auto *Expr = Dbg->getExpression();
9718     // If a fragment is requested, update the expression.
9719     if (SizeInBits) {
9720       // When splitting a larger (e.g., sign-extended) value whose
9721       // lower bits are described with an SDDbgValue, do not attempt
9722       // to transfer the SDDbgValue to the upper bits.
9723       if (auto FI = Expr->getFragmentInfo())
9724         if (OffsetInBits + SizeInBits > FI->SizeInBits)
9725           continue;
9726       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
9727                                                              SizeInBits);
9728       if (!Fragment)
9729         continue;
9730       Expr = *Fragment;
9731     }
9732 
9733     auto AdditionalDependencies = Dbg->getAdditionalDependencies();
9734     // Clone the SDDbgValue and move it to To.
9735     SDDbgValue *Clone = getDbgValueList(
9736         Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
9737         Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
9738         Dbg->isVariadic());
9739     ClonedDVs.push_back(Clone);
9740 
9741     if (InvalidateDbg) {
9742       // Invalidate value and indicate the SDDbgValue should not be emitted.
9743       Dbg->setIsInvalidated();
9744       Dbg->setIsEmitted();
9745     }
9746   }
9747 
9748   for (SDDbgValue *Dbg : ClonedDVs) {
9749     assert(is_contained(Dbg->getSDNodes(), ToNode) &&
9750            "Transferred DbgValues should depend on the new SDNode");
9751     AddDbgValue(Dbg, false);
9752   }
9753 }
9754 
9755 void SelectionDAG::salvageDebugInfo(SDNode &N) {
9756   if (!N.getHasDebugValue())
9757     return;
9758 
9759   SmallVector<SDDbgValue *, 2> ClonedDVs;
9760   for (auto DV : GetDbgValues(&N)) {
9761     if (DV->isInvalidated())
9762       continue;
9763     switch (N.getOpcode()) {
9764     default:
9765       break;
9766     case ISD::ADD:
9767       SDValue N0 = N.getOperand(0);
9768       SDValue N1 = N.getOperand(1);
9769       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
9770           isConstantIntBuildVectorOrConstantInt(N1)) {
9771         uint64_t Offset = N.getConstantOperandVal(1);
9772 
9773         // Rewrite an ADD constant node into a DIExpression. Since we are
9774         // performing arithmetic to compute the variable's *value* in the
9775         // DIExpression, we need to mark the expression with a
9776         // DW_OP_stack_value.
9777         auto *DIExpr = DV->getExpression();
9778         auto NewLocOps = DV->copyLocationOps();
9779         bool Changed = false;
9780         for (size_t i = 0; i < NewLocOps.size(); ++i) {
9781           // We're not given a ResNo to compare against because the whole
9782           // node is going away. We know that any ISD::ADD only has one
9783           // result, so we can assume any node match is using the result.
9784           if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
9785               NewLocOps[i].getSDNode() != &N)
9786             continue;
9787           NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
9788           SmallVector<uint64_t, 3> ExprOps;
9789           DIExpression::appendOffset(ExprOps, Offset);
9790           DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
9791           Changed = true;
9792         }
9793         (void)Changed;
9794         assert(Changed && "Salvage target doesn't use N");
9795 
9796         auto AdditionalDependencies = DV->getAdditionalDependencies();
9797         SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr,
9798                                             NewLocOps, AdditionalDependencies,
9799                                             DV->isIndirect(), DV->getDebugLoc(),
9800                                             DV->getOrder(), DV->isVariadic());
9801         ClonedDVs.push_back(Clone);
9802         DV->setIsInvalidated();
9803         DV->setIsEmitted();
9804         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
9805                    N0.getNode()->dumprFull(this);
9806                    dbgs() << " into " << *DIExpr << '\n');
9807       }
9808     }
9809   }
9810 
9811   for (SDDbgValue *Dbg : ClonedDVs) {
9812     assert(!Dbg->getSDNodes().empty() &&
9813            "Salvaged DbgValue should depend on a new SDNode");
9814     AddDbgValue(Dbg, false);
9815   }
9816 }
9817 
9818 /// Creates a SDDbgLabel node.
9819 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
9820                                       const DebugLoc &DL, unsigned O) {
9821   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
9822          "Expected inlined-at fields to agree");
9823   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
9824 }
9825 
9826 namespace {
9827 
9828 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
9829 /// pointed to by a use iterator is deleted, increment the use iterator
9830 /// so that it doesn't dangle.
9831 ///
9832 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
9833   SDNode::use_iterator &UI;
9834   SDNode::use_iterator &UE;
9835 
9836   void NodeDeleted(SDNode *N, SDNode *E) override {
9837     // Increment the iterator as needed.
9838     while (UI != UE && N == *UI)
9839       ++UI;
9840   }
9841 
9842 public:
9843   RAUWUpdateListener(SelectionDAG &d,
9844                      SDNode::use_iterator &ui,
9845                      SDNode::use_iterator &ue)
9846     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
9847 };
9848 
9849 } // end anonymous namespace
9850 
9851 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9852 /// This can cause recursive merging of nodes in the DAG.
9853 ///
9854 /// This version assumes From has a single result value.
9855 ///
9856 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
9857   SDNode *From = FromN.getNode();
9858   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
9859          "Cannot replace with this method!");
9860   assert(From != To.getNode() && "Cannot replace uses of with self");
9861 
9862   // Preserve Debug Values
9863   transferDbgValues(FromN, To);
9864 
9865   // Iterate over all the existing uses of From. New uses will be added
9866   // to the beginning of the use list, which we avoid visiting.
9867   // This specifically avoids visiting uses of From that arise while the
9868   // replacement is happening, because any such uses would be the result
9869   // of CSE: If an existing node looks like From after one of its operands
9870   // is replaced by To, we don't want to replace of all its users with To
9871   // too. See PR3018 for more info.
9872   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9873   RAUWUpdateListener Listener(*this, UI, UE);
9874   while (UI != UE) {
9875     SDNode *User = *UI;
9876 
9877     // This node is about to morph, remove its old self from the CSE maps.
9878     RemoveNodeFromCSEMaps(User);
9879 
9880     // A user can appear in a use list multiple times, and when this
9881     // happens the uses are usually next to each other in the list.
9882     // To help reduce the number of CSE recomputations, process all
9883     // the uses of this user that we can find this way.
9884     do {
9885       SDUse &Use = UI.getUse();
9886       ++UI;
9887       Use.set(To);
9888       if (To->isDivergent() != From->isDivergent())
9889         updateDivergence(User);
9890     } while (UI != UE && *UI == User);
9891     // Now that we have modified User, add it back to the CSE maps.  If it
9892     // already exists there, recursively merge the results together.
9893     AddModifiedNodeToCSEMaps(User);
9894   }
9895 
9896   // If we just RAUW'd the root, take note.
9897   if (FromN == getRoot())
9898     setRoot(To);
9899 }
9900 
9901 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9902 /// This can cause recursive merging of nodes in the DAG.
9903 ///
9904 /// This version assumes that for each value of From, there is a
9905 /// corresponding value in To in the same position with the same type.
9906 ///
9907 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
9908 #ifndef NDEBUG
9909   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9910     assert((!From->hasAnyUseOfValue(i) ||
9911             From->getValueType(i) == To->getValueType(i)) &&
9912            "Cannot use this version of ReplaceAllUsesWith!");
9913 #endif
9914 
9915   // Handle the trivial case.
9916   if (From == To)
9917     return;
9918 
9919   // Preserve Debug Info. Only do this if there's a use.
9920   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9921     if (From->hasAnyUseOfValue(i)) {
9922       assert((i < To->getNumValues()) && "Invalid To location");
9923       transferDbgValues(SDValue(From, i), SDValue(To, i));
9924     }
9925 
9926   // Iterate over just the existing users of From. See the comments in
9927   // the ReplaceAllUsesWith above.
9928   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9929   RAUWUpdateListener Listener(*this, UI, UE);
9930   while (UI != UE) {
9931     SDNode *User = *UI;
9932 
9933     // This node is about to morph, remove its old self from the CSE maps.
9934     RemoveNodeFromCSEMaps(User);
9935 
9936     // A user can appear in a use list multiple times, and when this
9937     // happens the uses are usually next to each other in the list.
9938     // To help reduce the number of CSE recomputations, process all
9939     // the uses of this user that we can find this way.
9940     do {
9941       SDUse &Use = UI.getUse();
9942       ++UI;
9943       Use.setNode(To);
9944       if (To->isDivergent() != From->isDivergent())
9945         updateDivergence(User);
9946     } while (UI != UE && *UI == User);
9947 
9948     // Now that we have modified User, add it back to the CSE maps.  If it
9949     // already exists there, recursively merge the results together.
9950     AddModifiedNodeToCSEMaps(User);
9951   }
9952 
9953   // If we just RAUW'd the root, take note.
9954   if (From == getRoot().getNode())
9955     setRoot(SDValue(To, getRoot().getResNo()));
9956 }
9957 
9958 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9959 /// This can cause recursive merging of nodes in the DAG.
9960 ///
9961 /// This version can replace From with any result values.  To must match the
9962 /// number and types of values returned by From.
9963 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
9964   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
9965     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
9966 
9967   // Preserve Debug Info.
9968   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9969     transferDbgValues(SDValue(From, i), To[i]);
9970 
9971   // Iterate over just the existing users of From. See the comments in
9972   // the ReplaceAllUsesWith above.
9973   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9974   RAUWUpdateListener Listener(*this, UI, UE);
9975   while (UI != UE) {
9976     SDNode *User = *UI;
9977 
9978     // This node is about to morph, remove its old self from the CSE maps.
9979     RemoveNodeFromCSEMaps(User);
9980 
9981     // A user can appear in a use list multiple times, and when this happens the
9982     // uses are usually next to each other in the list.  To help reduce the
9983     // number of CSE and divergence recomputations, process all the uses of this
9984     // user that we can find this way.
9985     bool To_IsDivergent = false;
9986     do {
9987       SDUse &Use = UI.getUse();
9988       const SDValue &ToOp = To[Use.getResNo()];
9989       ++UI;
9990       Use.set(ToOp);
9991       To_IsDivergent |= ToOp->isDivergent();
9992     } while (UI != UE && *UI == User);
9993 
9994     if (To_IsDivergent != From->isDivergent())
9995       updateDivergence(User);
9996 
9997     // Now that we have modified User, add it back to the CSE maps.  If it
9998     // already exists there, recursively merge the results together.
9999     AddModifiedNodeToCSEMaps(User);
10000   }
10001 
10002   // If we just RAUW'd the root, take note.
10003   if (From == getRoot().getNode())
10004     setRoot(SDValue(To[getRoot().getResNo()]));
10005 }
10006 
10007 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
10008 /// uses of other values produced by From.getNode() alone.  The Deleted
10009 /// vector is handled the same way as for ReplaceAllUsesWith.
10010 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
10011   // Handle the really simple, really trivial case efficiently.
10012   if (From == To) return;
10013 
10014   // Handle the simple, trivial, case efficiently.
10015   if (From.getNode()->getNumValues() == 1) {
10016     ReplaceAllUsesWith(From, To);
10017     return;
10018   }
10019 
10020   // Preserve Debug Info.
10021   transferDbgValues(From, To);
10022 
10023   // Iterate over just the existing users of From. See the comments in
10024   // the ReplaceAllUsesWith above.
10025   SDNode::use_iterator UI = From.getNode()->use_begin(),
10026                        UE = From.getNode()->use_end();
10027   RAUWUpdateListener Listener(*this, UI, UE);
10028   while (UI != UE) {
10029     SDNode *User = *UI;
10030     bool UserRemovedFromCSEMaps = false;
10031 
10032     // A user can appear in a use list multiple times, and when this
10033     // happens the uses are usually next to each other in the list.
10034     // To help reduce the number of CSE recomputations, process all
10035     // the uses of this user that we can find this way.
10036     do {
10037       SDUse &Use = UI.getUse();
10038 
10039       // Skip uses of different values from the same node.
10040       if (Use.getResNo() != From.getResNo()) {
10041         ++UI;
10042         continue;
10043       }
10044 
10045       // If this node hasn't been modified yet, it's still in the CSE maps,
10046       // so remove its old self from the CSE maps.
10047       if (!UserRemovedFromCSEMaps) {
10048         RemoveNodeFromCSEMaps(User);
10049         UserRemovedFromCSEMaps = true;
10050       }
10051 
10052       ++UI;
10053       Use.set(To);
10054       if (To->isDivergent() != From->isDivergent())
10055         updateDivergence(User);
10056     } while (UI != UE && *UI == User);
10057     // We are iterating over all uses of the From node, so if a use
10058     // doesn't use the specific value, no changes are made.
10059     if (!UserRemovedFromCSEMaps)
10060       continue;
10061 
10062     // Now that we have modified User, add it back to the CSE maps.  If it
10063     // already exists there, recursively merge the results together.
10064     AddModifiedNodeToCSEMaps(User);
10065   }
10066 
10067   // If we just RAUW'd the root, take note.
10068   if (From == getRoot())
10069     setRoot(To);
10070 }
10071 
10072 namespace {
10073 
10074 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
10075 /// to record information about a use.
10076 struct UseMemo {
10077   SDNode *User;
10078   unsigned Index;
10079   SDUse *Use;
10080 };
10081 
10082 /// operator< - Sort Memos by User.
10083 bool operator<(const UseMemo &L, const UseMemo &R) {
10084   return (intptr_t)L.User < (intptr_t)R.User;
10085 }
10086 
10087 /// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node
10088 /// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that
10089 /// the node already has been taken care of recursively.
10090 class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener {
10091   SmallVector<UseMemo, 4> &Uses;
10092 
10093   void NodeDeleted(SDNode *N, SDNode *E) override {
10094     for (UseMemo &Memo : Uses)
10095       if (Memo.User == N)
10096         Memo.User = nullptr;
10097   }
10098 
10099 public:
10100   RAUOVWUpdateListener(SelectionDAG &d, SmallVector<UseMemo, 4> &uses)
10101       : SelectionDAG::DAGUpdateListener(d), Uses(uses) {}
10102 };
10103 
10104 } // end anonymous namespace
10105 
10106 bool SelectionDAG::calculateDivergence(SDNode *N) {
10107   if (TLI->isSDNodeAlwaysUniform(N)) {
10108     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
10109            "Conflicting divergence information!");
10110     return false;
10111   }
10112   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
10113     return true;
10114   for (auto &Op : N->ops()) {
10115     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
10116       return true;
10117   }
10118   return false;
10119 }
10120 
10121 void SelectionDAG::updateDivergence(SDNode *N) {
10122   SmallVector<SDNode *, 16> Worklist(1, N);
10123   do {
10124     N = Worklist.pop_back_val();
10125     bool IsDivergent = calculateDivergence(N);
10126     if (N->SDNodeBits.IsDivergent != IsDivergent) {
10127       N->SDNodeBits.IsDivergent = IsDivergent;
10128       llvm::append_range(Worklist, N->uses());
10129     }
10130   } while (!Worklist.empty());
10131 }
10132 
10133 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
10134   DenseMap<SDNode *, unsigned> Degree;
10135   Order.reserve(AllNodes.size());
10136   for (auto &N : allnodes()) {
10137     unsigned NOps = N.getNumOperands();
10138     Degree[&N] = NOps;
10139     if (0 == NOps)
10140       Order.push_back(&N);
10141   }
10142   for (size_t I = 0; I != Order.size(); ++I) {
10143     SDNode *N = Order[I];
10144     for (auto U : N->uses()) {
10145       unsigned &UnsortedOps = Degree[U];
10146       if (0 == --UnsortedOps)
10147         Order.push_back(U);
10148     }
10149   }
10150 }
10151 
10152 #ifndef NDEBUG
10153 void SelectionDAG::VerifyDAGDivergence() {
10154   std::vector<SDNode *> TopoOrder;
10155   CreateTopologicalOrder(TopoOrder);
10156   for (auto *N : TopoOrder) {
10157     assert(calculateDivergence(N) == N->isDivergent() &&
10158            "Divergence bit inconsistency detected");
10159   }
10160 }
10161 #endif
10162 
10163 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
10164 /// uses of other values produced by From.getNode() alone.  The same value
10165 /// may appear in both the From and To list.  The Deleted vector is
10166 /// handled the same way as for ReplaceAllUsesWith.
10167 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
10168                                               const SDValue *To,
10169                                               unsigned Num){
10170   // Handle the simple, trivial case efficiently.
10171   if (Num == 1)
10172     return ReplaceAllUsesOfValueWith(*From, *To);
10173 
10174   transferDbgValues(*From, *To);
10175 
10176   // Read up all the uses and make records of them. This helps
10177   // processing new uses that are introduced during the
10178   // replacement process.
10179   SmallVector<UseMemo, 4> Uses;
10180   for (unsigned i = 0; i != Num; ++i) {
10181     unsigned FromResNo = From[i].getResNo();
10182     SDNode *FromNode = From[i].getNode();
10183     for (SDNode::use_iterator UI = FromNode->use_begin(),
10184          E = FromNode->use_end(); UI != E; ++UI) {
10185       SDUse &Use = UI.getUse();
10186       if (Use.getResNo() == FromResNo) {
10187         UseMemo Memo = { *UI, i, &Use };
10188         Uses.push_back(Memo);
10189       }
10190     }
10191   }
10192 
10193   // Sort the uses, so that all the uses from a given User are together.
10194   llvm::sort(Uses);
10195   RAUOVWUpdateListener Listener(*this, Uses);
10196 
10197   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
10198        UseIndex != UseIndexEnd; ) {
10199     // We know that this user uses some value of From.  If it is the right
10200     // value, update it.
10201     SDNode *User = Uses[UseIndex].User;
10202     // If the node has been deleted by recursive CSE updates when updating
10203     // another node, then just skip this entry.
10204     if (User == nullptr) {
10205       ++UseIndex;
10206       continue;
10207     }
10208 
10209     // This node is about to morph, remove its old self from the CSE maps.
10210     RemoveNodeFromCSEMaps(User);
10211 
10212     // The Uses array is sorted, so all the uses for a given User
10213     // are next to each other in the list.
10214     // To help reduce the number of CSE recomputations, process all
10215     // the uses of this user that we can find this way.
10216     do {
10217       unsigned i = Uses[UseIndex].Index;
10218       SDUse &Use = *Uses[UseIndex].Use;
10219       ++UseIndex;
10220 
10221       Use.set(To[i]);
10222     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
10223 
10224     // Now that we have modified User, add it back to the CSE maps.  If it
10225     // already exists there, recursively merge the results together.
10226     AddModifiedNodeToCSEMaps(User);
10227   }
10228 }
10229 
10230 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
10231 /// based on their topological order. It returns the maximum id and a vector
10232 /// of the SDNodes* in assigned order by reference.
10233 unsigned SelectionDAG::AssignTopologicalOrder() {
10234   unsigned DAGSize = 0;
10235 
10236   // SortedPos tracks the progress of the algorithm. Nodes before it are
10237   // sorted, nodes after it are unsorted. When the algorithm completes
10238   // it is at the end of the list.
10239   allnodes_iterator SortedPos = allnodes_begin();
10240 
10241   // Visit all the nodes. Move nodes with no operands to the front of
10242   // the list immediately. Annotate nodes that do have operands with their
10243   // operand count. Before we do this, the Node Id fields of the nodes
10244   // may contain arbitrary values. After, the Node Id fields for nodes
10245   // before SortedPos will contain the topological sort index, and the
10246   // Node Id fields for nodes At SortedPos and after will contain the
10247   // count of outstanding operands.
10248   for (SDNode &N : llvm::make_early_inc_range(allnodes())) {
10249     checkForCycles(&N, this);
10250     unsigned Degree = N.getNumOperands();
10251     if (Degree == 0) {
10252       // A node with no uses, add it to the result array immediately.
10253       N.setNodeId(DAGSize++);
10254       allnodes_iterator Q(&N);
10255       if (Q != SortedPos)
10256         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
10257       assert(SortedPos != AllNodes.end() && "Overran node list");
10258       ++SortedPos;
10259     } else {
10260       // Temporarily use the Node Id as scratch space for the degree count.
10261       N.setNodeId(Degree);
10262     }
10263   }
10264 
10265   // Visit all the nodes. As we iterate, move nodes into sorted order,
10266   // such that by the time the end is reached all nodes will be sorted.
10267   for (SDNode &Node : allnodes()) {
10268     SDNode *N = &Node;
10269     checkForCycles(N, this);
10270     // N is in sorted position, so all its uses have one less operand
10271     // that needs to be sorted.
10272     for (SDNode *P : N->uses()) {
10273       unsigned Degree = P->getNodeId();
10274       assert(Degree != 0 && "Invalid node degree");
10275       --Degree;
10276       if (Degree == 0) {
10277         // All of P's operands are sorted, so P may sorted now.
10278         P->setNodeId(DAGSize++);
10279         if (P->getIterator() != SortedPos)
10280           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
10281         assert(SortedPos != AllNodes.end() && "Overran node list");
10282         ++SortedPos;
10283       } else {
10284         // Update P's outstanding operand count.
10285         P->setNodeId(Degree);
10286       }
10287     }
10288     if (Node.getIterator() == SortedPos) {
10289 #ifndef NDEBUG
10290       allnodes_iterator I(N);
10291       SDNode *S = &*++I;
10292       dbgs() << "Overran sorted position:\n";
10293       S->dumprFull(this); dbgs() << "\n";
10294       dbgs() << "Checking if this is due to cycles\n";
10295       checkForCycles(this, true);
10296 #endif
10297       llvm_unreachable(nullptr);
10298     }
10299   }
10300 
10301   assert(SortedPos == AllNodes.end() &&
10302          "Topological sort incomplete!");
10303   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
10304          "First node in topological sort is not the entry token!");
10305   assert(AllNodes.front().getNodeId() == 0 &&
10306          "First node in topological sort has non-zero id!");
10307   assert(AllNodes.front().getNumOperands() == 0 &&
10308          "First node in topological sort has operands!");
10309   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
10310          "Last node in topologic sort has unexpected id!");
10311   assert(AllNodes.back().use_empty() &&
10312          "Last node in topologic sort has users!");
10313   assert(DAGSize == allnodes_size() && "Node count mismatch!");
10314   return DAGSize;
10315 }
10316 
10317 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
10318 /// value is produced by SD.
10319 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
10320   for (SDNode *SD : DB->getSDNodes()) {
10321     if (!SD)
10322       continue;
10323     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
10324     SD->setHasDebugValue(true);
10325   }
10326   DbgInfo->add(DB, isParameter);
10327 }
10328 
10329 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
10330 
10331 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
10332                                                    SDValue NewMemOpChain) {
10333   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
10334   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
10335   // The new memory operation must have the same position as the old load in
10336   // terms of memory dependency. Create a TokenFactor for the old load and new
10337   // memory operation and update uses of the old load's output chain to use that
10338   // TokenFactor.
10339   if (OldChain == NewMemOpChain || OldChain.use_empty())
10340     return NewMemOpChain;
10341 
10342   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
10343                                 OldChain, NewMemOpChain);
10344   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
10345   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
10346   return TokenFactor;
10347 }
10348 
10349 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
10350                                                    SDValue NewMemOp) {
10351   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
10352   SDValue OldChain = SDValue(OldLoad, 1);
10353   SDValue NewMemOpChain = NewMemOp.getValue(1);
10354   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
10355 }
10356 
10357 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
10358                                                      Function **OutFunction) {
10359   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
10360 
10361   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
10362   auto *Module = MF->getFunction().getParent();
10363   auto *Function = Module->getFunction(Symbol);
10364 
10365   if (OutFunction != nullptr)
10366       *OutFunction = Function;
10367 
10368   if (Function != nullptr) {
10369     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
10370     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
10371   }
10372 
10373   std::string ErrorStr;
10374   raw_string_ostream ErrorFormatter(ErrorStr);
10375   ErrorFormatter << "Undefined external symbol ";
10376   ErrorFormatter << '"' << Symbol << '"';
10377   report_fatal_error(Twine(ErrorFormatter.str()));
10378 }
10379 
10380 //===----------------------------------------------------------------------===//
10381 //                              SDNode Class
10382 //===----------------------------------------------------------------------===//
10383 
10384 bool llvm::isNullConstant(SDValue V) {
10385   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
10386   return Const != nullptr && Const->isZero();
10387 }
10388 
10389 bool llvm::isNullFPConstant(SDValue V) {
10390   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
10391   return Const != nullptr && Const->isZero() && !Const->isNegative();
10392 }
10393 
10394 bool llvm::isAllOnesConstant(SDValue V) {
10395   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
10396   return Const != nullptr && Const->isAllOnes();
10397 }
10398 
10399 bool llvm::isOneConstant(SDValue V) {
10400   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
10401   return Const != nullptr && Const->isOne();
10402 }
10403 
10404 bool llvm::isMinSignedConstant(SDValue V) {
10405   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
10406   return Const != nullptr && Const->isMinSignedValue();
10407 }
10408 
10409 SDValue llvm::peekThroughBitcasts(SDValue V) {
10410   while (V.getOpcode() == ISD::BITCAST)
10411     V = V.getOperand(0);
10412   return V;
10413 }
10414 
10415 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
10416   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
10417     V = V.getOperand(0);
10418   return V;
10419 }
10420 
10421 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
10422   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
10423     V = V.getOperand(0);
10424   return V;
10425 }
10426 
10427 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
10428   if (V.getOpcode() != ISD::XOR)
10429     return false;
10430   V = peekThroughBitcasts(V.getOperand(1));
10431   unsigned NumBits = V.getScalarValueSizeInBits();
10432   ConstantSDNode *C =
10433       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
10434   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
10435 }
10436 
10437 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
10438                                           bool AllowTruncation) {
10439   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
10440     return CN;
10441 
10442   // SplatVectors can truncate their operands. Ignore that case here unless
10443   // AllowTruncation is set.
10444   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
10445     EVT VecEltVT = N->getValueType(0).getVectorElementType();
10446     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10447       EVT CVT = CN->getValueType(0);
10448       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
10449       if (AllowTruncation || CVT == VecEltVT)
10450         return CN;
10451     }
10452   }
10453 
10454   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10455     BitVector UndefElements;
10456     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
10457 
10458     // BuildVectors can truncate their operands. Ignore that case here unless
10459     // AllowTruncation is set.
10460     if (CN && (UndefElements.none() || AllowUndefs)) {
10461       EVT CVT = CN->getValueType(0);
10462       EVT NSVT = N.getValueType().getScalarType();
10463       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10464       if (AllowTruncation || (CVT == NSVT))
10465         return CN;
10466     }
10467   }
10468 
10469   return nullptr;
10470 }
10471 
10472 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
10473                                           bool AllowUndefs,
10474                                           bool AllowTruncation) {
10475   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
10476     return CN;
10477 
10478   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10479     BitVector UndefElements;
10480     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
10481 
10482     // BuildVectors can truncate their operands. Ignore that case here unless
10483     // AllowTruncation is set.
10484     if (CN && (UndefElements.none() || AllowUndefs)) {
10485       EVT CVT = CN->getValueType(0);
10486       EVT NSVT = N.getValueType().getScalarType();
10487       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10488       if (AllowTruncation || (CVT == NSVT))
10489         return CN;
10490     }
10491   }
10492 
10493   return nullptr;
10494 }
10495 
10496 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
10497   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10498     return CN;
10499 
10500   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10501     BitVector UndefElements;
10502     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
10503     if (CN && (UndefElements.none() || AllowUndefs))
10504       return CN;
10505   }
10506 
10507   if (N.getOpcode() == ISD::SPLAT_VECTOR)
10508     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
10509       return CN;
10510 
10511   return nullptr;
10512 }
10513 
10514 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
10515                                               const APInt &DemandedElts,
10516                                               bool AllowUndefs) {
10517   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10518     return CN;
10519 
10520   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10521     BitVector UndefElements;
10522     ConstantFPSDNode *CN =
10523         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
10524     if (CN && (UndefElements.none() || AllowUndefs))
10525       return CN;
10526   }
10527 
10528   return nullptr;
10529 }
10530 
10531 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
10532   // TODO: may want to use peekThroughBitcast() here.
10533   ConstantSDNode *C =
10534       isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
10535   return C && C->isZero();
10536 }
10537 
10538 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
10539   // TODO: may want to use peekThroughBitcast() here.
10540   unsigned BitWidth = N.getScalarValueSizeInBits();
10541   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10542   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
10543 }
10544 
10545 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
10546   N = peekThroughBitcasts(N);
10547   unsigned BitWidth = N.getScalarValueSizeInBits();
10548   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10549   return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth;
10550 }
10551 
10552 HandleSDNode::~HandleSDNode() {
10553   DropOperands();
10554 }
10555 
10556 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
10557                                          const DebugLoc &DL,
10558                                          const GlobalValue *GA, EVT VT,
10559                                          int64_t o, unsigned TF)
10560     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
10561   TheGlobal = GA;
10562 }
10563 
10564 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
10565                                          EVT VT, unsigned SrcAS,
10566                                          unsigned DestAS)
10567     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
10568       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
10569 
10570 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
10571                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
10572     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
10573   MemSDNodeBits.IsVolatile = MMO->isVolatile();
10574   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
10575   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
10576   MemSDNodeBits.IsInvariant = MMO->isInvariant();
10577 
10578   // We check here that the size of the memory operand fits within the size of
10579   // the MMO. This is because the MMO might indicate only a possible address
10580   // range instead of specifying the affected memory addresses precisely.
10581   // TODO: Make MachineMemOperands aware of scalable vectors.
10582   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
10583          "Size mismatch!");
10584 }
10585 
10586 /// Profile - Gather unique data for the node.
10587 ///
10588 void SDNode::Profile(FoldingSetNodeID &ID) const {
10589   AddNodeIDNode(ID, this);
10590 }
10591 
10592 namespace {
10593 
10594   struct EVTArray {
10595     std::vector<EVT> VTs;
10596 
10597     EVTArray() {
10598       VTs.reserve(MVT::VALUETYPE_SIZE);
10599       for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
10600         VTs.push_back(MVT((MVT::SimpleValueType)i));
10601     }
10602   };
10603 
10604 } // end anonymous namespace
10605 
10606 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
10607 static ManagedStatic<EVTArray> SimpleVTArray;
10608 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
10609 
10610 /// getValueTypeList - Return a pointer to the specified value type.
10611 ///
10612 const EVT *SDNode::getValueTypeList(EVT VT) {
10613   if (VT.isExtended()) {
10614     sys::SmartScopedLock<true> Lock(*VTMutex);
10615     return &(*EVTs->insert(VT).first);
10616   }
10617   assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!");
10618   return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
10619 }
10620 
10621 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
10622 /// indicated value.  This method ignores uses of other values defined by this
10623 /// operation.
10624 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
10625   assert(Value < getNumValues() && "Bad value!");
10626 
10627   // TODO: Only iterate over uses of a given value of the node
10628   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
10629     if (UI.getUse().getResNo() == Value) {
10630       if (NUses == 0)
10631         return false;
10632       --NUses;
10633     }
10634   }
10635 
10636   // Found exactly the right number of uses?
10637   return NUses == 0;
10638 }
10639 
10640 /// hasAnyUseOfValue - Return true if there are any use of the indicated
10641 /// value. This method ignores uses of other values defined by this operation.
10642 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
10643   assert(Value < getNumValues() && "Bad value!");
10644 
10645   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
10646     if (UI.getUse().getResNo() == Value)
10647       return true;
10648 
10649   return false;
10650 }
10651 
10652 /// isOnlyUserOf - Return true if this node is the only use of N.
10653 bool SDNode::isOnlyUserOf(const SDNode *N) const {
10654   bool Seen = false;
10655   for (const SDNode *User : N->uses()) {
10656     if (User == this)
10657       Seen = true;
10658     else
10659       return false;
10660   }
10661 
10662   return Seen;
10663 }
10664 
10665 /// Return true if the only users of N are contained in Nodes.
10666 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
10667   bool Seen = false;
10668   for (const SDNode *User : N->uses()) {
10669     if (llvm::is_contained(Nodes, User))
10670       Seen = true;
10671     else
10672       return false;
10673   }
10674 
10675   return Seen;
10676 }
10677 
10678 /// isOperand - Return true if this node is an operand of N.
10679 bool SDValue::isOperandOf(const SDNode *N) const {
10680   return is_contained(N->op_values(), *this);
10681 }
10682 
10683 bool SDNode::isOperandOf(const SDNode *N) const {
10684   return any_of(N->op_values(),
10685                 [this](SDValue Op) { return this == Op.getNode(); });
10686 }
10687 
10688 /// reachesChainWithoutSideEffects - Return true if this operand (which must
10689 /// be a chain) reaches the specified operand without crossing any
10690 /// side-effecting instructions on any chain path.  In practice, this looks
10691 /// through token factors and non-volatile loads.  In order to remain efficient,
10692 /// this only looks a couple of nodes in, it does not do an exhaustive search.
10693 ///
10694 /// Note that we only need to examine chains when we're searching for
10695 /// side-effects; SelectionDAG requires that all side-effects are represented
10696 /// by chains, even if another operand would force a specific ordering. This
10697 /// constraint is necessary to allow transformations like splitting loads.
10698 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
10699                                              unsigned Depth) const {
10700   if (*this == Dest) return true;
10701 
10702   // Don't search too deeply, we just want to be able to see through
10703   // TokenFactor's etc.
10704   if (Depth == 0) return false;
10705 
10706   // If this is a token factor, all inputs to the TF happen in parallel.
10707   if (getOpcode() == ISD::TokenFactor) {
10708     // First, try a shallow search.
10709     if (is_contained((*this)->ops(), Dest)) {
10710       // We found the chain we want as an operand of this TokenFactor.
10711       // Essentially, we reach the chain without side-effects if we could
10712       // serialize the TokenFactor into a simple chain of operations with
10713       // Dest as the last operation. This is automatically true if the
10714       // chain has one use: there are no other ordering constraints.
10715       // If the chain has more than one use, we give up: some other
10716       // use of Dest might force a side-effect between Dest and the current
10717       // node.
10718       if (Dest.hasOneUse())
10719         return true;
10720     }
10721     // Next, try a deep search: check whether every operand of the TokenFactor
10722     // reaches Dest.
10723     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
10724       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
10725     });
10726   }
10727 
10728   // Loads don't have side effects, look through them.
10729   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
10730     if (Ld->isUnordered())
10731       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
10732   }
10733   return false;
10734 }
10735 
10736 bool SDNode::hasPredecessor(const SDNode *N) const {
10737   SmallPtrSet<const SDNode *, 32> Visited;
10738   SmallVector<const SDNode *, 16> Worklist;
10739   Worklist.push_back(this);
10740   return hasPredecessorHelper(N, Visited, Worklist);
10741 }
10742 
10743 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
10744   this->Flags.intersectWith(Flags);
10745 }
10746 
10747 SDValue
10748 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
10749                                   ArrayRef<ISD::NodeType> CandidateBinOps,
10750                                   bool AllowPartials) {
10751   // The pattern must end in an extract from index 0.
10752   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10753       !isNullConstant(Extract->getOperand(1)))
10754     return SDValue();
10755 
10756   // Match against one of the candidate binary ops.
10757   SDValue Op = Extract->getOperand(0);
10758   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
10759         return Op.getOpcode() == unsigned(BinOp);
10760       }))
10761     return SDValue();
10762 
10763   // Floating-point reductions may require relaxed constraints on the final step
10764   // of the reduction because they may reorder intermediate operations.
10765   unsigned CandidateBinOp = Op.getOpcode();
10766   if (Op.getValueType().isFloatingPoint()) {
10767     SDNodeFlags Flags = Op->getFlags();
10768     switch (CandidateBinOp) {
10769     case ISD::FADD:
10770       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
10771         return SDValue();
10772       break;
10773     default:
10774       llvm_unreachable("Unhandled FP opcode for binop reduction");
10775     }
10776   }
10777 
10778   // Matching failed - attempt to see if we did enough stages that a partial
10779   // reduction from a subvector is possible.
10780   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
10781     if (!AllowPartials || !Op)
10782       return SDValue();
10783     EVT OpVT = Op.getValueType();
10784     EVT OpSVT = OpVT.getScalarType();
10785     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
10786     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
10787       return SDValue();
10788     BinOp = (ISD::NodeType)CandidateBinOp;
10789     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
10790                    getVectorIdxConstant(0, SDLoc(Op)));
10791   };
10792 
10793   // At each stage, we're looking for something that looks like:
10794   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
10795   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
10796   //                               i32 undef, i32 undef, i32 undef, i32 undef>
10797   // %a = binop <8 x i32> %op, %s
10798   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
10799   // we expect something like:
10800   // <4,5,6,7,u,u,u,u>
10801   // <2,3,u,u,u,u,u,u>
10802   // <1,u,u,u,u,u,u,u>
10803   // While a partial reduction match would be:
10804   // <2,3,u,u,u,u,u,u>
10805   // <1,u,u,u,u,u,u,u>
10806   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
10807   SDValue PrevOp;
10808   for (unsigned i = 0; i < Stages; ++i) {
10809     unsigned MaskEnd = (1 << i);
10810 
10811     if (Op.getOpcode() != CandidateBinOp)
10812       return PartialReduction(PrevOp, MaskEnd);
10813 
10814     SDValue Op0 = Op.getOperand(0);
10815     SDValue Op1 = Op.getOperand(1);
10816 
10817     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
10818     if (Shuffle) {
10819       Op = Op1;
10820     } else {
10821       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
10822       Op = Op0;
10823     }
10824 
10825     // The first operand of the shuffle should be the same as the other operand
10826     // of the binop.
10827     if (!Shuffle || Shuffle->getOperand(0) != Op)
10828       return PartialReduction(PrevOp, MaskEnd);
10829 
10830     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
10831     for (int Index = 0; Index < (int)MaskEnd; ++Index)
10832       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
10833         return PartialReduction(PrevOp, MaskEnd);
10834 
10835     PrevOp = Op;
10836   }
10837 
10838   // Handle subvector reductions, which tend to appear after the shuffle
10839   // reduction stages.
10840   while (Op.getOpcode() == CandidateBinOp) {
10841     unsigned NumElts = Op.getValueType().getVectorNumElements();
10842     SDValue Op0 = Op.getOperand(0);
10843     SDValue Op1 = Op.getOperand(1);
10844     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10845         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10846         Op0.getOperand(0) != Op1.getOperand(0))
10847       break;
10848     SDValue Src = Op0.getOperand(0);
10849     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
10850     if (NumSrcElts != (2 * NumElts))
10851       break;
10852     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
10853           Op1.getConstantOperandAPInt(1) == NumElts) &&
10854         !(Op1.getConstantOperandAPInt(1) == 0 &&
10855           Op0.getConstantOperandAPInt(1) == NumElts))
10856       break;
10857     Op = Src;
10858   }
10859 
10860   BinOp = (ISD::NodeType)CandidateBinOp;
10861   return Op;
10862 }
10863 
10864 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
10865   assert(N->getNumValues() == 1 &&
10866          "Can't unroll a vector with multiple results!");
10867 
10868   EVT VT = N->getValueType(0);
10869   unsigned NE = VT.getVectorNumElements();
10870   EVT EltVT = VT.getVectorElementType();
10871   SDLoc dl(N);
10872 
10873   SmallVector<SDValue, 8> Scalars;
10874   SmallVector<SDValue, 4> Operands(N->getNumOperands());
10875 
10876   // If ResNE is 0, fully unroll the vector op.
10877   if (ResNE == 0)
10878     ResNE = NE;
10879   else if (NE > ResNE)
10880     NE = ResNE;
10881 
10882   unsigned i;
10883   for (i= 0; i != NE; ++i) {
10884     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
10885       SDValue Operand = N->getOperand(j);
10886       EVT OperandVT = Operand.getValueType();
10887       if (OperandVT.isVector()) {
10888         // A vector operand; extract a single element.
10889         EVT OperandEltVT = OperandVT.getVectorElementType();
10890         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
10891                               Operand, getVectorIdxConstant(i, dl));
10892       } else {
10893         // A scalar operand; just use it as is.
10894         Operands[j] = Operand;
10895       }
10896     }
10897 
10898     switch (N->getOpcode()) {
10899     default: {
10900       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
10901                                 N->getFlags()));
10902       break;
10903     }
10904     case ISD::VSELECT:
10905       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
10906       break;
10907     case ISD::SHL:
10908     case ISD::SRA:
10909     case ISD::SRL:
10910     case ISD::ROTL:
10911     case ISD::ROTR:
10912       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
10913                                getShiftAmountOperand(Operands[0].getValueType(),
10914                                                      Operands[1])));
10915       break;
10916     case ISD::SIGN_EXTEND_INREG: {
10917       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
10918       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
10919                                 Operands[0],
10920                                 getValueType(ExtVT)));
10921     }
10922     }
10923   }
10924 
10925   for (; i < ResNE; ++i)
10926     Scalars.push_back(getUNDEF(EltVT));
10927 
10928   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
10929   return getBuildVector(VecVT, dl, Scalars);
10930 }
10931 
10932 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
10933     SDNode *N, unsigned ResNE) {
10934   unsigned Opcode = N->getOpcode();
10935   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
10936           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
10937           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
10938          "Expected an overflow opcode");
10939 
10940   EVT ResVT = N->getValueType(0);
10941   EVT OvVT = N->getValueType(1);
10942   EVT ResEltVT = ResVT.getVectorElementType();
10943   EVT OvEltVT = OvVT.getVectorElementType();
10944   SDLoc dl(N);
10945 
10946   // If ResNE is 0, fully unroll the vector op.
10947   unsigned NE = ResVT.getVectorNumElements();
10948   if (ResNE == 0)
10949     ResNE = NE;
10950   else if (NE > ResNE)
10951     NE = ResNE;
10952 
10953   SmallVector<SDValue, 8> LHSScalars;
10954   SmallVector<SDValue, 8> RHSScalars;
10955   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
10956   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
10957 
10958   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
10959   SDVTList VTs = getVTList(ResEltVT, SVT);
10960   SmallVector<SDValue, 8> ResScalars;
10961   SmallVector<SDValue, 8> OvScalars;
10962   for (unsigned i = 0; i < NE; ++i) {
10963     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
10964     SDValue Ov =
10965         getSelect(dl, OvEltVT, Res.getValue(1),
10966                   getBoolConstant(true, dl, OvEltVT, ResVT),
10967                   getConstant(0, dl, OvEltVT));
10968 
10969     ResScalars.push_back(Res);
10970     OvScalars.push_back(Ov);
10971   }
10972 
10973   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
10974   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
10975 
10976   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
10977   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
10978   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
10979                         getBuildVector(NewOvVT, dl, OvScalars));
10980 }
10981 
10982 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
10983                                                   LoadSDNode *Base,
10984                                                   unsigned Bytes,
10985                                                   int Dist) const {
10986   if (LD->isVolatile() || Base->isVolatile())
10987     return false;
10988   // TODO: probably too restrictive for atomics, revisit
10989   if (!LD->isSimple())
10990     return false;
10991   if (LD->isIndexed() || Base->isIndexed())
10992     return false;
10993   if (LD->getChain() != Base->getChain())
10994     return false;
10995   EVT VT = LD->getValueType(0);
10996   if (VT.getSizeInBits() / 8 != Bytes)
10997     return false;
10998 
10999   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
11000   auto LocDecomp = BaseIndexOffset::match(LD, *this);
11001 
11002   int64_t Offset = 0;
11003   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
11004     return (Dist * Bytes == Offset);
11005   return false;
11006 }
11007 
11008 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
11009 /// if it cannot be inferred.
11010 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
11011   // If this is a GlobalAddress + cst, return the alignment.
11012   const GlobalValue *GV = nullptr;
11013   int64_t GVOffset = 0;
11014   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
11015     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
11016     KnownBits Known(PtrWidth);
11017     llvm::computeKnownBits(GV, Known, getDataLayout());
11018     unsigned AlignBits = Known.countMinTrailingZeros();
11019     if (AlignBits)
11020       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
11021   }
11022 
11023   // If this is a direct reference to a stack slot, use information about the
11024   // stack slot's alignment.
11025   int FrameIdx = INT_MIN;
11026   int64_t FrameOffset = 0;
11027   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
11028     FrameIdx = FI->getIndex();
11029   } else if (isBaseWithConstantOffset(Ptr) &&
11030              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
11031     // Handle FI+Cst
11032     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
11033     FrameOffset = Ptr.getConstantOperandVal(1);
11034   }
11035 
11036   if (FrameIdx != INT_MIN) {
11037     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
11038     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
11039   }
11040 
11041   return None;
11042 }
11043 
11044 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
11045 /// which is split (or expanded) into two not necessarily identical pieces.
11046 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
11047   // Currently all types are split in half.
11048   EVT LoVT, HiVT;
11049   if (!VT.isVector())
11050     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
11051   else
11052     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
11053 
11054   return std::make_pair(LoVT, HiVT);
11055 }
11056 
11057 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
11058 /// type, dependent on an enveloping VT that has been split into two identical
11059 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
11060 std::pair<EVT, EVT>
11061 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
11062                                        bool *HiIsEmpty) const {
11063   EVT EltTp = VT.getVectorElementType();
11064   // Examples:
11065   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
11066   //   custom VL=9  with enveloping VL=8/8 yields 8/1
11067   //   custom VL=10 with enveloping VL=8/8 yields 8/2
11068   //   etc.
11069   ElementCount VTNumElts = VT.getVectorElementCount();
11070   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
11071   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
11072          "Mixing fixed width and scalable vectors when enveloping a type");
11073   EVT LoVT, HiVT;
11074   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
11075     LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
11076     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
11077     *HiIsEmpty = false;
11078   } else {
11079     // Flag that hi type has zero storage size, but return split envelop type
11080     // (this would be easier if vector types with zero elements were allowed).
11081     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
11082     HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
11083     *HiIsEmpty = true;
11084   }
11085   return std::make_pair(LoVT, HiVT);
11086 }
11087 
11088 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
11089 /// low/high part.
11090 std::pair<SDValue, SDValue>
11091 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
11092                           const EVT &HiVT) {
11093   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
11094          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
11095          "Splitting vector with an invalid mixture of fixed and scalable "
11096          "vector types");
11097   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
11098              N.getValueType().getVectorMinNumElements() &&
11099          "More vector elements requested than available!");
11100   SDValue Lo, Hi;
11101   Lo =
11102       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
11103   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
11104   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
11105   // IDX with the runtime scaling factor of the result vector type. For
11106   // fixed-width result vectors, that runtime scaling factor is 1.
11107   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
11108                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
11109   return std::make_pair(Lo, Hi);
11110 }
11111 
11112 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT,
11113                                                    const SDLoc &DL) {
11114   // Split the vector length parameter.
11115   // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts).
11116   EVT VT = N.getValueType();
11117   assert(VecVT.getVectorElementCount().isKnownEven() &&
11118          "Expecting the mask to be an evenly-sized vector");
11119   unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2;
11120   SDValue HalfNumElts =
11121       VecVT.isFixedLengthVector()
11122           ? getConstant(HalfMinNumElts, DL, VT)
11123           : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts));
11124   SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts);
11125   SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts);
11126   return std::make_pair(Lo, Hi);
11127 }
11128 
11129 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
11130 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
11131   EVT VT = N.getValueType();
11132   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
11133                                 NextPowerOf2(VT.getVectorNumElements()));
11134   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
11135                  getVectorIdxConstant(0, DL));
11136 }
11137 
11138 void SelectionDAG::ExtractVectorElements(SDValue Op,
11139                                          SmallVectorImpl<SDValue> &Args,
11140                                          unsigned Start, unsigned Count,
11141                                          EVT EltVT) {
11142   EVT VT = Op.getValueType();
11143   if (Count == 0)
11144     Count = VT.getVectorNumElements();
11145   if (EltVT == EVT())
11146     EltVT = VT.getVectorElementType();
11147   SDLoc SL(Op);
11148   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
11149     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
11150                            getVectorIdxConstant(i, SL)));
11151   }
11152 }
11153 
11154 // getAddressSpace - Return the address space this GlobalAddress belongs to.
11155 unsigned GlobalAddressSDNode::getAddressSpace() const {
11156   return getGlobal()->getType()->getAddressSpace();
11157 }
11158 
11159 Type *ConstantPoolSDNode::getType() const {
11160   if (isMachineConstantPoolEntry())
11161     return Val.MachineCPVal->getType();
11162   return Val.ConstVal->getType();
11163 }
11164 
11165 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
11166                                         unsigned &SplatBitSize,
11167                                         bool &HasAnyUndefs,
11168                                         unsigned MinSplatBits,
11169                                         bool IsBigEndian) const {
11170   EVT VT = getValueType(0);
11171   assert(VT.isVector() && "Expected a vector type");
11172   unsigned VecWidth = VT.getSizeInBits();
11173   if (MinSplatBits > VecWidth)
11174     return false;
11175 
11176   // FIXME: The widths are based on this node's type, but build vectors can
11177   // truncate their operands.
11178   SplatValue = APInt(VecWidth, 0);
11179   SplatUndef = APInt(VecWidth, 0);
11180 
11181   // Get the bits. Bits with undefined values (when the corresponding element
11182   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
11183   // in SplatValue. If any of the values are not constant, give up and return
11184   // false.
11185   unsigned int NumOps = getNumOperands();
11186   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
11187   unsigned EltWidth = VT.getScalarSizeInBits();
11188 
11189   for (unsigned j = 0; j < NumOps; ++j) {
11190     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
11191     SDValue OpVal = getOperand(i);
11192     unsigned BitPos = j * EltWidth;
11193 
11194     if (OpVal.isUndef())
11195       SplatUndef.setBits(BitPos, BitPos + EltWidth);
11196     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
11197       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
11198     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
11199       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
11200     else
11201       return false;
11202   }
11203 
11204   // The build_vector is all constants or undefs. Find the smallest element
11205   // size that splats the vector.
11206   HasAnyUndefs = (SplatUndef != 0);
11207 
11208   // FIXME: This does not work for vectors with elements less than 8 bits.
11209   while (VecWidth > 8) {
11210     unsigned HalfSize = VecWidth / 2;
11211     APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
11212     APInt LowValue = SplatValue.extractBits(HalfSize, 0);
11213     APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
11214     APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
11215 
11216     // If the two halves do not match (ignoring undef bits), stop here.
11217     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
11218         MinSplatBits > HalfSize)
11219       break;
11220 
11221     SplatValue = HighValue | LowValue;
11222     SplatUndef = HighUndef & LowUndef;
11223 
11224     VecWidth = HalfSize;
11225   }
11226 
11227   SplatBitSize = VecWidth;
11228   return true;
11229 }
11230 
11231 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
11232                                          BitVector *UndefElements) const {
11233   unsigned NumOps = getNumOperands();
11234   if (UndefElements) {
11235     UndefElements->clear();
11236     UndefElements->resize(NumOps);
11237   }
11238   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
11239   if (!DemandedElts)
11240     return SDValue();
11241   SDValue Splatted;
11242   for (unsigned i = 0; i != NumOps; ++i) {
11243     if (!DemandedElts[i])
11244       continue;
11245     SDValue Op = getOperand(i);
11246     if (Op.isUndef()) {
11247       if (UndefElements)
11248         (*UndefElements)[i] = true;
11249     } else if (!Splatted) {
11250       Splatted = Op;
11251     } else if (Splatted != Op) {
11252       return SDValue();
11253     }
11254   }
11255 
11256   if (!Splatted) {
11257     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
11258     assert(getOperand(FirstDemandedIdx).isUndef() &&
11259            "Can only have a splat without a constant for all undefs.");
11260     return getOperand(FirstDemandedIdx);
11261   }
11262 
11263   return Splatted;
11264 }
11265 
11266 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
11267   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
11268   return getSplatValue(DemandedElts, UndefElements);
11269 }
11270 
11271 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
11272                                             SmallVectorImpl<SDValue> &Sequence,
11273                                             BitVector *UndefElements) const {
11274   unsigned NumOps = getNumOperands();
11275   Sequence.clear();
11276   if (UndefElements) {
11277     UndefElements->clear();
11278     UndefElements->resize(NumOps);
11279   }
11280   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
11281   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
11282     return false;
11283 
11284   // Set the undefs even if we don't find a sequence (like getSplatValue).
11285   if (UndefElements)
11286     for (unsigned I = 0; I != NumOps; ++I)
11287       if (DemandedElts[I] && getOperand(I).isUndef())
11288         (*UndefElements)[I] = true;
11289 
11290   // Iteratively widen the sequence length looking for repetitions.
11291   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
11292     Sequence.append(SeqLen, SDValue());
11293     for (unsigned I = 0; I != NumOps; ++I) {
11294       if (!DemandedElts[I])
11295         continue;
11296       SDValue &SeqOp = Sequence[I % SeqLen];
11297       SDValue Op = getOperand(I);
11298       if (Op.isUndef()) {
11299         if (!SeqOp)
11300           SeqOp = Op;
11301         continue;
11302       }
11303       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
11304         Sequence.clear();
11305         break;
11306       }
11307       SeqOp = Op;
11308     }
11309     if (!Sequence.empty())
11310       return true;
11311   }
11312 
11313   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
11314   return false;
11315 }
11316 
11317 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
11318                                             BitVector *UndefElements) const {
11319   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
11320   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
11321 }
11322 
11323 ConstantSDNode *
11324 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
11325                                         BitVector *UndefElements) const {
11326   return dyn_cast_or_null<ConstantSDNode>(
11327       getSplatValue(DemandedElts, UndefElements));
11328 }
11329 
11330 ConstantSDNode *
11331 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
11332   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
11333 }
11334 
11335 ConstantFPSDNode *
11336 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
11337                                           BitVector *UndefElements) const {
11338   return dyn_cast_or_null<ConstantFPSDNode>(
11339       getSplatValue(DemandedElts, UndefElements));
11340 }
11341 
11342 ConstantFPSDNode *
11343 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
11344   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
11345 }
11346 
11347 int32_t
11348 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
11349                                                    uint32_t BitWidth) const {
11350   if (ConstantFPSDNode *CN =
11351           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
11352     bool IsExact;
11353     APSInt IntVal(BitWidth);
11354     const APFloat &APF = CN->getValueAPF();
11355     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
11356             APFloat::opOK ||
11357         !IsExact)
11358       return -1;
11359 
11360     return IntVal.exactLogBase2();
11361   }
11362   return -1;
11363 }
11364 
11365 bool BuildVectorSDNode::getConstantRawBits(
11366     bool IsLittleEndian, unsigned DstEltSizeInBits,
11367     SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const {
11368   // Early-out if this contains anything but Undef/Constant/ConstantFP.
11369   if (!isConstant())
11370     return false;
11371 
11372   unsigned NumSrcOps = getNumOperands();
11373   unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits();
11374   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
11375          "Invalid bitcast scale");
11376 
11377   // Extract raw src bits.
11378   SmallVector<APInt> SrcBitElements(NumSrcOps,
11379                                     APInt::getNullValue(SrcEltSizeInBits));
11380   BitVector SrcUndeElements(NumSrcOps, false);
11381 
11382   for (unsigned I = 0; I != NumSrcOps; ++I) {
11383     SDValue Op = getOperand(I);
11384     if (Op.isUndef()) {
11385       SrcUndeElements.set(I);
11386       continue;
11387     }
11388     auto *CInt = dyn_cast<ConstantSDNode>(Op);
11389     auto *CFP = dyn_cast<ConstantFPSDNode>(Op);
11390     assert((CInt || CFP) && "Unknown constant");
11391     SrcBitElements[I] =
11392         CInt ? CInt->getAPIntValue().truncOrSelf(SrcEltSizeInBits)
11393              : CFP->getValueAPF().bitcastToAPInt();
11394   }
11395 
11396   // Recast to dst width.
11397   recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
11398                 SrcBitElements, UndefElements, SrcUndeElements);
11399   return true;
11400 }
11401 
11402 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian,
11403                                       unsigned DstEltSizeInBits,
11404                                       SmallVectorImpl<APInt> &DstBitElements,
11405                                       ArrayRef<APInt> SrcBitElements,
11406                                       BitVector &DstUndefElements,
11407                                       const BitVector &SrcUndefElements) {
11408   unsigned NumSrcOps = SrcBitElements.size();
11409   unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
11410   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
11411          "Invalid bitcast scale");
11412   assert(NumSrcOps == SrcUndefElements.size() &&
11413          "Vector size mismatch");
11414 
11415   unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
11416   DstUndefElements.clear();
11417   DstUndefElements.resize(NumDstOps, false);
11418   DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits));
11419 
11420   // Concatenate src elements constant bits together into dst element.
11421   if (SrcEltSizeInBits <= DstEltSizeInBits) {
11422     unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
11423     for (unsigned I = 0; I != NumDstOps; ++I) {
11424       DstUndefElements.set(I);
11425       APInt &DstBits = DstBitElements[I];
11426       for (unsigned J = 0; J != Scale; ++J) {
11427         unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
11428         if (SrcUndefElements[Idx])
11429           continue;
11430         DstUndefElements.reset(I);
11431         const APInt &SrcBits = SrcBitElements[Idx];
11432         assert(SrcBits.getBitWidth() == SrcEltSizeInBits &&
11433                "Illegal constant bitwidths");
11434         DstBits.insertBits(SrcBits, J * SrcEltSizeInBits);
11435       }
11436     }
11437     return;
11438   }
11439 
11440   // Split src element constant bits into dst elements.
11441   unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
11442   for (unsigned I = 0; I != NumSrcOps; ++I) {
11443     if (SrcUndefElements[I]) {
11444       DstUndefElements.set(I * Scale, (I + 1) * Scale);
11445       continue;
11446     }
11447     const APInt &SrcBits = SrcBitElements[I];
11448     for (unsigned J = 0; J != Scale; ++J) {
11449       unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
11450       APInt &DstBits = DstBitElements[Idx];
11451       DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
11452     }
11453   }
11454 }
11455 
11456 bool BuildVectorSDNode::isConstant() const {
11457   for (const SDValue &Op : op_values()) {
11458     unsigned Opc = Op.getOpcode();
11459     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
11460       return false;
11461   }
11462   return true;
11463 }
11464 
11465 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
11466   // Find the first non-undef value in the shuffle mask.
11467   unsigned i, e;
11468   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
11469     /* search */;
11470 
11471   // If all elements are undefined, this shuffle can be considered a splat
11472   // (although it should eventually get simplified away completely).
11473   if (i == e)
11474     return true;
11475 
11476   // Make sure all remaining elements are either undef or the same as the first
11477   // non-undef value.
11478   for (int Idx = Mask[i]; i != e; ++i)
11479     if (Mask[i] >= 0 && Mask[i] != Idx)
11480       return false;
11481   return true;
11482 }
11483 
11484 // Returns the SDNode if it is a constant integer BuildVector
11485 // or constant integer.
11486 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
11487   if (isa<ConstantSDNode>(N))
11488     return N.getNode();
11489   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
11490     return N.getNode();
11491   // Treat a GlobalAddress supporting constant offset folding as a
11492   // constant integer.
11493   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
11494     if (GA->getOpcode() == ISD::GlobalAddress &&
11495         TLI->isOffsetFoldingLegal(GA))
11496       return GA;
11497   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
11498       isa<ConstantSDNode>(N.getOperand(0)))
11499     return N.getNode();
11500   return nullptr;
11501 }
11502 
11503 // Returns the SDNode if it is a constant float BuildVector
11504 // or constant float.
11505 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
11506   if (isa<ConstantFPSDNode>(N))
11507     return N.getNode();
11508 
11509   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
11510     return N.getNode();
11511 
11512   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
11513       isa<ConstantFPSDNode>(N.getOperand(0)))
11514     return N.getNode();
11515 
11516   return nullptr;
11517 }
11518 
11519 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
11520   assert(!Node->OperandList && "Node already has operands");
11521   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
11522          "too many operands to fit into SDNode");
11523   SDUse *Ops = OperandRecycler.allocate(
11524       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
11525 
11526   bool IsDivergent = false;
11527   for (unsigned I = 0; I != Vals.size(); ++I) {
11528     Ops[I].setUser(Node);
11529     Ops[I].setInitial(Vals[I]);
11530     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
11531       IsDivergent |= Ops[I].getNode()->isDivergent();
11532   }
11533   Node->NumOperands = Vals.size();
11534   Node->OperandList = Ops;
11535   if (!TLI->isSDNodeAlwaysUniform(Node)) {
11536     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
11537     Node->SDNodeBits.IsDivergent = IsDivergent;
11538   }
11539   checkForCycles(Node);
11540 }
11541 
11542 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
11543                                      SmallVectorImpl<SDValue> &Vals) {
11544   size_t Limit = SDNode::getMaxNumOperands();
11545   while (Vals.size() > Limit) {
11546     unsigned SliceIdx = Vals.size() - Limit;
11547     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
11548     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
11549     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
11550     Vals.emplace_back(NewTF);
11551   }
11552   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
11553 }
11554 
11555 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
11556                                         EVT VT, SDNodeFlags Flags) {
11557   switch (Opcode) {
11558   default:
11559     return SDValue();
11560   case ISD::ADD:
11561   case ISD::OR:
11562   case ISD::XOR:
11563   case ISD::UMAX:
11564     return getConstant(0, DL, VT);
11565   case ISD::MUL:
11566     return getConstant(1, DL, VT);
11567   case ISD::AND:
11568   case ISD::UMIN:
11569     return getAllOnesConstant(DL, VT);
11570   case ISD::SMAX:
11571     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
11572   case ISD::SMIN:
11573     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
11574   case ISD::FADD:
11575     return getConstantFP(-0.0, DL, VT);
11576   case ISD::FMUL:
11577     return getConstantFP(1.0, DL, VT);
11578   case ISD::FMINNUM:
11579   case ISD::FMAXNUM: {
11580     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
11581     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
11582     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
11583                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
11584                         APFloat::getLargest(Semantics);
11585     if (Opcode == ISD::FMAXNUM)
11586       NeutralAF.changeSign();
11587 
11588     return getConstantFP(NeutralAF, DL, VT);
11589   }
11590   }
11591 }
11592 
11593 #ifndef NDEBUG
11594 static void checkForCyclesHelper(const SDNode *N,
11595                                  SmallPtrSetImpl<const SDNode*> &Visited,
11596                                  SmallPtrSetImpl<const SDNode*> &Checked,
11597                                  const llvm::SelectionDAG *DAG) {
11598   // If this node has already been checked, don't check it again.
11599   if (Checked.count(N))
11600     return;
11601 
11602   // If a node has already been visited on this depth-first walk, reject it as
11603   // a cycle.
11604   if (!Visited.insert(N).second) {
11605     errs() << "Detected cycle in SelectionDAG\n";
11606     dbgs() << "Offending node:\n";
11607     N->dumprFull(DAG); dbgs() << "\n";
11608     abort();
11609   }
11610 
11611   for (const SDValue &Op : N->op_values())
11612     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
11613 
11614   Checked.insert(N);
11615   Visited.erase(N);
11616 }
11617 #endif
11618 
11619 void llvm::checkForCycles(const llvm::SDNode *N,
11620                           const llvm::SelectionDAG *DAG,
11621                           bool force) {
11622 #ifndef NDEBUG
11623   bool check = force;
11624 #ifdef EXPENSIVE_CHECKS
11625   check = true;
11626 #endif  // EXPENSIVE_CHECKS
11627   if (check) {
11628     assert(N && "Checking nonexistent SDNode");
11629     SmallPtrSet<const SDNode*, 32> visited;
11630     SmallPtrSet<const SDNode*, 32> checked;
11631     checkForCyclesHelper(N, visited, checked, DAG);
11632   }
11633 #endif  // !NDEBUG
11634 }
11635 
11636 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
11637   checkForCycles(DAG->getRoot().getNode(), DAG, force);
11638 }
11639