1 //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the SelectionDAG class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/SelectionDAG.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 28 #include "llvm/IR/CallingConv.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/GlobalAlias.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/ManagedStatic.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/Mutex.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Target/TargetInstrInfo.h" 44 #include "llvm/Target/TargetIntrinsicInfo.h" 45 #include "llvm/Target/TargetLowering.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include "llvm/Target/TargetRegisterInfo.h" 49 #include "llvm/Target/TargetSubtargetInfo.h" 50 #include <algorithm> 51 #include <cmath> 52 #include <utility> 53 54 using namespace llvm; 55 56 /// makeVTList - Return an instance of the SDVTList struct initialized with the 57 /// specified members. 58 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 59 SDVTList Res = {VTs, NumVTs}; 60 return Res; 61 } 62 63 // Default null implementations of the callbacks. 64 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 65 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 66 67 //===----------------------------------------------------------------------===// 68 // ConstantFPSDNode Class 69 //===----------------------------------------------------------------------===// 70 71 /// isExactlyValue - We don't rely on operator== working on double values, as 72 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 73 /// As such, this method can be used to do an exact bit-for-bit comparison of 74 /// two floating point values. 75 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 76 return getValueAPF().bitwiseIsEqual(V); 77 } 78 79 bool ConstantFPSDNode::isValueValidForType(EVT VT, 80 const APFloat& Val) { 81 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 82 83 // convert modifies in place, so make a copy. 84 APFloat Val2 = APFloat(Val); 85 bool losesInfo; 86 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 87 APFloat::rmNearestTiesToEven, 88 &losesInfo); 89 return !losesInfo; 90 } 91 92 //===----------------------------------------------------------------------===// 93 // ISD Namespace 94 //===----------------------------------------------------------------------===// 95 96 /// isBuildVectorAllOnes - Return true if the specified node is a 97 /// BUILD_VECTOR where all of the elements are ~0 or undef. 98 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 99 // Look through a bit convert. 100 while (N->getOpcode() == ISD::BITCAST) 101 N = N->getOperand(0).getNode(); 102 103 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 104 105 unsigned i = 0, e = N->getNumOperands(); 106 107 // Skip over all of the undef values. 108 while (i != e && N->getOperand(i).isUndef()) 109 ++i; 110 111 // Do not accept an all-undef vector. 112 if (i == e) return false; 113 114 // Do not accept build_vectors that aren't all constants or which have non-~0 115 // elements. We have to be a bit careful here, as the type of the constant 116 // may not be the same as the type of the vector elements due to type 117 // legalization (the elements are promoted to a legal type for the target and 118 // a vector of a type may be legal when the base element type is not). 119 // We only want to check enough bits to cover the vector elements, because 120 // we care if the resultant vector is all ones, not whether the individual 121 // constants are. 122 SDValue NotZero = N->getOperand(i); 123 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 124 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 125 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 126 return false; 127 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 128 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 129 return false; 130 } else 131 return false; 132 133 // Okay, we have at least one ~0 value, check to see if the rest match or are 134 // undefs. Even with the above element type twiddling, this should be OK, as 135 // the same type legalization should have applied to all the elements. 136 for (++i; i != e; ++i) 137 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 138 return false; 139 return true; 140 } 141 142 143 /// isBuildVectorAllZeros - Return true if the specified node is a 144 /// BUILD_VECTOR where all of the elements are 0 or undef. 145 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 146 // Look through a bit convert. 147 while (N->getOpcode() == ISD::BITCAST) 148 N = N->getOperand(0).getNode(); 149 150 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 151 152 bool IsAllUndef = true; 153 for (const SDValue &Op : N->op_values()) { 154 if (Op.isUndef()) 155 continue; 156 IsAllUndef = false; 157 // Do not accept build_vectors that aren't all constants or which have non-0 158 // elements. We have to be a bit careful here, as the type of the constant 159 // may not be the same as the type of the vector elements due to type 160 // legalization (the elements are promoted to a legal type for the target 161 // and a vector of a type may be legal when the base element type is not). 162 // We only want to check enough bits to cover the vector elements, because 163 // we care if the resultant vector is all zeros, not whether the individual 164 // constants are. 165 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 166 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 167 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 168 return false; 169 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 170 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 171 return false; 172 } else 173 return false; 174 } 175 176 // Do not accept an all-undef vector. 177 if (IsAllUndef) 178 return false; 179 return true; 180 } 181 182 /// \brief Return true if the specified node is a BUILD_VECTOR node of 183 /// all ConstantSDNode or undef. 184 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 185 if (N->getOpcode() != ISD::BUILD_VECTOR) 186 return false; 187 188 for (const SDValue &Op : N->op_values()) { 189 if (Op.isUndef()) 190 continue; 191 if (!isa<ConstantSDNode>(Op)) 192 return false; 193 } 194 return true; 195 } 196 197 /// \brief Return true if the specified node is a BUILD_VECTOR node of 198 /// all ConstantFPSDNode or undef. 199 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 200 if (N->getOpcode() != ISD::BUILD_VECTOR) 201 return false; 202 203 for (const SDValue &Op : N->op_values()) { 204 if (Op.isUndef()) 205 continue; 206 if (!isa<ConstantFPSDNode>(Op)) 207 return false; 208 } 209 return true; 210 } 211 212 /// allOperandsUndef - Return true if the node has at least one operand 213 /// and all operands of the specified node are ISD::UNDEF. 214 bool ISD::allOperandsUndef(const SDNode *N) { 215 // Return false if the node has no operands. 216 // This is "logically inconsistent" with the definition of "all" but 217 // is probably the desired behavior. 218 if (N->getNumOperands() == 0) 219 return false; 220 221 for (const SDValue &Op : N->op_values()) 222 if (!Op.isUndef()) 223 return false; 224 225 return true; 226 } 227 228 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 229 switch (ExtType) { 230 case ISD::EXTLOAD: 231 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 232 case ISD::SEXTLOAD: 233 return ISD::SIGN_EXTEND; 234 case ISD::ZEXTLOAD: 235 return ISD::ZERO_EXTEND; 236 default: 237 break; 238 } 239 240 llvm_unreachable("Invalid LoadExtType"); 241 } 242 243 /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X) 244 /// when given the operation for (X op Y). 245 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 246 // To perform this operation, we just need to swap the L and G bits of the 247 // operation. 248 unsigned OldL = (Operation >> 2) & 1; 249 unsigned OldG = (Operation >> 1) & 1; 250 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 251 (OldL << 1) | // New G bit 252 (OldG << 2)); // New L bit. 253 } 254 255 /// getSetCCInverse - Return the operation corresponding to !(X op Y), where 256 /// 'op' is a valid SetCC operation. 257 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { 258 unsigned Operation = Op; 259 if (isInteger) 260 Operation ^= 7; // Flip L, G, E bits, but not U. 261 else 262 Operation ^= 15; // Flip all of the condition bits. 263 264 if (Operation > ISD::SETTRUE2) 265 Operation &= ~8; // Don't let N and U bits get set. 266 267 return ISD::CondCode(Operation); 268 } 269 270 271 /// isSignedOp - For an integer comparison, return 1 if the comparison is a 272 /// signed operation and 2 if the result is an unsigned comparison. Return zero 273 /// if the operation does not depend on the sign of the input (setne and seteq). 274 static int isSignedOp(ISD::CondCode Opcode) { 275 switch (Opcode) { 276 default: llvm_unreachable("Illegal integer setcc operation!"); 277 case ISD::SETEQ: 278 case ISD::SETNE: return 0; 279 case ISD::SETLT: 280 case ISD::SETLE: 281 case ISD::SETGT: 282 case ISD::SETGE: return 1; 283 case ISD::SETULT: 284 case ISD::SETULE: 285 case ISD::SETUGT: 286 case ISD::SETUGE: return 2; 287 } 288 } 289 290 /// getSetCCOrOperation - Return the result of a logical OR between different 291 /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function 292 /// returns SETCC_INVALID if it is not possible to represent the resultant 293 /// comparison. 294 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 295 bool isInteger) { 296 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 297 // Cannot fold a signed integer setcc with an unsigned integer setcc. 298 return ISD::SETCC_INVALID; 299 300 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 301 302 // If the N and U bits get set then the resultant comparison DOES suddenly 303 // care about orderedness, and is true when ordered. 304 if (Op > ISD::SETTRUE2) 305 Op &= ~16; // Clear the U bit if the N bit is set. 306 307 // Canonicalize illegal integer setcc's. 308 if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 309 Op = ISD::SETNE; 310 311 return ISD::CondCode(Op); 312 } 313 314 /// getSetCCAndOperation - Return the result of a logical AND between different 315 /// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This 316 /// function returns zero if it is not possible to represent the resultant 317 /// comparison. 318 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 319 bool isInteger) { 320 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 321 // Cannot fold a signed setcc with an unsigned setcc. 322 return ISD::SETCC_INVALID; 323 324 // Combine all of the condition bits. 325 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 326 327 // Canonicalize illegal integer setcc's. 328 if (isInteger) { 329 switch (Result) { 330 default: break; 331 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 332 case ISD::SETOEQ: // SETEQ & SETU[LG]E 333 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 334 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 335 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 336 } 337 } 338 339 return Result; 340 } 341 342 //===----------------------------------------------------------------------===// 343 // SDNode Profile Support 344 //===----------------------------------------------------------------------===// 345 346 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 347 /// 348 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 349 ID.AddInteger(OpC); 350 } 351 352 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 353 /// solely with their pointer. 354 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 355 ID.AddPointer(VTList.VTs); 356 } 357 358 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 359 /// 360 static void AddNodeIDOperands(FoldingSetNodeID &ID, 361 ArrayRef<SDValue> Ops) { 362 for (auto& Op : Ops) { 363 ID.AddPointer(Op.getNode()); 364 ID.AddInteger(Op.getResNo()); 365 } 366 } 367 368 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 369 /// 370 static void AddNodeIDOperands(FoldingSetNodeID &ID, 371 ArrayRef<SDUse> Ops) { 372 for (auto& Op : Ops) { 373 ID.AddPointer(Op.getNode()); 374 ID.AddInteger(Op.getResNo()); 375 } 376 } 377 378 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 379 SDVTList VTList, ArrayRef<SDValue> OpList) { 380 AddNodeIDOpcode(ID, OpC); 381 AddNodeIDValueTypes(ID, VTList); 382 AddNodeIDOperands(ID, OpList); 383 } 384 385 /// If this is an SDNode with special info, add this info to the NodeID data. 386 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 387 switch (N->getOpcode()) { 388 case ISD::TargetExternalSymbol: 389 case ISD::ExternalSymbol: 390 case ISD::MCSymbol: 391 llvm_unreachable("Should only be used on nodes with operands"); 392 default: break; // Normal nodes don't need extra info. 393 case ISD::TargetConstant: 394 case ISD::Constant: { 395 const ConstantSDNode *C = cast<ConstantSDNode>(N); 396 ID.AddPointer(C->getConstantIntValue()); 397 ID.AddBoolean(C->isOpaque()); 398 break; 399 } 400 case ISD::TargetConstantFP: 401 case ISD::ConstantFP: { 402 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 403 break; 404 } 405 case ISD::TargetGlobalAddress: 406 case ISD::GlobalAddress: 407 case ISD::TargetGlobalTLSAddress: 408 case ISD::GlobalTLSAddress: { 409 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 410 ID.AddPointer(GA->getGlobal()); 411 ID.AddInteger(GA->getOffset()); 412 ID.AddInteger(GA->getTargetFlags()); 413 ID.AddInteger(GA->getAddressSpace()); 414 break; 415 } 416 case ISD::BasicBlock: 417 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 418 break; 419 case ISD::Register: 420 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 421 break; 422 case ISD::RegisterMask: 423 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 424 break; 425 case ISD::SRCVALUE: 426 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 427 break; 428 case ISD::FrameIndex: 429 case ISD::TargetFrameIndex: 430 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 431 break; 432 case ISD::JumpTable: 433 case ISD::TargetJumpTable: 434 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 435 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 436 break; 437 case ISD::ConstantPool: 438 case ISD::TargetConstantPool: { 439 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 440 ID.AddInteger(CP->getAlignment()); 441 ID.AddInteger(CP->getOffset()); 442 if (CP->isMachineConstantPoolEntry()) 443 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 444 else 445 ID.AddPointer(CP->getConstVal()); 446 ID.AddInteger(CP->getTargetFlags()); 447 break; 448 } 449 case ISD::TargetIndex: { 450 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 451 ID.AddInteger(TI->getIndex()); 452 ID.AddInteger(TI->getOffset()); 453 ID.AddInteger(TI->getTargetFlags()); 454 break; 455 } 456 case ISD::LOAD: { 457 const LoadSDNode *LD = cast<LoadSDNode>(N); 458 ID.AddInteger(LD->getMemoryVT().getRawBits()); 459 ID.AddInteger(LD->getRawSubclassData()); 460 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 461 break; 462 } 463 case ISD::STORE: { 464 const StoreSDNode *ST = cast<StoreSDNode>(N); 465 ID.AddInteger(ST->getMemoryVT().getRawBits()); 466 ID.AddInteger(ST->getRawSubclassData()); 467 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 468 break; 469 } 470 case ISD::ATOMIC_CMP_SWAP: 471 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 472 case ISD::ATOMIC_SWAP: 473 case ISD::ATOMIC_LOAD_ADD: 474 case ISD::ATOMIC_LOAD_SUB: 475 case ISD::ATOMIC_LOAD_AND: 476 case ISD::ATOMIC_LOAD_OR: 477 case ISD::ATOMIC_LOAD_XOR: 478 case ISD::ATOMIC_LOAD_NAND: 479 case ISD::ATOMIC_LOAD_MIN: 480 case ISD::ATOMIC_LOAD_MAX: 481 case ISD::ATOMIC_LOAD_UMIN: 482 case ISD::ATOMIC_LOAD_UMAX: 483 case ISD::ATOMIC_LOAD: 484 case ISD::ATOMIC_STORE: { 485 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 486 ID.AddInteger(AT->getMemoryVT().getRawBits()); 487 ID.AddInteger(AT->getRawSubclassData()); 488 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 489 break; 490 } 491 case ISD::PREFETCH: { 492 const MemSDNode *PF = cast<MemSDNode>(N); 493 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 494 break; 495 } 496 case ISD::VECTOR_SHUFFLE: { 497 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 498 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 499 i != e; ++i) 500 ID.AddInteger(SVN->getMaskElt(i)); 501 break; 502 } 503 case ISD::TargetBlockAddress: 504 case ISD::BlockAddress: { 505 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 506 ID.AddPointer(BA->getBlockAddress()); 507 ID.AddInteger(BA->getOffset()); 508 ID.AddInteger(BA->getTargetFlags()); 509 break; 510 } 511 } // end switch (N->getOpcode()) 512 513 // Target specific memory nodes could also have address spaces to check. 514 if (N->isTargetMemoryOpcode()) 515 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 516 } 517 518 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 519 /// data. 520 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 521 AddNodeIDOpcode(ID, N->getOpcode()); 522 // Add the return value info. 523 AddNodeIDValueTypes(ID, N->getVTList()); 524 // Add the operand info. 525 AddNodeIDOperands(ID, N->ops()); 526 527 // Handle SDNode leafs with special info. 528 AddNodeIDCustom(ID, N); 529 } 530 531 /// encodeMemSDNodeFlags - Generic routine for computing a value for use in 532 /// the CSE map that carries volatility, temporalness, indexing mode, and 533 /// extension/truncation information. 534 /// 535 static inline unsigned 536 encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile, 537 bool isNonTemporal, bool isInvariant) { 538 assert((ConvType & 3) == ConvType && 539 "ConvType may not require more than 2 bits!"); 540 assert((AM & 7) == AM && 541 "AM may not require more than 3 bits!"); 542 return ConvType | 543 (AM << 2) | 544 (isVolatile << 5) | 545 (isNonTemporal << 6) | 546 (isInvariant << 7); 547 } 548 549 //===----------------------------------------------------------------------===// 550 // SelectionDAG Class 551 //===----------------------------------------------------------------------===// 552 553 /// doNotCSE - Return true if CSE should not be performed for this node. 554 static bool doNotCSE(SDNode *N) { 555 if (N->getValueType(0) == MVT::Glue) 556 return true; // Never CSE anything that produces a flag. 557 558 switch (N->getOpcode()) { 559 default: break; 560 case ISD::HANDLENODE: 561 case ISD::EH_LABEL: 562 return true; // Never CSE these nodes. 563 } 564 565 // Check that remaining values produced are not flags. 566 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 567 if (N->getValueType(i) == MVT::Glue) 568 return true; // Never CSE anything that produces a flag. 569 570 return false; 571 } 572 573 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 574 /// SelectionDAG. 575 void SelectionDAG::RemoveDeadNodes() { 576 // Create a dummy node (which is not added to allnodes), that adds a reference 577 // to the root node, preventing it from being deleted. 578 HandleSDNode Dummy(getRoot()); 579 580 SmallVector<SDNode*, 128> DeadNodes; 581 582 // Add all obviously-dead nodes to the DeadNodes worklist. 583 for (SDNode &Node : allnodes()) 584 if (Node.use_empty()) 585 DeadNodes.push_back(&Node); 586 587 RemoveDeadNodes(DeadNodes); 588 589 // If the root changed (e.g. it was a dead load, update the root). 590 setRoot(Dummy.getValue()); 591 } 592 593 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 594 /// given list, and any nodes that become unreachable as a result. 595 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 596 597 // Process the worklist, deleting the nodes and adding their uses to the 598 // worklist. 599 while (!DeadNodes.empty()) { 600 SDNode *N = DeadNodes.pop_back_val(); 601 602 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 603 DUL->NodeDeleted(N, nullptr); 604 605 // Take the node out of the appropriate CSE map. 606 RemoveNodeFromCSEMaps(N); 607 608 // Next, brutally remove the operand list. This is safe to do, as there are 609 // no cycles in the graph. 610 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 611 SDUse &Use = *I++; 612 SDNode *Operand = Use.getNode(); 613 Use.set(SDValue()); 614 615 // Now that we removed this operand, see if there are no uses of it left. 616 if (Operand->use_empty()) 617 DeadNodes.push_back(Operand); 618 } 619 620 DeallocateNode(N); 621 } 622 } 623 624 void SelectionDAG::RemoveDeadNode(SDNode *N){ 625 SmallVector<SDNode*, 16> DeadNodes(1, N); 626 627 // Create a dummy node that adds a reference to the root node, preventing 628 // it from being deleted. (This matters if the root is an operand of the 629 // dead node.) 630 HandleSDNode Dummy(getRoot()); 631 632 RemoveDeadNodes(DeadNodes); 633 } 634 635 void SelectionDAG::DeleteNode(SDNode *N) { 636 // First take this out of the appropriate CSE map. 637 RemoveNodeFromCSEMaps(N); 638 639 // Finally, remove uses due to operands of this node, remove from the 640 // AllNodes list, and delete the node. 641 DeleteNodeNotInCSEMaps(N); 642 } 643 644 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 645 assert(N->getIterator() != AllNodes.begin() && 646 "Cannot delete the entry node!"); 647 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 648 649 // Drop all of the operands and decrement used node's use counts. 650 N->DropOperands(); 651 652 DeallocateNode(N); 653 } 654 655 void SDDbgInfo::erase(const SDNode *Node) { 656 DbgValMapType::iterator I = DbgValMap.find(Node); 657 if (I == DbgValMap.end()) 658 return; 659 for (auto &Val: I->second) 660 Val->setIsInvalidated(); 661 DbgValMap.erase(I); 662 } 663 664 void SelectionDAG::DeallocateNode(SDNode *N) { 665 // If we have operands, deallocate them. 666 removeOperands(N); 667 668 // Set the opcode to DELETED_NODE to help catch bugs when node 669 // memory is reallocated. 670 N->NodeType = ISD::DELETED_NODE; 671 672 NodeAllocator.Deallocate(AllNodes.remove(N)); 673 674 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 675 // them and forget about that node. 676 DbgInfo->erase(N); 677 } 678 679 #ifndef NDEBUG 680 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 681 static void VerifySDNode(SDNode *N) { 682 switch (N->getOpcode()) { 683 default: 684 break; 685 case ISD::BUILD_PAIR: { 686 EVT VT = N->getValueType(0); 687 assert(N->getNumValues() == 1 && "Too many results!"); 688 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 689 "Wrong return type!"); 690 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 691 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 692 "Mismatched operand types!"); 693 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 694 "Wrong operand type!"); 695 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 696 "Wrong return type size"); 697 break; 698 } 699 case ISD::BUILD_VECTOR: { 700 assert(N->getNumValues() == 1 && "Too many results!"); 701 assert(N->getValueType(0).isVector() && "Wrong return type!"); 702 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 703 "Wrong number of operands!"); 704 EVT EltVT = N->getValueType(0).getVectorElementType(); 705 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 706 assert((I->getValueType() == EltVT || 707 (EltVT.isInteger() && I->getValueType().isInteger() && 708 EltVT.bitsLE(I->getValueType()))) && 709 "Wrong operand type!"); 710 assert(I->getValueType() == N->getOperand(0).getValueType() && 711 "Operands must all have the same type"); 712 } 713 break; 714 } 715 } 716 } 717 #endif // NDEBUG 718 719 /// \brief Insert a newly allocated node into the DAG. 720 /// 721 /// Handles insertion into the all nodes list and CSE map, as well as 722 /// verification and other common operations when a new node is allocated. 723 void SelectionDAG::InsertNode(SDNode *N) { 724 AllNodes.push_back(N); 725 #ifndef NDEBUG 726 N->PersistentId = NextPersistentId++; 727 VerifySDNode(N); 728 #endif 729 } 730 731 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 732 /// correspond to it. This is useful when we're about to delete or repurpose 733 /// the node. We don't want future request for structurally identical nodes 734 /// to return N anymore. 735 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 736 bool Erased = false; 737 switch (N->getOpcode()) { 738 case ISD::HANDLENODE: return false; // noop. 739 case ISD::CONDCODE: 740 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 741 "Cond code doesn't exist!"); 742 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 743 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 744 break; 745 case ISD::ExternalSymbol: 746 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 747 break; 748 case ISD::TargetExternalSymbol: { 749 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 750 Erased = TargetExternalSymbols.erase( 751 std::pair<std::string,unsigned char>(ESN->getSymbol(), 752 ESN->getTargetFlags())); 753 break; 754 } 755 case ISD::MCSymbol: { 756 auto *MCSN = cast<MCSymbolSDNode>(N); 757 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 758 break; 759 } 760 case ISD::VALUETYPE: { 761 EVT VT = cast<VTSDNode>(N)->getVT(); 762 if (VT.isExtended()) { 763 Erased = ExtendedValueTypeNodes.erase(VT); 764 } else { 765 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 766 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 767 } 768 break; 769 } 770 default: 771 // Remove it from the CSE Map. 772 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 773 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 774 Erased = CSEMap.RemoveNode(N); 775 break; 776 } 777 #ifndef NDEBUG 778 // Verify that the node was actually in one of the CSE maps, unless it has a 779 // flag result (which cannot be CSE'd) or is one of the special cases that are 780 // not subject to CSE. 781 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 782 !N->isMachineOpcode() && !doNotCSE(N)) { 783 N->dump(this); 784 dbgs() << "\n"; 785 llvm_unreachable("Node is not in map!"); 786 } 787 #endif 788 return Erased; 789 } 790 791 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 792 /// maps and modified in place. Add it back to the CSE maps, unless an identical 793 /// node already exists, in which case transfer all its users to the existing 794 /// node. This transfer can potentially trigger recursive merging. 795 /// 796 void 797 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 798 // For node types that aren't CSE'd, just act as if no identical node 799 // already exists. 800 if (!doNotCSE(N)) { 801 SDNode *Existing = CSEMap.GetOrInsertNode(N); 802 if (Existing != N) { 803 // If there was already an existing matching node, use ReplaceAllUsesWith 804 // to replace the dead one with the existing one. This can cause 805 // recursive merging of other unrelated nodes down the line. 806 ReplaceAllUsesWith(N, Existing); 807 808 // N is now dead. Inform the listeners and delete it. 809 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 810 DUL->NodeDeleted(N, Existing); 811 DeleteNodeNotInCSEMaps(N); 812 return; 813 } 814 } 815 816 // If the node doesn't already exist, we updated it. Inform listeners. 817 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 818 DUL->NodeUpdated(N); 819 } 820 821 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 822 /// were replaced with those specified. If this node is never memoized, 823 /// return null, otherwise return a pointer to the slot it would take. If a 824 /// node already exists with these operands, the slot will be non-null. 825 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 826 void *&InsertPos) { 827 if (doNotCSE(N)) 828 return nullptr; 829 830 SDValue Ops[] = { Op }; 831 FoldingSetNodeID ID; 832 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 833 AddNodeIDCustom(ID, N); 834 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 835 if (Node) 836 if (const SDNodeFlags *Flags = N->getFlags()) 837 Node->intersectFlagsWith(Flags); 838 return Node; 839 } 840 841 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 842 /// were replaced with those specified. If this node is never memoized, 843 /// return null, otherwise return a pointer to the slot it would take. If a 844 /// node already exists with these operands, the slot will be non-null. 845 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 846 SDValue Op1, SDValue Op2, 847 void *&InsertPos) { 848 if (doNotCSE(N)) 849 return nullptr; 850 851 SDValue Ops[] = { Op1, Op2 }; 852 FoldingSetNodeID ID; 853 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 854 AddNodeIDCustom(ID, N); 855 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 856 if (Node) 857 if (const SDNodeFlags *Flags = N->getFlags()) 858 Node->intersectFlagsWith(Flags); 859 return Node; 860 } 861 862 863 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 864 /// were replaced with those specified. If this node is never memoized, 865 /// return null, otherwise return a pointer to the slot it would take. If a 866 /// node already exists with these operands, the slot will be non-null. 867 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 868 void *&InsertPos) { 869 if (doNotCSE(N)) 870 return nullptr; 871 872 FoldingSetNodeID ID; 873 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 874 AddNodeIDCustom(ID, N); 875 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 876 if (Node) 877 if (const SDNodeFlags *Flags = N->getFlags()) 878 Node->intersectFlagsWith(Flags); 879 return Node; 880 } 881 882 /// getEVTAlignment - Compute the default alignment value for the 883 /// given type. 884 /// 885 unsigned SelectionDAG::getEVTAlignment(EVT VT) const { 886 Type *Ty = VT == MVT::iPTR ? 887 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 888 VT.getTypeForEVT(*getContext()); 889 890 return getDataLayout().getABITypeAlignment(Ty); 891 } 892 893 // EntryNode could meaningfully have debug info if we can find it... 894 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 895 : TM(tm), TSI(nullptr), TLI(nullptr), OptLevel(OL), 896 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 897 Root(getEntryNode()), NewNodesMustHaveLegalTypes(false), 898 UpdateListeners(nullptr) { 899 InsertNode(&EntryNode); 900 DbgInfo = new SDDbgInfo(); 901 } 902 903 void SelectionDAG::init(MachineFunction &mf) { 904 MF = &mf; 905 TLI = getSubtarget().getTargetLowering(); 906 TSI = getSubtarget().getSelectionDAGInfo(); 907 Context = &mf.getFunction()->getContext(); 908 } 909 910 SelectionDAG::~SelectionDAG() { 911 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 912 allnodes_clear(); 913 OperandRecycler.clear(OperandAllocator); 914 delete DbgInfo; 915 } 916 917 void SelectionDAG::allnodes_clear() { 918 assert(&*AllNodes.begin() == &EntryNode); 919 AllNodes.remove(AllNodes.begin()); 920 while (!AllNodes.empty()) 921 DeallocateNode(&AllNodes.front()); 922 #ifndef NDEBUG 923 NextPersistentId = 0; 924 #endif 925 } 926 927 SDNode *SelectionDAG::GetBinarySDNode(unsigned Opcode, const SDLoc &DL, 928 SDVTList VTs, SDValue N1, SDValue N2, 929 const SDNodeFlags *Flags) { 930 SDValue Ops[] = {N1, N2}; 931 932 if (isBinOpWithFlags(Opcode)) { 933 // If no flags were passed in, use a default flags object. 934 SDNodeFlags F; 935 if (Flags == nullptr) 936 Flags = &F; 937 938 auto *FN = newSDNode<BinaryWithFlagsSDNode>(Opcode, DL.getIROrder(), 939 DL.getDebugLoc(), VTs, *Flags); 940 createOperands(FN, Ops); 941 942 return FN; 943 } 944 945 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 946 createOperands(N, Ops); 947 return N; 948 } 949 950 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 951 void *&InsertPos) { 952 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 953 if (N) { 954 switch (N->getOpcode()) { 955 default: break; 956 case ISD::Constant: 957 case ISD::ConstantFP: 958 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 959 "debug location. Use another overload."); 960 } 961 } 962 return N; 963 } 964 965 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 966 const SDLoc &DL, void *&InsertPos) { 967 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 968 if (N) { 969 switch (N->getOpcode()) { 970 case ISD::Constant: 971 case ISD::ConstantFP: 972 // Erase debug location from the node if the node is used at several 973 // different places. Do not propagate one location to all uses as it 974 // will cause a worse single stepping debugging experience. 975 if (N->getDebugLoc() != DL.getDebugLoc()) 976 N->setDebugLoc(DebugLoc()); 977 break; 978 default: 979 // When the node's point of use is located earlier in the instruction 980 // sequence than its prior point of use, update its debug info to the 981 // earlier location. 982 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 983 N->setDebugLoc(DL.getDebugLoc()); 984 break; 985 } 986 } 987 return N; 988 } 989 990 void SelectionDAG::clear() { 991 allnodes_clear(); 992 OperandRecycler.clear(OperandAllocator); 993 OperandAllocator.Reset(); 994 CSEMap.clear(); 995 996 ExtendedValueTypeNodes.clear(); 997 ExternalSymbols.clear(); 998 TargetExternalSymbols.clear(); 999 MCSymbols.clear(); 1000 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1001 static_cast<CondCodeSDNode*>(nullptr)); 1002 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1003 static_cast<SDNode*>(nullptr)); 1004 1005 EntryNode.UseList = nullptr; 1006 InsertNode(&EntryNode); 1007 Root = getEntryNode(); 1008 DbgInfo->clear(); 1009 } 1010 1011 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1012 return VT.bitsGT(Op.getValueType()) ? 1013 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1014 getNode(ISD::TRUNCATE, DL, VT, Op); 1015 } 1016 1017 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1018 return VT.bitsGT(Op.getValueType()) ? 1019 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1020 getNode(ISD::TRUNCATE, DL, VT, Op); 1021 } 1022 1023 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1024 return VT.bitsGT(Op.getValueType()) ? 1025 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1026 getNode(ISD::TRUNCATE, DL, VT, Op); 1027 } 1028 1029 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1030 EVT OpVT) { 1031 if (VT.bitsLE(Op.getValueType())) 1032 return getNode(ISD::TRUNCATE, SL, VT, Op); 1033 1034 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1035 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1036 } 1037 1038 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1039 assert(!VT.isVector() && 1040 "getZeroExtendInReg should use the vector element type instead of " 1041 "the vector type!"); 1042 if (Op.getValueType() == VT) return Op; 1043 unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits(); 1044 APInt Imm = APInt::getLowBitsSet(BitWidth, 1045 VT.getSizeInBits()); 1046 return getNode(ISD::AND, DL, Op.getValueType(), Op, 1047 getConstant(Imm, DL, Op.getValueType())); 1048 } 1049 1050 SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL, 1051 EVT VT) { 1052 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1053 assert(VT.getSizeInBits() == Op.getValueType().getSizeInBits() && 1054 "The sizes of the input and result must match in order to perform the " 1055 "extend in-register."); 1056 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1057 "The destination vector type must have fewer lanes than the input."); 1058 return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op); 1059 } 1060 1061 SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, const SDLoc &DL, 1062 EVT VT) { 1063 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1064 assert(VT.getSizeInBits() == Op.getValueType().getSizeInBits() && 1065 "The sizes of the input and result must match in order to perform the " 1066 "extend in-register."); 1067 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1068 "The destination vector type must have fewer lanes than the input."); 1069 return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op); 1070 } 1071 1072 SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL, 1073 EVT VT) { 1074 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1075 assert(VT.getSizeInBits() == Op.getValueType().getSizeInBits() && 1076 "The sizes of the input and result must match in order to perform the " 1077 "extend in-register."); 1078 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1079 "The destination vector type must have fewer lanes than the input."); 1080 return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op); 1081 } 1082 1083 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1084 /// 1085 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1086 EVT EltVT = VT.getScalarType(); 1087 SDValue NegOne = 1088 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1089 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1090 } 1091 1092 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1093 EVT EltVT = VT.getScalarType(); 1094 SDValue TrueValue; 1095 switch (TLI->getBooleanContents(VT)) { 1096 case TargetLowering::ZeroOrOneBooleanContent: 1097 case TargetLowering::UndefinedBooleanContent: 1098 TrueValue = getConstant(1, DL, VT); 1099 break; 1100 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1101 TrueValue = getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, 1102 VT); 1103 break; 1104 } 1105 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1106 } 1107 1108 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1109 bool isT, bool isO) { 1110 EVT EltVT = VT.getScalarType(); 1111 assert((EltVT.getSizeInBits() >= 64 || 1112 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1113 "getConstant with a uint64_t value that doesn't fit in the type!"); 1114 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1115 } 1116 1117 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1118 bool isT, bool isO) { 1119 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1120 } 1121 1122 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1123 EVT VT, bool isT, bool isO) { 1124 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1125 1126 EVT EltVT = VT.getScalarType(); 1127 const ConstantInt *Elt = &Val; 1128 1129 // In some cases the vector type is legal but the element type is illegal and 1130 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1131 // inserted value (the type does not need to match the vector element type). 1132 // Any extra bits introduced will be truncated away. 1133 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1134 TargetLowering::TypePromoteInteger) { 1135 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1136 APInt NewVal = Elt->getValue().zext(EltVT.getSizeInBits()); 1137 Elt = ConstantInt::get(*getContext(), NewVal); 1138 } 1139 // In other cases the element type is illegal and needs to be expanded, for 1140 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1141 // the value into n parts and use a vector type with n-times the elements. 1142 // Then bitcast to the type requested. 1143 // Legalizing constants too early makes the DAGCombiner's job harder so we 1144 // only legalize if the DAG tells us we must produce legal types. 1145 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1146 TLI->getTypeAction(*getContext(), EltVT) == 1147 TargetLowering::TypeExpandInteger) { 1148 const APInt &NewVal = Elt->getValue(); 1149 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1150 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1151 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1152 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1153 1154 // Check the temporary vector is the correct size. If this fails then 1155 // getTypeToTransformTo() probably returned a type whose size (in bits) 1156 // isn't a power-of-2 factor of the requested type size. 1157 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1158 1159 SmallVector<SDValue, 2> EltParts; 1160 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1161 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1162 .trunc(ViaEltSizeInBits), DL, 1163 ViaEltVT, isT, isO)); 1164 } 1165 1166 // EltParts is currently in little endian order. If we actually want 1167 // big-endian order then reverse it now. 1168 if (getDataLayout().isBigEndian()) 1169 std::reverse(EltParts.begin(), EltParts.end()); 1170 1171 // The elements must be reversed when the element order is different 1172 // to the endianness of the elements (because the BITCAST is itself a 1173 // vector shuffle in this situation). However, we do not need any code to 1174 // perform this reversal because getConstant() is producing a vector 1175 // splat. 1176 // This situation occurs in MIPS MSA. 1177 1178 SmallVector<SDValue, 8> Ops; 1179 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) 1180 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1181 1182 SDValue Result = getNode(ISD::BITCAST, DL, VT, 1183 getNode(ISD::BUILD_VECTOR, DL, ViaVecVT, Ops)); 1184 return Result; 1185 } 1186 1187 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1188 "APInt size does not match type size!"); 1189 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1190 FoldingSetNodeID ID; 1191 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1192 ID.AddPointer(Elt); 1193 ID.AddBoolean(isO); 1194 void *IP = nullptr; 1195 SDNode *N = nullptr; 1196 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1197 if (!VT.isVector()) 1198 return SDValue(N, 0); 1199 1200 if (!N) { 1201 N = newSDNode<ConstantSDNode>(isT, isO, Elt, DL.getDebugLoc(), EltVT); 1202 CSEMap.InsertNode(N, IP); 1203 InsertNode(N); 1204 } 1205 1206 SDValue Result(N, 0); 1207 if (VT.isVector()) 1208 Result = getSplatBuildVector(VT, DL, Result); 1209 return Result; 1210 } 1211 1212 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1213 bool isTarget) { 1214 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1215 } 1216 1217 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1218 bool isTarget) { 1219 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1220 } 1221 1222 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1223 EVT VT, bool isTarget) { 1224 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1225 1226 EVT EltVT = VT.getScalarType(); 1227 1228 // Do the map lookup using the actual bit pattern for the floating point 1229 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1230 // we don't have issues with SNANs. 1231 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1232 FoldingSetNodeID ID; 1233 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1234 ID.AddPointer(&V); 1235 void *IP = nullptr; 1236 SDNode *N = nullptr; 1237 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1238 if (!VT.isVector()) 1239 return SDValue(N, 0); 1240 1241 if (!N) { 1242 N = newSDNode<ConstantFPSDNode>(isTarget, &V, DL.getDebugLoc(), EltVT); 1243 CSEMap.InsertNode(N, IP); 1244 InsertNode(N); 1245 } 1246 1247 SDValue Result(N, 0); 1248 if (VT.isVector()) 1249 Result = getSplatBuildVector(VT, DL, Result); 1250 return Result; 1251 } 1252 1253 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1254 bool isTarget) { 1255 EVT EltVT = VT.getScalarType(); 1256 if (EltVT == MVT::f32) 1257 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1258 else if (EltVT == MVT::f64) 1259 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1260 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1261 EltVT == MVT::f16) { 1262 bool Ignored; 1263 APFloat APF = APFloat(Val); 1264 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1265 &Ignored); 1266 return getConstantFP(APF, DL, VT, isTarget); 1267 } else 1268 llvm_unreachable("Unsupported type in getConstantFP"); 1269 } 1270 1271 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1272 EVT VT, int64_t Offset, bool isTargetGA, 1273 unsigned char TargetFlags) { 1274 assert((TargetFlags == 0 || isTargetGA) && 1275 "Cannot set target flags on target-independent globals"); 1276 1277 // Truncate (with sign-extension) the offset value to the pointer size. 1278 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1279 if (BitWidth < 64) 1280 Offset = SignExtend64(Offset, BitWidth); 1281 1282 unsigned Opc; 1283 if (GV->isThreadLocal()) 1284 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1285 else 1286 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1287 1288 FoldingSetNodeID ID; 1289 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1290 ID.AddPointer(GV); 1291 ID.AddInteger(Offset); 1292 ID.AddInteger(TargetFlags); 1293 ID.AddInteger(GV->getType()->getAddressSpace()); 1294 void *IP = nullptr; 1295 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1296 return SDValue(E, 0); 1297 1298 auto *N = newSDNode<GlobalAddressSDNode>( 1299 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1300 CSEMap.InsertNode(N, IP); 1301 InsertNode(N); 1302 return SDValue(N, 0); 1303 } 1304 1305 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1306 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1307 FoldingSetNodeID ID; 1308 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1309 ID.AddInteger(FI); 1310 void *IP = nullptr; 1311 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1312 return SDValue(E, 0); 1313 1314 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1315 CSEMap.InsertNode(N, IP); 1316 InsertNode(N); 1317 return SDValue(N, 0); 1318 } 1319 1320 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1321 unsigned char TargetFlags) { 1322 assert((TargetFlags == 0 || isTarget) && 1323 "Cannot set target flags on target-independent jump tables"); 1324 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1325 FoldingSetNodeID ID; 1326 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1327 ID.AddInteger(JTI); 1328 ID.AddInteger(TargetFlags); 1329 void *IP = nullptr; 1330 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1331 return SDValue(E, 0); 1332 1333 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1334 CSEMap.InsertNode(N, IP); 1335 InsertNode(N); 1336 return SDValue(N, 0); 1337 } 1338 1339 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1340 unsigned Alignment, int Offset, 1341 bool isTarget, 1342 unsigned char TargetFlags) { 1343 assert((TargetFlags == 0 || isTarget) && 1344 "Cannot set target flags on target-independent globals"); 1345 if (Alignment == 0) 1346 Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); 1347 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1348 FoldingSetNodeID ID; 1349 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1350 ID.AddInteger(Alignment); 1351 ID.AddInteger(Offset); 1352 ID.AddPointer(C); 1353 ID.AddInteger(TargetFlags); 1354 void *IP = nullptr; 1355 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1356 return SDValue(E, 0); 1357 1358 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1359 TargetFlags); 1360 CSEMap.InsertNode(N, IP); 1361 InsertNode(N); 1362 return SDValue(N, 0); 1363 } 1364 1365 1366 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1367 unsigned Alignment, int Offset, 1368 bool isTarget, 1369 unsigned char TargetFlags) { 1370 assert((TargetFlags == 0 || isTarget) && 1371 "Cannot set target flags on target-independent globals"); 1372 if (Alignment == 0) 1373 Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); 1374 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1375 FoldingSetNodeID ID; 1376 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1377 ID.AddInteger(Alignment); 1378 ID.AddInteger(Offset); 1379 C->addSelectionDAGCSEId(ID); 1380 ID.AddInteger(TargetFlags); 1381 void *IP = nullptr; 1382 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1383 return SDValue(E, 0); 1384 1385 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1386 TargetFlags); 1387 CSEMap.InsertNode(N, IP); 1388 InsertNode(N); 1389 return SDValue(N, 0); 1390 } 1391 1392 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1393 unsigned char TargetFlags) { 1394 FoldingSetNodeID ID; 1395 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1396 ID.AddInteger(Index); 1397 ID.AddInteger(Offset); 1398 ID.AddInteger(TargetFlags); 1399 void *IP = nullptr; 1400 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1401 return SDValue(E, 0); 1402 1403 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1404 CSEMap.InsertNode(N, IP); 1405 InsertNode(N); 1406 return SDValue(N, 0); 1407 } 1408 1409 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1410 FoldingSetNodeID ID; 1411 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1412 ID.AddPointer(MBB); 1413 void *IP = nullptr; 1414 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1415 return SDValue(E, 0); 1416 1417 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1418 CSEMap.InsertNode(N, IP); 1419 InsertNode(N); 1420 return SDValue(N, 0); 1421 } 1422 1423 SDValue SelectionDAG::getValueType(EVT VT) { 1424 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1425 ValueTypeNodes.size()) 1426 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1427 1428 SDNode *&N = VT.isExtended() ? 1429 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1430 1431 if (N) return SDValue(N, 0); 1432 N = newSDNode<VTSDNode>(VT); 1433 InsertNode(N); 1434 return SDValue(N, 0); 1435 } 1436 1437 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1438 SDNode *&N = ExternalSymbols[Sym]; 1439 if (N) return SDValue(N, 0); 1440 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1441 InsertNode(N); 1442 return SDValue(N, 0); 1443 } 1444 1445 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1446 SDNode *&N = MCSymbols[Sym]; 1447 if (N) 1448 return SDValue(N, 0); 1449 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1450 InsertNode(N); 1451 return SDValue(N, 0); 1452 } 1453 1454 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1455 unsigned char TargetFlags) { 1456 SDNode *&N = 1457 TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym, 1458 TargetFlags)]; 1459 if (N) return SDValue(N, 0); 1460 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1461 InsertNode(N); 1462 return SDValue(N, 0); 1463 } 1464 1465 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1466 if ((unsigned)Cond >= CondCodeNodes.size()) 1467 CondCodeNodes.resize(Cond+1); 1468 1469 if (!CondCodeNodes[Cond]) { 1470 auto *N = newSDNode<CondCodeSDNode>(Cond); 1471 CondCodeNodes[Cond] = N; 1472 InsertNode(N); 1473 } 1474 1475 return SDValue(CondCodeNodes[Cond], 0); 1476 } 1477 1478 // commuteShuffle - swaps the values of N1 and N2, and swaps all indices in 1479 // the shuffle mask M that point at N1 to point at N2, and indices that point 1480 // N2 to point at N1. 1481 static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) { 1482 std::swap(N1, N2); 1483 ShuffleVectorSDNode::commuteMask(M); 1484 } 1485 1486 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1487 SDValue N2, const int *Mask) { 1488 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1489 "Invalid VECTOR_SHUFFLE"); 1490 1491 // Canonicalize shuffle undef, undef -> undef 1492 if (N1.isUndef() && N2.isUndef()) 1493 return getUNDEF(VT); 1494 1495 // Validate that all indices in Mask are within the range of the elements 1496 // input to the shuffle. 1497 unsigned NElts = VT.getVectorNumElements(); 1498 SmallVector<int, 8> MaskVec; 1499 for (unsigned i = 0; i != NElts; ++i) { 1500 assert(Mask[i] < (int)(NElts * 2) && "Index out of range"); 1501 MaskVec.push_back(Mask[i]); 1502 } 1503 1504 // Canonicalize shuffle v, v -> v, undef 1505 if (N1 == N2) { 1506 N2 = getUNDEF(VT); 1507 for (unsigned i = 0; i != NElts; ++i) 1508 if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts; 1509 } 1510 1511 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1512 if (N1.isUndef()) 1513 commuteShuffle(N1, N2, MaskVec); 1514 1515 // If shuffling a splat, try to blend the splat instead. We do this here so 1516 // that even when this arises during lowering we don't have to re-handle it. 1517 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1518 BitVector UndefElements; 1519 SDValue Splat = BV->getSplatValue(&UndefElements); 1520 if (!Splat) 1521 return; 1522 1523 for (int i = 0; i < (int)NElts; ++i) { 1524 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + (int)NElts)) 1525 continue; 1526 1527 // If this input comes from undef, mark it as such. 1528 if (UndefElements[MaskVec[i] - Offset]) { 1529 MaskVec[i] = -1; 1530 continue; 1531 } 1532 1533 // If we can blend a non-undef lane, use that instead. 1534 if (!UndefElements[i]) 1535 MaskVec[i] = i + Offset; 1536 } 1537 }; 1538 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1539 BlendSplat(N1BV, 0); 1540 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1541 BlendSplat(N2BV, NElts); 1542 1543 // Canonicalize all index into lhs, -> shuffle lhs, undef 1544 // Canonicalize all index into rhs, -> shuffle rhs, undef 1545 bool AllLHS = true, AllRHS = true; 1546 bool N2Undef = N2.isUndef(); 1547 for (unsigned i = 0; i != NElts; ++i) { 1548 if (MaskVec[i] >= (int)NElts) { 1549 if (N2Undef) 1550 MaskVec[i] = -1; 1551 else 1552 AllLHS = false; 1553 } else if (MaskVec[i] >= 0) { 1554 AllRHS = false; 1555 } 1556 } 1557 if (AllLHS && AllRHS) 1558 return getUNDEF(VT); 1559 if (AllLHS && !N2Undef) 1560 N2 = getUNDEF(VT); 1561 if (AllRHS) { 1562 N1 = getUNDEF(VT); 1563 commuteShuffle(N1, N2, MaskVec); 1564 } 1565 // Reset our undef status after accounting for the mask. 1566 N2Undef = N2.isUndef(); 1567 // Re-check whether both sides ended up undef. 1568 if (N1.isUndef() && N2Undef) 1569 return getUNDEF(VT); 1570 1571 // If Identity shuffle return that node. 1572 bool Identity = true, AllSame = true; 1573 for (unsigned i = 0; i != NElts; ++i) { 1574 if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false; 1575 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1576 } 1577 if (Identity && NElts) 1578 return N1; 1579 1580 // Shuffling a constant splat doesn't change the result. 1581 if (N2Undef) { 1582 SDValue V = N1; 1583 1584 // Look through any bitcasts. We check that these don't change the number 1585 // (and size) of elements and just changes their types. 1586 while (V.getOpcode() == ISD::BITCAST) 1587 V = V->getOperand(0); 1588 1589 // A splat should always show up as a build vector node. 1590 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1591 BitVector UndefElements; 1592 SDValue Splat = BV->getSplatValue(&UndefElements); 1593 // If this is a splat of an undef, shuffling it is also undef. 1594 if (Splat && Splat.isUndef()) 1595 return getUNDEF(VT); 1596 1597 bool SameNumElts = 1598 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1599 1600 // We only have a splat which can skip shuffles if there is a splatted 1601 // value and no undef lanes rearranged by the shuffle. 1602 if (Splat && UndefElements.none()) { 1603 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1604 // number of elements match or the value splatted is a zero constant. 1605 if (SameNumElts) 1606 return N1; 1607 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1608 if (C->isNullValue()) 1609 return N1; 1610 } 1611 1612 // If the shuffle itself creates a splat, build the vector directly. 1613 if (AllSame && SameNumElts) { 1614 EVT BuildVT = BV->getValueType(0); 1615 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1616 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1617 1618 // We may have jumped through bitcasts, so the type of the 1619 // BUILD_VECTOR may not match the type of the shuffle. 1620 if (BuildVT != VT) 1621 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1622 return NewBV; 1623 } 1624 } 1625 } 1626 1627 FoldingSetNodeID ID; 1628 SDValue Ops[2] = { N1, N2 }; 1629 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1630 for (unsigned i = 0; i != NElts; ++i) 1631 ID.AddInteger(MaskVec[i]); 1632 1633 void* IP = nullptr; 1634 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1635 return SDValue(E, 0); 1636 1637 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1638 // SDNode doesn't have access to it. This memory will be "leaked" when 1639 // the node is deallocated, but recovered when the NodeAllocator is released. 1640 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1641 memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int)); 1642 1643 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1644 dl.getDebugLoc(), MaskAlloc); 1645 createOperands(N, Ops); 1646 1647 CSEMap.InsertNode(N, IP); 1648 InsertNode(N); 1649 return SDValue(N, 0); 1650 } 1651 1652 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1653 MVT VT = SV.getSimpleValueType(0); 1654 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1655 ShuffleVectorSDNode::commuteMask(MaskVec); 1656 1657 SDValue Op0 = SV.getOperand(0); 1658 SDValue Op1 = SV.getOperand(1); 1659 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, &MaskVec[0]); 1660 } 1661 1662 SDValue SelectionDAG::getConvertRndSat(EVT VT, const SDLoc &dl, SDValue Val, 1663 SDValue DTy, SDValue STy, SDValue Rnd, 1664 SDValue Sat, ISD::CvtCode Code) { 1665 // If the src and dest types are the same and the conversion is between 1666 // integer types of the same sign or two floats, no conversion is necessary. 1667 if (DTy == STy && 1668 (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF)) 1669 return Val; 1670 1671 FoldingSetNodeID ID; 1672 SDValue Ops[] = { Val, DTy, STy, Rnd, Sat }; 1673 AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), Ops); 1674 void* IP = nullptr; 1675 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1676 return SDValue(E, 0); 1677 1678 auto *N = 1679 newSDNode<CvtRndSatSDNode>(VT, dl.getIROrder(), dl.getDebugLoc(), Code); 1680 createOperands(N, Ops); 1681 1682 CSEMap.InsertNode(N, IP); 1683 InsertNode(N); 1684 return SDValue(N, 0); 1685 } 1686 1687 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1688 FoldingSetNodeID ID; 1689 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1690 ID.AddInteger(RegNo); 1691 void *IP = nullptr; 1692 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1693 return SDValue(E, 0); 1694 1695 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1696 CSEMap.InsertNode(N, IP); 1697 InsertNode(N); 1698 return SDValue(N, 0); 1699 } 1700 1701 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1702 FoldingSetNodeID ID; 1703 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1704 ID.AddPointer(RegMask); 1705 void *IP = nullptr; 1706 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1707 return SDValue(E, 0); 1708 1709 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1710 CSEMap.InsertNode(N, IP); 1711 InsertNode(N); 1712 return SDValue(N, 0); 1713 } 1714 1715 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1716 MCSymbol *Label) { 1717 FoldingSetNodeID ID; 1718 SDValue Ops[] = { Root }; 1719 AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), Ops); 1720 ID.AddPointer(Label); 1721 void *IP = nullptr; 1722 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1723 return SDValue(E, 0); 1724 1725 auto *N = newSDNode<EHLabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label); 1726 createOperands(N, Ops); 1727 1728 CSEMap.InsertNode(N, IP); 1729 InsertNode(N); 1730 return SDValue(N, 0); 1731 } 1732 1733 1734 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1735 int64_t Offset, 1736 bool isTarget, 1737 unsigned char TargetFlags) { 1738 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1739 1740 FoldingSetNodeID ID; 1741 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1742 ID.AddPointer(BA); 1743 ID.AddInteger(Offset); 1744 ID.AddInteger(TargetFlags); 1745 void *IP = nullptr; 1746 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1747 return SDValue(E, 0); 1748 1749 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1750 CSEMap.InsertNode(N, IP); 1751 InsertNode(N); 1752 return SDValue(N, 0); 1753 } 1754 1755 SDValue SelectionDAG::getSrcValue(const Value *V) { 1756 assert((!V || V->getType()->isPointerTy()) && 1757 "SrcValue is not a pointer?"); 1758 1759 FoldingSetNodeID ID; 1760 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1761 ID.AddPointer(V); 1762 1763 void *IP = nullptr; 1764 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1765 return SDValue(E, 0); 1766 1767 auto *N = newSDNode<SrcValueSDNode>(V); 1768 CSEMap.InsertNode(N, IP); 1769 InsertNode(N); 1770 return SDValue(N, 0); 1771 } 1772 1773 /// getMDNode - Return an MDNodeSDNode which holds an MDNode. 1774 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1775 FoldingSetNodeID ID; 1776 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1777 ID.AddPointer(MD); 1778 1779 void *IP = nullptr; 1780 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1781 return SDValue(E, 0); 1782 1783 auto *N = newSDNode<MDNodeSDNode>(MD); 1784 CSEMap.InsertNode(N, IP); 1785 InsertNode(N); 1786 return SDValue(N, 0); 1787 } 1788 1789 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1790 if (VT == V.getValueType()) 1791 return V; 1792 1793 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1794 } 1795 1796 /// getAddrSpaceCast - Return an AddrSpaceCastSDNode. 1797 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1798 unsigned SrcAS, unsigned DestAS) { 1799 SDValue Ops[] = {Ptr}; 1800 FoldingSetNodeID ID; 1801 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1802 ID.AddInteger(SrcAS); 1803 ID.AddInteger(DestAS); 1804 1805 void *IP = nullptr; 1806 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1807 return SDValue(E, 0); 1808 1809 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1810 VT, SrcAS, DestAS); 1811 createOperands(N, Ops); 1812 1813 CSEMap.InsertNode(N, IP); 1814 InsertNode(N); 1815 return SDValue(N, 0); 1816 } 1817 1818 /// getShiftAmountOperand - Return the specified value casted to 1819 /// the target's desired shift amount type. 1820 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1821 EVT OpTy = Op.getValueType(); 1822 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1823 if (OpTy == ShTy || OpTy.isVector()) return Op; 1824 1825 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1826 } 1827 1828 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1829 SDLoc dl(Node); 1830 const TargetLowering &TLI = getTargetLoweringInfo(); 1831 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1832 EVT VT = Node->getValueType(0); 1833 SDValue Tmp1 = Node->getOperand(0); 1834 SDValue Tmp2 = Node->getOperand(1); 1835 unsigned Align = Node->getConstantOperandVal(3); 1836 1837 SDValue VAListLoad = 1838 getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, Tmp2, 1839 MachinePointerInfo(V), false, false, false, 0); 1840 SDValue VAList = VAListLoad; 1841 1842 if (Align > TLI.getMinStackArgumentAlignment()) { 1843 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); 1844 1845 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1846 getConstant(Align - 1, dl, VAList.getValueType())); 1847 1848 VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1849 getConstant(-(int64_t)Align, dl, VAList.getValueType())); 1850 } 1851 1852 // Increment the pointer, VAList, to the next vaarg 1853 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1854 getConstant(getDataLayout().getTypeAllocSize( 1855 VT.getTypeForEVT(*getContext())), 1856 dl, VAList.getValueType())); 1857 // Store the incremented VAList to the legalized pointer 1858 Tmp1 = getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, 1859 MachinePointerInfo(V), false, false, 0); 1860 // Load the actual argument out of the pointer VAList 1861 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo(), 1862 false, false, false, 0); 1863 } 1864 1865 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1866 SDLoc dl(Node); 1867 const TargetLowering &TLI = getTargetLoweringInfo(); 1868 // This defaults to loading a pointer from the input and storing it to the 1869 // output, returning the chain. 1870 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1871 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1872 SDValue Tmp1 = getLoad(TLI.getPointerTy(getDataLayout()), dl, 1873 Node->getOperand(0), Node->getOperand(2), 1874 MachinePointerInfo(VS), false, false, false, 0); 1875 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1876 MachinePointerInfo(VD), false, false, 0); 1877 } 1878 1879 /// CreateStackTemporary - Create a stack temporary, suitable for holding the 1880 /// specified value type. 1881 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 1882 MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo(); 1883 unsigned ByteSize = VT.getStoreSize(); 1884 Type *Ty = VT.getTypeForEVT(*getContext()); 1885 unsigned StackAlign = 1886 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); 1887 1888 int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false); 1889 return getFrameIndex(FrameIdx, TLI->getPointerTy(getDataLayout())); 1890 } 1891 1892 /// CreateStackTemporary - Create a stack temporary suitable for holding 1893 /// either of the specified value types. 1894 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 1895 unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 1896 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 1897 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 1898 const DataLayout &DL = getDataLayout(); 1899 unsigned Align = 1900 std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); 1901 1902 MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo(); 1903 int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false); 1904 return getFrameIndex(FrameIdx, TLI->getPointerTy(getDataLayout())); 1905 } 1906 1907 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 1908 ISD::CondCode Cond, const SDLoc &dl) { 1909 // These setcc operations always fold. 1910 switch (Cond) { 1911 default: break; 1912 case ISD::SETFALSE: 1913 case ISD::SETFALSE2: return getConstant(0, dl, VT); 1914 case ISD::SETTRUE: 1915 case ISD::SETTRUE2: { 1916 TargetLowering::BooleanContent Cnt = 1917 TLI->getBooleanContents(N1->getValueType(0)); 1918 return getConstant( 1919 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, 1920 VT); 1921 } 1922 1923 case ISD::SETOEQ: 1924 case ISD::SETOGT: 1925 case ISD::SETOGE: 1926 case ISD::SETOLT: 1927 case ISD::SETOLE: 1928 case ISD::SETONE: 1929 case ISD::SETO: 1930 case ISD::SETUO: 1931 case ISD::SETUEQ: 1932 case ISD::SETUNE: 1933 assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!"); 1934 break; 1935 } 1936 1937 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 1938 const APInt &C2 = N2C->getAPIntValue(); 1939 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 1940 const APInt &C1 = N1C->getAPIntValue(); 1941 1942 switch (Cond) { 1943 default: llvm_unreachable("Unknown integer setcc!"); 1944 case ISD::SETEQ: return getConstant(C1 == C2, dl, VT); 1945 case ISD::SETNE: return getConstant(C1 != C2, dl, VT); 1946 case ISD::SETULT: return getConstant(C1.ult(C2), dl, VT); 1947 case ISD::SETUGT: return getConstant(C1.ugt(C2), dl, VT); 1948 case ISD::SETULE: return getConstant(C1.ule(C2), dl, VT); 1949 case ISD::SETUGE: return getConstant(C1.uge(C2), dl, VT); 1950 case ISD::SETLT: return getConstant(C1.slt(C2), dl, VT); 1951 case ISD::SETGT: return getConstant(C1.sgt(C2), dl, VT); 1952 case ISD::SETLE: return getConstant(C1.sle(C2), dl, VT); 1953 case ISD::SETGE: return getConstant(C1.sge(C2), dl, VT); 1954 } 1955 } 1956 } 1957 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) { 1958 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) { 1959 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF()); 1960 switch (Cond) { 1961 default: break; 1962 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 1963 return getUNDEF(VT); 1964 // fall through 1965 case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, dl, VT); 1966 case ISD::SETNE: if (R==APFloat::cmpUnordered) 1967 return getUNDEF(VT); 1968 // fall through 1969 case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan || 1970 R==APFloat::cmpLessThan, dl, VT); 1971 case ISD::SETLT: if (R==APFloat::cmpUnordered) 1972 return getUNDEF(VT); 1973 // fall through 1974 case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, dl, VT); 1975 case ISD::SETGT: if (R==APFloat::cmpUnordered) 1976 return getUNDEF(VT); 1977 // fall through 1978 case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, dl, VT); 1979 case ISD::SETLE: if (R==APFloat::cmpUnordered) 1980 return getUNDEF(VT); 1981 // fall through 1982 case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan || 1983 R==APFloat::cmpEqual, dl, VT); 1984 case ISD::SETGE: if (R==APFloat::cmpUnordered) 1985 return getUNDEF(VT); 1986 // fall through 1987 case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan || 1988 R==APFloat::cmpEqual, dl, VT); 1989 case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, dl, VT); 1990 case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, dl, VT); 1991 case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered || 1992 R==APFloat::cmpEqual, dl, VT); 1993 case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, dl, VT); 1994 case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered || 1995 R==APFloat::cmpLessThan, dl, VT); 1996 case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan || 1997 R==APFloat::cmpUnordered, dl, VT); 1998 case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, dl, VT); 1999 case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, dl, VT); 2000 } 2001 } else { 2002 // Ensure that the constant occurs on the RHS. 2003 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2004 MVT CompVT = N1.getValueType().getSimpleVT(); 2005 if (!TLI->isCondCodeLegal(SwappedCond, CompVT)) 2006 return SDValue(); 2007 2008 return getSetCC(dl, VT, N2, N1, SwappedCond); 2009 } 2010 } 2011 2012 // Could not fold it. 2013 return SDValue(); 2014 } 2015 2016 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2017 /// use this predicate to simplify operations downstream. 2018 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2019 // This predicate is not safe for vector operations. 2020 if (Op.getValueType().isVector()) 2021 return false; 2022 2023 unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits(); 2024 return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth); 2025 } 2026 2027 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2028 /// this predicate to simplify operations downstream. Mask is known to be zero 2029 /// for bits that V cannot have. 2030 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask, 2031 unsigned Depth) const { 2032 APInt KnownZero, KnownOne; 2033 computeKnownBits(Op, KnownZero, KnownOne, Depth); 2034 return (KnownZero & Mask) == Mask; 2035 } 2036 2037 /// Determine which bits of Op are known to be either zero or one and return 2038 /// them in the KnownZero/KnownOne bitsets. 2039 void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, 2040 APInt &KnownOne, unsigned Depth) const { 2041 unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits(); 2042 2043 KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything. 2044 if (Depth == 6) 2045 return; // Limit search depth. 2046 2047 APInt KnownZero2, KnownOne2; 2048 2049 switch (Op.getOpcode()) { 2050 case ISD::Constant: 2051 // We know all of the bits for a constant! 2052 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); 2053 KnownZero = ~KnownOne; 2054 break; 2055 case ISD::AND: 2056 // If either the LHS or the RHS are Zero, the result is zero. 2057 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); 2058 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); 2059 2060 // Output known-1 bits are only known if set in both the LHS & RHS. 2061 KnownOne &= KnownOne2; 2062 // Output known-0 are known to be clear if zero in either the LHS | RHS. 2063 KnownZero |= KnownZero2; 2064 break; 2065 case ISD::OR: 2066 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); 2067 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); 2068 2069 // Output known-0 bits are only known if clear in both the LHS & RHS. 2070 KnownZero &= KnownZero2; 2071 // Output known-1 are known to be set if set in either the LHS | RHS. 2072 KnownOne |= KnownOne2; 2073 break; 2074 case ISD::XOR: { 2075 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); 2076 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); 2077 2078 // Output known-0 bits are known if clear or set in both the LHS & RHS. 2079 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 2080 // Output known-1 are known to be set if set in only one of the LHS, RHS. 2081 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 2082 KnownZero = KnownZeroOut; 2083 break; 2084 } 2085 case ISD::MUL: { 2086 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); 2087 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); 2088 2089 // If low bits are zero in either operand, output low known-0 bits. 2090 // Also compute a conserative estimate for high known-0 bits. 2091 // More trickiness is possible, but this is sufficient for the 2092 // interesting case of alignment computation. 2093 KnownOne.clearAllBits(); 2094 unsigned TrailZ = KnownZero.countTrailingOnes() + 2095 KnownZero2.countTrailingOnes(); 2096 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 2097 KnownZero2.countLeadingOnes(), 2098 BitWidth) - BitWidth; 2099 2100 TrailZ = std::min(TrailZ, BitWidth); 2101 LeadZ = std::min(LeadZ, BitWidth); 2102 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 2103 APInt::getHighBitsSet(BitWidth, LeadZ); 2104 break; 2105 } 2106 case ISD::UDIV: { 2107 // For the purposes of computing leading zeros we can conservatively 2108 // treat a udiv as a logical right shift by the power of 2 known to 2109 // be less than the denominator. 2110 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); 2111 unsigned LeadZ = KnownZero2.countLeadingOnes(); 2112 2113 KnownOne2.clearAllBits(); 2114 KnownZero2.clearAllBits(); 2115 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); 2116 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 2117 if (RHSUnknownLeadingOnes != BitWidth) 2118 LeadZ = std::min(BitWidth, 2119 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 2120 2121 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 2122 break; 2123 } 2124 case ISD::SELECT: 2125 computeKnownBits(Op.getOperand(2), KnownZero, KnownOne, Depth+1); 2126 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); 2127 2128 // Only known if known in both the LHS and RHS. 2129 KnownOne &= KnownOne2; 2130 KnownZero &= KnownZero2; 2131 break; 2132 case ISD::SELECT_CC: 2133 computeKnownBits(Op.getOperand(3), KnownZero, KnownOne, Depth+1); 2134 computeKnownBits(Op.getOperand(2), KnownZero2, KnownOne2, Depth+1); 2135 2136 // Only known if known in both the LHS and RHS. 2137 KnownOne &= KnownOne2; 2138 KnownZero &= KnownZero2; 2139 break; 2140 case ISD::SADDO: 2141 case ISD::UADDO: 2142 case ISD::SSUBO: 2143 case ISD::USUBO: 2144 case ISD::SMULO: 2145 case ISD::UMULO: 2146 if (Op.getResNo() != 1) 2147 break; 2148 // The boolean result conforms to getBooleanContents. 2149 // If we know the result of a setcc has the top bits zero, use this info. 2150 // We know that we have an integer-based boolean since these operations 2151 // are only available for integer. 2152 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2153 TargetLowering::ZeroOrOneBooleanContent && 2154 BitWidth > 1) 2155 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1); 2156 break; 2157 case ISD::SETCC: 2158 // If we know the result of a setcc has the top bits zero, use this info. 2159 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2160 TargetLowering::ZeroOrOneBooleanContent && 2161 BitWidth > 1) 2162 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1); 2163 break; 2164 case ISD::SHL: 2165 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 2166 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2167 unsigned ShAmt = SA->getZExtValue(); 2168 2169 // If the shift count is an invalid immediate, don't do anything. 2170 if (ShAmt >= BitWidth) 2171 break; 2172 2173 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2174 KnownZero <<= ShAmt; 2175 KnownOne <<= ShAmt; 2176 // low bits known zero. 2177 KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt); 2178 } 2179 break; 2180 case ISD::SRL: 2181 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 2182 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2183 unsigned ShAmt = SA->getZExtValue(); 2184 2185 // If the shift count is an invalid immediate, don't do anything. 2186 if (ShAmt >= BitWidth) 2187 break; 2188 2189 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2190 KnownZero = KnownZero.lshr(ShAmt); 2191 KnownOne = KnownOne.lshr(ShAmt); 2192 2193 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 2194 KnownZero |= HighBits; // High bits known zero. 2195 } 2196 break; 2197 case ISD::SRA: 2198 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2199 unsigned ShAmt = SA->getZExtValue(); 2200 2201 // If the shift count is an invalid immediate, don't do anything. 2202 if (ShAmt >= BitWidth) 2203 break; 2204 2205 // If any of the demanded bits are produced by the sign extension, we also 2206 // demand the input sign bit. 2207 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 2208 2209 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2210 KnownZero = KnownZero.lshr(ShAmt); 2211 KnownOne = KnownOne.lshr(ShAmt); 2212 2213 // Handle the sign bits. 2214 APInt SignBit = APInt::getSignBit(BitWidth); 2215 SignBit = SignBit.lshr(ShAmt); // Adjust to where it is now in the mask. 2216 2217 if (KnownZero.intersects(SignBit)) { 2218 KnownZero |= HighBits; // New bits are known zero. 2219 } else if (KnownOne.intersects(SignBit)) { 2220 KnownOne |= HighBits; // New bits are known one. 2221 } 2222 } 2223 break; 2224 case ISD::SIGN_EXTEND_INREG: { 2225 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2226 unsigned EBits = EVT.getScalarType().getSizeInBits(); 2227 2228 // Sign extension. Compute the demanded bits in the result that are not 2229 // present in the input. 2230 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2231 2232 APInt InSignBit = APInt::getSignBit(EBits); 2233 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 2234 2235 // If the sign extended bits are demanded, we know that the sign 2236 // bit is demanded. 2237 InSignBit = InSignBit.zext(BitWidth); 2238 if (NewBits.getBoolValue()) 2239 InputDemandedBits |= InSignBit; 2240 2241 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2242 KnownOne &= InputDemandedBits; 2243 KnownZero &= InputDemandedBits; 2244 2245 // If the sign bit of the input is known set or clear, then we know the 2246 // top bits of the result. 2247 if (KnownZero.intersects(InSignBit)) { // Input sign bit known clear 2248 KnownZero |= NewBits; 2249 KnownOne &= ~NewBits; 2250 } else if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 2251 KnownOne |= NewBits; 2252 KnownZero &= ~NewBits; 2253 } else { // Input sign bit unknown 2254 KnownZero &= ~NewBits; 2255 KnownOne &= ~NewBits; 2256 } 2257 break; 2258 } 2259 case ISD::CTTZ: 2260 case ISD::CTTZ_ZERO_UNDEF: 2261 case ISD::CTLZ: 2262 case ISD::CTLZ_ZERO_UNDEF: 2263 case ISD::CTPOP: { 2264 unsigned LowBits = Log2_32(BitWidth)+1; 2265 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 2266 KnownOne.clearAllBits(); 2267 break; 2268 } 2269 case ISD::LOAD: { 2270 LoadSDNode *LD = cast<LoadSDNode>(Op); 2271 // If this is a ZEXTLoad and we are looking at the loaded value. 2272 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 2273 EVT VT = LD->getMemoryVT(); 2274 unsigned MemBits = VT.getScalarType().getSizeInBits(); 2275 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits); 2276 } else if (const MDNode *Ranges = LD->getRanges()) { 2277 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 2278 computeKnownBitsFromRangeMetadata(*Ranges, KnownZero, KnownOne); 2279 } 2280 break; 2281 } 2282 case ISD::ZERO_EXTEND: { 2283 EVT InVT = Op.getOperand(0).getValueType(); 2284 unsigned InBits = InVT.getScalarType().getSizeInBits(); 2285 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits); 2286 KnownZero = KnownZero.trunc(InBits); 2287 KnownOne = KnownOne.trunc(InBits); 2288 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2289 KnownZero = KnownZero.zext(BitWidth); 2290 KnownOne = KnownOne.zext(BitWidth); 2291 KnownZero |= NewBits; 2292 break; 2293 } 2294 case ISD::SIGN_EXTEND: { 2295 EVT InVT = Op.getOperand(0).getValueType(); 2296 unsigned InBits = InVT.getScalarType().getSizeInBits(); 2297 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits); 2298 2299 KnownZero = KnownZero.trunc(InBits); 2300 KnownOne = KnownOne.trunc(InBits); 2301 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2302 2303 // Note if the sign bit is known to be zero or one. 2304 bool SignBitKnownZero = KnownZero.isNegative(); 2305 bool SignBitKnownOne = KnownOne.isNegative(); 2306 2307 KnownZero = KnownZero.zext(BitWidth); 2308 KnownOne = KnownOne.zext(BitWidth); 2309 2310 // If the sign bit is known zero or one, the top bits match. 2311 if (SignBitKnownZero) 2312 KnownZero |= NewBits; 2313 else if (SignBitKnownOne) 2314 KnownOne |= NewBits; 2315 break; 2316 } 2317 case ISD::ANY_EXTEND: { 2318 EVT InVT = Op.getOperand(0).getValueType(); 2319 unsigned InBits = InVT.getScalarType().getSizeInBits(); 2320 KnownZero = KnownZero.trunc(InBits); 2321 KnownOne = KnownOne.trunc(InBits); 2322 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2323 KnownZero = KnownZero.zext(BitWidth); 2324 KnownOne = KnownOne.zext(BitWidth); 2325 break; 2326 } 2327 case ISD::TRUNCATE: { 2328 EVT InVT = Op.getOperand(0).getValueType(); 2329 unsigned InBits = InVT.getScalarType().getSizeInBits(); 2330 KnownZero = KnownZero.zext(InBits); 2331 KnownOne = KnownOne.zext(InBits); 2332 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2333 KnownZero = KnownZero.trunc(BitWidth); 2334 KnownOne = KnownOne.trunc(BitWidth); 2335 break; 2336 } 2337 case ISD::AssertZext: { 2338 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2339 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 2340 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2341 KnownZero |= (~InMask); 2342 KnownOne &= (~KnownZero); 2343 break; 2344 } 2345 case ISD::FGETSIGN: 2346 // All bits are zero except the low bit. 2347 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1); 2348 break; 2349 2350 case ISD::SUB: { 2351 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) { 2352 // We know that the top bits of C-X are clear if X contains less bits 2353 // than C (i.e. no wrap-around can happen). For example, 20-X is 2354 // positive if we can prove that X is >= 0 and < 16. 2355 if (CLHS->getAPIntValue().isNonNegative()) { 2356 unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros(); 2357 // NLZ can't be BitWidth with no sign bit 2358 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 2359 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); 2360 2361 // If all of the MaskV bits are known to be zero, then we know the 2362 // output top bits are zero, because we now know that the output is 2363 // from [0-C]. 2364 if ((KnownZero2 & MaskV) == MaskV) { 2365 unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros(); 2366 // Top bits known zero. 2367 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 2368 } 2369 } 2370 } 2371 } 2372 // fall through 2373 case ISD::ADD: 2374 case ISD::ADDE: { 2375 // Output known-0 bits are known if clear or set in both the low clear bits 2376 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the 2377 // low 3 bits clear. 2378 // Output known-0 bits are also known if the top bits of each input are 2379 // known to be clear. For example, if one input has the top 10 bits clear 2380 // and the other has the top 8 bits clear, we know the top 7 bits of the 2381 // output must be clear. 2382 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); 2383 unsigned KnownZeroHigh = KnownZero2.countLeadingOnes(); 2384 unsigned KnownZeroLow = KnownZero2.countTrailingOnes(); 2385 2386 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); 2387 KnownZeroHigh = std::min(KnownZeroHigh, 2388 KnownZero2.countLeadingOnes()); 2389 KnownZeroLow = std::min(KnownZeroLow, 2390 KnownZero2.countTrailingOnes()); 2391 2392 if (Op.getOpcode() == ISD::ADD) { 2393 KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroLow); 2394 if (KnownZeroHigh > 1) 2395 KnownZero |= APInt::getHighBitsSet(BitWidth, KnownZeroHigh - 1); 2396 break; 2397 } 2398 2399 // With ADDE, a carry bit may be added in, so we can only use this 2400 // information if we know (at least) that the low two bits are clear. We 2401 // then return to the caller that the low bit is unknown but that other bits 2402 // are known zero. 2403 if (KnownZeroLow >= 2) // ADDE 2404 KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroLow); 2405 break; 2406 } 2407 case ISD::SREM: 2408 if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2409 const APInt &RA = Rem->getAPIntValue().abs(); 2410 if (RA.isPowerOf2()) { 2411 APInt LowBits = RA - 1; 2412 computeKnownBits(Op.getOperand(0), KnownZero2,KnownOne2,Depth+1); 2413 2414 // The low bits of the first operand are unchanged by the srem. 2415 KnownZero = KnownZero2 & LowBits; 2416 KnownOne = KnownOne2 & LowBits; 2417 2418 // If the first operand is non-negative or has all low bits zero, then 2419 // the upper bits are all zero. 2420 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 2421 KnownZero |= ~LowBits; 2422 2423 // If the first operand is negative and not all low bits are zero, then 2424 // the upper bits are all one. 2425 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 2426 KnownOne |= ~LowBits; 2427 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); 2428 } 2429 } 2430 break; 2431 case ISD::UREM: { 2432 if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2433 const APInt &RA = Rem->getAPIntValue(); 2434 if (RA.isPowerOf2()) { 2435 APInt LowBits = (RA - 1); 2436 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth + 1); 2437 2438 // The upper bits are all zero, the lower ones are unchanged. 2439 KnownZero = KnownZero2 | ~LowBits; 2440 KnownOne = KnownOne2 & LowBits; 2441 break; 2442 } 2443 } 2444 2445 // Since the result is less than or equal to either operand, any leading 2446 // zero bits in either operand must also exist in the result. 2447 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2448 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); 2449 2450 uint32_t Leaders = std::max(KnownZero.countLeadingOnes(), 2451 KnownZero2.countLeadingOnes()); 2452 KnownOne.clearAllBits(); 2453 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 2454 break; 2455 } 2456 case ISD::EXTRACT_ELEMENT: { 2457 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2458 const unsigned Index = 2459 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 2460 const unsigned BitWidth = Op.getValueType().getSizeInBits(); 2461 2462 // Remove low part of known bits mask 2463 KnownZero = KnownZero.getHiBits(KnownZero.getBitWidth() - Index * BitWidth); 2464 KnownOne = KnownOne.getHiBits(KnownOne.getBitWidth() - Index * BitWidth); 2465 2466 // Remove high part of known bit mask 2467 KnownZero = KnownZero.trunc(BitWidth); 2468 KnownOne = KnownOne.trunc(BitWidth); 2469 break; 2470 } 2471 case ISD::BSWAP: { 2472 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); 2473 KnownZero = KnownZero2.byteSwap(); 2474 KnownOne = KnownOne2.byteSwap(); 2475 break; 2476 } 2477 case ISD::SMIN: 2478 case ISD::SMAX: 2479 case ISD::UMIN: 2480 case ISD::UMAX: { 2481 APInt Op0Zero, Op0One; 2482 APInt Op1Zero, Op1One; 2483 computeKnownBits(Op.getOperand(0), Op0Zero, Op0One, Depth); 2484 computeKnownBits(Op.getOperand(1), Op1Zero, Op1One, Depth); 2485 2486 KnownZero = Op0Zero & Op1Zero; 2487 KnownOne = Op0One & Op1One; 2488 break; 2489 } 2490 case ISD::FrameIndex: 2491 case ISD::TargetFrameIndex: 2492 if (unsigned Align = InferPtrAlignment(Op)) { 2493 // The low bits are known zero if the pointer is aligned. 2494 KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align)); 2495 break; 2496 } 2497 break; 2498 2499 default: 2500 if (Op.getOpcode() < ISD::BUILTIN_OP_END) 2501 break; 2502 // Fallthrough 2503 case ISD::INTRINSIC_WO_CHAIN: 2504 case ISD::INTRINSIC_W_CHAIN: 2505 case ISD::INTRINSIC_VOID: 2506 // Allow the target to implement this method for its nodes. 2507 TLI->computeKnownBitsForTargetNode(Op, KnownZero, KnownOne, *this, Depth); 2508 break; 2509 } 2510 2511 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 2512 } 2513 2514 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 2515 // A left-shift of a constant one will have exactly one bit set because 2516 // shifting the bit off the end is undefined. 2517 if (Val.getOpcode() == ISD::SHL) { 2518 auto *C = dyn_cast<ConstantSDNode>(Val.getOperand(0)); 2519 if (C && C->getAPIntValue() == 1) 2520 return true; 2521 } 2522 2523 // Similarly, a logical right-shift of a constant sign-bit will have exactly 2524 // one bit set. 2525 if (Val.getOpcode() == ISD::SRL) { 2526 auto *C = dyn_cast<ConstantSDNode>(Val.getOperand(0)); 2527 if (C && C->getAPIntValue().isSignBit()) 2528 return true; 2529 } 2530 2531 // More could be done here, though the above checks are enough 2532 // to handle some common cases. 2533 2534 // Fall back to computeKnownBits to catch other known cases. 2535 EVT OpVT = Val.getValueType(); 2536 unsigned BitWidth = OpVT.getScalarType().getSizeInBits(); 2537 APInt KnownZero, KnownOne; 2538 computeKnownBits(Val, KnownZero, KnownOne); 2539 return (KnownZero.countPopulation() == BitWidth - 1) && 2540 (KnownOne.countPopulation() == 1); 2541 } 2542 2543 /// ComputeNumSignBits - Return the number of times the sign bit of the 2544 /// register is replicated into the other bits. We know that at least 1 bit 2545 /// is always equal to the sign bit (itself), but other cases can give us 2546 /// information. For example, immediately after an "SRA X, 2", we know that 2547 /// the top 3 bits are all equal to each other, so we return 3. 2548 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{ 2549 EVT VT = Op.getValueType(); 2550 assert(VT.isInteger() && "Invalid VT!"); 2551 unsigned VTBits = VT.getScalarType().getSizeInBits(); 2552 unsigned Tmp, Tmp2; 2553 unsigned FirstAnswer = 1; 2554 2555 if (Depth == 6) 2556 return 1; // Limit search depth. 2557 2558 switch (Op.getOpcode()) { 2559 default: break; 2560 case ISD::AssertSext: 2561 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 2562 return VTBits-Tmp+1; 2563 case ISD::AssertZext: 2564 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 2565 return VTBits-Tmp; 2566 2567 case ISD::Constant: { 2568 const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue(); 2569 return Val.getNumSignBits(); 2570 } 2571 2572 case ISD::SIGN_EXTEND: 2573 Tmp = 2574 VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 2575 return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp; 2576 2577 case ISD::SIGN_EXTEND_INREG: 2578 // Max of the input and what this extends. 2579 Tmp = 2580 cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits(); 2581 Tmp = VTBits-Tmp+1; 2582 2583 Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2584 return std::max(Tmp, Tmp2); 2585 2586 case ISD::SRA: 2587 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2588 // SRA X, C -> adds C sign bits. 2589 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2590 Tmp += C->getZExtValue(); 2591 if (Tmp > VTBits) Tmp = VTBits; 2592 } 2593 return Tmp; 2594 case ISD::SHL: 2595 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2596 // shl destroys sign bits. 2597 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2598 if (C->getZExtValue() >= VTBits || // Bad shift. 2599 C->getZExtValue() >= Tmp) break; // Shifted all sign bits out. 2600 return Tmp - C->getZExtValue(); 2601 } 2602 break; 2603 case ISD::AND: 2604 case ISD::OR: 2605 case ISD::XOR: // NOT is handled here. 2606 // Logical binary ops preserve the number of sign bits at the worst. 2607 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2608 if (Tmp != 1) { 2609 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 2610 FirstAnswer = std::min(Tmp, Tmp2); 2611 // We computed what we know about the sign bits as our first 2612 // answer. Now proceed to the generic code that uses 2613 // computeKnownBits, and pick whichever answer is better. 2614 } 2615 break; 2616 2617 case ISD::SELECT: 2618 Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1); 2619 if (Tmp == 1) return 1; // Early out. 2620 Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1); 2621 return std::min(Tmp, Tmp2); 2622 case ISD::SELECT_CC: 2623 Tmp = ComputeNumSignBits(Op.getOperand(2), Depth+1); 2624 if (Tmp == 1) return 1; // Early out. 2625 Tmp2 = ComputeNumSignBits(Op.getOperand(3), Depth+1); 2626 return std::min(Tmp, Tmp2); 2627 case ISD::SMIN: 2628 case ISD::SMAX: 2629 case ISD::UMIN: 2630 case ISD::UMAX: 2631 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 2632 if (Tmp == 1) 2633 return 1; // Early out. 2634 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 2635 return std::min(Tmp, Tmp2); 2636 case ISD::SADDO: 2637 case ISD::UADDO: 2638 case ISD::SSUBO: 2639 case ISD::USUBO: 2640 case ISD::SMULO: 2641 case ISD::UMULO: 2642 if (Op.getResNo() != 1) 2643 break; 2644 // The boolean result conforms to getBooleanContents. Fall through. 2645 // If setcc returns 0/-1, all bits are sign bits. 2646 // We know that we have an integer-based boolean since these operations 2647 // are only available for integer. 2648 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2649 TargetLowering::ZeroOrNegativeOneBooleanContent) 2650 return VTBits; 2651 break; 2652 case ISD::SETCC: 2653 // If setcc returns 0/-1, all bits are sign bits. 2654 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2655 TargetLowering::ZeroOrNegativeOneBooleanContent) 2656 return VTBits; 2657 break; 2658 case ISD::ROTL: 2659 case ISD::ROTR: 2660 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2661 unsigned RotAmt = C->getZExtValue() & (VTBits-1); 2662 2663 // Handle rotate right by N like a rotate left by 32-N. 2664 if (Op.getOpcode() == ISD::ROTR) 2665 RotAmt = (VTBits-RotAmt) & (VTBits-1); 2666 2667 // If we aren't rotating out all of the known-in sign bits, return the 2668 // number that are left. This handles rotl(sext(x), 1) for example. 2669 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2670 if (Tmp > RotAmt+1) return Tmp-RotAmt; 2671 } 2672 break; 2673 case ISD::ADD: 2674 // Add can have at most one carry bit. Thus we know that the output 2675 // is, at worst, one more bit than the inputs. 2676 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2677 if (Tmp == 1) return 1; // Early out. 2678 2679 // Special case decrementing a value (ADD X, -1): 2680 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 2681 if (CRHS->isAllOnesValue()) { 2682 APInt KnownZero, KnownOne; 2683 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2684 2685 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2686 // sign bits set. 2687 if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue()) 2688 return VTBits; 2689 2690 // If we are subtracting one from a positive number, there is no carry 2691 // out of the result. 2692 if (KnownZero.isNegative()) 2693 return Tmp; 2694 } 2695 2696 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 2697 if (Tmp2 == 1) return 1; 2698 return std::min(Tmp, Tmp2)-1; 2699 2700 case ISD::SUB: 2701 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 2702 if (Tmp2 == 1) return 1; 2703 2704 // Handle NEG. 2705 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) 2706 if (CLHS->isNullValue()) { 2707 APInt KnownZero, KnownOne; 2708 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); 2709 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2710 // sign bits set. 2711 if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue()) 2712 return VTBits; 2713 2714 // If the input is known to be positive (the sign bit is known clear), 2715 // the output of the NEG has the same number of sign bits as the input. 2716 if (KnownZero.isNegative()) 2717 return Tmp2; 2718 2719 // Otherwise, we treat this like a SUB. 2720 } 2721 2722 // Sub can have at most one carry bit. Thus we know that the output 2723 // is, at worst, one more bit than the inputs. 2724 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2725 if (Tmp == 1) return 1; // Early out. 2726 return std::min(Tmp, Tmp2)-1; 2727 case ISD::TRUNCATE: 2728 // FIXME: it's tricky to do anything useful for this, but it is an important 2729 // case for targets like X86. 2730 break; 2731 case ISD::EXTRACT_ELEMENT: { 2732 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2733 const int BitWidth = Op.getValueType().getSizeInBits(); 2734 const int Items = 2735 Op.getOperand(0).getValueType().getSizeInBits() / BitWidth; 2736 2737 // Get reverse index (starting from 1), Op1 value indexes elements from 2738 // little end. Sign starts at big end. 2739 const int rIndex = Items - 1 - 2740 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 2741 2742 // If the sign portion ends in our element the subtraction gives correct 2743 // result. Otherwise it gives either negative or > bitwidth result 2744 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 2745 } 2746 } 2747 2748 // If we are looking at the loaded value of the SDNode. 2749 if (Op.getResNo() == 0) { 2750 // Handle LOADX separately here. EXTLOAD case will fallthrough. 2751 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 2752 unsigned ExtType = LD->getExtensionType(); 2753 switch (ExtType) { 2754 default: break; 2755 case ISD::SEXTLOAD: // '17' bits known 2756 Tmp = LD->getMemoryVT().getScalarType().getSizeInBits(); 2757 return VTBits-Tmp+1; 2758 case ISD::ZEXTLOAD: // '16' bits known 2759 Tmp = LD->getMemoryVT().getScalarType().getSizeInBits(); 2760 return VTBits-Tmp; 2761 } 2762 } 2763 } 2764 2765 // Allow the target to implement this method for its nodes. 2766 if (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2767 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2768 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2769 Op.getOpcode() == ISD::INTRINSIC_VOID) { 2770 unsigned NumBits = TLI->ComputeNumSignBitsForTargetNode(Op, *this, Depth); 2771 if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits); 2772 } 2773 2774 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2775 // use this information. 2776 APInt KnownZero, KnownOne; 2777 computeKnownBits(Op, KnownZero, KnownOne, Depth); 2778 2779 APInt Mask; 2780 if (KnownZero.isNegative()) { // sign bit is 0 2781 Mask = KnownZero; 2782 } else if (KnownOne.isNegative()) { // sign bit is 1; 2783 Mask = KnownOne; 2784 } else { 2785 // Nothing known. 2786 return FirstAnswer; 2787 } 2788 2789 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 2790 // the number of identical bits in the top of the input value. 2791 Mask = ~Mask; 2792 Mask <<= Mask.getBitWidth()-VTBits; 2793 // Return # leading zeros. We use 'min' here in case Val was zero before 2794 // shifting. We don't want to return '64' as for an i32 "0". 2795 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros())); 2796 } 2797 2798 /// isBaseWithConstantOffset - Return true if the specified operand is an 2799 /// ISD::ADD with a ConstantSDNode on the right-hand side, or if it is an 2800 /// ISD::OR with a ConstantSDNode that is guaranteed to have the same 2801 /// semantics as an ADD. This handles the equivalence: 2802 /// X|Cst == X+Cst iff X&Cst = 0. 2803 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 2804 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 2805 !isa<ConstantSDNode>(Op.getOperand(1))) 2806 return false; 2807 2808 if (Op.getOpcode() == ISD::OR && 2809 !MaskedValueIsZero(Op.getOperand(0), 2810 cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue())) 2811 return false; 2812 2813 return true; 2814 } 2815 2816 2817 bool SelectionDAG::isKnownNeverNaN(SDValue Op) const { 2818 // If we're told that NaNs won't happen, assume they won't. 2819 if (getTarget().Options.NoNaNsFPMath) 2820 return true; 2821 2822 // If the value is a constant, we can obviously see if it is a NaN or not. 2823 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 2824 return !C->getValueAPF().isNaN(); 2825 2826 // TODO: Recognize more cases here. 2827 2828 return false; 2829 } 2830 2831 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 2832 // If the value is a constant, we can obviously see if it is a zero or not. 2833 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 2834 return !C->isZero(); 2835 2836 // TODO: Recognize more cases here. 2837 switch (Op.getOpcode()) { 2838 default: break; 2839 case ISD::OR: 2840 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 2841 return !C->isNullValue(); 2842 break; 2843 } 2844 2845 return false; 2846 } 2847 2848 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 2849 // Check the obvious case. 2850 if (A == B) return true; 2851 2852 // For for negative and positive zero. 2853 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 2854 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 2855 if (CA->isZero() && CB->isZero()) return true; 2856 2857 // Otherwise they may not be equal. 2858 return false; 2859 } 2860 2861 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 2862 assert(A.getValueType() == B.getValueType() && 2863 "Values must have the same type"); 2864 APInt AZero, AOne; 2865 APInt BZero, BOne; 2866 computeKnownBits(A, AZero, AOne); 2867 computeKnownBits(B, BZero, BOne); 2868 return (AZero | BZero).isAllOnesValue(); 2869 } 2870 2871 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 2872 ArrayRef<SDValue> Ops, 2873 llvm::SelectionDAG &DAG) { 2874 if (Ops.size() == 1) 2875 return Ops[0]; 2876 2877 // Concat of UNDEFs is UNDEF. 2878 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 2879 return DAG.getUNDEF(VT); 2880 2881 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 2882 // simplified to one big BUILD_VECTOR. 2883 // FIXME: Add support for SCALAR_TO_VECTOR as well. 2884 EVT SVT = VT.getScalarType(); 2885 SmallVector<SDValue, 16> Elts; 2886 for (SDValue Op : Ops) { 2887 EVT OpVT = Op.getValueType(); 2888 if (Op.isUndef()) 2889 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 2890 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 2891 Elts.append(Op->op_begin(), Op->op_end()); 2892 else 2893 return SDValue(); 2894 } 2895 2896 // BUILD_VECTOR requires all inputs to be of the same type, find the 2897 // maximum type and extend them all. 2898 for (SDValue Op : Elts) 2899 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 2900 2901 if (SVT.bitsGT(VT.getScalarType())) 2902 for (SDValue &Op : Elts) 2903 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 2904 ? DAG.getZExtOrTrunc(Op, DL, SVT) 2905 : DAG.getSExtOrTrunc(Op, DL, SVT); 2906 2907 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Elts); 2908 } 2909 2910 /// getNode - Gets or creates the specified node. 2911 /// 2912 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 2913 FoldingSetNodeID ID; 2914 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 2915 void *IP = nullptr; 2916 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 2917 return SDValue(E, 0); 2918 2919 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 2920 getVTList(VT)); 2921 CSEMap.InsertNode(N, IP); 2922 2923 InsertNode(N); 2924 return SDValue(N, 0); 2925 } 2926 2927 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 2928 SDValue Operand) { 2929 // Constant fold unary operations with an integer constant operand. Even 2930 // opaque constant will be folded, because the folding of unary operations 2931 // doesn't create new constants with different values. Nevertheless, the 2932 // opaque flag is preserved during folding to prevent future folding with 2933 // other constants. 2934 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 2935 const APInt &Val = C->getAPIntValue(); 2936 switch (Opcode) { 2937 default: break; 2938 case ISD::SIGN_EXTEND: 2939 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 2940 C->isTargetOpcode(), C->isOpaque()); 2941 case ISD::ANY_EXTEND: 2942 case ISD::ZERO_EXTEND: 2943 case ISD::TRUNCATE: 2944 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 2945 C->isTargetOpcode(), C->isOpaque()); 2946 case ISD::UINT_TO_FP: 2947 case ISD::SINT_TO_FP: { 2948 APFloat apf(EVTToAPFloatSemantics(VT), 2949 APInt::getNullValue(VT.getSizeInBits())); 2950 (void)apf.convertFromAPInt(Val, 2951 Opcode==ISD::SINT_TO_FP, 2952 APFloat::rmNearestTiesToEven); 2953 return getConstantFP(apf, DL, VT); 2954 } 2955 case ISD::BITCAST: 2956 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 2957 return getConstantFP(APFloat(APFloat::IEEEhalf, Val), DL, VT); 2958 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 2959 return getConstantFP(APFloat(APFloat::IEEEsingle, Val), DL, VT); 2960 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 2961 return getConstantFP(APFloat(APFloat::IEEEdouble, Val), DL, VT); 2962 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 2963 return getConstantFP(APFloat(APFloat::IEEEquad, Val), DL, VT); 2964 break; 2965 case ISD::BSWAP: 2966 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 2967 C->isOpaque()); 2968 case ISD::CTPOP: 2969 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 2970 C->isOpaque()); 2971 case ISD::CTLZ: 2972 case ISD::CTLZ_ZERO_UNDEF: 2973 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 2974 C->isOpaque()); 2975 case ISD::CTTZ: 2976 case ISD::CTTZ_ZERO_UNDEF: 2977 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 2978 C->isOpaque()); 2979 } 2980 } 2981 2982 // Constant fold unary operations with a floating point constant operand. 2983 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 2984 APFloat V = C->getValueAPF(); // make copy 2985 switch (Opcode) { 2986 case ISD::FNEG: 2987 V.changeSign(); 2988 return getConstantFP(V, DL, VT); 2989 case ISD::FABS: 2990 V.clearSign(); 2991 return getConstantFP(V, DL, VT); 2992 case ISD::FCEIL: { 2993 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 2994 if (fs == APFloat::opOK || fs == APFloat::opInexact) 2995 return getConstantFP(V, DL, VT); 2996 break; 2997 } 2998 case ISD::FTRUNC: { 2999 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 3000 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3001 return getConstantFP(V, DL, VT); 3002 break; 3003 } 3004 case ISD::FFLOOR: { 3005 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 3006 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3007 return getConstantFP(V, DL, VT); 3008 break; 3009 } 3010 case ISD::FP_EXTEND: { 3011 bool ignored; 3012 // This can return overflow, underflow, or inexact; we don't care. 3013 // FIXME need to be more flexible about rounding mode. 3014 (void)V.convert(EVTToAPFloatSemantics(VT), 3015 APFloat::rmNearestTiesToEven, &ignored); 3016 return getConstantFP(V, DL, VT); 3017 } 3018 case ISD::FP_TO_SINT: 3019 case ISD::FP_TO_UINT: { 3020 integerPart x[2]; 3021 bool ignored; 3022 static_assert(integerPartWidth >= 64, "APFloat parts too small!"); 3023 // FIXME need to be more flexible about rounding mode. 3024 APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(), 3025 Opcode==ISD::FP_TO_SINT, 3026 APFloat::rmTowardZero, &ignored); 3027 if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual 3028 break; 3029 APInt api(VT.getSizeInBits(), x); 3030 return getConstant(api, DL, VT); 3031 } 3032 case ISD::BITCAST: 3033 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 3034 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 3035 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 3036 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 3037 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 3038 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 3039 break; 3040 } 3041 } 3042 3043 // Constant fold unary operations with a vector integer or float operand. 3044 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 3045 if (BV->isConstant()) { 3046 switch (Opcode) { 3047 default: 3048 // FIXME: Entirely reasonable to perform folding of other unary 3049 // operations here as the need arises. 3050 break; 3051 case ISD::FNEG: 3052 case ISD::FABS: 3053 case ISD::FCEIL: 3054 case ISD::FTRUNC: 3055 case ISD::FFLOOR: 3056 case ISD::FP_EXTEND: 3057 case ISD::FP_TO_SINT: 3058 case ISD::FP_TO_UINT: 3059 case ISD::TRUNCATE: 3060 case ISD::UINT_TO_FP: 3061 case ISD::SINT_TO_FP: 3062 case ISD::BSWAP: 3063 case ISD::CTLZ: 3064 case ISD::CTLZ_ZERO_UNDEF: 3065 case ISD::CTTZ: 3066 case ISD::CTTZ_ZERO_UNDEF: 3067 case ISD::CTPOP: { 3068 SDValue Ops = { Operand }; 3069 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 3070 return Fold; 3071 } 3072 } 3073 } 3074 } 3075 3076 unsigned OpOpcode = Operand.getNode()->getOpcode(); 3077 switch (Opcode) { 3078 case ISD::TokenFactor: 3079 case ISD::MERGE_VALUES: 3080 case ISD::CONCAT_VECTORS: 3081 return Operand; // Factor, merge or concat of one node? No need. 3082 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 3083 case ISD::FP_EXTEND: 3084 assert(VT.isFloatingPoint() && 3085 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 3086 if (Operand.getValueType() == VT) return Operand; // noop conversion. 3087 assert((!VT.isVector() || 3088 VT.getVectorNumElements() == 3089 Operand.getValueType().getVectorNumElements()) && 3090 "Vector element count mismatch!"); 3091 assert(Operand.getValueType().bitsLT(VT) && 3092 "Invalid fpext node, dst < src!"); 3093 if (Operand.isUndef()) 3094 return getUNDEF(VT); 3095 break; 3096 case ISD::SIGN_EXTEND: 3097 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3098 "Invalid SIGN_EXTEND!"); 3099 if (Operand.getValueType() == VT) return Operand; // noop extension 3100 assert((!VT.isVector() || 3101 VT.getVectorNumElements() == 3102 Operand.getValueType().getVectorNumElements()) && 3103 "Vector element count mismatch!"); 3104 assert(Operand.getValueType().bitsLT(VT) && 3105 "Invalid sext node, dst < src!"); 3106 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 3107 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0)); 3108 else if (OpOpcode == ISD::UNDEF) 3109 // sext(undef) = 0, because the top bits will all be the same. 3110 return getConstant(0, DL, VT); 3111 break; 3112 case ISD::ZERO_EXTEND: 3113 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3114 "Invalid ZERO_EXTEND!"); 3115 if (Operand.getValueType() == VT) return Operand; // noop extension 3116 assert((!VT.isVector() || 3117 VT.getVectorNumElements() == 3118 Operand.getValueType().getVectorNumElements()) && 3119 "Vector element count mismatch!"); 3120 assert(Operand.getValueType().bitsLT(VT) && 3121 "Invalid zext node, dst < src!"); 3122 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 3123 return getNode(ISD::ZERO_EXTEND, DL, VT, 3124 Operand.getNode()->getOperand(0)); 3125 else if (OpOpcode == ISD::UNDEF) 3126 // zext(undef) = 0, because the top bits will be zero. 3127 return getConstant(0, DL, VT); 3128 break; 3129 case ISD::ANY_EXTEND: 3130 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3131 "Invalid ANY_EXTEND!"); 3132 if (Operand.getValueType() == VT) return Operand; // noop extension 3133 assert((!VT.isVector() || 3134 VT.getVectorNumElements() == 3135 Operand.getValueType().getVectorNumElements()) && 3136 "Vector element count mismatch!"); 3137 assert(Operand.getValueType().bitsLT(VT) && 3138 "Invalid anyext node, dst < src!"); 3139 3140 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 3141 OpOpcode == ISD::ANY_EXTEND) 3142 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 3143 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0)); 3144 else if (OpOpcode == ISD::UNDEF) 3145 return getUNDEF(VT); 3146 3147 // (ext (trunx x)) -> x 3148 if (OpOpcode == ISD::TRUNCATE) { 3149 SDValue OpOp = Operand.getNode()->getOperand(0); 3150 if (OpOp.getValueType() == VT) 3151 return OpOp; 3152 } 3153 break; 3154 case ISD::TRUNCATE: 3155 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3156 "Invalid TRUNCATE!"); 3157 if (Operand.getValueType() == VT) return Operand; // noop truncate 3158 assert((!VT.isVector() || 3159 VT.getVectorNumElements() == 3160 Operand.getValueType().getVectorNumElements()) && 3161 "Vector element count mismatch!"); 3162 assert(Operand.getValueType().bitsGT(VT) && 3163 "Invalid truncate node, src < dst!"); 3164 if (OpOpcode == ISD::TRUNCATE) 3165 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0)); 3166 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 3167 OpOpcode == ISD::ANY_EXTEND) { 3168 // If the source is smaller than the dest, we still need an extend. 3169 if (Operand.getNode()->getOperand(0).getValueType().getScalarType() 3170 .bitsLT(VT.getScalarType())) 3171 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0)); 3172 if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT)) 3173 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0)); 3174 return Operand.getNode()->getOperand(0); 3175 } 3176 if (OpOpcode == ISD::UNDEF) 3177 return getUNDEF(VT); 3178 break; 3179 case ISD::BSWAP: 3180 assert(VT.isInteger() && VT == Operand.getValueType() && 3181 "Invalid BSWAP!"); 3182 assert((VT.getScalarSizeInBits() % 16 == 0) && 3183 "BSWAP types must be a multiple of 16 bits!"); 3184 if (OpOpcode == ISD::UNDEF) 3185 return getUNDEF(VT); 3186 break; 3187 case ISD::BITREVERSE: 3188 assert(VT.isInteger() && VT == Operand.getValueType() && 3189 "Invalid BITREVERSE!"); 3190 if (OpOpcode == ISD::UNDEF) 3191 return getUNDEF(VT); 3192 break; 3193 case ISD::BITCAST: 3194 // Basic sanity checking. 3195 assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits() 3196 && "Cannot BITCAST between types of different sizes!"); 3197 if (VT == Operand.getValueType()) return Operand; // noop conversion. 3198 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 3199 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 3200 if (OpOpcode == ISD::UNDEF) 3201 return getUNDEF(VT); 3202 break; 3203 case ISD::SCALAR_TO_VECTOR: 3204 assert(VT.isVector() && !Operand.getValueType().isVector() && 3205 (VT.getVectorElementType() == Operand.getValueType() || 3206 (VT.getVectorElementType().isInteger() && 3207 Operand.getValueType().isInteger() && 3208 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 3209 "Illegal SCALAR_TO_VECTOR node!"); 3210 if (OpOpcode == ISD::UNDEF) 3211 return getUNDEF(VT); 3212 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 3213 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 3214 isa<ConstantSDNode>(Operand.getOperand(1)) && 3215 Operand.getConstantOperandVal(1) == 0 && 3216 Operand.getOperand(0).getValueType() == VT) 3217 return Operand.getOperand(0); 3218 break; 3219 case ISD::FNEG: 3220 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 3221 if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB) 3222 // FIXME: FNEG has no fast-math-flags to propagate; use the FSUB's flags? 3223 return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1), 3224 Operand.getNode()->getOperand(0), 3225 &cast<BinaryWithFlagsSDNode>(Operand.getNode())->Flags); 3226 if (OpOpcode == ISD::FNEG) // --X -> X 3227 return Operand.getNode()->getOperand(0); 3228 break; 3229 case ISD::FABS: 3230 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 3231 return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0)); 3232 break; 3233 } 3234 3235 SDNode *N; 3236 SDVTList VTs = getVTList(VT); 3237 SDValue Ops[] = {Operand}; 3238 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 3239 FoldingSetNodeID ID; 3240 AddNodeIDNode(ID, Opcode, VTs, Ops); 3241 void *IP = nullptr; 3242 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 3243 return SDValue(E, 0); 3244 3245 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 3246 createOperands(N, Ops); 3247 CSEMap.InsertNode(N, IP); 3248 } else { 3249 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 3250 createOperands(N, Ops); 3251 } 3252 3253 InsertNode(N); 3254 return SDValue(N, 0); 3255 } 3256 3257 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1, 3258 const APInt &C2) { 3259 switch (Opcode) { 3260 case ISD::ADD: return std::make_pair(C1 + C2, true); 3261 case ISD::SUB: return std::make_pair(C1 - C2, true); 3262 case ISD::MUL: return std::make_pair(C1 * C2, true); 3263 case ISD::AND: return std::make_pair(C1 & C2, true); 3264 case ISD::OR: return std::make_pair(C1 | C2, true); 3265 case ISD::XOR: return std::make_pair(C1 ^ C2, true); 3266 case ISD::SHL: return std::make_pair(C1 << C2, true); 3267 case ISD::SRL: return std::make_pair(C1.lshr(C2), true); 3268 case ISD::SRA: return std::make_pair(C1.ashr(C2), true); 3269 case ISD::ROTL: return std::make_pair(C1.rotl(C2), true); 3270 case ISD::ROTR: return std::make_pair(C1.rotr(C2), true); 3271 case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true); 3272 case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true); 3273 case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true); 3274 case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true); 3275 case ISD::UDIV: 3276 if (!C2.getBoolValue()) 3277 break; 3278 return std::make_pair(C1.udiv(C2), true); 3279 case ISD::UREM: 3280 if (!C2.getBoolValue()) 3281 break; 3282 return std::make_pair(C1.urem(C2), true); 3283 case ISD::SDIV: 3284 if (!C2.getBoolValue()) 3285 break; 3286 return std::make_pair(C1.sdiv(C2), true); 3287 case ISD::SREM: 3288 if (!C2.getBoolValue()) 3289 break; 3290 return std::make_pair(C1.srem(C2), true); 3291 } 3292 return std::make_pair(APInt(1, 0), false); 3293 } 3294 3295 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 3296 EVT VT, const ConstantSDNode *Cst1, 3297 const ConstantSDNode *Cst2) { 3298 if (Cst1->isOpaque() || Cst2->isOpaque()) 3299 return SDValue(); 3300 3301 std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(), 3302 Cst2->getAPIntValue()); 3303 if (!Folded.second) 3304 return SDValue(); 3305 return getConstant(Folded.first, DL, VT); 3306 } 3307 3308 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 3309 const GlobalAddressSDNode *GA, 3310 const SDNode *N2) { 3311 if (GA->getOpcode() != ISD::GlobalAddress) 3312 return SDValue(); 3313 if (!TLI->isOffsetFoldingLegal(GA)) 3314 return SDValue(); 3315 const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2); 3316 if (!Cst2) 3317 return SDValue(); 3318 int64_t Offset = Cst2->getSExtValue(); 3319 switch (Opcode) { 3320 case ISD::ADD: break; 3321 case ISD::SUB: Offset = -uint64_t(Offset); break; 3322 default: return SDValue(); 3323 } 3324 return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT, 3325 GA->getOffset() + uint64_t(Offset)); 3326 } 3327 3328 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 3329 EVT VT, SDNode *Cst1, 3330 SDNode *Cst2) { 3331 // If the opcode is a target-specific ISD node, there's nothing we can 3332 // do here and the operand rules may not line up with the below, so 3333 // bail early. 3334 if (Opcode >= ISD::BUILTIN_OP_END) 3335 return SDValue(); 3336 3337 // Handle the case of two scalars. 3338 if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) { 3339 if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) { 3340 SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2); 3341 assert((!Folded || !VT.isVector()) && 3342 "Can't fold vectors ops with scalar operands"); 3343 return Folded; 3344 } 3345 } 3346 3347 // fold (add Sym, c) -> Sym+c 3348 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1)) 3349 return FoldSymbolOffset(Opcode, VT, GA, Cst2); 3350 if (isCommutativeBinOp(Opcode)) 3351 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2)) 3352 return FoldSymbolOffset(Opcode, VT, GA, Cst1); 3353 3354 // For vectors extract each constant element into Inputs so we can constant 3355 // fold them individually. 3356 BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1); 3357 BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2); 3358 if (!BV1 || !BV2) 3359 return SDValue(); 3360 3361 assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!"); 3362 3363 EVT SVT = VT.getScalarType(); 3364 SmallVector<SDValue, 4> Outputs; 3365 for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) { 3366 ConstantSDNode *V1 = dyn_cast<ConstantSDNode>(BV1->getOperand(I)); 3367 ConstantSDNode *V2 = dyn_cast<ConstantSDNode>(BV2->getOperand(I)); 3368 if (!V1 || !V2) // Not a constant, bail. 3369 return SDValue(); 3370 3371 if (V1->isOpaque() || V2->isOpaque()) 3372 return SDValue(); 3373 3374 // Avoid BUILD_VECTOR nodes that perform implicit truncation. 3375 // FIXME: This is valid and could be handled by truncating the APInts. 3376 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 3377 return SDValue(); 3378 3379 // Fold one vector element. 3380 std::pair<APInt, bool> Folded = FoldValue(Opcode, V1->getAPIntValue(), 3381 V2->getAPIntValue()); 3382 if (!Folded.second) 3383 return SDValue(); 3384 Outputs.push_back(getConstant(Folded.first, DL, SVT)); 3385 } 3386 3387 assert(VT.getVectorNumElements() == Outputs.size() && 3388 "Vector size mismatch!"); 3389 3390 // We may have a vector type but a scalar result. Create a splat. 3391 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 3392 3393 // Build a big vector out of the scalar elements we generated. 3394 return getBuildVector(VT, SDLoc(), Outputs); 3395 } 3396 3397 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 3398 const SDLoc &DL, EVT VT, 3399 ArrayRef<SDValue> Ops, 3400 const SDNodeFlags *Flags) { 3401 // If the opcode is a target-specific ISD node, there's nothing we can 3402 // do here and the operand rules may not line up with the below, so 3403 // bail early. 3404 if (Opcode >= ISD::BUILTIN_OP_END) 3405 return SDValue(); 3406 3407 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 3408 if (!VT.isVector()) 3409 return SDValue(); 3410 3411 unsigned NumElts = VT.getVectorNumElements(); 3412 3413 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 3414 return !Op.getValueType().isVector() || 3415 Op.getValueType().getVectorNumElements() == NumElts; 3416 }; 3417 3418 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 3419 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 3420 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 3421 (BV && BV->isConstant()); 3422 }; 3423 3424 // All operands must be vector types with the same number of elements as 3425 // the result type and must be either UNDEF or a build vector of constant 3426 // or UNDEF scalars. 3427 if (!std::all_of(Ops.begin(), Ops.end(), IsConstantBuildVectorOrUndef) || 3428 !std::all_of(Ops.begin(), Ops.end(), IsScalarOrSameVectorSize)) 3429 return SDValue(); 3430 3431 // If we are comparing vectors, then the result needs to be a i1 boolean 3432 // that is then sign-extended back to the legal result type. 3433 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 3434 3435 // Find legal integer scalar type for constant promotion and 3436 // ensure that its scalar size is at least as large as source. 3437 EVT LegalSVT = VT.getScalarType(); 3438 if (LegalSVT.isInteger()) { 3439 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 3440 if (LegalSVT.bitsLT(VT.getScalarType())) 3441 return SDValue(); 3442 } 3443 3444 // Constant fold each scalar lane separately. 3445 SmallVector<SDValue, 4> ScalarResults; 3446 for (unsigned i = 0; i != NumElts; i++) { 3447 SmallVector<SDValue, 4> ScalarOps; 3448 for (SDValue Op : Ops) { 3449 EVT InSVT = Op.getValueType().getScalarType(); 3450 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 3451 if (!InBV) { 3452 // We've checked that this is UNDEF or a constant of some kind. 3453 if (Op.isUndef()) 3454 ScalarOps.push_back(getUNDEF(InSVT)); 3455 else 3456 ScalarOps.push_back(Op); 3457 continue; 3458 } 3459 3460 SDValue ScalarOp = InBV->getOperand(i); 3461 EVT ScalarVT = ScalarOp.getValueType(); 3462 3463 // Build vector (integer) scalar operands may need implicit 3464 // truncation - do this before constant folding. 3465 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 3466 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 3467 3468 ScalarOps.push_back(ScalarOp); 3469 } 3470 3471 // Constant fold the scalar operands. 3472 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 3473 3474 // Legalize the (integer) scalar constant if necessary. 3475 if (LegalSVT != SVT) 3476 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 3477 3478 // Scalar folding only succeeded if the result is a constant or UNDEF. 3479 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 3480 ScalarResult.getOpcode() != ISD::ConstantFP) 3481 return SDValue(); 3482 ScalarResults.push_back(ScalarResult); 3483 } 3484 3485 return getBuildVector(VT, DL, ScalarResults); 3486 } 3487 3488 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 3489 SDValue N1, SDValue N2, 3490 const SDNodeFlags *Flags) { 3491 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 3492 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 3493 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 3494 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 3495 3496 // Canonicalize constant to RHS if commutative. 3497 if (isCommutativeBinOp(Opcode)) { 3498 if (N1C && !N2C) { 3499 std::swap(N1C, N2C); 3500 std::swap(N1, N2); 3501 } else if (N1CFP && !N2CFP) { 3502 std::swap(N1CFP, N2CFP); 3503 std::swap(N1, N2); 3504 } 3505 } 3506 3507 switch (Opcode) { 3508 default: break; 3509 case ISD::TokenFactor: 3510 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 3511 N2.getValueType() == MVT::Other && "Invalid token factor!"); 3512 // Fold trivial token factors. 3513 if (N1.getOpcode() == ISD::EntryToken) return N2; 3514 if (N2.getOpcode() == ISD::EntryToken) return N1; 3515 if (N1 == N2) return N1; 3516 break; 3517 case ISD::CONCAT_VECTORS: { 3518 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 3519 SDValue Ops[] = {N1, N2}; 3520 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 3521 return V; 3522 break; 3523 } 3524 case ISD::AND: 3525 assert(VT.isInteger() && "This operator does not apply to FP types!"); 3526 assert(N1.getValueType() == N2.getValueType() && 3527 N1.getValueType() == VT && "Binary operator types must match!"); 3528 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 3529 // worth handling here. 3530 if (N2C && N2C->isNullValue()) 3531 return N2; 3532 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 3533 return N1; 3534 break; 3535 case ISD::OR: 3536 case ISD::XOR: 3537 case ISD::ADD: 3538 case ISD::SUB: 3539 assert(VT.isInteger() && "This operator does not apply to FP types!"); 3540 assert(N1.getValueType() == N2.getValueType() && 3541 N1.getValueType() == VT && "Binary operator types must match!"); 3542 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 3543 // it's worth handling here. 3544 if (N2C && N2C->isNullValue()) 3545 return N1; 3546 break; 3547 case ISD::UDIV: 3548 case ISD::UREM: 3549 case ISD::MULHU: 3550 case ISD::MULHS: 3551 case ISD::MUL: 3552 case ISD::SDIV: 3553 case ISD::SREM: 3554 case ISD::SMIN: 3555 case ISD::SMAX: 3556 case ISD::UMIN: 3557 case ISD::UMAX: 3558 assert(VT.isInteger() && "This operator does not apply to FP types!"); 3559 assert(N1.getValueType() == N2.getValueType() && 3560 N1.getValueType() == VT && "Binary operator types must match!"); 3561 break; 3562 case ISD::FADD: 3563 case ISD::FSUB: 3564 case ISD::FMUL: 3565 case ISD::FDIV: 3566 case ISD::FREM: 3567 if (getTarget().Options.UnsafeFPMath) { 3568 if (Opcode == ISD::FADD) { 3569 // x+0 --> x 3570 if (N2CFP && N2CFP->getValueAPF().isZero()) 3571 return N1; 3572 } else if (Opcode == ISD::FSUB) { 3573 // x-0 --> x 3574 if (N2CFP && N2CFP->getValueAPF().isZero()) 3575 return N1; 3576 } else if (Opcode == ISD::FMUL) { 3577 // x*0 --> 0 3578 if (N2CFP && N2CFP->isZero()) 3579 return N2; 3580 // x*1 --> x 3581 if (N2CFP && N2CFP->isExactlyValue(1.0)) 3582 return N1; 3583 } 3584 } 3585 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 3586 assert(N1.getValueType() == N2.getValueType() && 3587 N1.getValueType() == VT && "Binary operator types must match!"); 3588 break; 3589 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 3590 assert(N1.getValueType() == VT && 3591 N1.getValueType().isFloatingPoint() && 3592 N2.getValueType().isFloatingPoint() && 3593 "Invalid FCOPYSIGN!"); 3594 break; 3595 case ISD::SHL: 3596 case ISD::SRA: 3597 case ISD::SRL: 3598 case ISD::ROTL: 3599 case ISD::ROTR: 3600 assert(VT == N1.getValueType() && 3601 "Shift operators return type must be the same as their first arg"); 3602 assert(VT.isInteger() && N2.getValueType().isInteger() && 3603 "Shifts only work on integers"); 3604 assert((!VT.isVector() || VT == N2.getValueType()) && 3605 "Vector shift amounts must be in the same as their first arg"); 3606 // Verify that the shift amount VT is bit enough to hold valid shift 3607 // amounts. This catches things like trying to shift an i1024 value by an 3608 // i8, which is easy to fall into in generic code that uses 3609 // TLI.getShiftAmount(). 3610 assert(N2.getValueType().getSizeInBits() >= 3611 Log2_32_Ceil(N1.getValueType().getSizeInBits()) && 3612 "Invalid use of small shift amount with oversized value!"); 3613 3614 // Always fold shifts of i1 values so the code generator doesn't need to 3615 // handle them. Since we know the size of the shift has to be less than the 3616 // size of the value, the shift/rotate count is guaranteed to be zero. 3617 if (VT == MVT::i1) 3618 return N1; 3619 if (N2C && N2C->isNullValue()) 3620 return N1; 3621 break; 3622 case ISD::FP_ROUND_INREG: { 3623 EVT EVT = cast<VTSDNode>(N2)->getVT(); 3624 assert(VT == N1.getValueType() && "Not an inreg round!"); 3625 assert(VT.isFloatingPoint() && EVT.isFloatingPoint() && 3626 "Cannot FP_ROUND_INREG integer types"); 3627 assert(EVT.isVector() == VT.isVector() && 3628 "FP_ROUND_INREG type should be vector iff the operand " 3629 "type is vector!"); 3630 assert((!EVT.isVector() || 3631 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 3632 "Vector element counts must match in FP_ROUND_INREG"); 3633 assert(EVT.bitsLE(VT) && "Not rounding down!"); 3634 (void)EVT; 3635 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding. 3636 break; 3637 } 3638 case ISD::FP_ROUND: 3639 assert(VT.isFloatingPoint() && 3640 N1.getValueType().isFloatingPoint() && 3641 VT.bitsLE(N1.getValueType()) && 3642 N2C && "Invalid FP_ROUND!"); 3643 if (N1.getValueType() == VT) return N1; // noop conversion. 3644 break; 3645 case ISD::AssertSext: 3646 case ISD::AssertZext: { 3647 EVT EVT = cast<VTSDNode>(N2)->getVT(); 3648 assert(VT == N1.getValueType() && "Not an inreg extend!"); 3649 assert(VT.isInteger() && EVT.isInteger() && 3650 "Cannot *_EXTEND_INREG FP types"); 3651 assert(!EVT.isVector() && 3652 "AssertSExt/AssertZExt type should be the vector element type " 3653 "rather than the vector type!"); 3654 assert(EVT.bitsLE(VT) && "Not extending!"); 3655 if (VT == EVT) return N1; // noop assertion. 3656 break; 3657 } 3658 case ISD::SIGN_EXTEND_INREG: { 3659 EVT EVT = cast<VTSDNode>(N2)->getVT(); 3660 assert(VT == N1.getValueType() && "Not an inreg extend!"); 3661 assert(VT.isInteger() && EVT.isInteger() && 3662 "Cannot *_EXTEND_INREG FP types"); 3663 assert(EVT.isVector() == VT.isVector() && 3664 "SIGN_EXTEND_INREG type should be vector iff the operand " 3665 "type is vector!"); 3666 assert((!EVT.isVector() || 3667 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 3668 "Vector element counts must match in SIGN_EXTEND_INREG"); 3669 assert(EVT.bitsLE(VT) && "Not extending!"); 3670 if (EVT == VT) return N1; // Not actually extending 3671 3672 auto SignExtendInReg = [&](APInt Val) { 3673 unsigned FromBits = EVT.getScalarType().getSizeInBits(); 3674 Val <<= Val.getBitWidth() - FromBits; 3675 Val = Val.ashr(Val.getBitWidth() - FromBits); 3676 return getConstant(Val, DL, VT.getScalarType()); 3677 }; 3678 3679 if (N1C) { 3680 const APInt &Val = N1C->getAPIntValue(); 3681 return SignExtendInReg(Val); 3682 } 3683 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 3684 SmallVector<SDValue, 8> Ops; 3685 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 3686 SDValue Op = N1.getOperand(i); 3687 if (Op.isUndef()) { 3688 Ops.push_back(getUNDEF(VT.getScalarType())); 3689 continue; 3690 } 3691 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 3692 APInt Val = C->getAPIntValue(); 3693 Val = Val.zextOrTrunc(VT.getScalarSizeInBits()); 3694 Ops.push_back(SignExtendInReg(Val)); 3695 continue; 3696 } 3697 break; 3698 } 3699 if (Ops.size() == VT.getVectorNumElements()) 3700 return getBuildVector(VT, DL, Ops); 3701 } 3702 break; 3703 } 3704 case ISD::EXTRACT_VECTOR_ELT: 3705 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF. 3706 if (N1.isUndef()) 3707 return getUNDEF(VT); 3708 3709 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF 3710 if (N2C && N2C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 3711 return getUNDEF(VT); 3712 3713 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 3714 // expanding copies of large vectors from registers. 3715 if (N2C && 3716 N1.getOpcode() == ISD::CONCAT_VECTORS && 3717 N1.getNumOperands() > 0) { 3718 unsigned Factor = 3719 N1.getOperand(0).getValueType().getVectorNumElements(); 3720 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 3721 N1.getOperand(N2C->getZExtValue() / Factor), 3722 getConstant(N2C->getZExtValue() % Factor, DL, 3723 N2.getValueType())); 3724 } 3725 3726 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is 3727 // expanding large vector constants. 3728 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { 3729 SDValue Elt = N1.getOperand(N2C->getZExtValue()); 3730 3731 if (VT != Elt.getValueType()) 3732 // If the vector element type is not legal, the BUILD_VECTOR operands 3733 // are promoted and implicitly truncated, and the result implicitly 3734 // extended. Make that explicit here. 3735 Elt = getAnyExtOrTrunc(Elt, DL, VT); 3736 3737 return Elt; 3738 } 3739 3740 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 3741 // operations are lowered to scalars. 3742 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 3743 // If the indices are the same, return the inserted element else 3744 // if the indices are known different, extract the element from 3745 // the original vector. 3746 SDValue N1Op2 = N1.getOperand(2); 3747 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 3748 3749 if (N1Op2C && N2C) { 3750 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 3751 if (VT == N1.getOperand(1).getValueType()) 3752 return N1.getOperand(1); 3753 else 3754 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 3755 } 3756 3757 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 3758 } 3759 } 3760 break; 3761 case ISD::EXTRACT_ELEMENT: 3762 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 3763 assert(!N1.getValueType().isVector() && !VT.isVector() && 3764 (N1.getValueType().isInteger() == VT.isInteger()) && 3765 N1.getValueType() != VT && 3766 "Wrong types for EXTRACT_ELEMENT!"); 3767 3768 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 3769 // 64-bit integers into 32-bit parts. Instead of building the extract of 3770 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 3771 if (N1.getOpcode() == ISD::BUILD_PAIR) 3772 return N1.getOperand(N2C->getZExtValue()); 3773 3774 // EXTRACT_ELEMENT of a constant int is also very common. 3775 if (N1C) { 3776 unsigned ElementSize = VT.getSizeInBits(); 3777 unsigned Shift = ElementSize * N2C->getZExtValue(); 3778 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 3779 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 3780 } 3781 break; 3782 case ISD::EXTRACT_SUBVECTOR: 3783 if (VT.isSimple() && N1.getValueType().isSimple()) { 3784 assert(VT.isVector() && N1.getValueType().isVector() && 3785 "Extract subvector VTs must be a vectors!"); 3786 assert(VT.getVectorElementType() == 3787 N1.getValueType().getVectorElementType() && 3788 "Extract subvector VTs must have the same element type!"); 3789 assert(VT.getSimpleVT() <= N1.getSimpleValueType() && 3790 "Extract subvector must be from larger vector to smaller vector!"); 3791 3792 if (N2C) { 3793 assert((VT.getVectorNumElements() + N2C->getZExtValue() 3794 <= N1.getValueType().getVectorNumElements()) 3795 && "Extract subvector overflow!"); 3796 } 3797 3798 // Trivial extraction. 3799 if (VT.getSimpleVT() == N1.getSimpleValueType()) 3800 return N1; 3801 } 3802 break; 3803 } 3804 3805 // Perform trivial constant folding. 3806 if (SDValue SV = 3807 FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode())) 3808 return SV; 3809 3810 // Constant fold FP operations. 3811 bool HasFPExceptions = TLI->hasFloatingPointExceptions(); 3812 if (N1CFP) { 3813 if (N2CFP) { 3814 APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF(); 3815 APFloat::opStatus s; 3816 switch (Opcode) { 3817 case ISD::FADD: 3818 s = V1.add(V2, APFloat::rmNearestTiesToEven); 3819 if (!HasFPExceptions || s != APFloat::opInvalidOp) 3820 return getConstantFP(V1, DL, VT); 3821 break; 3822 case ISD::FSUB: 3823 s = V1.subtract(V2, APFloat::rmNearestTiesToEven); 3824 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 3825 return getConstantFP(V1, DL, VT); 3826 break; 3827 case ISD::FMUL: 3828 s = V1.multiply(V2, APFloat::rmNearestTiesToEven); 3829 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 3830 return getConstantFP(V1, DL, VT); 3831 break; 3832 case ISD::FDIV: 3833 s = V1.divide(V2, APFloat::rmNearestTiesToEven); 3834 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 3835 s!=APFloat::opDivByZero)) { 3836 return getConstantFP(V1, DL, VT); 3837 } 3838 break; 3839 case ISD::FREM : 3840 s = V1.mod(V2); 3841 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 3842 s!=APFloat::opDivByZero)) { 3843 return getConstantFP(V1, DL, VT); 3844 } 3845 break; 3846 case ISD::FCOPYSIGN: 3847 V1.copySign(V2); 3848 return getConstantFP(V1, DL, VT); 3849 default: break; 3850 } 3851 } 3852 3853 if (Opcode == ISD::FP_ROUND) { 3854 APFloat V = N1CFP->getValueAPF(); // make copy 3855 bool ignored; 3856 // This can return overflow, underflow, or inexact; we don't care. 3857 // FIXME need to be more flexible about rounding mode. 3858 (void)V.convert(EVTToAPFloatSemantics(VT), 3859 APFloat::rmNearestTiesToEven, &ignored); 3860 return getConstantFP(V, DL, VT); 3861 } 3862 } 3863 3864 // Canonicalize an UNDEF to the RHS, even over a constant. 3865 if (N1.isUndef()) { 3866 if (isCommutativeBinOp(Opcode)) { 3867 std::swap(N1, N2); 3868 } else { 3869 switch (Opcode) { 3870 case ISD::FP_ROUND_INREG: 3871 case ISD::SIGN_EXTEND_INREG: 3872 case ISD::SUB: 3873 case ISD::FSUB: 3874 case ISD::FDIV: 3875 case ISD::FREM: 3876 case ISD::SRA: 3877 return N1; // fold op(undef, arg2) -> undef 3878 case ISD::UDIV: 3879 case ISD::SDIV: 3880 case ISD::UREM: 3881 case ISD::SREM: 3882 case ISD::SRL: 3883 case ISD::SHL: 3884 if (!VT.isVector()) 3885 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 3886 // For vectors, we can't easily build an all zero vector, just return 3887 // the LHS. 3888 return N2; 3889 } 3890 } 3891 } 3892 3893 // Fold a bunch of operators when the RHS is undef. 3894 if (N2.isUndef()) { 3895 switch (Opcode) { 3896 case ISD::XOR: 3897 if (N1.isUndef()) 3898 // Handle undef ^ undef -> 0 special case. This is a common 3899 // idiom (misuse). 3900 return getConstant(0, DL, VT); 3901 // fallthrough 3902 case ISD::ADD: 3903 case ISD::ADDC: 3904 case ISD::ADDE: 3905 case ISD::SUB: 3906 case ISD::UDIV: 3907 case ISD::SDIV: 3908 case ISD::UREM: 3909 case ISD::SREM: 3910 return N2; // fold op(arg1, undef) -> undef 3911 case ISD::FADD: 3912 case ISD::FSUB: 3913 case ISD::FMUL: 3914 case ISD::FDIV: 3915 case ISD::FREM: 3916 if (getTarget().Options.UnsafeFPMath) 3917 return N2; 3918 break; 3919 case ISD::MUL: 3920 case ISD::AND: 3921 case ISD::SRL: 3922 case ISD::SHL: 3923 if (!VT.isVector()) 3924 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 3925 // For vectors, we can't easily build an all zero vector, just return 3926 // the LHS. 3927 return N1; 3928 case ISD::OR: 3929 if (!VT.isVector()) 3930 return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT); 3931 // For vectors, we can't easily build an all one vector, just return 3932 // the LHS. 3933 return N1; 3934 case ISD::SRA: 3935 return N1; 3936 } 3937 } 3938 3939 // Memoize this node if possible. 3940 SDNode *N; 3941 SDVTList VTs = getVTList(VT); 3942 if (VT != MVT::Glue) { 3943 SDValue Ops[] = {N1, N2}; 3944 FoldingSetNodeID ID; 3945 AddNodeIDNode(ID, Opcode, VTs, Ops); 3946 void *IP = nullptr; 3947 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 3948 if (Flags) 3949 E->intersectFlagsWith(Flags); 3950 return SDValue(E, 0); 3951 } 3952 3953 N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags); 3954 CSEMap.InsertNode(N, IP); 3955 } else { 3956 N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags); 3957 } 3958 3959 InsertNode(N); 3960 return SDValue(N, 0); 3961 } 3962 3963 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 3964 SDValue N1, SDValue N2, SDValue N3) { 3965 // Perform various simplifications. 3966 switch (Opcode) { 3967 case ISD::FMA: { 3968 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 3969 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 3970 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 3971 if (N1CFP && N2CFP && N3CFP) { 3972 APFloat V1 = N1CFP->getValueAPF(); 3973 const APFloat &V2 = N2CFP->getValueAPF(); 3974 const APFloat &V3 = N3CFP->getValueAPF(); 3975 APFloat::opStatus s = 3976 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 3977 if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp) 3978 return getConstantFP(V1, DL, VT); 3979 } 3980 break; 3981 } 3982 case ISD::CONCAT_VECTORS: { 3983 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 3984 SDValue Ops[] = {N1, N2, N3}; 3985 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 3986 return V; 3987 break; 3988 } 3989 case ISD::SETCC: { 3990 // Use FoldSetCC to simplify SETCC's. 3991 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 3992 return V; 3993 // Vector constant folding. 3994 SDValue Ops[] = {N1, N2, N3}; 3995 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 3996 return V; 3997 break; 3998 } 3999 case ISD::SELECT: 4000 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 4001 if (N1C->getZExtValue()) 4002 return N2; // select true, X, Y -> X 4003 return N3; // select false, X, Y -> Y 4004 } 4005 4006 if (N2 == N3) return N2; // select C, X, X -> X 4007 break; 4008 case ISD::VECTOR_SHUFFLE: 4009 llvm_unreachable("should use getVectorShuffle constructor!"); 4010 case ISD::INSERT_SUBVECTOR: { 4011 SDValue Index = N3; 4012 if (VT.isSimple() && N1.getValueType().isSimple() 4013 && N2.getValueType().isSimple()) { 4014 assert(VT.isVector() && N1.getValueType().isVector() && 4015 N2.getValueType().isVector() && 4016 "Insert subvector VTs must be a vectors"); 4017 assert(VT == N1.getValueType() && 4018 "Dest and insert subvector source types must match!"); 4019 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && 4020 "Insert subvector must be from smaller vector to larger vector!"); 4021 if (isa<ConstantSDNode>(Index)) { 4022 assert((N2.getValueType().getVectorNumElements() + 4023 cast<ConstantSDNode>(Index)->getZExtValue() 4024 <= VT.getVectorNumElements()) 4025 && "Insert subvector overflow!"); 4026 } 4027 4028 // Trivial insertion. 4029 if (VT.getSimpleVT() == N2.getSimpleValueType()) 4030 return N2; 4031 } 4032 break; 4033 } 4034 case ISD::BITCAST: 4035 // Fold bit_convert nodes from a type to themselves. 4036 if (N1.getValueType() == VT) 4037 return N1; 4038 break; 4039 } 4040 4041 // Memoize node if it doesn't produce a flag. 4042 SDNode *N; 4043 SDVTList VTs = getVTList(VT); 4044 SDValue Ops[] = {N1, N2, N3}; 4045 if (VT != MVT::Glue) { 4046 FoldingSetNodeID ID; 4047 AddNodeIDNode(ID, Opcode, VTs, Ops); 4048 void *IP = nullptr; 4049 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4050 return SDValue(E, 0); 4051 4052 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4053 createOperands(N, Ops); 4054 CSEMap.InsertNode(N, IP); 4055 } else { 4056 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4057 createOperands(N, Ops); 4058 } 4059 4060 InsertNode(N); 4061 return SDValue(N, 0); 4062 } 4063 4064 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4065 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 4066 SDValue Ops[] = { N1, N2, N3, N4 }; 4067 return getNode(Opcode, DL, VT, Ops); 4068 } 4069 4070 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4071 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 4072 SDValue N5) { 4073 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 4074 return getNode(Opcode, DL, VT, Ops); 4075 } 4076 4077 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 4078 /// the incoming stack arguments to be loaded from the stack. 4079 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 4080 SmallVector<SDValue, 8> ArgChains; 4081 4082 // Include the original chain at the beginning of the list. When this is 4083 // used by target LowerCall hooks, this helps legalize find the 4084 // CALLSEQ_BEGIN node. 4085 ArgChains.push_back(Chain); 4086 4087 // Add a chain value for each stack argument. 4088 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 4089 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 4090 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 4091 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 4092 if (FI->getIndex() < 0) 4093 ArgChains.push_back(SDValue(L, 1)); 4094 4095 // Build a tokenfactor for all the chains. 4096 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 4097 } 4098 4099 /// getMemsetValue - Vectorized representation of the memset value 4100 /// operand. 4101 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 4102 const SDLoc &dl) { 4103 assert(!Value.isUndef()); 4104 4105 unsigned NumBits = VT.getScalarType().getSizeInBits(); 4106 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 4107 assert(C->getAPIntValue().getBitWidth() == 8); 4108 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 4109 if (VT.isInteger()) 4110 return DAG.getConstant(Val, dl, VT); 4111 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 4112 VT); 4113 } 4114 4115 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 4116 EVT IntVT = VT.getScalarType(); 4117 if (!IntVT.isInteger()) 4118 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 4119 4120 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 4121 if (NumBits > 8) { 4122 // Use a multiplication with 0x010101... to extend the input to the 4123 // required length. 4124 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 4125 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 4126 DAG.getConstant(Magic, dl, IntVT)); 4127 } 4128 4129 if (VT != Value.getValueType() && !VT.isInteger()) 4130 Value = DAG.getBitcast(VT.getScalarType(), Value); 4131 if (VT != Value.getValueType()) 4132 Value = DAG.getSplatBuildVector(VT, dl, Value); 4133 4134 return Value; 4135 } 4136 4137 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 4138 /// used when a memcpy is turned into a memset when the source is a constant 4139 /// string ptr. 4140 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 4141 const TargetLowering &TLI, StringRef Str) { 4142 // Handle vector with all elements zero. 4143 if (Str.empty()) { 4144 if (VT.isInteger()) 4145 return DAG.getConstant(0, dl, VT); 4146 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 4147 return DAG.getConstantFP(0.0, dl, VT); 4148 else if (VT.isVector()) { 4149 unsigned NumElts = VT.getVectorNumElements(); 4150 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 4151 return DAG.getNode(ISD::BITCAST, dl, VT, 4152 DAG.getConstant(0, dl, 4153 EVT::getVectorVT(*DAG.getContext(), 4154 EltVT, NumElts))); 4155 } else 4156 llvm_unreachable("Expected type!"); 4157 } 4158 4159 assert(!VT.isVector() && "Can't handle vector type here!"); 4160 unsigned NumVTBits = VT.getSizeInBits(); 4161 unsigned NumVTBytes = NumVTBits / 8; 4162 unsigned NumBytes = std::min(NumVTBytes, unsigned(Str.size())); 4163 4164 APInt Val(NumVTBits, 0); 4165 if (DAG.getDataLayout().isLittleEndian()) { 4166 for (unsigned i = 0; i != NumBytes; ++i) 4167 Val |= (uint64_t)(unsigned char)Str[i] << i*8; 4168 } else { 4169 for (unsigned i = 0; i != NumBytes; ++i) 4170 Val |= (uint64_t)(unsigned char)Str[i] << (NumVTBytes-i-1)*8; 4171 } 4172 4173 // If the "cost" of materializing the integer immediate is less than the cost 4174 // of a load, then it is cost effective to turn the load into the immediate. 4175 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 4176 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 4177 return DAG.getConstant(Val, dl, VT); 4178 return SDValue(nullptr, 0); 4179 } 4180 4181 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset, 4182 const SDLoc &DL) { 4183 EVT VT = Base.getValueType(); 4184 return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT)); 4185 } 4186 4187 /// isMemSrcFromString - Returns true if memcpy source is a string constant. 4188 /// 4189 static bool isMemSrcFromString(SDValue Src, StringRef &Str) { 4190 uint64_t SrcDelta = 0; 4191 GlobalAddressSDNode *G = nullptr; 4192 if (Src.getOpcode() == ISD::GlobalAddress) 4193 G = cast<GlobalAddressSDNode>(Src); 4194 else if (Src.getOpcode() == ISD::ADD && 4195 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 4196 Src.getOperand(1).getOpcode() == ISD::Constant) { 4197 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 4198 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 4199 } 4200 if (!G) 4201 return false; 4202 4203 return getConstantStringInfo(G->getGlobal(), Str, 4204 SrcDelta + G->getOffset(), false); 4205 } 4206 4207 /// Determines the optimal series of memory ops to replace the memset / memcpy. 4208 /// Return true if the number of memory ops is below the threshold (Limit). 4209 /// It returns the types of the sequence of memory ops to perform 4210 /// memset / memcpy by reference. 4211 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps, 4212 unsigned Limit, uint64_t Size, 4213 unsigned DstAlign, unsigned SrcAlign, 4214 bool IsMemset, 4215 bool ZeroMemset, 4216 bool MemcpyStrSrc, 4217 bool AllowOverlap, 4218 unsigned DstAS, unsigned SrcAS, 4219 SelectionDAG &DAG, 4220 const TargetLowering &TLI) { 4221 assert((SrcAlign == 0 || SrcAlign >= DstAlign) && 4222 "Expecting memcpy / memset source to meet alignment requirement!"); 4223 // If 'SrcAlign' is zero, that means the memory operation does not need to 4224 // load the value, i.e. memset or memcpy from constant string. Otherwise, 4225 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 4226 // is the specified alignment of the memory operation. If it is zero, that 4227 // means it's possible to change the alignment of the destination. 4228 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 4229 // not need to be loaded. 4230 EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign, 4231 IsMemset, ZeroMemset, MemcpyStrSrc, 4232 DAG.getMachineFunction()); 4233 4234 if (VT == MVT::Other) { 4235 if (DstAlign >= DAG.getDataLayout().getPointerPrefAlignment(DstAS) || 4236 TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) { 4237 VT = TLI.getPointerTy(DAG.getDataLayout(), DstAS); 4238 } else { 4239 switch (DstAlign & 7) { 4240 case 0: VT = MVT::i64; break; 4241 case 4: VT = MVT::i32; break; 4242 case 2: VT = MVT::i16; break; 4243 default: VT = MVT::i8; break; 4244 } 4245 } 4246 4247 MVT LVT = MVT::i64; 4248 while (!TLI.isTypeLegal(LVT)) 4249 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 4250 assert(LVT.isInteger()); 4251 4252 if (VT.bitsGT(LVT)) 4253 VT = LVT; 4254 } 4255 4256 unsigned NumMemOps = 0; 4257 while (Size != 0) { 4258 unsigned VTSize = VT.getSizeInBits() / 8; 4259 while (VTSize > Size) { 4260 // For now, only use non-vector load / store's for the left-over pieces. 4261 EVT NewVT = VT; 4262 unsigned NewVTSize; 4263 4264 bool Found = false; 4265 if (VT.isVector() || VT.isFloatingPoint()) { 4266 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 4267 if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) && 4268 TLI.isSafeMemOpType(NewVT.getSimpleVT())) 4269 Found = true; 4270 else if (NewVT == MVT::i64 && 4271 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 4272 TLI.isSafeMemOpType(MVT::f64)) { 4273 // i64 is usually not legal on 32-bit targets, but f64 may be. 4274 NewVT = MVT::f64; 4275 Found = true; 4276 } 4277 } 4278 4279 if (!Found) { 4280 do { 4281 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 4282 if (NewVT == MVT::i8) 4283 break; 4284 } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT())); 4285 } 4286 NewVTSize = NewVT.getSizeInBits() / 8; 4287 4288 // If the new VT cannot cover all of the remaining bits, then consider 4289 // issuing a (or a pair of) unaligned and overlapping load / store. 4290 // FIXME: Only does this for 64-bit or more since we don't have proper 4291 // cost model for unaligned load / store. 4292 bool Fast; 4293 if (NumMemOps && AllowOverlap && 4294 VTSize >= 8 && NewVTSize < Size && 4295 TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && Fast) 4296 VTSize = Size; 4297 else { 4298 VT = NewVT; 4299 VTSize = NewVTSize; 4300 } 4301 } 4302 4303 if (++NumMemOps > Limit) 4304 return false; 4305 4306 MemOps.push_back(VT); 4307 Size -= VTSize; 4308 } 4309 4310 return true; 4311 } 4312 4313 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 4314 // On Darwin, -Os means optimize for size without hurting performance, so 4315 // only really optimize for size when -Oz (MinSize) is used. 4316 if (MF.getTarget().getTargetTriple().isOSDarwin()) 4317 return MF.getFunction()->optForMinSize(); 4318 return MF.getFunction()->optForSize(); 4319 } 4320 4321 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 4322 SDValue Chain, SDValue Dst, SDValue Src, 4323 uint64_t Size, unsigned Align, 4324 bool isVol, bool AlwaysInline, 4325 MachinePointerInfo DstPtrInfo, 4326 MachinePointerInfo SrcPtrInfo) { 4327 // Turn a memcpy of undef to nop. 4328 if (Src.isUndef()) 4329 return Chain; 4330 4331 // Expand memcpy to a series of load and store ops if the size operand falls 4332 // below a certain threshold. 4333 // TODO: In the AlwaysInline case, if the size is big then generate a loop 4334 // rather than maybe a humongous number of loads and stores. 4335 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4336 std::vector<EVT> MemOps; 4337 bool DstAlignCanChange = false; 4338 MachineFunction &MF = DAG.getMachineFunction(); 4339 MachineFrameInfo *MFI = MF.getFrameInfo(); 4340 bool OptSize = shouldLowerMemFuncForSize(MF); 4341 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 4342 if (FI && !MFI->isFixedObjectIndex(FI->getIndex())) 4343 DstAlignCanChange = true; 4344 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 4345 if (Align > SrcAlign) 4346 SrcAlign = Align; 4347 StringRef Str; 4348 bool CopyFromStr = isMemSrcFromString(Src, Str); 4349 bool isZeroStr = CopyFromStr && Str.empty(); 4350 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 4351 4352 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 4353 (DstAlignCanChange ? 0 : Align), 4354 (isZeroStr ? 0 : SrcAlign), 4355 false, false, CopyFromStr, true, 4356 DstPtrInfo.getAddrSpace(), 4357 SrcPtrInfo.getAddrSpace(), 4358 DAG, TLI)) 4359 return SDValue(); 4360 4361 if (DstAlignCanChange) { 4362 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 4363 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 4364 4365 // Don't promote to an alignment that would require dynamic stack 4366 // realignment. 4367 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 4368 if (!TRI->needsStackRealignment(MF)) 4369 while (NewAlign > Align && 4370 DAG.getDataLayout().exceedsNaturalStackAlignment(NewAlign)) 4371 NewAlign /= 2; 4372 4373 if (NewAlign > Align) { 4374 // Give the stack frame object a larger alignment if needed. 4375 if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign) 4376 MFI->setObjectAlignment(FI->getIndex(), NewAlign); 4377 Align = NewAlign; 4378 } 4379 } 4380 4381 SmallVector<SDValue, 8> OutChains; 4382 unsigned NumMemOps = MemOps.size(); 4383 uint64_t SrcOff = 0, DstOff = 0; 4384 for (unsigned i = 0; i != NumMemOps; ++i) { 4385 EVT VT = MemOps[i]; 4386 unsigned VTSize = VT.getSizeInBits() / 8; 4387 SDValue Value, Store; 4388 4389 if (VTSize > Size) { 4390 // Issuing an unaligned load / store pair that overlaps with the previous 4391 // pair. Adjust the offset accordingly. 4392 assert(i == NumMemOps-1 && i != 0); 4393 SrcOff -= VTSize - Size; 4394 DstOff -= VTSize - Size; 4395 } 4396 4397 if (CopyFromStr && 4398 (isZeroStr || (VT.isInteger() && !VT.isVector()))) { 4399 // It's unlikely a store of a vector immediate can be done in a single 4400 // instruction. It would require a load from a constantpool first. 4401 // We only handle zero vectors here. 4402 // FIXME: Handle other cases where store of vector immediate is done in 4403 // a single instruction. 4404 Value = getMemsetStringVal(VT, dl, DAG, TLI, Str.substr(SrcOff)); 4405 if (Value.getNode()) 4406 Store = DAG.getStore(Chain, dl, Value, 4407 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 4408 DstPtrInfo.getWithOffset(DstOff), isVol, 4409 false, Align); 4410 } 4411 4412 if (!Store.getNode()) { 4413 // The type might not be legal for the target. This should only happen 4414 // if the type is smaller than a legal type, as on PPC, so the right 4415 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 4416 // to Load/Store if NVT==VT. 4417 // FIXME does the case above also need this? 4418 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 4419 assert(NVT.bitsGE(VT)); 4420 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 4421 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 4422 SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false, 4423 false, MinAlign(SrcAlign, SrcOff)); 4424 OutChains.push_back(Value.getValue(1)); 4425 Store = DAG.getTruncStore(Chain, dl, Value, 4426 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 4427 DstPtrInfo.getWithOffset(DstOff), VT, isVol, 4428 false, Align); 4429 } 4430 OutChains.push_back(Store); 4431 SrcOff += VTSize; 4432 DstOff += VTSize; 4433 Size -= VTSize; 4434 } 4435 4436 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 4437 } 4438 4439 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 4440 SDValue Chain, SDValue Dst, SDValue Src, 4441 uint64_t Size, unsigned Align, 4442 bool isVol, bool AlwaysInline, 4443 MachinePointerInfo DstPtrInfo, 4444 MachinePointerInfo SrcPtrInfo) { 4445 // Turn a memmove of undef to nop. 4446 if (Src.isUndef()) 4447 return Chain; 4448 4449 // Expand memmove to a series of load and store ops if the size operand falls 4450 // below a certain threshold. 4451 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4452 std::vector<EVT> MemOps; 4453 bool DstAlignCanChange = false; 4454 MachineFunction &MF = DAG.getMachineFunction(); 4455 MachineFrameInfo *MFI = MF.getFrameInfo(); 4456 bool OptSize = shouldLowerMemFuncForSize(MF); 4457 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 4458 if (FI && !MFI->isFixedObjectIndex(FI->getIndex())) 4459 DstAlignCanChange = true; 4460 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 4461 if (Align > SrcAlign) 4462 SrcAlign = Align; 4463 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 4464 4465 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 4466 (DstAlignCanChange ? 0 : Align), SrcAlign, 4467 false, false, false, false, 4468 DstPtrInfo.getAddrSpace(), 4469 SrcPtrInfo.getAddrSpace(), 4470 DAG, TLI)) 4471 return SDValue(); 4472 4473 if (DstAlignCanChange) { 4474 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 4475 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 4476 if (NewAlign > Align) { 4477 // Give the stack frame object a larger alignment if needed. 4478 if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign) 4479 MFI->setObjectAlignment(FI->getIndex(), NewAlign); 4480 Align = NewAlign; 4481 } 4482 } 4483 4484 uint64_t SrcOff = 0, DstOff = 0; 4485 SmallVector<SDValue, 8> LoadValues; 4486 SmallVector<SDValue, 8> LoadChains; 4487 SmallVector<SDValue, 8> OutChains; 4488 unsigned NumMemOps = MemOps.size(); 4489 for (unsigned i = 0; i < NumMemOps; i++) { 4490 EVT VT = MemOps[i]; 4491 unsigned VTSize = VT.getSizeInBits() / 8; 4492 SDValue Value; 4493 4494 Value = DAG.getLoad(VT, dl, Chain, 4495 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 4496 SrcPtrInfo.getWithOffset(SrcOff), isVol, 4497 false, false, SrcAlign); 4498 LoadValues.push_back(Value); 4499 LoadChains.push_back(Value.getValue(1)); 4500 SrcOff += VTSize; 4501 } 4502 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 4503 OutChains.clear(); 4504 for (unsigned i = 0; i < NumMemOps; i++) { 4505 EVT VT = MemOps[i]; 4506 unsigned VTSize = VT.getSizeInBits() / 8; 4507 SDValue Store; 4508 4509 Store = DAG.getStore(Chain, dl, LoadValues[i], 4510 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 4511 DstPtrInfo.getWithOffset(DstOff), isVol, false, Align); 4512 OutChains.push_back(Store); 4513 DstOff += VTSize; 4514 } 4515 4516 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 4517 } 4518 4519 /// \brief Lower the call to 'memset' intrinsic function into a series of store 4520 /// operations. 4521 /// 4522 /// \param DAG Selection DAG where lowered code is placed. 4523 /// \param dl Link to corresponding IR location. 4524 /// \param Chain Control flow dependency. 4525 /// \param Dst Pointer to destination memory location. 4526 /// \param Src Value of byte to write into the memory. 4527 /// \param Size Number of bytes to write. 4528 /// \param Align Alignment of the destination in bytes. 4529 /// \param isVol True if destination is volatile. 4530 /// \param DstPtrInfo IR information on the memory pointer. 4531 /// \returns New head in the control flow, if lowering was successful, empty 4532 /// SDValue otherwise. 4533 /// 4534 /// The function tries to replace 'llvm.memset' intrinsic with several store 4535 /// operations and value calculation code. This is usually profitable for small 4536 /// memory size. 4537 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 4538 SDValue Chain, SDValue Dst, SDValue Src, 4539 uint64_t Size, unsigned Align, bool isVol, 4540 MachinePointerInfo DstPtrInfo) { 4541 // Turn a memset of undef to nop. 4542 if (Src.isUndef()) 4543 return Chain; 4544 4545 // Expand memset to a series of load/store ops if the size operand 4546 // falls below a certain threshold. 4547 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4548 std::vector<EVT> MemOps; 4549 bool DstAlignCanChange = false; 4550 MachineFunction &MF = DAG.getMachineFunction(); 4551 MachineFrameInfo *MFI = MF.getFrameInfo(); 4552 bool OptSize = shouldLowerMemFuncForSize(MF); 4553 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 4554 if (FI && !MFI->isFixedObjectIndex(FI->getIndex())) 4555 DstAlignCanChange = true; 4556 bool IsZeroVal = 4557 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 4558 if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize), 4559 Size, (DstAlignCanChange ? 0 : Align), 0, 4560 true, IsZeroVal, false, true, 4561 DstPtrInfo.getAddrSpace(), ~0u, 4562 DAG, TLI)) 4563 return SDValue(); 4564 4565 if (DstAlignCanChange) { 4566 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 4567 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 4568 if (NewAlign > Align) { 4569 // Give the stack frame object a larger alignment if needed. 4570 if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign) 4571 MFI->setObjectAlignment(FI->getIndex(), NewAlign); 4572 Align = NewAlign; 4573 } 4574 } 4575 4576 SmallVector<SDValue, 8> OutChains; 4577 uint64_t DstOff = 0; 4578 unsigned NumMemOps = MemOps.size(); 4579 4580 // Find the largest store and generate the bit pattern for it. 4581 EVT LargestVT = MemOps[0]; 4582 for (unsigned i = 1; i < NumMemOps; i++) 4583 if (MemOps[i].bitsGT(LargestVT)) 4584 LargestVT = MemOps[i]; 4585 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 4586 4587 for (unsigned i = 0; i < NumMemOps; i++) { 4588 EVT VT = MemOps[i]; 4589 unsigned VTSize = VT.getSizeInBits() / 8; 4590 if (VTSize > Size) { 4591 // Issuing an unaligned load / store pair that overlaps with the previous 4592 // pair. Adjust the offset accordingly. 4593 assert(i == NumMemOps-1 && i != 0); 4594 DstOff -= VTSize - Size; 4595 } 4596 4597 // If this store is smaller than the largest store see whether we can get 4598 // the smaller value for free with a truncate. 4599 SDValue Value = MemSetValue; 4600 if (VT.bitsLT(LargestVT)) { 4601 if (!LargestVT.isVector() && !VT.isVector() && 4602 TLI.isTruncateFree(LargestVT, VT)) 4603 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 4604 else 4605 Value = getMemsetValue(Src, VT, DAG, dl); 4606 } 4607 assert(Value.getValueType() == VT && "Value with wrong type."); 4608 SDValue Store = DAG.getStore(Chain, dl, Value, 4609 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 4610 DstPtrInfo.getWithOffset(DstOff), 4611 isVol, false, Align); 4612 OutChains.push_back(Store); 4613 DstOff += VT.getSizeInBits() / 8; 4614 Size -= VTSize; 4615 } 4616 4617 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 4618 } 4619 4620 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 4621 unsigned AS) { 4622 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 4623 // pointer operands can be losslessly bitcasted to pointers of address space 0 4624 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 4625 report_fatal_error("cannot lower memory intrinsic in address space " + 4626 Twine(AS)); 4627 } 4628 } 4629 4630 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 4631 SDValue Src, SDValue Size, unsigned Align, 4632 bool isVol, bool AlwaysInline, bool isTailCall, 4633 MachinePointerInfo DstPtrInfo, 4634 MachinePointerInfo SrcPtrInfo) { 4635 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 4636 4637 // Check to see if we should lower the memcpy to loads and stores first. 4638 // For cases within the target-specified limits, this is the best choice. 4639 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 4640 if (ConstantSize) { 4641 // Memcpy with size zero? Just return the original chain. 4642 if (ConstantSize->isNullValue()) 4643 return Chain; 4644 4645 SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 4646 ConstantSize->getZExtValue(),Align, 4647 isVol, false, DstPtrInfo, SrcPtrInfo); 4648 if (Result.getNode()) 4649 return Result; 4650 } 4651 4652 // Then check to see if we should lower the memcpy with target-specific 4653 // code. If the target chooses to do this, this is the next best. 4654 if (TSI) { 4655 SDValue Result = TSI->EmitTargetCodeForMemcpy( 4656 *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline, 4657 DstPtrInfo, SrcPtrInfo); 4658 if (Result.getNode()) 4659 return Result; 4660 } 4661 4662 // If we really need inline code and the target declined to provide it, 4663 // use a (potentially long) sequence of loads and stores. 4664 if (AlwaysInline) { 4665 assert(ConstantSize && "AlwaysInline requires a constant size!"); 4666 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 4667 ConstantSize->getZExtValue(), Align, isVol, 4668 true, DstPtrInfo, SrcPtrInfo); 4669 } 4670 4671 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 4672 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 4673 4674 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 4675 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 4676 // respect volatile, so they may do things like read or write memory 4677 // beyond the given memory regions. But fixing this isn't easy, and most 4678 // people don't care. 4679 4680 // Emit a library call. 4681 TargetLowering::ArgListTy Args; 4682 TargetLowering::ArgListEntry Entry; 4683 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 4684 Entry.Node = Dst; Args.push_back(Entry); 4685 Entry.Node = Src; Args.push_back(Entry); 4686 Entry.Node = Size; Args.push_back(Entry); 4687 // FIXME: pass in SDLoc 4688 TargetLowering::CallLoweringInfo CLI(*this); 4689 CLI.setDebugLoc(dl) 4690 .setChain(Chain) 4691 .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 4692 Dst.getValueType().getTypeForEVT(*getContext()), 4693 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 4694 TLI->getPointerTy(getDataLayout())), 4695 std::move(Args), 0) 4696 .setDiscardResult() 4697 .setTailCall(isTailCall); 4698 4699 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 4700 return CallResult.second; 4701 } 4702 4703 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 4704 SDValue Src, SDValue Size, unsigned Align, 4705 bool isVol, bool isTailCall, 4706 MachinePointerInfo DstPtrInfo, 4707 MachinePointerInfo SrcPtrInfo) { 4708 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 4709 4710 // Check to see if we should lower the memmove to loads and stores first. 4711 // For cases within the target-specified limits, this is the best choice. 4712 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 4713 if (ConstantSize) { 4714 // Memmove with size zero? Just return the original chain. 4715 if (ConstantSize->isNullValue()) 4716 return Chain; 4717 4718 SDValue Result = 4719 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src, 4720 ConstantSize->getZExtValue(), Align, isVol, 4721 false, DstPtrInfo, SrcPtrInfo); 4722 if (Result.getNode()) 4723 return Result; 4724 } 4725 4726 // Then check to see if we should lower the memmove with target-specific 4727 // code. If the target chooses to do this, this is the next best. 4728 if (TSI) { 4729 SDValue Result = TSI->EmitTargetCodeForMemmove( 4730 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo); 4731 if (Result.getNode()) 4732 return Result; 4733 } 4734 4735 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 4736 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 4737 4738 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 4739 // not be safe. See memcpy above for more details. 4740 4741 // Emit a library call. 4742 TargetLowering::ArgListTy Args; 4743 TargetLowering::ArgListEntry Entry; 4744 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 4745 Entry.Node = Dst; Args.push_back(Entry); 4746 Entry.Node = Src; Args.push_back(Entry); 4747 Entry.Node = Size; Args.push_back(Entry); 4748 // FIXME: pass in SDLoc 4749 TargetLowering::CallLoweringInfo CLI(*this); 4750 CLI.setDebugLoc(dl) 4751 .setChain(Chain) 4752 .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 4753 Dst.getValueType().getTypeForEVT(*getContext()), 4754 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 4755 TLI->getPointerTy(getDataLayout())), 4756 std::move(Args), 0) 4757 .setDiscardResult() 4758 .setTailCall(isTailCall); 4759 4760 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 4761 return CallResult.second; 4762 } 4763 4764 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 4765 SDValue Src, SDValue Size, unsigned Align, 4766 bool isVol, bool isTailCall, 4767 MachinePointerInfo DstPtrInfo) { 4768 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 4769 4770 // Check to see if we should lower the memset to stores first. 4771 // For cases within the target-specified limits, this is the best choice. 4772 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 4773 if (ConstantSize) { 4774 // Memset with size zero? Just return the original chain. 4775 if (ConstantSize->isNullValue()) 4776 return Chain; 4777 4778 SDValue Result = 4779 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), 4780 Align, isVol, DstPtrInfo); 4781 4782 if (Result.getNode()) 4783 return Result; 4784 } 4785 4786 // Then check to see if we should lower the memset with target-specific 4787 // code. If the target chooses to do this, this is the next best. 4788 if (TSI) { 4789 SDValue Result = TSI->EmitTargetCodeForMemset( 4790 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo); 4791 if (Result.getNode()) 4792 return Result; 4793 } 4794 4795 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 4796 4797 // Emit a library call. 4798 Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext()); 4799 TargetLowering::ArgListTy Args; 4800 TargetLowering::ArgListEntry Entry; 4801 Entry.Node = Dst; Entry.Ty = IntPtrTy; 4802 Args.push_back(Entry); 4803 Entry.Node = Src; 4804 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 4805 Args.push_back(Entry); 4806 Entry.Node = Size; 4807 Entry.Ty = IntPtrTy; 4808 Args.push_back(Entry); 4809 4810 // FIXME: pass in SDLoc 4811 TargetLowering::CallLoweringInfo CLI(*this); 4812 CLI.setDebugLoc(dl) 4813 .setChain(Chain) 4814 .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 4815 Dst.getValueType().getTypeForEVT(*getContext()), 4816 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 4817 TLI->getPointerTy(getDataLayout())), 4818 std::move(Args), 0) 4819 .setDiscardResult() 4820 .setTailCall(isTailCall); 4821 4822 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 4823 return CallResult.second; 4824 } 4825 4826 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 4827 SDVTList VTList, ArrayRef<SDValue> Ops, 4828 MachineMemOperand *MMO, 4829 AtomicOrdering SuccessOrdering, 4830 AtomicOrdering FailureOrdering, 4831 SynchronizationScope SynchScope) { 4832 FoldingSetNodeID ID; 4833 ID.AddInteger(MemVT.getRawBits()); 4834 AddNodeIDNode(ID, Opcode, VTList, Ops); 4835 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 4836 void* IP = nullptr; 4837 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 4838 cast<AtomicSDNode>(E)->refineAlignment(MMO); 4839 return SDValue(E, 0); 4840 } 4841 4842 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 4843 VTList, MemVT, MMO, SuccessOrdering, 4844 FailureOrdering, SynchScope); 4845 createOperands(N, Ops); 4846 4847 CSEMap.InsertNode(N, IP); 4848 InsertNode(N); 4849 return SDValue(N, 0); 4850 } 4851 4852 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 4853 SDVTList VTList, ArrayRef<SDValue> Ops, 4854 MachineMemOperand *MMO, AtomicOrdering Ordering, 4855 SynchronizationScope SynchScope) { 4856 return getAtomic(Opcode, dl, MemVT, VTList, Ops, MMO, Ordering, 4857 Ordering, SynchScope); 4858 } 4859 4860 SDValue SelectionDAG::getAtomicCmpSwap( 4861 unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, 4862 SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo, 4863 unsigned Alignment, AtomicOrdering SuccessOrdering, 4864 AtomicOrdering FailureOrdering, SynchronizationScope SynchScope) { 4865 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 4866 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 4867 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 4868 4869 if (Alignment == 0) // Ensure that codegen never sees alignment 0 4870 Alignment = getEVTAlignment(MemVT); 4871 4872 MachineFunction &MF = getMachineFunction(); 4873 4874 // FIXME: Volatile isn't really correct; we should keep track of atomic 4875 // orderings in the memoperand. 4876 unsigned Flags = MachineMemOperand::MOVolatile; 4877 Flags |= MachineMemOperand::MOLoad; 4878 Flags |= MachineMemOperand::MOStore; 4879 4880 MachineMemOperand *MMO = 4881 MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment); 4882 4883 return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO, 4884 SuccessOrdering, FailureOrdering, SynchScope); 4885 } 4886 4887 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 4888 EVT MemVT, SDVTList VTs, SDValue Chain, 4889 SDValue Ptr, SDValue Cmp, SDValue Swp, 4890 MachineMemOperand *MMO, 4891 AtomicOrdering SuccessOrdering, 4892 AtomicOrdering FailureOrdering, 4893 SynchronizationScope SynchScope) { 4894 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 4895 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 4896 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 4897 4898 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 4899 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO, 4900 SuccessOrdering, FailureOrdering, SynchScope); 4901 } 4902 4903 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 4904 SDValue Chain, SDValue Ptr, SDValue Val, 4905 const Value *PtrVal, unsigned Alignment, 4906 AtomicOrdering Ordering, 4907 SynchronizationScope SynchScope) { 4908 if (Alignment == 0) // Ensure that codegen never sees alignment 0 4909 Alignment = getEVTAlignment(MemVT); 4910 4911 MachineFunction &MF = getMachineFunction(); 4912 // An atomic store does not load. An atomic load does not store. 4913 // (An atomicrmw obviously both loads and stores.) 4914 // For now, atomics are considered to be volatile always, and they are 4915 // chained as such. 4916 // FIXME: Volatile isn't really correct; we should keep track of atomic 4917 // orderings in the memoperand. 4918 unsigned Flags = MachineMemOperand::MOVolatile; 4919 if (Opcode != ISD::ATOMIC_STORE) 4920 Flags |= MachineMemOperand::MOLoad; 4921 if (Opcode != ISD::ATOMIC_LOAD) 4922 Flags |= MachineMemOperand::MOStore; 4923 4924 MachineMemOperand *MMO = 4925 MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags, 4926 MemVT.getStoreSize(), Alignment); 4927 4928 return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO, 4929 Ordering, SynchScope); 4930 } 4931 4932 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 4933 SDValue Chain, SDValue Ptr, SDValue Val, 4934 MachineMemOperand *MMO, AtomicOrdering Ordering, 4935 SynchronizationScope SynchScope) { 4936 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 4937 Opcode == ISD::ATOMIC_LOAD_SUB || 4938 Opcode == ISD::ATOMIC_LOAD_AND || 4939 Opcode == ISD::ATOMIC_LOAD_OR || 4940 Opcode == ISD::ATOMIC_LOAD_XOR || 4941 Opcode == ISD::ATOMIC_LOAD_NAND || 4942 Opcode == ISD::ATOMIC_LOAD_MIN || 4943 Opcode == ISD::ATOMIC_LOAD_MAX || 4944 Opcode == ISD::ATOMIC_LOAD_UMIN || 4945 Opcode == ISD::ATOMIC_LOAD_UMAX || 4946 Opcode == ISD::ATOMIC_SWAP || 4947 Opcode == ISD::ATOMIC_STORE) && 4948 "Invalid Atomic Op"); 4949 4950 EVT VT = Val.getValueType(); 4951 4952 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 4953 getVTList(VT, MVT::Other); 4954 SDValue Ops[] = {Chain, Ptr, Val}; 4955 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO, Ordering, SynchScope); 4956 } 4957 4958 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 4959 EVT VT, SDValue Chain, SDValue Ptr, 4960 MachineMemOperand *MMO, AtomicOrdering Ordering, 4961 SynchronizationScope SynchScope) { 4962 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 4963 4964 SDVTList VTs = getVTList(VT, MVT::Other); 4965 SDValue Ops[] = {Chain, Ptr}; 4966 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO, Ordering, SynchScope); 4967 } 4968 4969 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 4970 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 4971 if (Ops.size() == 1) 4972 return Ops[0]; 4973 4974 SmallVector<EVT, 4> VTs; 4975 VTs.reserve(Ops.size()); 4976 for (unsigned i = 0; i < Ops.size(); ++i) 4977 VTs.push_back(Ops[i].getValueType()); 4978 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 4979 } 4980 4981 SDValue SelectionDAG::getMemIntrinsicNode( 4982 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 4983 EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, bool Vol, 4984 bool ReadMem, bool WriteMem, unsigned Size) { 4985 if (Align == 0) // Ensure that codegen never sees alignment 0 4986 Align = getEVTAlignment(MemVT); 4987 4988 MachineFunction &MF = getMachineFunction(); 4989 unsigned Flags = 0; 4990 if (WriteMem) 4991 Flags |= MachineMemOperand::MOStore; 4992 if (ReadMem) 4993 Flags |= MachineMemOperand::MOLoad; 4994 if (Vol) 4995 Flags |= MachineMemOperand::MOVolatile; 4996 if (!Size) 4997 Size = MemVT.getStoreSize(); 4998 MachineMemOperand *MMO = 4999 MF.getMachineMemOperand(PtrInfo, Flags, Size, Align); 5000 5001 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 5002 } 5003 5004 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 5005 SDVTList VTList, 5006 ArrayRef<SDValue> Ops, EVT MemVT, 5007 MachineMemOperand *MMO) { 5008 assert((Opcode == ISD::INTRINSIC_VOID || 5009 Opcode == ISD::INTRINSIC_W_CHAIN || 5010 Opcode == ISD::PREFETCH || 5011 Opcode == ISD::LIFETIME_START || 5012 Opcode == ISD::LIFETIME_END || 5013 (Opcode <= INT_MAX && 5014 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 5015 "Opcode is not a memory-accessing opcode!"); 5016 5017 // Memoize the node unless it returns a flag. 5018 MemIntrinsicSDNode *N; 5019 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 5020 FoldingSetNodeID ID; 5021 AddNodeIDNode(ID, Opcode, VTList, Ops); 5022 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5023 void *IP = nullptr; 5024 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5025 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 5026 return SDValue(E, 0); 5027 } 5028 5029 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5030 VTList, MemVT, MMO); 5031 createOperands(N, Ops); 5032 5033 CSEMap.InsertNode(N, IP); 5034 } else { 5035 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5036 VTList, MemVT, MMO); 5037 createOperands(N, Ops); 5038 } 5039 InsertNode(N); 5040 return SDValue(N, 0); 5041 } 5042 5043 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 5044 /// MachinePointerInfo record from it. This is particularly useful because the 5045 /// code generator has many cases where it doesn't bother passing in a 5046 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 5047 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr, 5048 int64_t Offset = 0) { 5049 // If this is FI+Offset, we can model it. 5050 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 5051 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 5052 FI->getIndex(), Offset); 5053 5054 // If this is (FI+Offset1)+Offset2, we can model it. 5055 if (Ptr.getOpcode() != ISD::ADD || 5056 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 5057 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 5058 return MachinePointerInfo(); 5059 5060 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 5061 return MachinePointerInfo::getFixedStack( 5062 DAG.getMachineFunction(), FI, 5063 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 5064 } 5065 5066 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 5067 /// MachinePointerInfo record from it. This is particularly useful because the 5068 /// code generator has many cases where it doesn't bother passing in a 5069 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 5070 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr, 5071 SDValue OffsetOp) { 5072 // If the 'Offset' value isn't a constant, we can't handle this. 5073 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 5074 return InferPointerInfo(DAG, Ptr, OffsetNode->getSExtValue()); 5075 if (OffsetOp.isUndef()) 5076 return InferPointerInfo(DAG, Ptr); 5077 return MachinePointerInfo(); 5078 } 5079 5080 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 5081 EVT VT, const SDLoc &dl, SDValue Chain, 5082 SDValue Ptr, SDValue Offset, 5083 MachinePointerInfo PtrInfo, EVT MemVT, 5084 bool isVolatile, bool isNonTemporal, 5085 bool isInvariant, unsigned Alignment, 5086 const AAMDNodes &AAInfo, const MDNode *Ranges) { 5087 assert(Chain.getValueType() == MVT::Other && 5088 "Invalid chain type"); 5089 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5090 Alignment = getEVTAlignment(VT); 5091 5092 unsigned Flags = MachineMemOperand::MOLoad; 5093 if (isVolatile) 5094 Flags |= MachineMemOperand::MOVolatile; 5095 if (isNonTemporal) 5096 Flags |= MachineMemOperand::MONonTemporal; 5097 if (isInvariant) 5098 Flags |= MachineMemOperand::MOInvariant; 5099 5100 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 5101 // clients. 5102 if (PtrInfo.V.isNull()) 5103 PtrInfo = InferPointerInfo(*this, Ptr, Offset); 5104 5105 MachineFunction &MF = getMachineFunction(); 5106 MachineMemOperand *MMO = 5107 MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment, 5108 AAInfo, Ranges); 5109 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 5110 } 5111 5112 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 5113 EVT VT, const SDLoc &dl, SDValue Chain, 5114 SDValue Ptr, SDValue Offset, EVT MemVT, 5115 MachineMemOperand *MMO) { 5116 if (VT == MemVT) { 5117 ExtType = ISD::NON_EXTLOAD; 5118 } else if (ExtType == ISD::NON_EXTLOAD) { 5119 assert(VT == MemVT && "Non-extending load from different memory type!"); 5120 } else { 5121 // Extending load. 5122 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 5123 "Should only be an extending load, not truncating!"); 5124 assert(VT.isInteger() == MemVT.isInteger() && 5125 "Cannot convert from FP to Int or Int -> FP!"); 5126 assert(VT.isVector() == MemVT.isVector() && 5127 "Cannot use an ext load to convert to or from a vector!"); 5128 assert((!VT.isVector() || 5129 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 5130 "Cannot use an ext load to change the number of vector elements!"); 5131 } 5132 5133 bool Indexed = AM != ISD::UNINDEXED; 5134 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 5135 5136 SDVTList VTs = Indexed ? 5137 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 5138 SDValue Ops[] = { Chain, Ptr, Offset }; 5139 FoldingSetNodeID ID; 5140 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 5141 ID.AddInteger(MemVT.getRawBits()); 5142 ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(), 5143 MMO->isNonTemporal(), 5144 MMO->isInvariant())); 5145 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5146 void *IP = nullptr; 5147 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5148 cast<LoadSDNode>(E)->refineAlignment(MMO); 5149 return SDValue(E, 0); 5150 } 5151 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 5152 ExtType, MemVT, MMO); 5153 createOperands(N, Ops); 5154 5155 CSEMap.InsertNode(N, IP); 5156 InsertNode(N); 5157 return SDValue(N, 0); 5158 } 5159 5160 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5161 SDValue Ptr, MachinePointerInfo PtrInfo, 5162 bool isVolatile, bool isNonTemporal, 5163 bool isInvariant, unsigned Alignment, 5164 const AAMDNodes &AAInfo, const MDNode *Ranges) { 5165 SDValue Undef = getUNDEF(Ptr.getValueType()); 5166 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 5167 PtrInfo, VT, isVolatile, isNonTemporal, isInvariant, Alignment, 5168 AAInfo, Ranges); 5169 } 5170 5171 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5172 SDValue Ptr, MachineMemOperand *MMO) { 5173 SDValue Undef = getUNDEF(Ptr.getValueType()); 5174 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 5175 VT, MMO); 5176 } 5177 5178 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 5179 EVT VT, SDValue Chain, SDValue Ptr, 5180 MachinePointerInfo PtrInfo, EVT MemVT, 5181 bool isVolatile, bool isNonTemporal, 5182 bool isInvariant, unsigned Alignment, 5183 const AAMDNodes &AAInfo) { 5184 SDValue Undef = getUNDEF(Ptr.getValueType()); 5185 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 5186 PtrInfo, MemVT, isVolatile, isNonTemporal, isInvariant, 5187 Alignment, AAInfo); 5188 } 5189 5190 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 5191 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 5192 MachineMemOperand *MMO) { 5193 SDValue Undef = getUNDEF(Ptr.getValueType()); 5194 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 5195 MemVT, MMO); 5196 } 5197 5198 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 5199 SDValue Base, SDValue Offset, 5200 ISD::MemIndexedMode AM) { 5201 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 5202 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 5203 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 5204 LD->getChain(), Base, Offset, LD->getPointerInfo(), 5205 LD->getMemoryVT(), LD->isVolatile(), LD->isNonTemporal(), 5206 false, LD->getAlignment()); 5207 } 5208 5209 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5210 SDValue Ptr, MachinePointerInfo PtrInfo, 5211 bool isVolatile, bool isNonTemporal, 5212 unsigned Alignment, const AAMDNodes &AAInfo) { 5213 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 5214 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5215 Alignment = getEVTAlignment(Val.getValueType()); 5216 5217 unsigned Flags = MachineMemOperand::MOStore; 5218 if (isVolatile) 5219 Flags |= MachineMemOperand::MOVolatile; 5220 if (isNonTemporal) 5221 Flags |= MachineMemOperand::MONonTemporal; 5222 5223 if (PtrInfo.V.isNull()) 5224 PtrInfo = InferPointerInfo(*this, Ptr); 5225 5226 MachineFunction &MF = getMachineFunction(); 5227 MachineMemOperand *MMO = 5228 MF.getMachineMemOperand(PtrInfo, Flags, 5229 Val.getValueType().getStoreSize(), Alignment, 5230 AAInfo); 5231 5232 return getStore(Chain, dl, Val, Ptr, MMO); 5233 } 5234 5235 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5236 SDValue Ptr, MachineMemOperand *MMO) { 5237 assert(Chain.getValueType() == MVT::Other && 5238 "Invalid chain type"); 5239 EVT VT = Val.getValueType(); 5240 SDVTList VTs = getVTList(MVT::Other); 5241 SDValue Undef = getUNDEF(Ptr.getValueType()); 5242 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 5243 FoldingSetNodeID ID; 5244 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 5245 ID.AddInteger(VT.getRawBits()); 5246 ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(), 5247 MMO->isNonTemporal(), MMO->isInvariant())); 5248 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5249 void *IP = nullptr; 5250 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5251 cast<StoreSDNode>(E)->refineAlignment(MMO); 5252 return SDValue(E, 0); 5253 } 5254 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5255 ISD::UNINDEXED, false, VT, MMO); 5256 createOperands(N, Ops); 5257 5258 CSEMap.InsertNode(N, IP); 5259 InsertNode(N); 5260 return SDValue(N, 0); 5261 } 5262 5263 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5264 SDValue Ptr, MachinePointerInfo PtrInfo, 5265 EVT SVT, bool isVolatile, 5266 bool isNonTemporal, unsigned Alignment, 5267 const AAMDNodes &AAInfo) { 5268 assert(Chain.getValueType() == MVT::Other && 5269 "Invalid chain type"); 5270 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5271 Alignment = getEVTAlignment(SVT); 5272 5273 unsigned Flags = MachineMemOperand::MOStore; 5274 if (isVolatile) 5275 Flags |= MachineMemOperand::MOVolatile; 5276 if (isNonTemporal) 5277 Flags |= MachineMemOperand::MONonTemporal; 5278 5279 if (PtrInfo.V.isNull()) 5280 PtrInfo = InferPointerInfo(*this, Ptr); 5281 5282 MachineFunction &MF = getMachineFunction(); 5283 MachineMemOperand *MMO = 5284 MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment, 5285 AAInfo); 5286 5287 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 5288 } 5289 5290 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5291 SDValue Ptr, EVT SVT, 5292 MachineMemOperand *MMO) { 5293 EVT VT = Val.getValueType(); 5294 5295 assert(Chain.getValueType() == MVT::Other && 5296 "Invalid chain type"); 5297 if (VT == SVT) 5298 return getStore(Chain, dl, Val, Ptr, MMO); 5299 5300 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 5301 "Should only be a truncating store, not extending!"); 5302 assert(VT.isInteger() == SVT.isInteger() && 5303 "Can't do FP-INT conversion!"); 5304 assert(VT.isVector() == SVT.isVector() && 5305 "Cannot use trunc store to convert to or from a vector!"); 5306 assert((!VT.isVector() || 5307 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 5308 "Cannot use trunc store to change the number of vector elements!"); 5309 5310 SDVTList VTs = getVTList(MVT::Other); 5311 SDValue Undef = getUNDEF(Ptr.getValueType()); 5312 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 5313 FoldingSetNodeID ID; 5314 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 5315 ID.AddInteger(SVT.getRawBits()); 5316 ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(), 5317 MMO->isNonTemporal(), MMO->isInvariant())); 5318 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5319 void *IP = nullptr; 5320 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5321 cast<StoreSDNode>(E)->refineAlignment(MMO); 5322 return SDValue(E, 0); 5323 } 5324 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5325 ISD::UNINDEXED, true, SVT, MMO); 5326 createOperands(N, Ops); 5327 5328 CSEMap.InsertNode(N, IP); 5329 InsertNode(N); 5330 return SDValue(N, 0); 5331 } 5332 5333 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 5334 SDValue Base, SDValue Offset, 5335 ISD::MemIndexedMode AM) { 5336 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 5337 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 5338 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 5339 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 5340 FoldingSetNodeID ID; 5341 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 5342 ID.AddInteger(ST->getMemoryVT().getRawBits()); 5343 ID.AddInteger(ST->getRawSubclassData()); 5344 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 5345 void *IP = nullptr; 5346 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 5347 return SDValue(E, 0); 5348 5349 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 5350 ST->isTruncatingStore(), ST->getMemoryVT(), 5351 ST->getMemOperand()); 5352 createOperands(N, Ops); 5353 5354 CSEMap.InsertNode(N, IP); 5355 InsertNode(N); 5356 return SDValue(N, 0); 5357 } 5358 5359 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5360 SDValue Ptr, SDValue Mask, SDValue Src0, 5361 EVT MemVT, MachineMemOperand *MMO, 5362 ISD::LoadExtType ExtTy) { 5363 5364 SDVTList VTs = getVTList(VT, MVT::Other); 5365 SDValue Ops[] = { Chain, Ptr, Mask, Src0 }; 5366 FoldingSetNodeID ID; 5367 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 5368 ID.AddInteger(VT.getRawBits()); 5369 ID.AddInteger(encodeMemSDNodeFlags(ExtTy, ISD::UNINDEXED, 5370 MMO->isVolatile(), 5371 MMO->isNonTemporal(), 5372 MMO->isInvariant())); 5373 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5374 void *IP = nullptr; 5375 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5376 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 5377 return SDValue(E, 0); 5378 } 5379 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5380 ExtTy, MemVT, MMO); 5381 createOperands(N, Ops); 5382 5383 CSEMap.InsertNode(N, IP); 5384 InsertNode(N); 5385 return SDValue(N, 0); 5386 } 5387 5388 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 5389 SDValue Val, SDValue Ptr, SDValue Mask, 5390 EVT MemVT, MachineMemOperand *MMO, 5391 bool isTrunc) { 5392 assert(Chain.getValueType() == MVT::Other && 5393 "Invalid chain type"); 5394 EVT VT = Val.getValueType(); 5395 SDVTList VTs = getVTList(MVT::Other); 5396 SDValue Ops[] = { Chain, Ptr, Mask, Val }; 5397 FoldingSetNodeID ID; 5398 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 5399 ID.AddInteger(VT.getRawBits()); 5400 ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(), 5401 MMO->isNonTemporal(), MMO->isInvariant())); 5402 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5403 void *IP = nullptr; 5404 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5405 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 5406 return SDValue(E, 0); 5407 } 5408 auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5409 isTrunc, MemVT, MMO); 5410 createOperands(N, Ops); 5411 5412 CSEMap.InsertNode(N, IP); 5413 InsertNode(N); 5414 return SDValue(N, 0); 5415 } 5416 5417 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 5418 ArrayRef<SDValue> Ops, 5419 MachineMemOperand *MMO) { 5420 assert(Ops.size() == 5 && "Incompatible number of operands"); 5421 5422 FoldingSetNodeID ID; 5423 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 5424 ID.AddInteger(VT.getRawBits()); 5425 ID.AddInteger(encodeMemSDNodeFlags(ISD::NON_EXTLOAD, ISD::UNINDEXED, 5426 MMO->isVolatile(), 5427 MMO->isNonTemporal(), 5428 MMO->isInvariant())); 5429 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5430 void *IP = nullptr; 5431 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5432 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 5433 return SDValue(E, 0); 5434 } 5435 5436 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 5437 VTs, VT, MMO); 5438 createOperands(N, Ops); 5439 5440 assert(N->getValue().getValueType() == N->getValueType(0) && 5441 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 5442 assert(N->getMask().getValueType().getVectorNumElements() == 5443 N->getValueType(0).getVectorNumElements() && 5444 "Vector width mismatch between mask and data"); 5445 assert(N->getIndex().getValueType().getVectorNumElements() == 5446 N->getValueType(0).getVectorNumElements() && 5447 "Vector width mismatch between index and data"); 5448 5449 CSEMap.InsertNode(N, IP); 5450 InsertNode(N); 5451 return SDValue(N, 0); 5452 } 5453 5454 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 5455 ArrayRef<SDValue> Ops, 5456 MachineMemOperand *MMO) { 5457 assert(Ops.size() == 5 && "Incompatible number of operands"); 5458 5459 FoldingSetNodeID ID; 5460 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 5461 ID.AddInteger(VT.getRawBits()); 5462 ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(), 5463 MMO->isNonTemporal(), 5464 MMO->isInvariant())); 5465 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5466 void *IP = nullptr; 5467 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5468 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 5469 return SDValue(E, 0); 5470 } 5471 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 5472 VTs, VT, MMO); 5473 createOperands(N, Ops); 5474 5475 assert(N->getMask().getValueType().getVectorNumElements() == 5476 N->getValue().getValueType().getVectorNumElements() && 5477 "Vector width mismatch between mask and data"); 5478 assert(N->getIndex().getValueType().getVectorNumElements() == 5479 N->getValue().getValueType().getVectorNumElements() && 5480 "Vector width mismatch between index and data"); 5481 5482 CSEMap.InsertNode(N, IP); 5483 InsertNode(N); 5484 return SDValue(N, 0); 5485 } 5486 5487 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 5488 SDValue Ptr, SDValue SV, unsigned Align) { 5489 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 5490 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 5491 } 5492 5493 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5494 ArrayRef<SDUse> Ops) { 5495 switch (Ops.size()) { 5496 case 0: return getNode(Opcode, DL, VT); 5497 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 5498 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 5499 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 5500 default: break; 5501 } 5502 5503 // Copy from an SDUse array into an SDValue array for use with 5504 // the regular getNode logic. 5505 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 5506 return getNode(Opcode, DL, VT, NewOps); 5507 } 5508 5509 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5510 ArrayRef<SDValue> Ops, const SDNodeFlags *Flags) { 5511 unsigned NumOps = Ops.size(); 5512 switch (NumOps) { 5513 case 0: return getNode(Opcode, DL, VT); 5514 case 1: return getNode(Opcode, DL, VT, Ops[0]); 5515 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 5516 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 5517 default: break; 5518 } 5519 5520 switch (Opcode) { 5521 default: break; 5522 case ISD::CONCAT_VECTORS: { 5523 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 5524 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 5525 return V; 5526 break; 5527 } 5528 case ISD::SELECT_CC: { 5529 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 5530 assert(Ops[0].getValueType() == Ops[1].getValueType() && 5531 "LHS and RHS of condition must have same type!"); 5532 assert(Ops[2].getValueType() == Ops[3].getValueType() && 5533 "True and False arms of SelectCC must have same type!"); 5534 assert(Ops[2].getValueType() == VT && 5535 "select_cc node must be of same type as true and false value!"); 5536 break; 5537 } 5538 case ISD::BR_CC: { 5539 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 5540 assert(Ops[2].getValueType() == Ops[3].getValueType() && 5541 "LHS/RHS of comparison should match types!"); 5542 break; 5543 } 5544 } 5545 5546 // Memoize nodes. 5547 SDNode *N; 5548 SDVTList VTs = getVTList(VT); 5549 5550 if (VT != MVT::Glue) { 5551 FoldingSetNodeID ID; 5552 AddNodeIDNode(ID, Opcode, VTs, Ops); 5553 void *IP = nullptr; 5554 5555 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5556 return SDValue(E, 0); 5557 5558 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5559 createOperands(N, Ops); 5560 5561 CSEMap.InsertNode(N, IP); 5562 } else { 5563 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5564 createOperands(N, Ops); 5565 } 5566 5567 InsertNode(N); 5568 return SDValue(N, 0); 5569 } 5570 5571 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 5572 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 5573 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 5574 } 5575 5576 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5577 ArrayRef<SDValue> Ops) { 5578 if (VTList.NumVTs == 1) 5579 return getNode(Opcode, DL, VTList.VTs[0], Ops); 5580 5581 #if 0 5582 switch (Opcode) { 5583 // FIXME: figure out how to safely handle things like 5584 // int foo(int x) { return 1 << (x & 255); } 5585 // int bar() { return foo(256); } 5586 case ISD::SRA_PARTS: 5587 case ISD::SRL_PARTS: 5588 case ISD::SHL_PARTS: 5589 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 5590 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 5591 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 5592 else if (N3.getOpcode() == ISD::AND) 5593 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 5594 // If the and is only masking out bits that cannot effect the shift, 5595 // eliminate the and. 5596 unsigned NumBits = VT.getScalarType().getSizeInBits()*2; 5597 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 5598 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 5599 } 5600 break; 5601 } 5602 #endif 5603 5604 // Memoize the node unless it returns a flag. 5605 SDNode *N; 5606 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 5607 FoldingSetNodeID ID; 5608 AddNodeIDNode(ID, Opcode, VTList, Ops); 5609 void *IP = nullptr; 5610 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5611 return SDValue(E, 0); 5612 5613 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 5614 createOperands(N, Ops); 5615 CSEMap.InsertNode(N, IP); 5616 } else { 5617 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 5618 createOperands(N, Ops); 5619 } 5620 InsertNode(N); 5621 return SDValue(N, 0); 5622 } 5623 5624 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 5625 SDVTList VTList) { 5626 return getNode(Opcode, DL, VTList, None); 5627 } 5628 5629 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5630 SDValue N1) { 5631 SDValue Ops[] = { N1 }; 5632 return getNode(Opcode, DL, VTList, Ops); 5633 } 5634 5635 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5636 SDValue N1, SDValue N2) { 5637 SDValue Ops[] = { N1, N2 }; 5638 return getNode(Opcode, DL, VTList, Ops); 5639 } 5640 5641 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5642 SDValue N1, SDValue N2, SDValue N3) { 5643 SDValue Ops[] = { N1, N2, N3 }; 5644 return getNode(Opcode, DL, VTList, Ops); 5645 } 5646 5647 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5648 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5649 SDValue Ops[] = { N1, N2, N3, N4 }; 5650 return getNode(Opcode, DL, VTList, Ops); 5651 } 5652 5653 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5654 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5655 SDValue N5) { 5656 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5657 return getNode(Opcode, DL, VTList, Ops); 5658 } 5659 5660 SDVTList SelectionDAG::getVTList(EVT VT) { 5661 return makeVTList(SDNode::getValueTypeList(VT), 1); 5662 } 5663 5664 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 5665 FoldingSetNodeID ID; 5666 ID.AddInteger(2U); 5667 ID.AddInteger(VT1.getRawBits()); 5668 ID.AddInteger(VT2.getRawBits()); 5669 5670 void *IP = nullptr; 5671 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 5672 if (!Result) { 5673 EVT *Array = Allocator.Allocate<EVT>(2); 5674 Array[0] = VT1; 5675 Array[1] = VT2; 5676 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 5677 VTListMap.InsertNode(Result, IP); 5678 } 5679 return Result->getSDVTList(); 5680 } 5681 5682 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 5683 FoldingSetNodeID ID; 5684 ID.AddInteger(3U); 5685 ID.AddInteger(VT1.getRawBits()); 5686 ID.AddInteger(VT2.getRawBits()); 5687 ID.AddInteger(VT3.getRawBits()); 5688 5689 void *IP = nullptr; 5690 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 5691 if (!Result) { 5692 EVT *Array = Allocator.Allocate<EVT>(3); 5693 Array[0] = VT1; 5694 Array[1] = VT2; 5695 Array[2] = VT3; 5696 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 5697 VTListMap.InsertNode(Result, IP); 5698 } 5699 return Result->getSDVTList(); 5700 } 5701 5702 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 5703 FoldingSetNodeID ID; 5704 ID.AddInteger(4U); 5705 ID.AddInteger(VT1.getRawBits()); 5706 ID.AddInteger(VT2.getRawBits()); 5707 ID.AddInteger(VT3.getRawBits()); 5708 ID.AddInteger(VT4.getRawBits()); 5709 5710 void *IP = nullptr; 5711 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 5712 if (!Result) { 5713 EVT *Array = Allocator.Allocate<EVT>(4); 5714 Array[0] = VT1; 5715 Array[1] = VT2; 5716 Array[2] = VT3; 5717 Array[3] = VT4; 5718 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 5719 VTListMap.InsertNode(Result, IP); 5720 } 5721 return Result->getSDVTList(); 5722 } 5723 5724 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 5725 unsigned NumVTs = VTs.size(); 5726 FoldingSetNodeID ID; 5727 ID.AddInteger(NumVTs); 5728 for (unsigned index = 0; index < NumVTs; index++) { 5729 ID.AddInteger(VTs[index].getRawBits()); 5730 } 5731 5732 void *IP = nullptr; 5733 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 5734 if (!Result) { 5735 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 5736 std::copy(VTs.begin(), VTs.end(), Array); 5737 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 5738 VTListMap.InsertNode(Result, IP); 5739 } 5740 return Result->getSDVTList(); 5741 } 5742 5743 5744 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 5745 /// specified operands. If the resultant node already exists in the DAG, 5746 /// this does not modify the specified node, instead it returns the node that 5747 /// already exists. If the resultant node does not exist in the DAG, the 5748 /// input node is returned. As a degenerate case, if you specify the same 5749 /// input operands as the node already has, the input node is returned. 5750 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 5751 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 5752 5753 // Check to see if there is no change. 5754 if (Op == N->getOperand(0)) return N; 5755 5756 // See if the modified node already exists. 5757 void *InsertPos = nullptr; 5758 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 5759 return Existing; 5760 5761 // Nope it doesn't. Remove the node from its current place in the maps. 5762 if (InsertPos) 5763 if (!RemoveNodeFromCSEMaps(N)) 5764 InsertPos = nullptr; 5765 5766 // Now we update the operands. 5767 N->OperandList[0].set(Op); 5768 5769 // If this gets put into a CSE map, add it. 5770 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 5771 return N; 5772 } 5773 5774 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 5775 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 5776 5777 // Check to see if there is no change. 5778 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 5779 return N; // No operands changed, just return the input node. 5780 5781 // See if the modified node already exists. 5782 void *InsertPos = nullptr; 5783 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 5784 return Existing; 5785 5786 // Nope it doesn't. Remove the node from its current place in the maps. 5787 if (InsertPos) 5788 if (!RemoveNodeFromCSEMaps(N)) 5789 InsertPos = nullptr; 5790 5791 // Now we update the operands. 5792 if (N->OperandList[0] != Op1) 5793 N->OperandList[0].set(Op1); 5794 if (N->OperandList[1] != Op2) 5795 N->OperandList[1].set(Op2); 5796 5797 // If this gets put into a CSE map, add it. 5798 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 5799 return N; 5800 } 5801 5802 SDNode *SelectionDAG:: 5803 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 5804 SDValue Ops[] = { Op1, Op2, Op3 }; 5805 return UpdateNodeOperands(N, Ops); 5806 } 5807 5808 SDNode *SelectionDAG:: 5809 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 5810 SDValue Op3, SDValue Op4) { 5811 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 5812 return UpdateNodeOperands(N, Ops); 5813 } 5814 5815 SDNode *SelectionDAG:: 5816 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 5817 SDValue Op3, SDValue Op4, SDValue Op5) { 5818 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 5819 return UpdateNodeOperands(N, Ops); 5820 } 5821 5822 SDNode *SelectionDAG:: 5823 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 5824 unsigned NumOps = Ops.size(); 5825 assert(N->getNumOperands() == NumOps && 5826 "Update with wrong number of operands"); 5827 5828 // If no operands changed just return the input node. 5829 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 5830 return N; 5831 5832 // See if the modified node already exists. 5833 void *InsertPos = nullptr; 5834 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 5835 return Existing; 5836 5837 // Nope it doesn't. Remove the node from its current place in the maps. 5838 if (InsertPos) 5839 if (!RemoveNodeFromCSEMaps(N)) 5840 InsertPos = nullptr; 5841 5842 // Now we update the operands. 5843 for (unsigned i = 0; i != NumOps; ++i) 5844 if (N->OperandList[i] != Ops[i]) 5845 N->OperandList[i].set(Ops[i]); 5846 5847 // If this gets put into a CSE map, add it. 5848 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 5849 return N; 5850 } 5851 5852 /// DropOperands - Release the operands and set this node to have 5853 /// zero operands. 5854 void SDNode::DropOperands() { 5855 // Unlike the code in MorphNodeTo that does this, we don't need to 5856 // watch for dead nodes here. 5857 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 5858 SDUse &Use = *I++; 5859 Use.set(SDValue()); 5860 } 5861 } 5862 5863 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 5864 /// machine opcode. 5865 /// 5866 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5867 EVT VT) { 5868 SDVTList VTs = getVTList(VT); 5869 return SelectNodeTo(N, MachineOpc, VTs, None); 5870 } 5871 5872 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5873 EVT VT, SDValue Op1) { 5874 SDVTList VTs = getVTList(VT); 5875 SDValue Ops[] = { Op1 }; 5876 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5877 } 5878 5879 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5880 EVT VT, SDValue Op1, 5881 SDValue Op2) { 5882 SDVTList VTs = getVTList(VT); 5883 SDValue Ops[] = { Op1, Op2 }; 5884 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5885 } 5886 5887 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5888 EVT VT, SDValue Op1, 5889 SDValue Op2, SDValue Op3) { 5890 SDVTList VTs = getVTList(VT); 5891 SDValue Ops[] = { Op1, Op2, Op3 }; 5892 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5893 } 5894 5895 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5896 EVT VT, ArrayRef<SDValue> Ops) { 5897 SDVTList VTs = getVTList(VT); 5898 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5899 } 5900 5901 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5902 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 5903 SDVTList VTs = getVTList(VT1, VT2); 5904 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5905 } 5906 5907 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5908 EVT VT1, EVT VT2) { 5909 SDVTList VTs = getVTList(VT1, VT2); 5910 return SelectNodeTo(N, MachineOpc, VTs, None); 5911 } 5912 5913 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5914 EVT VT1, EVT VT2, EVT VT3, 5915 ArrayRef<SDValue> Ops) { 5916 SDVTList VTs = getVTList(VT1, VT2, VT3); 5917 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5918 } 5919 5920 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5921 EVT VT1, EVT VT2, EVT VT3, EVT VT4, 5922 ArrayRef<SDValue> Ops) { 5923 SDVTList VTs = getVTList(VT1, VT2, VT3, VT4); 5924 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5925 } 5926 5927 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5928 EVT VT1, EVT VT2, 5929 SDValue Op1) { 5930 SDVTList VTs = getVTList(VT1, VT2); 5931 SDValue Ops[] = { Op1 }; 5932 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5933 } 5934 5935 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5936 EVT VT1, EVT VT2, 5937 SDValue Op1, SDValue Op2) { 5938 SDVTList VTs = getVTList(VT1, VT2); 5939 SDValue Ops[] = { Op1, Op2 }; 5940 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5941 } 5942 5943 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5944 EVT VT1, EVT VT2, 5945 SDValue Op1, SDValue Op2, 5946 SDValue Op3) { 5947 SDVTList VTs = getVTList(VT1, VT2); 5948 SDValue Ops[] = { Op1, Op2, Op3 }; 5949 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5950 } 5951 5952 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5953 EVT VT1, EVT VT2, EVT VT3, 5954 SDValue Op1, SDValue Op2, 5955 SDValue Op3) { 5956 SDVTList VTs = getVTList(VT1, VT2, VT3); 5957 SDValue Ops[] = { Op1, Op2, Op3 }; 5958 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5959 } 5960 5961 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5962 SDVTList VTs,ArrayRef<SDValue> Ops) { 5963 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 5964 // Reset the NodeID to -1. 5965 New->setNodeId(-1); 5966 if (New != N) { 5967 ReplaceAllUsesWith(N, New); 5968 RemoveDeadNode(N); 5969 } 5970 return New; 5971 } 5972 5973 /// UpdadeSDLocOnMergedSDNode - If the opt level is -O0 then it throws away 5974 /// the line number information on the merged node since it is not possible to 5975 /// preserve the information that operation is associated with multiple lines. 5976 /// This will make the debugger working better at -O0, were there is a higher 5977 /// probability having other instructions associated with that line. 5978 /// 5979 /// For IROrder, we keep the smaller of the two 5980 SDNode *SelectionDAG::UpdadeSDLocOnMergedSDNode(SDNode *N, const SDLoc &OLoc) { 5981 DebugLoc NLoc = N->getDebugLoc(); 5982 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 5983 N->setDebugLoc(DebugLoc()); 5984 } 5985 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 5986 N->setIROrder(Order); 5987 return N; 5988 } 5989 5990 /// MorphNodeTo - This *mutates* the specified node to have the specified 5991 /// return type, opcode, and operands. 5992 /// 5993 /// Note that MorphNodeTo returns the resultant node. If there is already a 5994 /// node of the specified opcode and operands, it returns that node instead of 5995 /// the current one. Note that the SDLoc need not be the same. 5996 /// 5997 /// Using MorphNodeTo is faster than creating a new node and swapping it in 5998 /// with ReplaceAllUsesWith both because it often avoids allocating a new 5999 /// node, and because it doesn't require CSE recalculation for any of 6000 /// the node's users. 6001 /// 6002 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 6003 /// As a consequence it isn't appropriate to use from within the DAG combiner or 6004 /// the legalizer which maintain worklists that would need to be updated when 6005 /// deleting things. 6006 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 6007 SDVTList VTs, ArrayRef<SDValue> Ops) { 6008 // If an identical node already exists, use it. 6009 void *IP = nullptr; 6010 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 6011 FoldingSetNodeID ID; 6012 AddNodeIDNode(ID, Opc, VTs, Ops); 6013 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 6014 return UpdadeSDLocOnMergedSDNode(ON, SDLoc(N)); 6015 } 6016 6017 if (!RemoveNodeFromCSEMaps(N)) 6018 IP = nullptr; 6019 6020 // Start the morphing. 6021 N->NodeType = Opc; 6022 N->ValueList = VTs.VTs; 6023 N->NumValues = VTs.NumVTs; 6024 6025 // Clear the operands list, updating used nodes to remove this from their 6026 // use list. Keep track of any operands that become dead as a result. 6027 SmallPtrSet<SDNode*, 16> DeadNodeSet; 6028 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 6029 SDUse &Use = *I++; 6030 SDNode *Used = Use.getNode(); 6031 Use.set(SDValue()); 6032 if (Used->use_empty()) 6033 DeadNodeSet.insert(Used); 6034 } 6035 6036 // For MachineNode, initialize the memory references information. 6037 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 6038 MN->setMemRefs(nullptr, nullptr); 6039 6040 // Swap for an appropriately sized array from the recycler. 6041 removeOperands(N); 6042 createOperands(N, Ops); 6043 6044 // Delete any nodes that are still dead after adding the uses for the 6045 // new operands. 6046 if (!DeadNodeSet.empty()) { 6047 SmallVector<SDNode *, 16> DeadNodes; 6048 for (SDNode *N : DeadNodeSet) 6049 if (N->use_empty()) 6050 DeadNodes.push_back(N); 6051 RemoveDeadNodes(DeadNodes); 6052 } 6053 6054 if (IP) 6055 CSEMap.InsertNode(N, IP); // Memoize the new node. 6056 return N; 6057 } 6058 6059 6060 /// getMachineNode - These are used for target selectors to create a new node 6061 /// with specified return type(s), MachineInstr opcode, and operands. 6062 /// 6063 /// Note that getMachineNode returns the resultant node. If there is already a 6064 /// node of the specified opcode and operands, it returns that node instead of 6065 /// the current one. 6066 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6067 EVT VT) { 6068 SDVTList VTs = getVTList(VT); 6069 return getMachineNode(Opcode, dl, VTs, None); 6070 } 6071 6072 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6073 EVT VT, SDValue Op1) { 6074 SDVTList VTs = getVTList(VT); 6075 SDValue Ops[] = { Op1 }; 6076 return getMachineNode(Opcode, dl, VTs, Ops); 6077 } 6078 6079 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6080 EVT VT, SDValue Op1, SDValue Op2) { 6081 SDVTList VTs = getVTList(VT); 6082 SDValue Ops[] = { Op1, Op2 }; 6083 return getMachineNode(Opcode, dl, VTs, Ops); 6084 } 6085 6086 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6087 EVT VT, SDValue Op1, SDValue Op2, 6088 SDValue Op3) { 6089 SDVTList VTs = getVTList(VT); 6090 SDValue Ops[] = { Op1, Op2, Op3 }; 6091 return getMachineNode(Opcode, dl, VTs, Ops); 6092 } 6093 6094 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6095 EVT VT, ArrayRef<SDValue> Ops) { 6096 SDVTList VTs = getVTList(VT); 6097 return getMachineNode(Opcode, dl, VTs, Ops); 6098 } 6099 6100 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6101 EVT VT1, EVT VT2) { 6102 SDVTList VTs = getVTList(VT1, VT2); 6103 return getMachineNode(Opcode, dl, VTs, None); 6104 } 6105 6106 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6107 EVT VT1, EVT VT2, SDValue Op1) { 6108 SDVTList VTs = getVTList(VT1, VT2); 6109 SDValue Ops[] = { Op1 }; 6110 return getMachineNode(Opcode, dl, VTs, Ops); 6111 } 6112 6113 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6114 EVT VT1, EVT VT2, SDValue Op1, 6115 SDValue Op2) { 6116 SDVTList VTs = getVTList(VT1, VT2); 6117 SDValue Ops[] = { Op1, Op2 }; 6118 return getMachineNode(Opcode, dl, VTs, Ops); 6119 } 6120 6121 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6122 EVT VT1, EVT VT2, SDValue Op1, 6123 SDValue Op2, SDValue Op3) { 6124 SDVTList VTs = getVTList(VT1, VT2); 6125 SDValue Ops[] = { Op1, Op2, Op3 }; 6126 return getMachineNode(Opcode, dl, VTs, Ops); 6127 } 6128 6129 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6130 EVT VT1, EVT VT2, 6131 ArrayRef<SDValue> Ops) { 6132 SDVTList VTs = getVTList(VT1, VT2); 6133 return getMachineNode(Opcode, dl, VTs, Ops); 6134 } 6135 6136 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6137 EVT VT1, EVT VT2, EVT VT3, 6138 SDValue Op1, SDValue Op2) { 6139 SDVTList VTs = getVTList(VT1, VT2, VT3); 6140 SDValue Ops[] = { Op1, Op2 }; 6141 return getMachineNode(Opcode, dl, VTs, Ops); 6142 } 6143 6144 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6145 EVT VT1, EVT VT2, EVT VT3, 6146 SDValue Op1, SDValue Op2, 6147 SDValue Op3) { 6148 SDVTList VTs = getVTList(VT1, VT2, VT3); 6149 SDValue Ops[] = { Op1, Op2, Op3 }; 6150 return getMachineNode(Opcode, dl, VTs, Ops); 6151 } 6152 6153 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6154 EVT VT1, EVT VT2, EVT VT3, 6155 ArrayRef<SDValue> Ops) { 6156 SDVTList VTs = getVTList(VT1, VT2, VT3); 6157 return getMachineNode(Opcode, dl, VTs, Ops); 6158 } 6159 6160 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6161 EVT VT1, EVT VT2, EVT VT3, EVT VT4, 6162 ArrayRef<SDValue> Ops) { 6163 SDVTList VTs = getVTList(VT1, VT2, VT3, VT4); 6164 return getMachineNode(Opcode, dl, VTs, Ops); 6165 } 6166 6167 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6168 ArrayRef<EVT> ResultTys, 6169 ArrayRef<SDValue> Ops) { 6170 SDVTList VTs = getVTList(ResultTys); 6171 return getMachineNode(Opcode, dl, VTs, Ops); 6172 } 6173 6174 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 6175 SDVTList VTs, 6176 ArrayRef<SDValue> Ops) { 6177 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 6178 MachineSDNode *N; 6179 void *IP = nullptr; 6180 6181 if (DoCSE) { 6182 FoldingSetNodeID ID; 6183 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 6184 IP = nullptr; 6185 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6186 return cast<MachineSDNode>(UpdadeSDLocOnMergedSDNode(E, DL)); 6187 } 6188 } 6189 6190 // Allocate a new MachineSDNode. 6191 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6192 createOperands(N, Ops); 6193 6194 if (DoCSE) 6195 CSEMap.InsertNode(N, IP); 6196 6197 InsertNode(N); 6198 return N; 6199 } 6200 6201 /// getTargetExtractSubreg - A convenience function for creating 6202 /// TargetOpcode::EXTRACT_SUBREG nodes. 6203 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 6204 SDValue Operand) { 6205 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 6206 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 6207 VT, Operand, SRIdxVal); 6208 return SDValue(Subreg, 0); 6209 } 6210 6211 /// getTargetInsertSubreg - A convenience function for creating 6212 /// TargetOpcode::INSERT_SUBREG nodes. 6213 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 6214 SDValue Operand, SDValue Subreg) { 6215 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 6216 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 6217 VT, Operand, Subreg, SRIdxVal); 6218 return SDValue(Result, 0); 6219 } 6220 6221 /// getNodeIfExists - Get the specified node if it's already available, or 6222 /// else return NULL. 6223 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 6224 ArrayRef<SDValue> Ops, 6225 const SDNodeFlags *Flags) { 6226 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 6227 FoldingSetNodeID ID; 6228 AddNodeIDNode(ID, Opcode, VTList, Ops); 6229 void *IP = nullptr; 6230 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 6231 if (Flags) 6232 E->intersectFlagsWith(Flags); 6233 return E; 6234 } 6235 } 6236 return nullptr; 6237 } 6238 6239 /// getDbgValue - Creates a SDDbgValue node. 6240 /// 6241 /// SDNode 6242 SDDbgValue *SelectionDAG::getDbgValue(MDNode *Var, MDNode *Expr, SDNode *N, 6243 unsigned R, bool IsIndirect, uint64_t Off, 6244 const DebugLoc &DL, unsigned O) { 6245 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 6246 "Expected inlined-at fields to agree"); 6247 return new (DbgInfo->getAlloc()) 6248 SDDbgValue(Var, Expr, N, R, IsIndirect, Off, DL, O); 6249 } 6250 6251 /// Constant 6252 SDDbgValue *SelectionDAG::getConstantDbgValue(MDNode *Var, MDNode *Expr, 6253 const Value *C, uint64_t Off, 6254 const DebugLoc &DL, unsigned O) { 6255 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 6256 "Expected inlined-at fields to agree"); 6257 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, Off, DL, O); 6258 } 6259 6260 /// FrameIndex 6261 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(MDNode *Var, MDNode *Expr, 6262 unsigned FI, uint64_t Off, 6263 const DebugLoc &DL, 6264 unsigned O) { 6265 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 6266 "Expected inlined-at fields to agree"); 6267 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, FI, Off, DL, O); 6268 } 6269 6270 namespace { 6271 6272 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 6273 /// pointed to by a use iterator is deleted, increment the use iterator 6274 /// so that it doesn't dangle. 6275 /// 6276 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 6277 SDNode::use_iterator &UI; 6278 SDNode::use_iterator &UE; 6279 6280 void NodeDeleted(SDNode *N, SDNode *E) override { 6281 // Increment the iterator as needed. 6282 while (UI != UE && N == *UI) 6283 ++UI; 6284 } 6285 6286 public: 6287 RAUWUpdateListener(SelectionDAG &d, 6288 SDNode::use_iterator &ui, 6289 SDNode::use_iterator &ue) 6290 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 6291 }; 6292 6293 } 6294 6295 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 6296 /// This can cause recursive merging of nodes in the DAG. 6297 /// 6298 /// This version assumes From has a single result value. 6299 /// 6300 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 6301 SDNode *From = FromN.getNode(); 6302 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 6303 "Cannot replace with this method!"); 6304 assert(From != To.getNode() && "Cannot replace uses of with self"); 6305 6306 // Iterate over all the existing uses of From. New uses will be added 6307 // to the beginning of the use list, which we avoid visiting. 6308 // This specifically avoids visiting uses of From that arise while the 6309 // replacement is happening, because any such uses would be the result 6310 // of CSE: If an existing node looks like From after one of its operands 6311 // is replaced by To, we don't want to replace of all its users with To 6312 // too. See PR3018 for more info. 6313 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 6314 RAUWUpdateListener Listener(*this, UI, UE); 6315 while (UI != UE) { 6316 SDNode *User = *UI; 6317 6318 // This node is about to morph, remove its old self from the CSE maps. 6319 RemoveNodeFromCSEMaps(User); 6320 6321 // A user can appear in a use list multiple times, and when this 6322 // happens the uses are usually next to each other in the list. 6323 // To help reduce the number of CSE recomputations, process all 6324 // the uses of this user that we can find this way. 6325 do { 6326 SDUse &Use = UI.getUse(); 6327 ++UI; 6328 Use.set(To); 6329 } while (UI != UE && *UI == User); 6330 6331 // Now that we have modified User, add it back to the CSE maps. If it 6332 // already exists there, recursively merge the results together. 6333 AddModifiedNodeToCSEMaps(User); 6334 } 6335 6336 // If we just RAUW'd the root, take note. 6337 if (FromN == getRoot()) 6338 setRoot(To); 6339 } 6340 6341 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 6342 /// This can cause recursive merging of nodes in the DAG. 6343 /// 6344 /// This version assumes that for each value of From, there is a 6345 /// corresponding value in To in the same position with the same type. 6346 /// 6347 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 6348 #ifndef NDEBUG 6349 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 6350 assert((!From->hasAnyUseOfValue(i) || 6351 From->getValueType(i) == To->getValueType(i)) && 6352 "Cannot use this version of ReplaceAllUsesWith!"); 6353 #endif 6354 6355 // Handle the trivial case. 6356 if (From == To) 6357 return; 6358 6359 // Iterate over just the existing users of From. See the comments in 6360 // the ReplaceAllUsesWith above. 6361 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 6362 RAUWUpdateListener Listener(*this, UI, UE); 6363 while (UI != UE) { 6364 SDNode *User = *UI; 6365 6366 // This node is about to morph, remove its old self from the CSE maps. 6367 RemoveNodeFromCSEMaps(User); 6368 6369 // A user can appear in a use list multiple times, and when this 6370 // happens the uses are usually next to each other in the list. 6371 // To help reduce the number of CSE recomputations, process all 6372 // the uses of this user that we can find this way. 6373 do { 6374 SDUse &Use = UI.getUse(); 6375 ++UI; 6376 Use.setNode(To); 6377 } while (UI != UE && *UI == User); 6378 6379 // Now that we have modified User, add it back to the CSE maps. If it 6380 // already exists there, recursively merge the results together. 6381 AddModifiedNodeToCSEMaps(User); 6382 } 6383 6384 // If we just RAUW'd the root, take note. 6385 if (From == getRoot().getNode()) 6386 setRoot(SDValue(To, getRoot().getResNo())); 6387 } 6388 6389 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 6390 /// This can cause recursive merging of nodes in the DAG. 6391 /// 6392 /// This version can replace From with any result values. To must match the 6393 /// number and types of values returned by From. 6394 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 6395 if (From->getNumValues() == 1) // Handle the simple case efficiently. 6396 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 6397 6398 // Iterate over just the existing users of From. See the comments in 6399 // the ReplaceAllUsesWith above. 6400 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 6401 RAUWUpdateListener Listener(*this, UI, UE); 6402 while (UI != UE) { 6403 SDNode *User = *UI; 6404 6405 // This node is about to morph, remove its old self from the CSE maps. 6406 RemoveNodeFromCSEMaps(User); 6407 6408 // A user can appear in a use list multiple times, and when this 6409 // happens the uses are usually next to each other in the list. 6410 // To help reduce the number of CSE recomputations, process all 6411 // the uses of this user that we can find this way. 6412 do { 6413 SDUse &Use = UI.getUse(); 6414 const SDValue &ToOp = To[Use.getResNo()]; 6415 ++UI; 6416 Use.set(ToOp); 6417 } while (UI != UE && *UI == User); 6418 6419 // Now that we have modified User, add it back to the CSE maps. If it 6420 // already exists there, recursively merge the results together. 6421 AddModifiedNodeToCSEMaps(User); 6422 } 6423 6424 // If we just RAUW'd the root, take note. 6425 if (From == getRoot().getNode()) 6426 setRoot(SDValue(To[getRoot().getResNo()])); 6427 } 6428 6429 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 6430 /// uses of other values produced by From.getNode() alone. The Deleted 6431 /// vector is handled the same way as for ReplaceAllUsesWith. 6432 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 6433 // Handle the really simple, really trivial case efficiently. 6434 if (From == To) return; 6435 6436 // Handle the simple, trivial, case efficiently. 6437 if (From.getNode()->getNumValues() == 1) { 6438 ReplaceAllUsesWith(From, To); 6439 return; 6440 } 6441 6442 // Iterate over just the existing users of From. See the comments in 6443 // the ReplaceAllUsesWith above. 6444 SDNode::use_iterator UI = From.getNode()->use_begin(), 6445 UE = From.getNode()->use_end(); 6446 RAUWUpdateListener Listener(*this, UI, UE); 6447 while (UI != UE) { 6448 SDNode *User = *UI; 6449 bool UserRemovedFromCSEMaps = false; 6450 6451 // A user can appear in a use list multiple times, and when this 6452 // happens the uses are usually next to each other in the list. 6453 // To help reduce the number of CSE recomputations, process all 6454 // the uses of this user that we can find this way. 6455 do { 6456 SDUse &Use = UI.getUse(); 6457 6458 // Skip uses of different values from the same node. 6459 if (Use.getResNo() != From.getResNo()) { 6460 ++UI; 6461 continue; 6462 } 6463 6464 // If this node hasn't been modified yet, it's still in the CSE maps, 6465 // so remove its old self from the CSE maps. 6466 if (!UserRemovedFromCSEMaps) { 6467 RemoveNodeFromCSEMaps(User); 6468 UserRemovedFromCSEMaps = true; 6469 } 6470 6471 ++UI; 6472 Use.set(To); 6473 } while (UI != UE && *UI == User); 6474 6475 // We are iterating over all uses of the From node, so if a use 6476 // doesn't use the specific value, no changes are made. 6477 if (!UserRemovedFromCSEMaps) 6478 continue; 6479 6480 // Now that we have modified User, add it back to the CSE maps. If it 6481 // already exists there, recursively merge the results together. 6482 AddModifiedNodeToCSEMaps(User); 6483 } 6484 6485 // If we just RAUW'd the root, take note. 6486 if (From == getRoot()) 6487 setRoot(To); 6488 } 6489 6490 namespace { 6491 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 6492 /// to record information about a use. 6493 struct UseMemo { 6494 SDNode *User; 6495 unsigned Index; 6496 SDUse *Use; 6497 }; 6498 6499 /// operator< - Sort Memos by User. 6500 bool operator<(const UseMemo &L, const UseMemo &R) { 6501 return (intptr_t)L.User < (intptr_t)R.User; 6502 } 6503 } 6504 6505 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 6506 /// uses of other values produced by From.getNode() alone. The same value 6507 /// may appear in both the From and To list. The Deleted vector is 6508 /// handled the same way as for ReplaceAllUsesWith. 6509 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 6510 const SDValue *To, 6511 unsigned Num){ 6512 // Handle the simple, trivial case efficiently. 6513 if (Num == 1) 6514 return ReplaceAllUsesOfValueWith(*From, *To); 6515 6516 // Read up all the uses and make records of them. This helps 6517 // processing new uses that are introduced during the 6518 // replacement process. 6519 SmallVector<UseMemo, 4> Uses; 6520 for (unsigned i = 0; i != Num; ++i) { 6521 unsigned FromResNo = From[i].getResNo(); 6522 SDNode *FromNode = From[i].getNode(); 6523 for (SDNode::use_iterator UI = FromNode->use_begin(), 6524 E = FromNode->use_end(); UI != E; ++UI) { 6525 SDUse &Use = UI.getUse(); 6526 if (Use.getResNo() == FromResNo) { 6527 UseMemo Memo = { *UI, i, &Use }; 6528 Uses.push_back(Memo); 6529 } 6530 } 6531 } 6532 6533 // Sort the uses, so that all the uses from a given User are together. 6534 std::sort(Uses.begin(), Uses.end()); 6535 6536 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 6537 UseIndex != UseIndexEnd; ) { 6538 // We know that this user uses some value of From. If it is the right 6539 // value, update it. 6540 SDNode *User = Uses[UseIndex].User; 6541 6542 // This node is about to morph, remove its old self from the CSE maps. 6543 RemoveNodeFromCSEMaps(User); 6544 6545 // The Uses array is sorted, so all the uses for a given User 6546 // are next to each other in the list. 6547 // To help reduce the number of CSE recomputations, process all 6548 // the uses of this user that we can find this way. 6549 do { 6550 unsigned i = Uses[UseIndex].Index; 6551 SDUse &Use = *Uses[UseIndex].Use; 6552 ++UseIndex; 6553 6554 Use.set(To[i]); 6555 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 6556 6557 // Now that we have modified User, add it back to the CSE maps. If it 6558 // already exists there, recursively merge the results together. 6559 AddModifiedNodeToCSEMaps(User); 6560 } 6561 } 6562 6563 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 6564 /// based on their topological order. It returns the maximum id and a vector 6565 /// of the SDNodes* in assigned order by reference. 6566 unsigned SelectionDAG::AssignTopologicalOrder() { 6567 6568 unsigned DAGSize = 0; 6569 6570 // SortedPos tracks the progress of the algorithm. Nodes before it are 6571 // sorted, nodes after it are unsorted. When the algorithm completes 6572 // it is at the end of the list. 6573 allnodes_iterator SortedPos = allnodes_begin(); 6574 6575 // Visit all the nodes. Move nodes with no operands to the front of 6576 // the list immediately. Annotate nodes that do have operands with their 6577 // operand count. Before we do this, the Node Id fields of the nodes 6578 // may contain arbitrary values. After, the Node Id fields for nodes 6579 // before SortedPos will contain the topological sort index, and the 6580 // Node Id fields for nodes At SortedPos and after will contain the 6581 // count of outstanding operands. 6582 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 6583 SDNode *N = &*I++; 6584 checkForCycles(N, this); 6585 unsigned Degree = N->getNumOperands(); 6586 if (Degree == 0) { 6587 // A node with no uses, add it to the result array immediately. 6588 N->setNodeId(DAGSize++); 6589 allnodes_iterator Q(N); 6590 if (Q != SortedPos) 6591 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 6592 assert(SortedPos != AllNodes.end() && "Overran node list"); 6593 ++SortedPos; 6594 } else { 6595 // Temporarily use the Node Id as scratch space for the degree count. 6596 N->setNodeId(Degree); 6597 } 6598 } 6599 6600 // Visit all the nodes. As we iterate, move nodes into sorted order, 6601 // such that by the time the end is reached all nodes will be sorted. 6602 for (SDNode &Node : allnodes()) { 6603 SDNode *N = &Node; 6604 checkForCycles(N, this); 6605 // N is in sorted position, so all its uses have one less operand 6606 // that needs to be sorted. 6607 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 6608 UI != UE; ++UI) { 6609 SDNode *P = *UI; 6610 unsigned Degree = P->getNodeId(); 6611 assert(Degree != 0 && "Invalid node degree"); 6612 --Degree; 6613 if (Degree == 0) { 6614 // All of P's operands are sorted, so P may sorted now. 6615 P->setNodeId(DAGSize++); 6616 if (P->getIterator() != SortedPos) 6617 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 6618 assert(SortedPos != AllNodes.end() && "Overran node list"); 6619 ++SortedPos; 6620 } else { 6621 // Update P's outstanding operand count. 6622 P->setNodeId(Degree); 6623 } 6624 } 6625 if (Node.getIterator() == SortedPos) { 6626 #ifndef NDEBUG 6627 allnodes_iterator I(N); 6628 SDNode *S = &*++I; 6629 dbgs() << "Overran sorted position:\n"; 6630 S->dumprFull(this); dbgs() << "\n"; 6631 dbgs() << "Checking if this is due to cycles\n"; 6632 checkForCycles(this, true); 6633 #endif 6634 llvm_unreachable(nullptr); 6635 } 6636 } 6637 6638 assert(SortedPos == AllNodes.end() && 6639 "Topological sort incomplete!"); 6640 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 6641 "First node in topological sort is not the entry token!"); 6642 assert(AllNodes.front().getNodeId() == 0 && 6643 "First node in topological sort has non-zero id!"); 6644 assert(AllNodes.front().getNumOperands() == 0 && 6645 "First node in topological sort has operands!"); 6646 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 6647 "Last node in topologic sort has unexpected id!"); 6648 assert(AllNodes.back().use_empty() && 6649 "Last node in topologic sort has users!"); 6650 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 6651 return DAGSize; 6652 } 6653 6654 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 6655 /// value is produced by SD. 6656 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 6657 if (SD) { 6658 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 6659 SD->setHasDebugValue(true); 6660 } 6661 DbgInfo->add(DB, SD, isParameter); 6662 } 6663 6664 /// TransferDbgValues - Transfer SDDbgValues. 6665 void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) { 6666 if (From == To || !From.getNode()->getHasDebugValue()) 6667 return; 6668 SDNode *FromNode = From.getNode(); 6669 SDNode *ToNode = To.getNode(); 6670 ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode); 6671 SmallVector<SDDbgValue *, 2> ClonedDVs; 6672 for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end(); 6673 I != E; ++I) { 6674 SDDbgValue *Dbg = *I; 6675 if (Dbg->getKind() == SDDbgValue::SDNODE) { 6676 SDDbgValue *Clone = 6677 getDbgValue(Dbg->getVariable(), Dbg->getExpression(), ToNode, 6678 To.getResNo(), Dbg->isIndirect(), Dbg->getOffset(), 6679 Dbg->getDebugLoc(), Dbg->getOrder()); 6680 ClonedDVs.push_back(Clone); 6681 } 6682 } 6683 for (SmallVectorImpl<SDDbgValue *>::iterator I = ClonedDVs.begin(), 6684 E = ClonedDVs.end(); I != E; ++I) 6685 AddDbgValue(*I, ToNode, false); 6686 } 6687 6688 //===----------------------------------------------------------------------===// 6689 // SDNode Class 6690 //===----------------------------------------------------------------------===// 6691 6692 bool llvm::isNullConstant(SDValue V) { 6693 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 6694 return Const != nullptr && Const->isNullValue(); 6695 } 6696 6697 bool llvm::isNullFPConstant(SDValue V) { 6698 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 6699 return Const != nullptr && Const->isZero() && !Const->isNegative(); 6700 } 6701 6702 bool llvm::isAllOnesConstant(SDValue V) { 6703 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 6704 return Const != nullptr && Const->isAllOnesValue(); 6705 } 6706 6707 bool llvm::isOneConstant(SDValue V) { 6708 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 6709 return Const != nullptr && Const->isOne(); 6710 } 6711 6712 bool llvm::isBitwiseNot(SDValue V) { 6713 return V.getOpcode() == ISD::XOR && isAllOnesConstant(V.getOperand(1)); 6714 } 6715 6716 HandleSDNode::~HandleSDNode() { 6717 DropOperands(); 6718 } 6719 6720 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 6721 const DebugLoc &DL, 6722 const GlobalValue *GA, EVT VT, 6723 int64_t o, unsigned char TF) 6724 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 6725 TheGlobal = GA; 6726 } 6727 6728 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 6729 EVT VT, unsigned SrcAS, 6730 unsigned DestAS) 6731 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 6732 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 6733 6734 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 6735 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 6736 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 6737 SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(), 6738 MMO->isNonTemporal(), MMO->isInvariant()); 6739 assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!"); 6740 assert(isNonTemporal() == MMO->isNonTemporal() && 6741 "Non-temporal encoding error!"); 6742 // We check here that the size of the memory operand fits within the size of 6743 // the MMO. This is because the MMO might indicate only a possible address 6744 // range instead of specifying the affected memory addresses precisely. 6745 assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!"); 6746 } 6747 6748 /// Profile - Gather unique data for the node. 6749 /// 6750 void SDNode::Profile(FoldingSetNodeID &ID) const { 6751 AddNodeIDNode(ID, this); 6752 } 6753 6754 namespace { 6755 struct EVTArray { 6756 std::vector<EVT> VTs; 6757 6758 EVTArray() { 6759 VTs.reserve(MVT::LAST_VALUETYPE); 6760 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 6761 VTs.push_back(MVT((MVT::SimpleValueType)i)); 6762 } 6763 }; 6764 } 6765 6766 static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs; 6767 static ManagedStatic<EVTArray> SimpleVTArray; 6768 static ManagedStatic<sys::SmartMutex<true> > VTMutex; 6769 6770 /// getValueTypeList - Return a pointer to the specified value type. 6771 /// 6772 const EVT *SDNode::getValueTypeList(EVT VT) { 6773 if (VT.isExtended()) { 6774 sys::SmartScopedLock<true> Lock(*VTMutex); 6775 return &(*EVTs->insert(VT).first); 6776 } else { 6777 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 6778 "Value type out of range!"); 6779 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 6780 } 6781 } 6782 6783 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 6784 /// indicated value. This method ignores uses of other values defined by this 6785 /// operation. 6786 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 6787 assert(Value < getNumValues() && "Bad value!"); 6788 6789 // TODO: Only iterate over uses of a given value of the node 6790 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 6791 if (UI.getUse().getResNo() == Value) { 6792 if (NUses == 0) 6793 return false; 6794 --NUses; 6795 } 6796 } 6797 6798 // Found exactly the right number of uses? 6799 return NUses == 0; 6800 } 6801 6802 6803 /// hasAnyUseOfValue - Return true if there are any use of the indicated 6804 /// value. This method ignores uses of other values defined by this operation. 6805 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 6806 assert(Value < getNumValues() && "Bad value!"); 6807 6808 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 6809 if (UI.getUse().getResNo() == Value) 6810 return true; 6811 6812 return false; 6813 } 6814 6815 6816 /// isOnlyUserOf - Return true if this node is the only use of N. 6817 /// 6818 bool SDNode::isOnlyUserOf(const SDNode *N) const { 6819 bool Seen = false; 6820 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 6821 SDNode *User = *I; 6822 if (User == this) 6823 Seen = true; 6824 else 6825 return false; 6826 } 6827 6828 return Seen; 6829 } 6830 6831 /// isOperand - Return true if this node is an operand of N. 6832 /// 6833 bool SDValue::isOperandOf(const SDNode *N) const { 6834 for (const SDValue &Op : N->op_values()) 6835 if (*this == Op) 6836 return true; 6837 return false; 6838 } 6839 6840 bool SDNode::isOperandOf(const SDNode *N) const { 6841 for (const SDValue &Op : N->op_values()) 6842 if (this == Op.getNode()) 6843 return true; 6844 return false; 6845 } 6846 6847 /// reachesChainWithoutSideEffects - Return true if this operand (which must 6848 /// be a chain) reaches the specified operand without crossing any 6849 /// side-effecting instructions on any chain path. In practice, this looks 6850 /// through token factors and non-volatile loads. In order to remain efficient, 6851 /// this only looks a couple of nodes in, it does not do an exhaustive search. 6852 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 6853 unsigned Depth) const { 6854 if (*this == Dest) return true; 6855 6856 // Don't search too deeply, we just want to be able to see through 6857 // TokenFactor's etc. 6858 if (Depth == 0) return false; 6859 6860 // If this is a token factor, all inputs to the TF happen in parallel. If any 6861 // of the operands of the TF does not reach dest, then we cannot do the xform. 6862 if (getOpcode() == ISD::TokenFactor) { 6863 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 6864 if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1)) 6865 return false; 6866 return true; 6867 } 6868 6869 // Loads don't have side effects, look through them. 6870 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 6871 if (!Ld->isVolatile()) 6872 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 6873 } 6874 return false; 6875 } 6876 6877 bool SDNode::hasPredecessor(const SDNode *N) const { 6878 SmallPtrSet<const SDNode *, 32> Visited; 6879 SmallVector<const SDNode *, 16> Worklist; 6880 Worklist.push_back(this); 6881 return hasPredecessorHelper(N, Visited, Worklist); 6882 } 6883 6884 uint64_t SDNode::getConstantOperandVal(unsigned Num) const { 6885 assert(Num < NumOperands && "Invalid child # of SDNode!"); 6886 return cast<ConstantSDNode>(OperandList[Num])->getZExtValue(); 6887 } 6888 6889 const SDNodeFlags *SDNode::getFlags() const { 6890 if (auto *FlagsNode = dyn_cast<BinaryWithFlagsSDNode>(this)) 6891 return &FlagsNode->Flags; 6892 return nullptr; 6893 } 6894 6895 void SDNode::intersectFlagsWith(const SDNodeFlags *Flags) { 6896 if (auto *FlagsNode = dyn_cast<BinaryWithFlagsSDNode>(this)) 6897 FlagsNode->Flags.intersectWith(Flags); 6898 } 6899 6900 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 6901 assert(N->getNumValues() == 1 && 6902 "Can't unroll a vector with multiple results!"); 6903 6904 EVT VT = N->getValueType(0); 6905 unsigned NE = VT.getVectorNumElements(); 6906 EVT EltVT = VT.getVectorElementType(); 6907 SDLoc dl(N); 6908 6909 SmallVector<SDValue, 8> Scalars; 6910 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 6911 6912 // If ResNE is 0, fully unroll the vector op. 6913 if (ResNE == 0) 6914 ResNE = NE; 6915 else if (NE > ResNE) 6916 NE = ResNE; 6917 6918 unsigned i; 6919 for (i= 0; i != NE; ++i) { 6920 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 6921 SDValue Operand = N->getOperand(j); 6922 EVT OperandVT = Operand.getValueType(); 6923 if (OperandVT.isVector()) { 6924 // A vector operand; extract a single element. 6925 EVT OperandEltVT = OperandVT.getVectorElementType(); 6926 Operands[j] = 6927 getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand, 6928 getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout()))); 6929 } else { 6930 // A scalar operand; just use it as is. 6931 Operands[j] = Operand; 6932 } 6933 } 6934 6935 switch (N->getOpcode()) { 6936 default: { 6937 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 6938 N->getFlags())); 6939 break; 6940 } 6941 case ISD::VSELECT: 6942 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 6943 break; 6944 case ISD::SHL: 6945 case ISD::SRA: 6946 case ISD::SRL: 6947 case ISD::ROTL: 6948 case ISD::ROTR: 6949 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 6950 getShiftAmountOperand(Operands[0].getValueType(), 6951 Operands[1]))); 6952 break; 6953 case ISD::SIGN_EXTEND_INREG: 6954 case ISD::FP_ROUND_INREG: { 6955 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 6956 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 6957 Operands[0], 6958 getValueType(ExtVT))); 6959 } 6960 } 6961 } 6962 6963 for (; i < ResNE; ++i) 6964 Scalars.push_back(getUNDEF(EltVT)); 6965 6966 return getNode(ISD::BUILD_VECTOR, dl, 6967 EVT::getVectorVT(*getContext(), EltVT, ResNE), Scalars); 6968 } 6969 6970 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 6971 LoadSDNode *Base, 6972 unsigned Bytes, 6973 int Dist) const { 6974 if (LD->isVolatile() || Base->isVolatile()) 6975 return false; 6976 if (LD->isIndexed() || Base->isIndexed()) 6977 return false; 6978 if (LD->getChain() != Base->getChain()) 6979 return false; 6980 EVT VT = LD->getValueType(0); 6981 if (VT.getSizeInBits() / 8 != Bytes) 6982 return false; 6983 6984 SDValue Loc = LD->getOperand(1); 6985 SDValue BaseLoc = Base->getOperand(1); 6986 if (Loc.getOpcode() == ISD::FrameIndex) { 6987 if (BaseLoc.getOpcode() != ISD::FrameIndex) 6988 return false; 6989 const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo(); 6990 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 6991 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 6992 int FS = MFI->getObjectSize(FI); 6993 int BFS = MFI->getObjectSize(BFI); 6994 if (FS != BFS || FS != (int)Bytes) return false; 6995 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes); 6996 } 6997 6998 // Handle X + C. 6999 if (isBaseWithConstantOffset(Loc)) { 7000 int64_t LocOffset = cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 7001 if (Loc.getOperand(0) == BaseLoc) { 7002 // If the base location is a simple address with no offset itself, then 7003 // the second load's first add operand should be the base address. 7004 if (LocOffset == Dist * (int)Bytes) 7005 return true; 7006 } else if (isBaseWithConstantOffset(BaseLoc)) { 7007 // The base location itself has an offset, so subtract that value from the 7008 // second load's offset before comparing to distance * size. 7009 int64_t BOffset = 7010 cast<ConstantSDNode>(BaseLoc.getOperand(1))->getSExtValue(); 7011 if (Loc.getOperand(0) == BaseLoc.getOperand(0)) { 7012 if ((LocOffset - BOffset) == Dist * (int)Bytes) 7013 return true; 7014 } 7015 } 7016 } 7017 const GlobalValue *GV1 = nullptr; 7018 const GlobalValue *GV2 = nullptr; 7019 int64_t Offset1 = 0; 7020 int64_t Offset2 = 0; 7021 bool isGA1 = TLI->isGAPlusOffset(Loc.getNode(), GV1, Offset1); 7022 bool isGA2 = TLI->isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 7023 if (isGA1 && isGA2 && GV1 == GV2) 7024 return Offset1 == (Offset2 + Dist*Bytes); 7025 return false; 7026 } 7027 7028 7029 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if 7030 /// it cannot be inferred. 7031 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { 7032 // If this is a GlobalAddress + cst, return the alignment. 7033 const GlobalValue *GV; 7034 int64_t GVOffset = 0; 7035 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 7036 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 7037 APInt KnownZero(PtrWidth, 0), KnownOne(PtrWidth, 0); 7038 llvm::computeKnownBits(const_cast<GlobalValue *>(GV), KnownZero, KnownOne, 7039 getDataLayout()); 7040 unsigned AlignBits = KnownZero.countTrailingOnes(); 7041 unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; 7042 if (Align) 7043 return MinAlign(Align, GVOffset); 7044 } 7045 7046 // If this is a direct reference to a stack slot, use information about the 7047 // stack slot's alignment. 7048 int FrameIdx = 1 << 31; 7049 int64_t FrameOffset = 0; 7050 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 7051 FrameIdx = FI->getIndex(); 7052 } else if (isBaseWithConstantOffset(Ptr) && 7053 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 7054 // Handle FI+Cst 7055 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7056 FrameOffset = Ptr.getConstantOperandVal(1); 7057 } 7058 7059 if (FrameIdx != (1 << 31)) { 7060 const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo(); 7061 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), 7062 FrameOffset); 7063 return FIInfoAlign; 7064 } 7065 7066 return 0; 7067 } 7068 7069 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 7070 /// which is split (or expanded) into two not necessarily identical pieces. 7071 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 7072 // Currently all types are split in half. 7073 EVT LoVT, HiVT; 7074 if (!VT.isVector()) { 7075 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 7076 } else { 7077 unsigned NumElements = VT.getVectorNumElements(); 7078 assert(!(NumElements & 1) && "Splitting vector, but not in half!"); 7079 LoVT = HiVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 7080 NumElements/2); 7081 } 7082 return std::make_pair(LoVT, HiVT); 7083 } 7084 7085 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 7086 /// low/high part. 7087 std::pair<SDValue, SDValue> 7088 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 7089 const EVT &HiVT) { 7090 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 7091 N.getValueType().getVectorNumElements() && 7092 "More vector elements requested than available!"); 7093 SDValue Lo, Hi; 7094 Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 7095 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 7096 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 7097 getConstant(LoVT.getVectorNumElements(), DL, 7098 TLI->getVectorIdxTy(getDataLayout()))); 7099 return std::make_pair(Lo, Hi); 7100 } 7101 7102 void SelectionDAG::ExtractVectorElements(SDValue Op, 7103 SmallVectorImpl<SDValue> &Args, 7104 unsigned Start, unsigned Count) { 7105 EVT VT = Op.getValueType(); 7106 if (Count == 0) 7107 Count = VT.getVectorNumElements(); 7108 7109 EVT EltVT = VT.getVectorElementType(); 7110 EVT IdxTy = TLI->getVectorIdxTy(getDataLayout()); 7111 SDLoc SL(Op); 7112 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 7113 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 7114 Op, getConstant(i, SL, IdxTy))); 7115 } 7116 } 7117 7118 // getAddressSpace - Return the address space this GlobalAddress belongs to. 7119 unsigned GlobalAddressSDNode::getAddressSpace() const { 7120 return getGlobal()->getType()->getAddressSpace(); 7121 } 7122 7123 7124 Type *ConstantPoolSDNode::getType() const { 7125 if (isMachineConstantPoolEntry()) 7126 return Val.MachineCPVal->getType(); 7127 return Val.ConstVal->getType(); 7128 } 7129 7130 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, 7131 APInt &SplatUndef, 7132 unsigned &SplatBitSize, 7133 bool &HasAnyUndefs, 7134 unsigned MinSplatBits, 7135 bool isBigEndian) const { 7136 EVT VT = getValueType(0); 7137 assert(VT.isVector() && "Expected a vector type"); 7138 unsigned sz = VT.getSizeInBits(); 7139 if (MinSplatBits > sz) 7140 return false; 7141 7142 SplatValue = APInt(sz, 0); 7143 SplatUndef = APInt(sz, 0); 7144 7145 // Get the bits. Bits with undefined values (when the corresponding element 7146 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 7147 // in SplatValue. If any of the values are not constant, give up and return 7148 // false. 7149 unsigned int nOps = getNumOperands(); 7150 assert(nOps > 0 && "isConstantSplat has 0-size build vector"); 7151 unsigned EltBitSize = VT.getVectorElementType().getSizeInBits(); 7152 7153 for (unsigned j = 0; j < nOps; ++j) { 7154 unsigned i = isBigEndian ? nOps-1-j : j; 7155 SDValue OpVal = getOperand(i); 7156 unsigned BitPos = j * EltBitSize; 7157 7158 if (OpVal.isUndef()) 7159 SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize); 7160 else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) 7161 SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize). 7162 zextOrTrunc(sz) << BitPos; 7163 else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 7164 SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos; 7165 else 7166 return false; 7167 } 7168 7169 // The build_vector is all constants or undefs. Find the smallest element 7170 // size that splats the vector. 7171 7172 HasAnyUndefs = (SplatUndef != 0); 7173 while (sz > 8) { 7174 7175 unsigned HalfSize = sz / 2; 7176 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 7177 APInt LowValue = SplatValue.trunc(HalfSize); 7178 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 7179 APInt LowUndef = SplatUndef.trunc(HalfSize); 7180 7181 // If the two halves do not match (ignoring undef bits), stop here. 7182 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 7183 MinSplatBits > HalfSize) 7184 break; 7185 7186 SplatValue = HighValue | LowValue; 7187 SplatUndef = HighUndef & LowUndef; 7188 7189 sz = HalfSize; 7190 } 7191 7192 SplatBitSize = sz; 7193 return true; 7194 } 7195 7196 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 7197 if (UndefElements) { 7198 UndefElements->clear(); 7199 UndefElements->resize(getNumOperands()); 7200 } 7201 SDValue Splatted; 7202 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 7203 SDValue Op = getOperand(i); 7204 if (Op.isUndef()) { 7205 if (UndefElements) 7206 (*UndefElements)[i] = true; 7207 } else if (!Splatted) { 7208 Splatted = Op; 7209 } else if (Splatted != Op) { 7210 return SDValue(); 7211 } 7212 } 7213 7214 if (!Splatted) { 7215 assert(getOperand(0).isUndef() && 7216 "Can only have a splat without a constant for all undefs."); 7217 return getOperand(0); 7218 } 7219 7220 return Splatted; 7221 } 7222 7223 ConstantSDNode * 7224 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 7225 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 7226 } 7227 7228 ConstantFPSDNode * 7229 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 7230 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 7231 } 7232 7233 int32_t 7234 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 7235 uint32_t BitWidth) const { 7236 if (ConstantFPSDNode *CN = 7237 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 7238 bool IsExact; 7239 APSInt IntVal(BitWidth); 7240 const APFloat &APF = CN->getValueAPF(); 7241 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 7242 APFloat::opOK || 7243 !IsExact) 7244 return -1; 7245 7246 return IntVal.exactLogBase2(); 7247 } 7248 return -1; 7249 } 7250 7251 bool BuildVectorSDNode::isConstant() const { 7252 for (const SDValue &Op : op_values()) { 7253 unsigned Opc = Op.getOpcode(); 7254 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 7255 return false; 7256 } 7257 return true; 7258 } 7259 7260 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 7261 // Find the first non-undef value in the shuffle mask. 7262 unsigned i, e; 7263 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 7264 /* search */; 7265 7266 assert(i != e && "VECTOR_SHUFFLE node with all undef indices!"); 7267 7268 // Make sure all remaining elements are either undef or the same as the first 7269 // non-undef value. 7270 for (int Idx = Mask[i]; i != e; ++i) 7271 if (Mask[i] >= 0 && Mask[i] != Idx) 7272 return false; 7273 return true; 7274 } 7275 7276 // \brief Returns the SDNode if it is a constant integer BuildVector 7277 // or constant integer. 7278 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 7279 if (isa<ConstantSDNode>(N)) 7280 return N.getNode(); 7281 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 7282 return N.getNode(); 7283 // Treat a GlobalAddress supporting constant offset folding as a 7284 // constant integer. 7285 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 7286 if (GA->getOpcode() == ISD::GlobalAddress && 7287 TLI->isOffsetFoldingLegal(GA)) 7288 return GA; 7289 return nullptr; 7290 } 7291 7292 #ifndef NDEBUG 7293 static void checkForCyclesHelper(const SDNode *N, 7294 SmallPtrSetImpl<const SDNode*> &Visited, 7295 SmallPtrSetImpl<const SDNode*> &Checked, 7296 const llvm::SelectionDAG *DAG) { 7297 // If this node has already been checked, don't check it again. 7298 if (Checked.count(N)) 7299 return; 7300 7301 // If a node has already been visited on this depth-first walk, reject it as 7302 // a cycle. 7303 if (!Visited.insert(N).second) { 7304 errs() << "Detected cycle in SelectionDAG\n"; 7305 dbgs() << "Offending node:\n"; 7306 N->dumprFull(DAG); dbgs() << "\n"; 7307 abort(); 7308 } 7309 7310 for (const SDValue &Op : N->op_values()) 7311 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 7312 7313 Checked.insert(N); 7314 Visited.erase(N); 7315 } 7316 #endif 7317 7318 void llvm::checkForCycles(const llvm::SDNode *N, 7319 const llvm::SelectionDAG *DAG, 7320 bool force) { 7321 #ifndef NDEBUG 7322 bool check = force; 7323 #ifdef EXPENSIVE_CHECKS 7324 check = true; 7325 #endif // EXPENSIVE_CHECKS 7326 if (check) { 7327 assert(N && "Checking nonexistent SDNode"); 7328 SmallPtrSet<const SDNode*, 32> visited; 7329 SmallPtrSet<const SDNode*, 32> checked; 7330 checkForCyclesHelper(N, visited, checked, DAG); 7331 } 7332 #endif // !NDEBUG 7333 } 7334 7335 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 7336 checkForCycles(DAG->getRoot().getNode(), DAG, force); 7337 } 7338