1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::LegalizeVectors method. 10 // 11 // The vector legalizer looks for vector operations which might need to be 12 // scalarized and legalizes them. This is a separate step from Legalize because 13 // scalarizing can introduce illegal types. For example, suppose we have an 14 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 16 // operation, which introduces nodes with the illegal type i64 which must be 17 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 18 // the operation must be unrolled, which introduces nodes with the illegal 19 // type i8 which must be promoted. 20 // 21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 22 // or operations that happen to take a vector which are custom-lowered; 23 // the legalization for such operations never produces nodes 24 // with illegal types, so it's okay to put off legalizing them until 25 // SelectionDAG::Legalize runs. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/SelectionDAGNodes.h" 36 #include "llvm/CodeGen/TargetLowering.h" 37 #include "llvm/CodeGen/ValueTypes.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include <cassert> 46 #include <cstdint> 47 #include <iterator> 48 #include <utility> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "legalizevectorops" 53 54 namespace { 55 56 class VectorLegalizer { 57 SelectionDAG& DAG; 58 const TargetLowering &TLI; 59 bool Changed = false; // Keep track of whether anything changed 60 61 /// For nodes that are of legal width, and that have more than one use, this 62 /// map indicates what regularized operand to use. This allows us to avoid 63 /// legalizing the same thing more than once. 64 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 65 66 /// Adds a node to the translation cache. 67 void AddLegalizedOperand(SDValue From, SDValue To) { 68 LegalizedNodes.insert(std::make_pair(From, To)); 69 // If someone requests legalization of the new node, return itself. 70 if (From != To) 71 LegalizedNodes.insert(std::make_pair(To, To)); 72 } 73 74 /// Legalizes the given node. 75 SDValue LegalizeOp(SDValue Op); 76 77 /// Assuming the node is legal, "legalize" the results. 78 SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result); 79 80 /// Make sure Results are legal and update the translation cache. 81 SDValue RecursivelyLegalizeResults(SDValue Op, 82 MutableArrayRef<SDValue> Results); 83 84 /// Wrapper to interface LowerOperation with a vector of Results. 85 /// Returns false if the target wants to use default expansion. Otherwise 86 /// returns true. If return is true and the Results are empty, then the 87 /// target wants to keep the input node as is. 88 bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results); 89 90 /// Implements unrolling a VSETCC. 91 SDValue UnrollVSETCC(SDNode *Node); 92 93 /// Implement expand-based legalization of vector operations. 94 /// 95 /// This is just a high-level routine to dispatch to specific code paths for 96 /// operations to legalize them. 97 void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results); 98 99 /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if 100 /// FP_TO_SINT isn't legal. 101 void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 102 103 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 104 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 105 void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 106 107 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 108 SDValue ExpandSEXTINREG(SDNode *Node); 109 110 /// Implement expansion for ANY_EXTEND_VECTOR_INREG. 111 /// 112 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 113 /// type. The contents of the bits in the extended part of each element are 114 /// undef. 115 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node); 116 117 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG. 118 /// 119 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 120 /// type, then shifts left and arithmetic shifts right to introduce a sign 121 /// extension. 122 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node); 123 124 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG. 125 /// 126 /// Shuffles the low lanes of the operand into place and blends zeros into 127 /// the remaining lanes, finally bitcasting to the proper type. 128 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node); 129 130 /// Expand bswap of vectors into a shuffle if legal. 131 SDValue ExpandBSWAP(SDNode *Node); 132 133 /// Implement vselect in terms of XOR, AND, OR when blend is not 134 /// supported by the target. 135 SDValue ExpandVSELECT(SDNode *Node); 136 SDValue ExpandVP_SELECT(SDNode *Node); 137 SDValue ExpandSELECT(SDNode *Node); 138 std::pair<SDValue, SDValue> ExpandLoad(SDNode *N); 139 SDValue ExpandStore(SDNode *N); 140 SDValue ExpandFNEG(SDNode *Node); 141 void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results); 142 void ExpandSETCC(SDNode *Node, SmallVectorImpl<SDValue> &Results); 143 void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results); 144 void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 145 void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 146 void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 147 void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results); 148 void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results); 149 void ExpandREM(SDNode *Node, SmallVectorImpl<SDValue> &Results); 150 151 void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results); 152 153 /// Implements vector promotion. 154 /// 155 /// This is essentially just bitcasting the operands to a different type and 156 /// bitcasting the result back to the original type. 157 void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results); 158 159 /// Implements [SU]INT_TO_FP vector promotion. 160 /// 161 /// This is a [zs]ext of the input operand to a larger integer type. 162 void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results); 163 164 /// Implements FP_TO_[SU]INT vector promotion of the result type. 165 /// 166 /// It is promoted to a larger integer type. The result is then 167 /// truncated back to the original type. 168 void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 169 170 public: 171 VectorLegalizer(SelectionDAG& dag) : 172 DAG(dag), TLI(dag.getTargetLoweringInfo()) {} 173 174 /// Begin legalizer the vector operations in the DAG. 175 bool Run(); 176 }; 177 178 } // end anonymous namespace 179 180 bool VectorLegalizer::Run() { 181 // Before we start legalizing vector nodes, check if there are any vectors. 182 bool HasVectors = false; 183 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 184 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 185 // Check if the values of the nodes contain vectors. We don't need to check 186 // the operands because we are going to check their values at some point. 187 HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); }); 188 189 // If we found a vector node we can start the legalization. 190 if (HasVectors) 191 break; 192 } 193 194 // If this basic block has no vectors then no need to legalize vectors. 195 if (!HasVectors) 196 return false; 197 198 // The legalize process is inherently a bottom-up recursive process (users 199 // legalize their uses before themselves). Given infinite stack space, we 200 // could just start legalizing on the root and traverse the whole graph. In 201 // practice however, this causes us to run out of stack space on large basic 202 // blocks. To avoid this problem, compute an ordering of the nodes where each 203 // node is only legalized after all of its operands are legalized. 204 DAG.AssignTopologicalOrder(); 205 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 206 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 207 LegalizeOp(SDValue(&*I, 0)); 208 209 // Finally, it's possible the root changed. Get the new root. 210 SDValue OldRoot = DAG.getRoot(); 211 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 212 DAG.setRoot(LegalizedNodes[OldRoot]); 213 214 LegalizedNodes.clear(); 215 216 // Remove dead nodes now. 217 DAG.RemoveDeadNodes(); 218 219 return Changed; 220 } 221 222 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) { 223 assert(Op->getNumValues() == Result->getNumValues() && 224 "Unexpected number of results"); 225 // Generic legalization: just pass the operand through. 226 for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i) 227 AddLegalizedOperand(Op.getValue(i), SDValue(Result, i)); 228 return SDValue(Result, Op.getResNo()); 229 } 230 231 SDValue 232 VectorLegalizer::RecursivelyLegalizeResults(SDValue Op, 233 MutableArrayRef<SDValue> Results) { 234 assert(Results.size() == Op->getNumValues() && 235 "Unexpected number of results"); 236 // Make sure that the generated code is itself legal. 237 for (unsigned i = 0, e = Results.size(); i != e; ++i) { 238 Results[i] = LegalizeOp(Results[i]); 239 AddLegalizedOperand(Op.getValue(i), Results[i]); 240 } 241 242 return Results[Op.getResNo()]; 243 } 244 245 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 246 // Note that LegalizeOp may be reentered even from single-use nodes, which 247 // means that we always must cache transformed nodes. 248 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 249 if (I != LegalizedNodes.end()) return I->second; 250 251 // Legalize the operands 252 SmallVector<SDValue, 8> Ops; 253 for (const SDValue &Oper : Op->op_values()) 254 Ops.push_back(LegalizeOp(Oper)); 255 256 SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops); 257 258 bool HasVectorValueOrOp = 259 llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) || 260 llvm::any_of(Node->op_values(), 261 [](SDValue O) { return O.getValueType().isVector(); }); 262 if (!HasVectorValueOrOp) 263 return TranslateLegalizeResults(Op, Node); 264 265 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 266 EVT ValVT; 267 switch (Op.getOpcode()) { 268 default: 269 return TranslateLegalizeResults(Op, Node); 270 case ISD::LOAD: { 271 LoadSDNode *LD = cast<LoadSDNode>(Node); 272 ISD::LoadExtType ExtType = LD->getExtensionType(); 273 EVT LoadedVT = LD->getMemoryVT(); 274 if (LoadedVT.isVector() && ExtType != ISD::NON_EXTLOAD) 275 Action = TLI.getLoadExtAction(ExtType, LD->getValueType(0), LoadedVT); 276 break; 277 } 278 case ISD::STORE: { 279 StoreSDNode *ST = cast<StoreSDNode>(Node); 280 EVT StVT = ST->getMemoryVT(); 281 MVT ValVT = ST->getValue().getSimpleValueType(); 282 if (StVT.isVector() && ST->isTruncatingStore()) 283 Action = TLI.getTruncStoreAction(ValVT, StVT); 284 break; 285 } 286 case ISD::MERGE_VALUES: 287 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 288 // This operation lies about being legal: when it claims to be legal, 289 // it should actually be expanded. 290 if (Action == TargetLowering::Legal) 291 Action = TargetLowering::Expand; 292 break; 293 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 294 case ISD::STRICT_##DAGN: 295 #include "llvm/IR/ConstrainedOps.def" 296 ValVT = Node->getValueType(0); 297 if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP || 298 Op.getOpcode() == ISD::STRICT_UINT_TO_FP) 299 ValVT = Node->getOperand(1).getValueType(); 300 Action = TLI.getOperationAction(Node->getOpcode(), ValVT); 301 // If we're asked to expand a strict vector floating-point operation, 302 // by default we're going to simply unroll it. That is usually the 303 // best approach, except in the case where the resulting strict (scalar) 304 // operations would themselves use the fallback mutation to non-strict. 305 // In that specific case, just do the fallback on the vector op. 306 if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() && 307 TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) == 308 TargetLowering::Legal) { 309 EVT EltVT = ValVT.getVectorElementType(); 310 if (TLI.getOperationAction(Node->getOpcode(), EltVT) 311 == TargetLowering::Expand && 312 TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT) 313 == TargetLowering::Legal) 314 Action = TargetLowering::Legal; 315 } 316 break; 317 case ISD::ADD: 318 case ISD::SUB: 319 case ISD::MUL: 320 case ISD::MULHS: 321 case ISD::MULHU: 322 case ISD::SDIV: 323 case ISD::UDIV: 324 case ISD::SREM: 325 case ISD::UREM: 326 case ISD::SDIVREM: 327 case ISD::UDIVREM: 328 case ISD::FADD: 329 case ISD::FSUB: 330 case ISD::FMUL: 331 case ISD::FDIV: 332 case ISD::FREM: 333 case ISD::AND: 334 case ISD::OR: 335 case ISD::XOR: 336 case ISD::SHL: 337 case ISD::SRA: 338 case ISD::SRL: 339 case ISD::FSHL: 340 case ISD::FSHR: 341 case ISD::ROTL: 342 case ISD::ROTR: 343 case ISD::ABS: 344 case ISD::BSWAP: 345 case ISD::BITREVERSE: 346 case ISD::CTLZ: 347 case ISD::CTTZ: 348 case ISD::CTLZ_ZERO_UNDEF: 349 case ISD::CTTZ_ZERO_UNDEF: 350 case ISD::CTPOP: 351 case ISD::SELECT: 352 case ISD::VSELECT: 353 case ISD::SELECT_CC: 354 case ISD::ZERO_EXTEND: 355 case ISD::ANY_EXTEND: 356 case ISD::TRUNCATE: 357 case ISD::SIGN_EXTEND: 358 case ISD::FP_TO_SINT: 359 case ISD::FP_TO_UINT: 360 case ISD::FNEG: 361 case ISD::FABS: 362 case ISD::FMINNUM: 363 case ISD::FMAXNUM: 364 case ISD::FMINNUM_IEEE: 365 case ISD::FMAXNUM_IEEE: 366 case ISD::FMINIMUM: 367 case ISD::FMAXIMUM: 368 case ISD::FCOPYSIGN: 369 case ISD::FSQRT: 370 case ISD::FSIN: 371 case ISD::FCOS: 372 case ISD::FPOWI: 373 case ISD::FPOW: 374 case ISD::FLOG: 375 case ISD::FLOG2: 376 case ISD::FLOG10: 377 case ISD::FEXP: 378 case ISD::FEXP2: 379 case ISD::FCEIL: 380 case ISD::FTRUNC: 381 case ISD::FRINT: 382 case ISD::FNEARBYINT: 383 case ISD::FROUND: 384 case ISD::FROUNDEVEN: 385 case ISD::FFLOOR: 386 case ISD::FP_ROUND: 387 case ISD::FP_EXTEND: 388 case ISD::FMA: 389 case ISD::SIGN_EXTEND_INREG: 390 case ISD::ANY_EXTEND_VECTOR_INREG: 391 case ISD::SIGN_EXTEND_VECTOR_INREG: 392 case ISD::ZERO_EXTEND_VECTOR_INREG: 393 case ISD::SMIN: 394 case ISD::SMAX: 395 case ISD::UMIN: 396 case ISD::UMAX: 397 case ISD::SMUL_LOHI: 398 case ISD::UMUL_LOHI: 399 case ISD::SADDO: 400 case ISD::UADDO: 401 case ISD::SSUBO: 402 case ISD::USUBO: 403 case ISD::SMULO: 404 case ISD::UMULO: 405 case ISD::FCANONICALIZE: 406 case ISD::SADDSAT: 407 case ISD::UADDSAT: 408 case ISD::SSUBSAT: 409 case ISD::USUBSAT: 410 case ISD::SSHLSAT: 411 case ISD::USHLSAT: 412 case ISD::FP_TO_SINT_SAT: 413 case ISD::FP_TO_UINT_SAT: 414 case ISD::MGATHER: 415 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 416 break; 417 case ISD::SMULFIX: 418 case ISD::SMULFIXSAT: 419 case ISD::UMULFIX: 420 case ISD::UMULFIXSAT: 421 case ISD::SDIVFIX: 422 case ISD::SDIVFIXSAT: 423 case ISD::UDIVFIX: 424 case ISD::UDIVFIXSAT: { 425 unsigned Scale = Node->getConstantOperandVal(2); 426 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 427 Node->getValueType(0), Scale); 428 break; 429 } 430 case ISD::SINT_TO_FP: 431 case ISD::UINT_TO_FP: 432 case ISD::VECREDUCE_ADD: 433 case ISD::VECREDUCE_MUL: 434 case ISD::VECREDUCE_AND: 435 case ISD::VECREDUCE_OR: 436 case ISD::VECREDUCE_XOR: 437 case ISD::VECREDUCE_SMAX: 438 case ISD::VECREDUCE_SMIN: 439 case ISD::VECREDUCE_UMAX: 440 case ISD::VECREDUCE_UMIN: 441 case ISD::VECREDUCE_FADD: 442 case ISD::VECREDUCE_FMUL: 443 case ISD::VECREDUCE_FMAX: 444 case ISD::VECREDUCE_FMIN: 445 Action = TLI.getOperationAction(Node->getOpcode(), 446 Node->getOperand(0).getValueType()); 447 break; 448 case ISD::VECREDUCE_SEQ_FADD: 449 case ISD::VECREDUCE_SEQ_FMUL: 450 Action = TLI.getOperationAction(Node->getOpcode(), 451 Node->getOperand(1).getValueType()); 452 break; 453 case ISD::SETCC: { 454 MVT OpVT = Node->getOperand(0).getSimpleValueType(); 455 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); 456 Action = TLI.getCondCodeAction(CCCode, OpVT); 457 if (Action == TargetLowering::Legal) 458 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 459 break; 460 } 461 462 #define BEGIN_REGISTER_VP_SDNODE(VPID, LEGALPOS, ...) \ 463 case ISD::VPID: { \ 464 EVT LegalizeVT = LEGALPOS < 0 ? Node->getValueType(-(1 + LEGALPOS)) \ 465 : Node->getOperand(LEGALPOS).getValueType(); \ 466 Action = TLI.getOperationAction(Node->getOpcode(), LegalizeVT); \ 467 } break; 468 #include "llvm/IR/VPIntrinsics.def" 469 } 470 471 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG)); 472 473 SmallVector<SDValue, 8> ResultVals; 474 switch (Action) { 475 default: llvm_unreachable("This action is not supported yet!"); 476 case TargetLowering::Promote: 477 assert((Op.getOpcode() != ISD::LOAD && Op.getOpcode() != ISD::STORE) && 478 "This action is not supported yet!"); 479 LLVM_DEBUG(dbgs() << "Promoting\n"); 480 Promote(Node, ResultVals); 481 assert(!ResultVals.empty() && "No results for promotion?"); 482 break; 483 case TargetLowering::Legal: 484 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 485 break; 486 case TargetLowering::Custom: 487 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 488 if (LowerOperationWrapper(Node, ResultVals)) 489 break; 490 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 491 LLVM_FALLTHROUGH; 492 case TargetLowering::Expand: 493 LLVM_DEBUG(dbgs() << "Expanding\n"); 494 Expand(Node, ResultVals); 495 break; 496 } 497 498 if (ResultVals.empty()) 499 return TranslateLegalizeResults(Op, Node); 500 501 Changed = true; 502 return RecursivelyLegalizeResults(Op, ResultVals); 503 } 504 505 // FIXME: This is very similar to TargetLowering::LowerOperationWrapper. Can we 506 // merge them somehow? 507 bool VectorLegalizer::LowerOperationWrapper(SDNode *Node, 508 SmallVectorImpl<SDValue> &Results) { 509 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 510 511 if (!Res.getNode()) 512 return false; 513 514 if (Res == SDValue(Node, 0)) 515 return true; 516 517 // If the original node has one result, take the return value from 518 // LowerOperation as is. It might not be result number 0. 519 if (Node->getNumValues() == 1) { 520 Results.push_back(Res); 521 return true; 522 } 523 524 // If the original node has multiple results, then the return node should 525 // have the same number of results. 526 assert((Node->getNumValues() == Res->getNumValues()) && 527 "Lowering returned the wrong number of results!"); 528 529 // Places new result values base on N result number. 530 for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I) 531 Results.push_back(Res.getValue(I)); 532 533 return true; 534 } 535 536 void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) { 537 // For a few operations there is a specific concept for promotion based on 538 // the operand's type. 539 switch (Node->getOpcode()) { 540 case ISD::SINT_TO_FP: 541 case ISD::UINT_TO_FP: 542 case ISD::STRICT_SINT_TO_FP: 543 case ISD::STRICT_UINT_TO_FP: 544 // "Promote" the operation by extending the operand. 545 PromoteINT_TO_FP(Node, Results); 546 return; 547 case ISD::FP_TO_UINT: 548 case ISD::FP_TO_SINT: 549 case ISD::STRICT_FP_TO_UINT: 550 case ISD::STRICT_FP_TO_SINT: 551 // Promote the operation by extending the operand. 552 PromoteFP_TO_INT(Node, Results); 553 return; 554 case ISD::FP_ROUND: 555 case ISD::FP_EXTEND: 556 // These operations are used to do promotion so they can't be promoted 557 // themselves. 558 llvm_unreachable("Don't know how to promote this operation!"); 559 } 560 561 // There are currently two cases of vector promotion: 562 // 1) Bitcasting a vector of integers to a different type to a vector of the 563 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 564 // 2) Extending a vector of floats to a vector of the same number of larger 565 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 566 assert(Node->getNumValues() == 1 && 567 "Can't promote a vector with multiple results!"); 568 MVT VT = Node->getSimpleValueType(0); 569 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 570 SDLoc dl(Node); 571 SmallVector<SDValue, 4> Operands(Node->getNumOperands()); 572 573 for (unsigned j = 0; j != Node->getNumOperands(); ++j) { 574 if (Node->getOperand(j).getValueType().isVector()) 575 if (Node->getOperand(j) 576 .getValueType() 577 .getVectorElementType() 578 .isFloatingPoint() && 579 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 580 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j)); 581 else 582 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j)); 583 else 584 Operands[j] = Node->getOperand(j); 585 } 586 587 SDValue Res = 588 DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags()); 589 590 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 591 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 592 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 593 Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res, DAG.getIntPtrConstant(0, dl)); 594 else 595 Res = DAG.getNode(ISD::BITCAST, dl, VT, Res); 596 597 Results.push_back(Res); 598 } 599 600 void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node, 601 SmallVectorImpl<SDValue> &Results) { 602 // INT_TO_FP operations may require the input operand be promoted even 603 // when the type is otherwise legal. 604 bool IsStrict = Node->isStrictFPOpcode(); 605 MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType(); 606 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 607 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 608 "Vectors have different number of elements!"); 609 610 SDLoc dl(Node); 611 SmallVector<SDValue, 4> Operands(Node->getNumOperands()); 612 613 unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP || 614 Node->getOpcode() == ISD::STRICT_UINT_TO_FP) 615 ? ISD::ZERO_EXTEND 616 : ISD::SIGN_EXTEND; 617 for (unsigned j = 0; j != Node->getNumOperands(); ++j) { 618 if (Node->getOperand(j).getValueType().isVector()) 619 Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j)); 620 else 621 Operands[j] = Node->getOperand(j); 622 } 623 624 if (IsStrict) { 625 SDValue Res = DAG.getNode(Node->getOpcode(), dl, 626 {Node->getValueType(0), MVT::Other}, Operands); 627 Results.push_back(Res); 628 Results.push_back(Res.getValue(1)); 629 return; 630 } 631 632 SDValue Res = 633 DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands); 634 Results.push_back(Res); 635 } 636 637 // For FP_TO_INT we promote the result type to a vector type with wider 638 // elements and then truncate the result. This is different from the default 639 // PromoteVector which uses bitcast to promote thus assumning that the 640 // promoted vector type has the same overall size. 641 void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node, 642 SmallVectorImpl<SDValue> &Results) { 643 MVT VT = Node->getSimpleValueType(0); 644 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 645 bool IsStrict = Node->isStrictFPOpcode(); 646 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 647 "Vectors have different number of elements!"); 648 649 unsigned NewOpc = Node->getOpcode(); 650 // Change FP_TO_UINT to FP_TO_SINT if possible. 651 // TODO: Should we only do this if FP_TO_UINT itself isn't legal? 652 if (NewOpc == ISD::FP_TO_UINT && 653 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT)) 654 NewOpc = ISD::FP_TO_SINT; 655 656 if (NewOpc == ISD::STRICT_FP_TO_UINT && 657 TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT)) 658 NewOpc = ISD::STRICT_FP_TO_SINT; 659 660 SDLoc dl(Node); 661 SDValue Promoted, Chain; 662 if (IsStrict) { 663 Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other}, 664 {Node->getOperand(0), Node->getOperand(1)}); 665 Chain = Promoted.getValue(1); 666 } else 667 Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0)); 668 669 // Assert that the converted value fits in the original type. If it doesn't 670 // (eg: because the value being converted is too big), then the result of the 671 // original operation was undefined anyway, so the assert is still correct. 672 if (Node->getOpcode() == ISD::FP_TO_UINT || 673 Node->getOpcode() == ISD::STRICT_FP_TO_UINT) 674 NewOpc = ISD::AssertZext; 675 else 676 NewOpc = ISD::AssertSext; 677 678 Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted, 679 DAG.getValueType(VT.getScalarType())); 680 Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted); 681 Results.push_back(Promoted); 682 if (IsStrict) 683 Results.push_back(Chain); 684 } 685 686 std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) { 687 LoadSDNode *LD = cast<LoadSDNode>(N); 688 return TLI.scalarizeVectorLoad(LD, DAG); 689 } 690 691 SDValue VectorLegalizer::ExpandStore(SDNode *N) { 692 StoreSDNode *ST = cast<StoreSDNode>(N); 693 SDValue TF = TLI.scalarizeVectorStore(ST, DAG); 694 return TF; 695 } 696 697 void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) { 698 switch (Node->getOpcode()) { 699 case ISD::LOAD: { 700 std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node); 701 Results.push_back(Tmp.first); 702 Results.push_back(Tmp.second); 703 return; 704 } 705 case ISD::STORE: 706 Results.push_back(ExpandStore(Node)); 707 return; 708 case ISD::MERGE_VALUES: 709 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 710 Results.push_back(Node->getOperand(i)); 711 return; 712 case ISD::SIGN_EXTEND_INREG: 713 Results.push_back(ExpandSEXTINREG(Node)); 714 return; 715 case ISD::ANY_EXTEND_VECTOR_INREG: 716 Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node)); 717 return; 718 case ISD::SIGN_EXTEND_VECTOR_INREG: 719 Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node)); 720 return; 721 case ISD::ZERO_EXTEND_VECTOR_INREG: 722 Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node)); 723 return; 724 case ISD::BSWAP: 725 Results.push_back(ExpandBSWAP(Node)); 726 return; 727 case ISD::VSELECT: 728 Results.push_back(ExpandVSELECT(Node)); 729 return; 730 case ISD::VP_SELECT: 731 Results.push_back(ExpandVP_SELECT(Node)); 732 return; 733 case ISD::SELECT: 734 Results.push_back(ExpandSELECT(Node)); 735 return; 736 case ISD::FP_TO_UINT: 737 ExpandFP_TO_UINT(Node, Results); 738 return; 739 case ISD::UINT_TO_FP: 740 ExpandUINT_TO_FLOAT(Node, Results); 741 return; 742 case ISD::FNEG: 743 Results.push_back(ExpandFNEG(Node)); 744 return; 745 case ISD::FSUB: 746 ExpandFSUB(Node, Results); 747 return; 748 case ISD::SETCC: 749 ExpandSETCC(Node, Results); 750 return; 751 case ISD::ABS: 752 if (SDValue Expanded = TLI.expandABS(Node, DAG)) { 753 Results.push_back(Expanded); 754 return; 755 } 756 break; 757 case ISD::BITREVERSE: 758 ExpandBITREVERSE(Node, Results); 759 return; 760 case ISD::CTPOP: 761 if (SDValue Expanded = TLI.expandCTPOP(Node, DAG)) { 762 Results.push_back(Expanded); 763 return; 764 } 765 break; 766 case ISD::CTLZ: 767 case ISD::CTLZ_ZERO_UNDEF: 768 if (SDValue Expanded = TLI.expandCTLZ(Node, DAG)) { 769 Results.push_back(Expanded); 770 return; 771 } 772 break; 773 case ISD::CTTZ: 774 case ISD::CTTZ_ZERO_UNDEF: 775 if (SDValue Expanded = TLI.expandCTTZ(Node, DAG)) { 776 Results.push_back(Expanded); 777 return; 778 } 779 break; 780 case ISD::FSHL: 781 case ISD::FSHR: 782 if (SDValue Expanded = TLI.expandFunnelShift(Node, DAG)) { 783 Results.push_back(Expanded); 784 return; 785 } 786 break; 787 case ISD::ROTL: 788 case ISD::ROTR: 789 if (SDValue Expanded = TLI.expandROT(Node, false /*AllowVectorOps*/, DAG)) { 790 Results.push_back(Expanded); 791 return; 792 } 793 break; 794 case ISD::FMINNUM: 795 case ISD::FMAXNUM: 796 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) { 797 Results.push_back(Expanded); 798 return; 799 } 800 break; 801 case ISD::SMIN: 802 case ISD::SMAX: 803 case ISD::UMIN: 804 case ISD::UMAX: 805 if (SDValue Expanded = TLI.expandIntMINMAX(Node, DAG)) { 806 Results.push_back(Expanded); 807 return; 808 } 809 break; 810 case ISD::UADDO: 811 case ISD::USUBO: 812 ExpandUADDSUBO(Node, Results); 813 return; 814 case ISD::SADDO: 815 case ISD::SSUBO: 816 ExpandSADDSUBO(Node, Results); 817 return; 818 case ISD::UMULO: 819 case ISD::SMULO: 820 ExpandMULO(Node, Results); 821 return; 822 case ISD::USUBSAT: 823 case ISD::SSUBSAT: 824 case ISD::UADDSAT: 825 case ISD::SADDSAT: 826 if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) { 827 Results.push_back(Expanded); 828 return; 829 } 830 break; 831 case ISD::SMULFIX: 832 case ISD::UMULFIX: 833 if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) { 834 Results.push_back(Expanded); 835 return; 836 } 837 break; 838 case ISD::SMULFIXSAT: 839 case ISD::UMULFIXSAT: 840 // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly 841 // why. Maybe it results in worse codegen compared to the unroll for some 842 // targets? This should probably be investigated. And if we still prefer to 843 // unroll an explanation could be helpful. 844 break; 845 case ISD::SDIVFIX: 846 case ISD::UDIVFIX: 847 ExpandFixedPointDiv(Node, Results); 848 return; 849 case ISD::SDIVFIXSAT: 850 case ISD::UDIVFIXSAT: 851 break; 852 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 853 case ISD::STRICT_##DAGN: 854 #include "llvm/IR/ConstrainedOps.def" 855 ExpandStrictFPOp(Node, Results); 856 return; 857 case ISD::VECREDUCE_ADD: 858 case ISD::VECREDUCE_MUL: 859 case ISD::VECREDUCE_AND: 860 case ISD::VECREDUCE_OR: 861 case ISD::VECREDUCE_XOR: 862 case ISD::VECREDUCE_SMAX: 863 case ISD::VECREDUCE_SMIN: 864 case ISD::VECREDUCE_UMAX: 865 case ISD::VECREDUCE_UMIN: 866 case ISD::VECREDUCE_FADD: 867 case ISD::VECREDUCE_FMUL: 868 case ISD::VECREDUCE_FMAX: 869 case ISD::VECREDUCE_FMIN: 870 Results.push_back(TLI.expandVecReduce(Node, DAG)); 871 return; 872 case ISD::VECREDUCE_SEQ_FADD: 873 case ISD::VECREDUCE_SEQ_FMUL: 874 Results.push_back(TLI.expandVecReduceSeq(Node, DAG)); 875 return; 876 case ISD::SREM: 877 case ISD::UREM: 878 ExpandREM(Node, Results); 879 return; 880 } 881 882 Results.push_back(DAG.UnrollVectorOp(Node)); 883 } 884 885 SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) { 886 // Lower a select instruction where the condition is a scalar and the 887 // operands are vectors. Lower this select to VSELECT and implement it 888 // using XOR AND OR. The selector bit is broadcasted. 889 EVT VT = Node->getValueType(0); 890 SDLoc DL(Node); 891 892 SDValue Mask = Node->getOperand(0); 893 SDValue Op1 = Node->getOperand(1); 894 SDValue Op2 = Node->getOperand(2); 895 896 assert(VT.isVector() && !Mask.getValueType().isVector() 897 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 898 899 // If we can't even use the basic vector operations of 900 // AND,OR,XOR, we will have to scalarize the op. 901 // Notice that the operation may be 'promoted' which means that it is 902 // 'bitcasted' to another type which is handled. 903 // Also, we need to be able to construct a splat vector using either 904 // BUILD_VECTOR or SPLAT_VECTOR. 905 // FIXME: Should we also permit fixed-length SPLAT_VECTOR as a fallback to 906 // BUILD_VECTOR? 907 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 908 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 909 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 910 TLI.getOperationAction(VT.isFixedLengthVector() ? ISD::BUILD_VECTOR 911 : ISD::SPLAT_VECTOR, 912 VT) == TargetLowering::Expand) 913 return DAG.UnrollVectorOp(Node); 914 915 // Generate a mask operand. 916 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 917 918 // What is the size of each element in the vector mask. 919 EVT BitTy = MaskTy.getScalarType(); 920 921 Mask = DAG.getSelect(DL, BitTy, Mask, DAG.getAllOnesConstant(DL, BitTy), 922 DAG.getConstant(0, DL, BitTy)); 923 924 // Broadcast the mask so that the entire vector is all one or all zero. 925 if (VT.isFixedLengthVector()) 926 Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask); 927 else 928 Mask = DAG.getSplatVector(MaskTy, DL, Mask); 929 930 // Bitcast the operands to be the same type as the mask. 931 // This is needed when we select between FP types because 932 // the mask is a vector of integers. 933 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 934 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 935 936 SDValue NotMask = DAG.getNOT(DL, Mask, MaskTy); 937 938 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 939 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 940 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 941 return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val); 942 } 943 944 SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) { 945 EVT VT = Node->getValueType(0); 946 947 // Make sure that the SRA and SHL instructions are available. 948 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 949 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 950 return DAG.UnrollVectorOp(Node); 951 952 SDLoc DL(Node); 953 EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT(); 954 955 unsigned BW = VT.getScalarSizeInBits(); 956 unsigned OrigBW = OrigTy.getScalarSizeInBits(); 957 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 958 959 SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz); 960 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 961 } 962 963 // Generically expand a vector anyext in register to a shuffle of the relevant 964 // lanes into the appropriate locations, with other lanes left undef. 965 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) { 966 SDLoc DL(Node); 967 EVT VT = Node->getValueType(0); 968 int NumElements = VT.getVectorNumElements(); 969 SDValue Src = Node->getOperand(0); 970 EVT SrcVT = Src.getValueType(); 971 int NumSrcElements = SrcVT.getVectorNumElements(); 972 973 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 974 // into a larger vector type. 975 if (SrcVT.bitsLE(VT)) { 976 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 977 "ANY_EXTEND_VECTOR_INREG vector size mismatch"); 978 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 979 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 980 NumSrcElements); 981 Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), 982 Src, DAG.getVectorIdxConstant(0, DL)); 983 } 984 985 // Build a base mask of undef shuffles. 986 SmallVector<int, 16> ShuffleMask; 987 ShuffleMask.resize(NumSrcElements, -1); 988 989 // Place the extended lanes into the correct locations. 990 int ExtLaneScale = NumSrcElements / NumElements; 991 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 992 for (int i = 0; i < NumElements; ++i) 993 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 994 995 return DAG.getNode( 996 ISD::BITCAST, DL, VT, 997 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 998 } 999 1000 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) { 1001 SDLoc DL(Node); 1002 EVT VT = Node->getValueType(0); 1003 SDValue Src = Node->getOperand(0); 1004 EVT SrcVT = Src.getValueType(); 1005 1006 // First build an any-extend node which can be legalized above when we 1007 // recurse through it. 1008 SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src); 1009 1010 // Now we need sign extend. Do this by shifting the elements. Even if these 1011 // aren't legal operations, they have a better chance of being legalized 1012 // without full scalarization than the sign extension does. 1013 unsigned EltWidth = VT.getScalarSizeInBits(); 1014 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); 1015 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 1016 return DAG.getNode(ISD::SRA, DL, VT, 1017 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 1018 ShiftAmount); 1019 } 1020 1021 // Generically expand a vector zext in register to a shuffle of the relevant 1022 // lanes into the appropriate locations, a blend of zero into the high bits, 1023 // and a bitcast to the wider element type. 1024 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) { 1025 SDLoc DL(Node); 1026 EVT VT = Node->getValueType(0); 1027 int NumElements = VT.getVectorNumElements(); 1028 SDValue Src = Node->getOperand(0); 1029 EVT SrcVT = Src.getValueType(); 1030 int NumSrcElements = SrcVT.getVectorNumElements(); 1031 1032 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 1033 // into a larger vector type. 1034 if (SrcVT.bitsLE(VT)) { 1035 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 1036 "ZERO_EXTEND_VECTOR_INREG vector size mismatch"); 1037 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 1038 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 1039 NumSrcElements); 1040 Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), 1041 Src, DAG.getVectorIdxConstant(0, DL)); 1042 } 1043 1044 // Build up a zero vector to blend into this one. 1045 SDValue Zero = DAG.getConstant(0, DL, SrcVT); 1046 1047 // Shuffle the incoming lanes into the correct position, and pull all other 1048 // lanes from the zero vector. 1049 SmallVector<int, 16> ShuffleMask; 1050 ShuffleMask.reserve(NumSrcElements); 1051 for (int i = 0; i < NumSrcElements; ++i) 1052 ShuffleMask.push_back(i); 1053 1054 int ExtLaneScale = NumSrcElements / NumElements; 1055 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 1056 for (int i = 0; i < NumElements; ++i) 1057 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 1058 1059 return DAG.getNode(ISD::BITCAST, DL, VT, 1060 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 1061 } 1062 1063 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) { 1064 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 1065 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 1066 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 1067 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 1068 } 1069 1070 SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) { 1071 EVT VT = Node->getValueType(0); 1072 1073 // Scalable vectors can't use shuffle expansion. 1074 if (VT.isScalableVector()) 1075 return TLI.expandBSWAP(Node, DAG); 1076 1077 // Generate a byte wise shuffle mask for the BSWAP. 1078 SmallVector<int, 16> ShuffleMask; 1079 createBSWAPShuffleMask(VT, ShuffleMask); 1080 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 1081 1082 // Only emit a shuffle if the mask is legal. 1083 if (TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) { 1084 SDLoc DL(Node); 1085 SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0)); 1086 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); 1087 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 1088 } 1089 1090 // If we have the appropriate vector bit operations, it is better to use them 1091 // than unrolling and expanding each component. 1092 if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 1093 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 1094 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) && 1095 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) 1096 return TLI.expandBSWAP(Node, DAG); 1097 1098 // Otherwise unroll. 1099 return DAG.UnrollVectorOp(Node); 1100 } 1101 1102 void VectorLegalizer::ExpandBITREVERSE(SDNode *Node, 1103 SmallVectorImpl<SDValue> &Results) { 1104 EVT VT = Node->getValueType(0); 1105 1106 // We can't unroll or use shuffles for scalable vectors. 1107 if (VT.isScalableVector()) { 1108 Results.push_back(TLI.expandBITREVERSE(Node, DAG)); 1109 return; 1110 } 1111 1112 // If we have the scalar operation, it's probably cheaper to unroll it. 1113 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) { 1114 SDValue Tmp = DAG.UnrollVectorOp(Node); 1115 Results.push_back(Tmp); 1116 return; 1117 } 1118 1119 // If the vector element width is a whole number of bytes, test if its legal 1120 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte 1121 // vector. This greatly reduces the number of bit shifts necessary. 1122 unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); 1123 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { 1124 SmallVector<int, 16> BSWAPMask; 1125 createBSWAPShuffleMask(VT, BSWAPMask); 1126 1127 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); 1128 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && 1129 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || 1130 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && 1131 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && 1132 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && 1133 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { 1134 SDLoc DL(Node); 1135 SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0)); 1136 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 1137 BSWAPMask); 1138 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); 1139 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 1140 Results.push_back(Op); 1141 return; 1142 } 1143 } 1144 1145 // If we have the appropriate vector bit operations, it is better to use them 1146 // than unrolling and expanding each component. 1147 if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 1148 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 1149 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) && 1150 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) { 1151 Results.push_back(TLI.expandBITREVERSE(Node, DAG)); 1152 return; 1153 } 1154 1155 // Otherwise unroll. 1156 SDValue Tmp = DAG.UnrollVectorOp(Node); 1157 Results.push_back(Tmp); 1158 } 1159 1160 SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) { 1161 // Implement VSELECT in terms of XOR, AND, OR 1162 // on platforms which do not support blend natively. 1163 SDLoc DL(Node); 1164 1165 SDValue Mask = Node->getOperand(0); 1166 SDValue Op1 = Node->getOperand(1); 1167 SDValue Op2 = Node->getOperand(2); 1168 1169 EVT VT = Mask.getValueType(); 1170 1171 // If we can't even use the basic vector operations of 1172 // AND,OR,XOR, we will have to scalarize the op. 1173 // Notice that the operation may be 'promoted' which means that it is 1174 // 'bitcasted' to another type which is handled. 1175 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 1176 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 1177 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand) 1178 return DAG.UnrollVectorOp(Node); 1179 1180 // This operation also isn't safe with AND, OR, XOR when the boolean type is 1181 // 0/1 and the select operands aren't also booleans, as we need an all-ones 1182 // vector constant to mask with. 1183 // FIXME: Sign extend 1 to all ones if that's legal on the target. 1184 auto BoolContents = TLI.getBooleanContents(Op1.getValueType()); 1185 if (BoolContents != TargetLowering::ZeroOrNegativeOneBooleanContent && 1186 !(BoolContents == TargetLowering::ZeroOrOneBooleanContent && 1187 Op1.getValueType().getVectorElementType() == MVT::i1)) 1188 return DAG.UnrollVectorOp(Node); 1189 1190 // If the mask and the type are different sizes, unroll the vector op. This 1191 // can occur when getSetCCResultType returns something that is different in 1192 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 1193 if (VT.getSizeInBits() != Op1.getValueSizeInBits()) 1194 return DAG.UnrollVectorOp(Node); 1195 1196 // Bitcast the operands to be the same type as the mask. 1197 // This is needed when we select between FP types because 1198 // the mask is a vector of integers. 1199 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 1200 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 1201 1202 SDValue NotMask = DAG.getNOT(DL, Mask, VT); 1203 1204 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 1205 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 1206 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 1207 return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val); 1208 } 1209 1210 SDValue VectorLegalizer::ExpandVP_SELECT(SDNode *Node) { 1211 // Implement VP_SELECT in terms of VP_XOR, VP_AND and VP_OR on platforms which 1212 // do not support it natively. 1213 SDLoc DL(Node); 1214 1215 SDValue Mask = Node->getOperand(0); 1216 SDValue Op1 = Node->getOperand(1); 1217 SDValue Op2 = Node->getOperand(2); 1218 SDValue EVL = Node->getOperand(3); 1219 1220 EVT VT = Mask.getValueType(); 1221 1222 // If we can't even use the basic vector operations of 1223 // VP_AND,VP_OR,VP_XOR, we will have to scalarize the op. 1224 if (TLI.getOperationAction(ISD::VP_AND, VT) == TargetLowering::Expand || 1225 TLI.getOperationAction(ISD::VP_XOR, VT) == TargetLowering::Expand || 1226 TLI.getOperationAction(ISD::VP_OR, VT) == TargetLowering::Expand) 1227 return DAG.UnrollVectorOp(Node); 1228 1229 // This operation also isn't safe when the operands aren't also booleans. 1230 if (Op1.getValueType().getVectorElementType() != MVT::i1) 1231 return DAG.UnrollVectorOp(Node); 1232 1233 SDValue Ones = DAG.getAllOnesConstant(DL, VT); 1234 SDValue NotMask = DAG.getNode(ISD::VP_XOR, DL, VT, Mask, Ones, Mask, EVL); 1235 1236 Op1 = DAG.getNode(ISD::VP_AND, DL, VT, Op1, Mask, Mask, EVL); 1237 Op2 = DAG.getNode(ISD::VP_AND, DL, VT, Op2, NotMask, Mask, EVL); 1238 return DAG.getNode(ISD::VP_OR, DL, VT, Op1, Op2, Mask, EVL); 1239 } 1240 1241 void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node, 1242 SmallVectorImpl<SDValue> &Results) { 1243 // Attempt to expand using TargetLowering. 1244 SDValue Result, Chain; 1245 if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) { 1246 Results.push_back(Result); 1247 if (Node->isStrictFPOpcode()) 1248 Results.push_back(Chain); 1249 return; 1250 } 1251 1252 // Otherwise go ahead and unroll. 1253 if (Node->isStrictFPOpcode()) { 1254 UnrollStrictFPOp(Node, Results); 1255 return; 1256 } 1257 1258 Results.push_back(DAG.UnrollVectorOp(Node)); 1259 } 1260 1261 void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node, 1262 SmallVectorImpl<SDValue> &Results) { 1263 bool IsStrict = Node->isStrictFPOpcode(); 1264 unsigned OpNo = IsStrict ? 1 : 0; 1265 SDValue Src = Node->getOperand(OpNo); 1266 EVT VT = Src.getValueType(); 1267 SDLoc DL(Node); 1268 1269 // Attempt to expand using TargetLowering. 1270 SDValue Result; 1271 SDValue Chain; 1272 if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) { 1273 Results.push_back(Result); 1274 if (IsStrict) 1275 Results.push_back(Chain); 1276 return; 1277 } 1278 1279 // Make sure that the SINT_TO_FP and SRL instructions are available. 1280 if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) == 1281 TargetLowering::Expand) || 1282 (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) == 1283 TargetLowering::Expand)) || 1284 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) { 1285 if (IsStrict) { 1286 UnrollStrictFPOp(Node, Results); 1287 return; 1288 } 1289 1290 Results.push_back(DAG.UnrollVectorOp(Node)); 1291 return; 1292 } 1293 1294 unsigned BW = VT.getScalarSizeInBits(); 1295 assert((BW == 64 || BW == 32) && 1296 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 1297 1298 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT); 1299 1300 // Constants to clear the upper part of the word. 1301 // Notice that we can also use SHL+SHR, but using a constant is slightly 1302 // faster on x86. 1303 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; 1304 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 1305 1306 // Two to the power of half-word-size. 1307 SDValue TWOHW = 1308 DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0)); 1309 1310 // Clear upper part of LO, lower HI 1311 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord); 1312 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask); 1313 1314 if (IsStrict) { 1315 // Convert hi and lo to floats 1316 // Convert the hi part back to the upper values 1317 // TODO: Can any fast-math-flags be set on these nodes? 1318 SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, 1319 {Node->getValueType(0), MVT::Other}, 1320 {Node->getOperand(0), HI}); 1321 fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other}, 1322 {fHI.getValue(1), fHI, TWOHW}); 1323 SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, 1324 {Node->getValueType(0), MVT::Other}, 1325 {Node->getOperand(0), LO}); 1326 1327 SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1), 1328 fLO.getValue(1)); 1329 1330 // Add the two halves 1331 SDValue Result = 1332 DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other}, 1333 {TF, fHI, fLO}); 1334 1335 Results.push_back(Result); 1336 Results.push_back(Result.getValue(1)); 1337 return; 1338 } 1339 1340 // Convert hi and lo to floats 1341 // Convert the hi part back to the upper values 1342 // TODO: Can any fast-math-flags be set on these nodes? 1343 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI); 1344 fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW); 1345 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO); 1346 1347 // Add the two halves 1348 Results.push_back( 1349 DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO)); 1350 } 1351 1352 SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) { 1353 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) { 1354 SDLoc DL(Node); 1355 SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0)); 1356 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. 1357 return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero, 1358 Node->getOperand(0)); 1359 } 1360 return DAG.UnrollVectorOp(Node); 1361 } 1362 1363 void VectorLegalizer::ExpandFSUB(SDNode *Node, 1364 SmallVectorImpl<SDValue> &Results) { 1365 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal, 1366 // we can defer this to operation legalization where it will be lowered as 1367 // a+(-b). 1368 EVT VT = Node->getValueType(0); 1369 if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && 1370 TLI.isOperationLegalOrCustom(ISD::FADD, VT)) 1371 return; // Defer to LegalizeDAG 1372 1373 SDValue Tmp = DAG.UnrollVectorOp(Node); 1374 Results.push_back(Tmp); 1375 } 1376 1377 void VectorLegalizer::ExpandSETCC(SDNode *Node, 1378 SmallVectorImpl<SDValue> &Results) { 1379 bool NeedInvert = false; 1380 SDLoc dl(Node); 1381 MVT OpVT = Node->getOperand(0).getSimpleValueType(); 1382 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); 1383 1384 if (TLI.getCondCodeAction(CCCode, OpVT) != TargetLowering::Expand) { 1385 Results.push_back(UnrollVSETCC(Node)); 1386 return; 1387 } 1388 1389 SDValue Chain; 1390 SDValue LHS = Node->getOperand(0); 1391 SDValue RHS = Node->getOperand(1); 1392 SDValue CC = Node->getOperand(2); 1393 bool Legalized = TLI.LegalizeSetCCCondCode(DAG, Node->getValueType(0), LHS, 1394 RHS, CC, NeedInvert, dl, Chain); 1395 1396 if (Legalized) { 1397 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 1398 // condition code, create a new SETCC node. 1399 if (CC.getNode()) 1400 LHS = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), LHS, RHS, CC, 1401 Node->getFlags()); 1402 1403 // If we expanded the SETCC by inverting the condition code, then wrap 1404 // the existing SETCC in a NOT to restore the intended condition. 1405 if (NeedInvert) 1406 LHS = DAG.getLogicalNOT(dl, LHS, LHS->getValueType(0)); 1407 } else { 1408 // Otherwise, SETCC for the given comparison type must be completely 1409 // illegal; expand it into a SELECT_CC. 1410 EVT VT = Node->getValueType(0); 1411 LHS = 1412 DAG.getNode(ISD::SELECT_CC, dl, VT, LHS, RHS, 1413 DAG.getBoolConstant(true, dl, VT, LHS.getValueType()), 1414 DAG.getBoolConstant(false, dl, VT, LHS.getValueType()), CC); 1415 LHS->setFlags(Node->getFlags()); 1416 } 1417 1418 Results.push_back(LHS); 1419 } 1420 1421 void VectorLegalizer::ExpandUADDSUBO(SDNode *Node, 1422 SmallVectorImpl<SDValue> &Results) { 1423 SDValue Result, Overflow; 1424 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 1425 Results.push_back(Result); 1426 Results.push_back(Overflow); 1427 } 1428 1429 void VectorLegalizer::ExpandSADDSUBO(SDNode *Node, 1430 SmallVectorImpl<SDValue> &Results) { 1431 SDValue Result, Overflow; 1432 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 1433 Results.push_back(Result); 1434 Results.push_back(Overflow); 1435 } 1436 1437 void VectorLegalizer::ExpandMULO(SDNode *Node, 1438 SmallVectorImpl<SDValue> &Results) { 1439 SDValue Result, Overflow; 1440 if (!TLI.expandMULO(Node, Result, Overflow, DAG)) 1441 std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node); 1442 1443 Results.push_back(Result); 1444 Results.push_back(Overflow); 1445 } 1446 1447 void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node, 1448 SmallVectorImpl<SDValue> &Results) { 1449 SDNode *N = Node; 1450 if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N), 1451 N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG)) 1452 Results.push_back(Expanded); 1453 } 1454 1455 void VectorLegalizer::ExpandStrictFPOp(SDNode *Node, 1456 SmallVectorImpl<SDValue> &Results) { 1457 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) { 1458 ExpandUINT_TO_FLOAT(Node, Results); 1459 return; 1460 } 1461 if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) { 1462 ExpandFP_TO_UINT(Node, Results); 1463 return; 1464 } 1465 1466 UnrollStrictFPOp(Node, Results); 1467 } 1468 1469 void VectorLegalizer::ExpandREM(SDNode *Node, 1470 SmallVectorImpl<SDValue> &Results) { 1471 assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) && 1472 "Expected REM node"); 1473 1474 SDValue Result; 1475 if (!TLI.expandREM(Node, Result, DAG)) 1476 Result = DAG.UnrollVectorOp(Node); 1477 Results.push_back(Result); 1478 } 1479 1480 void VectorLegalizer::UnrollStrictFPOp(SDNode *Node, 1481 SmallVectorImpl<SDValue> &Results) { 1482 EVT VT = Node->getValueType(0); 1483 EVT EltVT = VT.getVectorElementType(); 1484 unsigned NumElems = VT.getVectorNumElements(); 1485 unsigned NumOpers = Node->getNumOperands(); 1486 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1487 1488 EVT TmpEltVT = EltVT; 1489 if (Node->getOpcode() == ISD::STRICT_FSETCC || 1490 Node->getOpcode() == ISD::STRICT_FSETCCS) 1491 TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(), 1492 *DAG.getContext(), TmpEltVT); 1493 1494 EVT ValueVTs[] = {TmpEltVT, MVT::Other}; 1495 SDValue Chain = Node->getOperand(0); 1496 SDLoc dl(Node); 1497 1498 SmallVector<SDValue, 32> OpValues; 1499 SmallVector<SDValue, 32> OpChains; 1500 for (unsigned i = 0; i < NumElems; ++i) { 1501 SmallVector<SDValue, 4> Opers; 1502 SDValue Idx = DAG.getVectorIdxConstant(i, dl); 1503 1504 // The Chain is the first operand. 1505 Opers.push_back(Chain); 1506 1507 // Now process the remaining operands. 1508 for (unsigned j = 1; j < NumOpers; ++j) { 1509 SDValue Oper = Node->getOperand(j); 1510 EVT OperVT = Oper.getValueType(); 1511 1512 if (OperVT.isVector()) 1513 Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 1514 OperVT.getVectorElementType(), Oper, Idx); 1515 1516 Opers.push_back(Oper); 1517 } 1518 1519 SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers); 1520 SDValue ScalarResult = ScalarOp.getValue(0); 1521 SDValue ScalarChain = ScalarOp.getValue(1); 1522 1523 if (Node->getOpcode() == ISD::STRICT_FSETCC || 1524 Node->getOpcode() == ISD::STRICT_FSETCCS) 1525 ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult, 1526 DAG.getAllOnesConstant(dl, EltVT), 1527 DAG.getConstant(0, dl, EltVT)); 1528 1529 OpValues.push_back(ScalarResult); 1530 OpChains.push_back(ScalarChain); 1531 } 1532 1533 SDValue Result = DAG.getBuildVector(VT, dl, OpValues); 1534 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains); 1535 1536 Results.push_back(Result); 1537 Results.push_back(NewChain); 1538 } 1539 1540 SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) { 1541 EVT VT = Node->getValueType(0); 1542 unsigned NumElems = VT.getVectorNumElements(); 1543 EVT EltVT = VT.getVectorElementType(); 1544 SDValue LHS = Node->getOperand(0); 1545 SDValue RHS = Node->getOperand(1); 1546 SDValue CC = Node->getOperand(2); 1547 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1548 SDLoc dl(Node); 1549 SmallVector<SDValue, 8> Ops(NumElems); 1550 for (unsigned i = 0; i < NumElems; ++i) { 1551 SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1552 DAG.getVectorIdxConstant(i, dl)); 1553 SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1554 DAG.getVectorIdxConstant(i, dl)); 1555 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1556 TLI.getSetCCResultType(DAG.getDataLayout(), 1557 *DAG.getContext(), TmpEltVT), 1558 LHSElem, RHSElem, CC); 1559 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], DAG.getAllOnesConstant(dl, EltVT), 1560 DAG.getConstant(0, dl, EltVT)); 1561 } 1562 return DAG.getBuildVector(VT, dl, Ops); 1563 } 1564 1565 bool SelectionDAG::LegalizeVectors() { 1566 return VectorLegalizer(*this).Run(); 1567 } 1568