1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::LegalizeVectors method.
10 //
11 // The vector legalizer looks for vector operations which might need to be
12 // scalarized and legalizes them. This is a separate step from Legalize because
13 // scalarizing can introduce illegal types.  For example, suppose we have an
14 // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
16 // operation, which introduces nodes with the illegal type i64 which must be
17 // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
18 // the operation must be unrolled, which introduces nodes with the illegal
19 // type i8 which must be promoted.
20 //
21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
22 // or operations that happen to take a vector which are custom-lowered;
23 // the legalization for such operations never produces nodes
24 // with illegal types, so it's okay to put off legalizing them until
25 // SelectionDAG::Legalize runs.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/SelectionDAGNodes.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MachineValueType.h"
44 #include "llvm/Support/MathExtras.h"
45 #include <cassert>
46 #include <cstdint>
47 #include <iterator>
48 #include <utility>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "legalizevectorops"
53 
54 namespace {
55 
56 class VectorLegalizer {
57   SelectionDAG& DAG;
58   const TargetLowering &TLI;
59   bool Changed = false; // Keep track of whether anything changed
60 
61   /// For nodes that are of legal width, and that have more than one use, this
62   /// map indicates what regularized operand to use.  This allows us to avoid
63   /// legalizing the same thing more than once.
64   SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
65 
66   /// Adds a node to the translation cache.
67   void AddLegalizedOperand(SDValue From, SDValue To) {
68     LegalizedNodes.insert(std::make_pair(From, To));
69     // If someone requests legalization of the new node, return itself.
70     if (From != To)
71       LegalizedNodes.insert(std::make_pair(To, To));
72   }
73 
74   /// Legalizes the given node.
75   SDValue LegalizeOp(SDValue Op);
76 
77   /// Assuming the node is legal, "legalize" the results.
78   SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result);
79 
80   /// Make sure Results are legal and update the translation cache.
81   SDValue RecursivelyLegalizeResults(SDValue Op,
82                                      MutableArrayRef<SDValue> Results);
83 
84   /// Wrapper to interface LowerOperation with a vector of Results.
85   /// Returns false if the target wants to use default expansion. Otherwise
86   /// returns true. If return is true and the Results are empty, then the
87   /// target wants to keep the input node as is.
88   bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results);
89 
90   /// Implements unrolling a VSETCC.
91   SDValue UnrollVSETCC(SDNode *Node);
92 
93   /// Implement expand-based legalization of vector operations.
94   ///
95   /// This is just a high-level routine to dispatch to specific code paths for
96   /// operations to legalize them.
97   void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results);
98 
99   /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
100   /// FP_TO_SINT isn't legal.
101   void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
102 
103   /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
104   /// SINT_TO_FLOAT and SHR on vectors isn't legal.
105   void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
106 
107   /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
108   SDValue ExpandSEXTINREG(SDNode *Node);
109 
110   /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
111   ///
112   /// Shuffles the low lanes of the operand into place and bitcasts to the proper
113   /// type. The contents of the bits in the extended part of each element are
114   /// undef.
115   SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node);
116 
117   /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
118   ///
119   /// Shuffles the low lanes of the operand into place, bitcasts to the proper
120   /// type, then shifts left and arithmetic shifts right to introduce a sign
121   /// extension.
122   SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node);
123 
124   /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
125   ///
126   /// Shuffles the low lanes of the operand into place and blends zeros into
127   /// the remaining lanes, finally bitcasting to the proper type.
128   SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node);
129 
130   /// Expand bswap of vectors into a shuffle if legal.
131   SDValue ExpandBSWAP(SDNode *Node);
132 
133   /// Implement vselect in terms of XOR, AND, OR when blend is not
134   /// supported by the target.
135   SDValue ExpandVSELECT(SDNode *Node);
136   SDValue ExpandVP_SELECT(SDNode *Node);
137   SDValue ExpandSELECT(SDNode *Node);
138   std::pair<SDValue, SDValue> ExpandLoad(SDNode *N);
139   SDValue ExpandStore(SDNode *N);
140   SDValue ExpandFNEG(SDNode *Node);
141   void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results);
142   void ExpandSETCC(SDNode *Node, SmallVectorImpl<SDValue> &Results);
143   void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results);
144   void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
145   void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
146   void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
147   void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results);
148   void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
149   void ExpandREM(SDNode *Node, SmallVectorImpl<SDValue> &Results);
150 
151   void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
152 
153   /// Implements vector promotion.
154   ///
155   /// This is essentially just bitcasting the operands to a different type and
156   /// bitcasting the result back to the original type.
157   void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results);
158 
159   /// Implements [SU]INT_TO_FP vector promotion.
160   ///
161   /// This is a [zs]ext of the input operand to a larger integer type.
162   void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results);
163 
164   /// Implements FP_TO_[SU]INT vector promotion of the result type.
165   ///
166   /// It is promoted to a larger integer type.  The result is then
167   /// truncated back to the original type.
168   void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
169 
170 public:
171   VectorLegalizer(SelectionDAG& dag) :
172       DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
173 
174   /// Begin legalizer the vector operations in the DAG.
175   bool Run();
176 };
177 
178 } // end anonymous namespace
179 
180 bool VectorLegalizer::Run() {
181   // Before we start legalizing vector nodes, check if there are any vectors.
182   bool HasVectors = false;
183   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
184        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
185     // Check if the values of the nodes contain vectors. We don't need to check
186     // the operands because we are going to check their values at some point.
187     HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); });
188 
189     // If we found a vector node we can start the legalization.
190     if (HasVectors)
191       break;
192   }
193 
194   // If this basic block has no vectors then no need to legalize vectors.
195   if (!HasVectors)
196     return false;
197 
198   // The legalize process is inherently a bottom-up recursive process (users
199   // legalize their uses before themselves).  Given infinite stack space, we
200   // could just start legalizing on the root and traverse the whole graph.  In
201   // practice however, this causes us to run out of stack space on large basic
202   // blocks.  To avoid this problem, compute an ordering of the nodes where each
203   // node is only legalized after all of its operands are legalized.
204   DAG.AssignTopologicalOrder();
205   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
206        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
207     LegalizeOp(SDValue(&*I, 0));
208 
209   // Finally, it's possible the root changed.  Get the new root.
210   SDValue OldRoot = DAG.getRoot();
211   assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
212   DAG.setRoot(LegalizedNodes[OldRoot]);
213 
214   LegalizedNodes.clear();
215 
216   // Remove dead nodes now.
217   DAG.RemoveDeadNodes();
218 
219   return Changed;
220 }
221 
222 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) {
223   assert(Op->getNumValues() == Result->getNumValues() &&
224          "Unexpected number of results");
225   // Generic legalization: just pass the operand through.
226   for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i)
227     AddLegalizedOperand(Op.getValue(i), SDValue(Result, i));
228   return SDValue(Result, Op.getResNo());
229 }
230 
231 SDValue
232 VectorLegalizer::RecursivelyLegalizeResults(SDValue Op,
233                                             MutableArrayRef<SDValue> Results) {
234   assert(Results.size() == Op->getNumValues() &&
235          "Unexpected number of results");
236   // Make sure that the generated code is itself legal.
237   for (unsigned i = 0, e = Results.size(); i != e; ++i) {
238     Results[i] = LegalizeOp(Results[i]);
239     AddLegalizedOperand(Op.getValue(i), Results[i]);
240   }
241 
242   return Results[Op.getResNo()];
243 }
244 
245 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
246   // Note that LegalizeOp may be reentered even from single-use nodes, which
247   // means that we always must cache transformed nodes.
248   DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
249   if (I != LegalizedNodes.end()) return I->second;
250 
251   // Legalize the operands
252   SmallVector<SDValue, 8> Ops;
253   for (const SDValue &Oper : Op->op_values())
254     Ops.push_back(LegalizeOp(Oper));
255 
256   SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops);
257 
258   bool HasVectorValueOrOp =
259       llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) ||
260       llvm::any_of(Node->op_values(),
261                    [](SDValue O) { return O.getValueType().isVector(); });
262   if (!HasVectorValueOrOp)
263     return TranslateLegalizeResults(Op, Node);
264 
265   TargetLowering::LegalizeAction Action = TargetLowering::Legal;
266   EVT ValVT;
267   switch (Op.getOpcode()) {
268   default:
269     return TranslateLegalizeResults(Op, Node);
270   case ISD::LOAD: {
271     LoadSDNode *LD = cast<LoadSDNode>(Node);
272     ISD::LoadExtType ExtType = LD->getExtensionType();
273     EVT LoadedVT = LD->getMemoryVT();
274     if (LoadedVT.isVector() && ExtType != ISD::NON_EXTLOAD)
275       Action = TLI.getLoadExtAction(ExtType, LD->getValueType(0), LoadedVT);
276     break;
277   }
278   case ISD::STORE: {
279     StoreSDNode *ST = cast<StoreSDNode>(Node);
280     EVT StVT = ST->getMemoryVT();
281     MVT ValVT = ST->getValue().getSimpleValueType();
282     if (StVT.isVector() && ST->isTruncatingStore())
283       Action = TLI.getTruncStoreAction(ValVT, StVT);
284     break;
285   }
286   case ISD::MERGE_VALUES:
287     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
288     // This operation lies about being legal: when it claims to be legal,
289     // it should actually be expanded.
290     if (Action == TargetLowering::Legal)
291       Action = TargetLowering::Expand;
292     break;
293 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
294   case ISD::STRICT_##DAGN:
295 #include "llvm/IR/ConstrainedOps.def"
296     ValVT = Node->getValueType(0);
297     if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP ||
298         Op.getOpcode() == ISD::STRICT_UINT_TO_FP)
299       ValVT = Node->getOperand(1).getValueType();
300     Action = TLI.getOperationAction(Node->getOpcode(), ValVT);
301     // If we're asked to expand a strict vector floating-point operation,
302     // by default we're going to simply unroll it.  That is usually the
303     // best approach, except in the case where the resulting strict (scalar)
304     // operations would themselves use the fallback mutation to non-strict.
305     // In that specific case, just do the fallback on the vector op.
306     if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() &&
307         TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) ==
308             TargetLowering::Legal) {
309       EVT EltVT = ValVT.getVectorElementType();
310       if (TLI.getOperationAction(Node->getOpcode(), EltVT)
311           == TargetLowering::Expand &&
312           TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT)
313           == TargetLowering::Legal)
314         Action = TargetLowering::Legal;
315     }
316     break;
317   case ISD::ADD:
318   case ISD::SUB:
319   case ISD::MUL:
320   case ISD::MULHS:
321   case ISD::MULHU:
322   case ISD::SDIV:
323   case ISD::UDIV:
324   case ISD::SREM:
325   case ISD::UREM:
326   case ISD::SDIVREM:
327   case ISD::UDIVREM:
328   case ISD::FADD:
329   case ISD::FSUB:
330   case ISD::FMUL:
331   case ISD::FDIV:
332   case ISD::FREM:
333   case ISD::AND:
334   case ISD::OR:
335   case ISD::XOR:
336   case ISD::SHL:
337   case ISD::SRA:
338   case ISD::SRL:
339   case ISD::FSHL:
340   case ISD::FSHR:
341   case ISD::ROTL:
342   case ISD::ROTR:
343   case ISD::ABS:
344   case ISD::BSWAP:
345   case ISD::BITREVERSE:
346   case ISD::CTLZ:
347   case ISD::CTTZ:
348   case ISD::CTLZ_ZERO_UNDEF:
349   case ISD::CTTZ_ZERO_UNDEF:
350   case ISD::CTPOP:
351   case ISD::SELECT:
352   case ISD::VSELECT:
353   case ISD::SELECT_CC:
354   case ISD::ZERO_EXTEND:
355   case ISD::ANY_EXTEND:
356   case ISD::TRUNCATE:
357   case ISD::SIGN_EXTEND:
358   case ISD::FP_TO_SINT:
359   case ISD::FP_TO_UINT:
360   case ISD::FNEG:
361   case ISD::FABS:
362   case ISD::FMINNUM:
363   case ISD::FMAXNUM:
364   case ISD::FMINNUM_IEEE:
365   case ISD::FMAXNUM_IEEE:
366   case ISD::FMINIMUM:
367   case ISD::FMAXIMUM:
368   case ISD::FCOPYSIGN:
369   case ISD::FSQRT:
370   case ISD::FSIN:
371   case ISD::FCOS:
372   case ISD::FPOWI:
373   case ISD::FPOW:
374   case ISD::FLOG:
375   case ISD::FLOG2:
376   case ISD::FLOG10:
377   case ISD::FEXP:
378   case ISD::FEXP2:
379   case ISD::FCEIL:
380   case ISD::FTRUNC:
381   case ISD::FRINT:
382   case ISD::FNEARBYINT:
383   case ISD::FROUND:
384   case ISD::FROUNDEVEN:
385   case ISD::FFLOOR:
386   case ISD::FP_ROUND:
387   case ISD::FP_EXTEND:
388   case ISD::FMA:
389   case ISD::SIGN_EXTEND_INREG:
390   case ISD::ANY_EXTEND_VECTOR_INREG:
391   case ISD::SIGN_EXTEND_VECTOR_INREG:
392   case ISD::ZERO_EXTEND_VECTOR_INREG:
393   case ISD::SMIN:
394   case ISD::SMAX:
395   case ISD::UMIN:
396   case ISD::UMAX:
397   case ISD::SMUL_LOHI:
398   case ISD::UMUL_LOHI:
399   case ISD::SADDO:
400   case ISD::UADDO:
401   case ISD::SSUBO:
402   case ISD::USUBO:
403   case ISD::SMULO:
404   case ISD::UMULO:
405   case ISD::FCANONICALIZE:
406   case ISD::SADDSAT:
407   case ISD::UADDSAT:
408   case ISD::SSUBSAT:
409   case ISD::USUBSAT:
410   case ISD::SSHLSAT:
411   case ISD::USHLSAT:
412   case ISD::FP_TO_SINT_SAT:
413   case ISD::FP_TO_UINT_SAT:
414   case ISD::MGATHER:
415     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
416     break;
417   case ISD::SMULFIX:
418   case ISD::SMULFIXSAT:
419   case ISD::UMULFIX:
420   case ISD::UMULFIXSAT:
421   case ISD::SDIVFIX:
422   case ISD::SDIVFIXSAT:
423   case ISD::UDIVFIX:
424   case ISD::UDIVFIXSAT: {
425     unsigned Scale = Node->getConstantOperandVal(2);
426     Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
427                                               Node->getValueType(0), Scale);
428     break;
429   }
430   case ISD::SINT_TO_FP:
431   case ISD::UINT_TO_FP:
432   case ISD::VECREDUCE_ADD:
433   case ISD::VECREDUCE_MUL:
434   case ISD::VECREDUCE_AND:
435   case ISD::VECREDUCE_OR:
436   case ISD::VECREDUCE_XOR:
437   case ISD::VECREDUCE_SMAX:
438   case ISD::VECREDUCE_SMIN:
439   case ISD::VECREDUCE_UMAX:
440   case ISD::VECREDUCE_UMIN:
441   case ISD::VECREDUCE_FADD:
442   case ISD::VECREDUCE_FMUL:
443   case ISD::VECREDUCE_FMAX:
444   case ISD::VECREDUCE_FMIN:
445     Action = TLI.getOperationAction(Node->getOpcode(),
446                                     Node->getOperand(0).getValueType());
447     break;
448   case ISD::VECREDUCE_SEQ_FADD:
449   case ISD::VECREDUCE_SEQ_FMUL:
450     Action = TLI.getOperationAction(Node->getOpcode(),
451                                     Node->getOperand(1).getValueType());
452     break;
453   case ISD::SETCC: {
454     MVT OpVT = Node->getOperand(0).getSimpleValueType();
455     ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get();
456     Action = TLI.getCondCodeAction(CCCode, OpVT);
457     if (Action == TargetLowering::Legal)
458       Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
459     break;
460   }
461 
462 #define BEGIN_REGISTER_VP_SDNODE(VPID, LEGALPOS, ...)                          \
463   case ISD::VPID: {                                                            \
464     EVT LegalizeVT = LEGALPOS < 0 ? Node->getValueType(-(1 + LEGALPOS))        \
465                                   : Node->getOperand(LEGALPOS).getValueType(); \
466     Action = TLI.getOperationAction(Node->getOpcode(), LegalizeVT);            \
467   } break;
468 #include "llvm/IR/VPIntrinsics.def"
469   }
470 
471   LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
472 
473   SmallVector<SDValue, 8> ResultVals;
474   switch (Action) {
475   default: llvm_unreachable("This action is not supported yet!");
476   case TargetLowering::Promote:
477     assert((Op.getOpcode() != ISD::LOAD && Op.getOpcode() != ISD::STORE) &&
478            "This action is not supported yet!");
479     LLVM_DEBUG(dbgs() << "Promoting\n");
480     Promote(Node, ResultVals);
481     assert(!ResultVals.empty() && "No results for promotion?");
482     break;
483   case TargetLowering::Legal:
484     LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
485     break;
486   case TargetLowering::Custom:
487     LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
488     if (LowerOperationWrapper(Node, ResultVals))
489       break;
490     LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
491     LLVM_FALLTHROUGH;
492   case TargetLowering::Expand:
493     LLVM_DEBUG(dbgs() << "Expanding\n");
494     Expand(Node, ResultVals);
495     break;
496   }
497 
498   if (ResultVals.empty())
499     return TranslateLegalizeResults(Op, Node);
500 
501   Changed = true;
502   return RecursivelyLegalizeResults(Op, ResultVals);
503 }
504 
505 // FIXME: This is very similar to TargetLowering::LowerOperationWrapper. Can we
506 // merge them somehow?
507 bool VectorLegalizer::LowerOperationWrapper(SDNode *Node,
508                                             SmallVectorImpl<SDValue> &Results) {
509   SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
510 
511   if (!Res.getNode())
512     return false;
513 
514   if (Res == SDValue(Node, 0))
515     return true;
516 
517   // If the original node has one result, take the return value from
518   // LowerOperation as is. It might not be result number 0.
519   if (Node->getNumValues() == 1) {
520     Results.push_back(Res);
521     return true;
522   }
523 
524   // If the original node has multiple results, then the return node should
525   // have the same number of results.
526   assert((Node->getNumValues() == Res->getNumValues()) &&
527          "Lowering returned the wrong number of results!");
528 
529   // Places new result values base on N result number.
530   for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I)
531     Results.push_back(Res.getValue(I));
532 
533   return true;
534 }
535 
536 void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
537   // For a few operations there is a specific concept for promotion based on
538   // the operand's type.
539   switch (Node->getOpcode()) {
540   case ISD::SINT_TO_FP:
541   case ISD::UINT_TO_FP:
542   case ISD::STRICT_SINT_TO_FP:
543   case ISD::STRICT_UINT_TO_FP:
544     // "Promote" the operation by extending the operand.
545     PromoteINT_TO_FP(Node, Results);
546     return;
547   case ISD::FP_TO_UINT:
548   case ISD::FP_TO_SINT:
549   case ISD::STRICT_FP_TO_UINT:
550   case ISD::STRICT_FP_TO_SINT:
551     // Promote the operation by extending the operand.
552     PromoteFP_TO_INT(Node, Results);
553     return;
554   case ISD::FP_ROUND:
555   case ISD::FP_EXTEND:
556     // These operations are used to do promotion so they can't be promoted
557     // themselves.
558     llvm_unreachable("Don't know how to promote this operation!");
559   }
560 
561   // There are currently two cases of vector promotion:
562   // 1) Bitcasting a vector of integers to a different type to a vector of the
563   //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
564   // 2) Extending a vector of floats to a vector of the same number of larger
565   //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
566   assert(Node->getNumValues() == 1 &&
567          "Can't promote a vector with multiple results!");
568   MVT VT = Node->getSimpleValueType(0);
569   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
570   SDLoc dl(Node);
571   SmallVector<SDValue, 4> Operands(Node->getNumOperands());
572 
573   for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
574     if (Node->getOperand(j).getValueType().isVector())
575       if (Node->getOperand(j)
576               .getValueType()
577               .getVectorElementType()
578               .isFloatingPoint() &&
579           NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
580         Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j));
581       else
582         Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j));
583     else
584       Operands[j] = Node->getOperand(j);
585   }
586 
587   SDValue Res =
588       DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags());
589 
590   if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
591       (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
592        NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
593     Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res, DAG.getIntPtrConstant(0, dl));
594   else
595     Res = DAG.getNode(ISD::BITCAST, dl, VT, Res);
596 
597   Results.push_back(Res);
598 }
599 
600 void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node,
601                                        SmallVectorImpl<SDValue> &Results) {
602   // INT_TO_FP operations may require the input operand be promoted even
603   // when the type is otherwise legal.
604   bool IsStrict = Node->isStrictFPOpcode();
605   MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType();
606   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
607   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
608          "Vectors have different number of elements!");
609 
610   SDLoc dl(Node);
611   SmallVector<SDValue, 4> Operands(Node->getNumOperands());
612 
613   unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP ||
614                   Node->getOpcode() == ISD::STRICT_UINT_TO_FP)
615                      ? ISD::ZERO_EXTEND
616                      : ISD::SIGN_EXTEND;
617   for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
618     if (Node->getOperand(j).getValueType().isVector())
619       Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j));
620     else
621       Operands[j] = Node->getOperand(j);
622   }
623 
624   if (IsStrict) {
625     SDValue Res = DAG.getNode(Node->getOpcode(), dl,
626                               {Node->getValueType(0), MVT::Other}, Operands);
627     Results.push_back(Res);
628     Results.push_back(Res.getValue(1));
629     return;
630   }
631 
632   SDValue Res =
633       DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands);
634   Results.push_back(Res);
635 }
636 
637 // For FP_TO_INT we promote the result type to a vector type with wider
638 // elements and then truncate the result.  This is different from the default
639 // PromoteVector which uses bitcast to promote thus assumning that the
640 // promoted vector type has the same overall size.
641 void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node,
642                                        SmallVectorImpl<SDValue> &Results) {
643   MVT VT = Node->getSimpleValueType(0);
644   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
645   bool IsStrict = Node->isStrictFPOpcode();
646   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
647          "Vectors have different number of elements!");
648 
649   unsigned NewOpc = Node->getOpcode();
650   // Change FP_TO_UINT to FP_TO_SINT if possible.
651   // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
652   if (NewOpc == ISD::FP_TO_UINT &&
653       TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
654     NewOpc = ISD::FP_TO_SINT;
655 
656   if (NewOpc == ISD::STRICT_FP_TO_UINT &&
657       TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT))
658     NewOpc = ISD::STRICT_FP_TO_SINT;
659 
660   SDLoc dl(Node);
661   SDValue Promoted, Chain;
662   if (IsStrict) {
663     Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other},
664                            {Node->getOperand(0), Node->getOperand(1)});
665     Chain = Promoted.getValue(1);
666   } else
667     Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0));
668 
669   // Assert that the converted value fits in the original type.  If it doesn't
670   // (eg: because the value being converted is too big), then the result of the
671   // original operation was undefined anyway, so the assert is still correct.
672   if (Node->getOpcode() == ISD::FP_TO_UINT ||
673       Node->getOpcode() == ISD::STRICT_FP_TO_UINT)
674     NewOpc = ISD::AssertZext;
675   else
676     NewOpc = ISD::AssertSext;
677 
678   Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted,
679                          DAG.getValueType(VT.getScalarType()));
680   Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
681   Results.push_back(Promoted);
682   if (IsStrict)
683     Results.push_back(Chain);
684 }
685 
686 std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) {
687   LoadSDNode *LD = cast<LoadSDNode>(N);
688   return TLI.scalarizeVectorLoad(LD, DAG);
689 }
690 
691 SDValue VectorLegalizer::ExpandStore(SDNode *N) {
692   StoreSDNode *ST = cast<StoreSDNode>(N);
693   SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
694   return TF;
695 }
696 
697 void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
698   switch (Node->getOpcode()) {
699   case ISD::LOAD: {
700     std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node);
701     Results.push_back(Tmp.first);
702     Results.push_back(Tmp.second);
703     return;
704   }
705   case ISD::STORE:
706     Results.push_back(ExpandStore(Node));
707     return;
708   case ISD::MERGE_VALUES:
709     for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
710       Results.push_back(Node->getOperand(i));
711     return;
712   case ISD::SIGN_EXTEND_INREG:
713     Results.push_back(ExpandSEXTINREG(Node));
714     return;
715   case ISD::ANY_EXTEND_VECTOR_INREG:
716     Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node));
717     return;
718   case ISD::SIGN_EXTEND_VECTOR_INREG:
719     Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node));
720     return;
721   case ISD::ZERO_EXTEND_VECTOR_INREG:
722     Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node));
723     return;
724   case ISD::BSWAP:
725     Results.push_back(ExpandBSWAP(Node));
726     return;
727   case ISD::VSELECT:
728     Results.push_back(ExpandVSELECT(Node));
729     return;
730   case ISD::VP_SELECT:
731     Results.push_back(ExpandVP_SELECT(Node));
732     return;
733   case ISD::SELECT:
734     Results.push_back(ExpandSELECT(Node));
735     return;
736   case ISD::FP_TO_UINT:
737     ExpandFP_TO_UINT(Node, Results);
738     return;
739   case ISD::UINT_TO_FP:
740     ExpandUINT_TO_FLOAT(Node, Results);
741     return;
742   case ISD::FNEG:
743     Results.push_back(ExpandFNEG(Node));
744     return;
745   case ISD::FSUB:
746     ExpandFSUB(Node, Results);
747     return;
748   case ISD::SETCC:
749     ExpandSETCC(Node, Results);
750     return;
751   case ISD::ABS:
752     if (SDValue Expanded = TLI.expandABS(Node, DAG)) {
753       Results.push_back(Expanded);
754       return;
755     }
756     break;
757   case ISD::BITREVERSE:
758     ExpandBITREVERSE(Node, Results);
759     return;
760   case ISD::CTPOP:
761     if (SDValue Expanded = TLI.expandCTPOP(Node, DAG)) {
762       Results.push_back(Expanded);
763       return;
764     }
765     break;
766   case ISD::CTLZ:
767   case ISD::CTLZ_ZERO_UNDEF:
768     if (SDValue Expanded = TLI.expandCTLZ(Node, DAG)) {
769       Results.push_back(Expanded);
770       return;
771     }
772     break;
773   case ISD::CTTZ:
774   case ISD::CTTZ_ZERO_UNDEF:
775     if (SDValue Expanded = TLI.expandCTTZ(Node, DAG)) {
776       Results.push_back(Expanded);
777       return;
778     }
779     break;
780   case ISD::FSHL:
781   case ISD::FSHR:
782     if (SDValue Expanded = TLI.expandFunnelShift(Node, DAG)) {
783       Results.push_back(Expanded);
784       return;
785     }
786     break;
787   case ISD::ROTL:
788   case ISD::ROTR:
789     if (SDValue Expanded = TLI.expandROT(Node, false /*AllowVectorOps*/, DAG)) {
790       Results.push_back(Expanded);
791       return;
792     }
793     break;
794   case ISD::FMINNUM:
795   case ISD::FMAXNUM:
796     if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) {
797       Results.push_back(Expanded);
798       return;
799     }
800     break;
801   case ISD::SMIN:
802   case ISD::SMAX:
803   case ISD::UMIN:
804   case ISD::UMAX:
805     if (SDValue Expanded = TLI.expandIntMINMAX(Node, DAG)) {
806       Results.push_back(Expanded);
807       return;
808     }
809     break;
810   case ISD::UADDO:
811   case ISD::USUBO:
812     ExpandUADDSUBO(Node, Results);
813     return;
814   case ISD::SADDO:
815   case ISD::SSUBO:
816     ExpandSADDSUBO(Node, Results);
817     return;
818   case ISD::UMULO:
819   case ISD::SMULO:
820     ExpandMULO(Node, Results);
821     return;
822   case ISD::USUBSAT:
823   case ISD::SSUBSAT:
824   case ISD::UADDSAT:
825   case ISD::SADDSAT:
826     if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) {
827       Results.push_back(Expanded);
828       return;
829     }
830     break;
831   case ISD::SMULFIX:
832   case ISD::UMULFIX:
833     if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) {
834       Results.push_back(Expanded);
835       return;
836     }
837     break;
838   case ISD::SMULFIXSAT:
839   case ISD::UMULFIXSAT:
840     // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly
841     // why. Maybe it results in worse codegen compared to the unroll for some
842     // targets? This should probably be investigated. And if we still prefer to
843     // unroll an explanation could be helpful.
844     break;
845   case ISD::SDIVFIX:
846   case ISD::UDIVFIX:
847     ExpandFixedPointDiv(Node, Results);
848     return;
849   case ISD::SDIVFIXSAT:
850   case ISD::UDIVFIXSAT:
851     break;
852 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
853   case ISD::STRICT_##DAGN:
854 #include "llvm/IR/ConstrainedOps.def"
855     ExpandStrictFPOp(Node, Results);
856     return;
857   case ISD::VECREDUCE_ADD:
858   case ISD::VECREDUCE_MUL:
859   case ISD::VECREDUCE_AND:
860   case ISD::VECREDUCE_OR:
861   case ISD::VECREDUCE_XOR:
862   case ISD::VECREDUCE_SMAX:
863   case ISD::VECREDUCE_SMIN:
864   case ISD::VECREDUCE_UMAX:
865   case ISD::VECREDUCE_UMIN:
866   case ISD::VECREDUCE_FADD:
867   case ISD::VECREDUCE_FMUL:
868   case ISD::VECREDUCE_FMAX:
869   case ISD::VECREDUCE_FMIN:
870     Results.push_back(TLI.expandVecReduce(Node, DAG));
871     return;
872   case ISD::VECREDUCE_SEQ_FADD:
873   case ISD::VECREDUCE_SEQ_FMUL:
874     Results.push_back(TLI.expandVecReduceSeq(Node, DAG));
875     return;
876   case ISD::SREM:
877   case ISD::UREM:
878     ExpandREM(Node, Results);
879     return;
880   }
881 
882   Results.push_back(DAG.UnrollVectorOp(Node));
883 }
884 
885 SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) {
886   // Lower a select instruction where the condition is a scalar and the
887   // operands are vectors. Lower this select to VSELECT and implement it
888   // using XOR AND OR. The selector bit is broadcasted.
889   EVT VT = Node->getValueType(0);
890   SDLoc DL(Node);
891 
892   SDValue Mask = Node->getOperand(0);
893   SDValue Op1 = Node->getOperand(1);
894   SDValue Op2 = Node->getOperand(2);
895 
896   assert(VT.isVector() && !Mask.getValueType().isVector()
897          && Op1.getValueType() == Op2.getValueType() && "Invalid type");
898 
899   // If we can't even use the basic vector operations of
900   // AND,OR,XOR, we will have to scalarize the op.
901   // Notice that the operation may be 'promoted' which means that it is
902   // 'bitcasted' to another type which is handled.
903   // Also, we need to be able to construct a splat vector using either
904   // BUILD_VECTOR or SPLAT_VECTOR.
905   // FIXME: Should we also permit fixed-length SPLAT_VECTOR as a fallback to
906   // BUILD_VECTOR?
907   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
908       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
909       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
910       TLI.getOperationAction(VT.isFixedLengthVector() ? ISD::BUILD_VECTOR
911                                                       : ISD::SPLAT_VECTOR,
912                              VT) == TargetLowering::Expand)
913     return DAG.UnrollVectorOp(Node);
914 
915   // Generate a mask operand.
916   EVT MaskTy = VT.changeVectorElementTypeToInteger();
917 
918   // What is the size of each element in the vector mask.
919   EVT BitTy = MaskTy.getScalarType();
920 
921   Mask = DAG.getSelect(DL, BitTy, Mask, DAG.getAllOnesConstant(DL, BitTy),
922                        DAG.getConstant(0, DL, BitTy));
923 
924   // Broadcast the mask so that the entire vector is all one or all zero.
925   if (VT.isFixedLengthVector())
926     Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask);
927   else
928     Mask = DAG.getSplatVector(MaskTy, DL, Mask);
929 
930   // Bitcast the operands to be the same type as the mask.
931   // This is needed when we select between FP types because
932   // the mask is a vector of integers.
933   Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
934   Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
935 
936   SDValue NotMask = DAG.getNOT(DL, Mask, MaskTy);
937 
938   Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
939   Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
940   SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
941   return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
942 }
943 
944 SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) {
945   EVT VT = Node->getValueType(0);
946 
947   // Make sure that the SRA and SHL instructions are available.
948   if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
949       TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
950     return DAG.UnrollVectorOp(Node);
951 
952   SDLoc DL(Node);
953   EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT();
954 
955   unsigned BW = VT.getScalarSizeInBits();
956   unsigned OrigBW = OrigTy.getScalarSizeInBits();
957   SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
958 
959   SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz);
960   return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
961 }
962 
963 // Generically expand a vector anyext in register to a shuffle of the relevant
964 // lanes into the appropriate locations, with other lanes left undef.
965 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) {
966   SDLoc DL(Node);
967   EVT VT = Node->getValueType(0);
968   int NumElements = VT.getVectorNumElements();
969   SDValue Src = Node->getOperand(0);
970   EVT SrcVT = Src.getValueType();
971   int NumSrcElements = SrcVT.getVectorNumElements();
972 
973   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
974   // into a larger vector type.
975   if (SrcVT.bitsLE(VT)) {
976     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
977            "ANY_EXTEND_VECTOR_INREG vector size mismatch");
978     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
979     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
980                              NumSrcElements);
981     Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
982                       Src, DAG.getVectorIdxConstant(0, DL));
983   }
984 
985   // Build a base mask of undef shuffles.
986   SmallVector<int, 16> ShuffleMask;
987   ShuffleMask.resize(NumSrcElements, -1);
988 
989   // Place the extended lanes into the correct locations.
990   int ExtLaneScale = NumSrcElements / NumElements;
991   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
992   for (int i = 0; i < NumElements; ++i)
993     ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
994 
995   return DAG.getNode(
996       ISD::BITCAST, DL, VT,
997       DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
998 }
999 
1000 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) {
1001   SDLoc DL(Node);
1002   EVT VT = Node->getValueType(0);
1003   SDValue Src = Node->getOperand(0);
1004   EVT SrcVT = Src.getValueType();
1005 
1006   // First build an any-extend node which can be legalized above when we
1007   // recurse through it.
1008   SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src);
1009 
1010   // Now we need sign extend. Do this by shifting the elements. Even if these
1011   // aren't legal operations, they have a better chance of being legalized
1012   // without full scalarization than the sign extension does.
1013   unsigned EltWidth = VT.getScalarSizeInBits();
1014   unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
1015   SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
1016   return DAG.getNode(ISD::SRA, DL, VT,
1017                      DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
1018                      ShiftAmount);
1019 }
1020 
1021 // Generically expand a vector zext in register to a shuffle of the relevant
1022 // lanes into the appropriate locations, a blend of zero into the high bits,
1023 // and a bitcast to the wider element type.
1024 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) {
1025   SDLoc DL(Node);
1026   EVT VT = Node->getValueType(0);
1027   int NumElements = VT.getVectorNumElements();
1028   SDValue Src = Node->getOperand(0);
1029   EVT SrcVT = Src.getValueType();
1030   int NumSrcElements = SrcVT.getVectorNumElements();
1031 
1032   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1033   // into a larger vector type.
1034   if (SrcVT.bitsLE(VT)) {
1035     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
1036            "ZERO_EXTEND_VECTOR_INREG vector size mismatch");
1037     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
1038     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
1039                              NumSrcElements);
1040     Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
1041                       Src, DAG.getVectorIdxConstant(0, DL));
1042   }
1043 
1044   // Build up a zero vector to blend into this one.
1045   SDValue Zero = DAG.getConstant(0, DL, SrcVT);
1046 
1047   // Shuffle the incoming lanes into the correct position, and pull all other
1048   // lanes from the zero vector.
1049   SmallVector<int, 16> ShuffleMask;
1050   ShuffleMask.reserve(NumSrcElements);
1051   for (int i = 0; i < NumSrcElements; ++i)
1052     ShuffleMask.push_back(i);
1053 
1054   int ExtLaneScale = NumSrcElements / NumElements;
1055   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
1056   for (int i = 0; i < NumElements; ++i)
1057     ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
1058 
1059   return DAG.getNode(ISD::BITCAST, DL, VT,
1060                      DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
1061 }
1062 
1063 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
1064   int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
1065   for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
1066     for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
1067       ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
1068 }
1069 
1070 SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) {
1071   EVT VT = Node->getValueType(0);
1072 
1073   // Scalable vectors can't use shuffle expansion.
1074   if (VT.isScalableVector())
1075     return TLI.expandBSWAP(Node, DAG);
1076 
1077   // Generate a byte wise shuffle mask for the BSWAP.
1078   SmallVector<int, 16> ShuffleMask;
1079   createBSWAPShuffleMask(VT, ShuffleMask);
1080   EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
1081 
1082   // Only emit a shuffle if the mask is legal.
1083   if (TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) {
1084     SDLoc DL(Node);
1085     SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1086     Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
1087     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1088   }
1089 
1090   // If we have the appropriate vector bit operations, it is better to use them
1091   // than unrolling and expanding each component.
1092   if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
1093       TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
1094       TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
1095       TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
1096     return TLI.expandBSWAP(Node, DAG);
1097 
1098   // Otherwise unroll.
1099   return DAG.UnrollVectorOp(Node);
1100 }
1101 
1102 void VectorLegalizer::ExpandBITREVERSE(SDNode *Node,
1103                                        SmallVectorImpl<SDValue> &Results) {
1104   EVT VT = Node->getValueType(0);
1105 
1106   // We can't unroll or use shuffles for scalable vectors.
1107   if (VT.isScalableVector()) {
1108     Results.push_back(TLI.expandBITREVERSE(Node, DAG));
1109     return;
1110   }
1111 
1112   // If we have the scalar operation, it's probably cheaper to unroll it.
1113   if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) {
1114     SDValue Tmp = DAG.UnrollVectorOp(Node);
1115     Results.push_back(Tmp);
1116     return;
1117   }
1118 
1119   // If the vector element width is a whole number of bytes, test if its legal
1120   // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
1121   // vector. This greatly reduces the number of bit shifts necessary.
1122   unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
1123   if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
1124     SmallVector<int, 16> BSWAPMask;
1125     createBSWAPShuffleMask(VT, BSWAPMask);
1126 
1127     EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
1128     if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
1129         (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
1130          (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
1131           TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
1132           TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
1133           TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
1134       SDLoc DL(Node);
1135       SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1136       Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
1137                                 BSWAPMask);
1138       Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
1139       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
1140       Results.push_back(Op);
1141       return;
1142     }
1143   }
1144 
1145   // If we have the appropriate vector bit operations, it is better to use them
1146   // than unrolling and expanding each component.
1147   if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
1148       TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
1149       TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
1150       TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) {
1151     Results.push_back(TLI.expandBITREVERSE(Node, DAG));
1152     return;
1153   }
1154 
1155   // Otherwise unroll.
1156   SDValue Tmp = DAG.UnrollVectorOp(Node);
1157   Results.push_back(Tmp);
1158 }
1159 
1160 SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) {
1161   // Implement VSELECT in terms of XOR, AND, OR
1162   // on platforms which do not support blend natively.
1163   SDLoc DL(Node);
1164 
1165   SDValue Mask = Node->getOperand(0);
1166   SDValue Op1 = Node->getOperand(1);
1167   SDValue Op2 = Node->getOperand(2);
1168 
1169   EVT VT = Mask.getValueType();
1170 
1171   // If we can't even use the basic vector operations of
1172   // AND,OR,XOR, we will have to scalarize the op.
1173   // Notice that the operation may be 'promoted' which means that it is
1174   // 'bitcasted' to another type which is handled.
1175   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1176       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1177       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand)
1178     return DAG.UnrollVectorOp(Node);
1179 
1180   // This operation also isn't safe with AND, OR, XOR when the boolean type is
1181   // 0/1 and the select operands aren't also booleans, as we need an all-ones
1182   // vector constant to mask with.
1183   // FIXME: Sign extend 1 to all ones if that's legal on the target.
1184   auto BoolContents = TLI.getBooleanContents(Op1.getValueType());
1185   if (BoolContents != TargetLowering::ZeroOrNegativeOneBooleanContent &&
1186       !(BoolContents == TargetLowering::ZeroOrOneBooleanContent &&
1187         Op1.getValueType().getVectorElementType() == MVT::i1))
1188     return DAG.UnrollVectorOp(Node);
1189 
1190   // If the mask and the type are different sizes, unroll the vector op. This
1191   // can occur when getSetCCResultType returns something that is different in
1192   // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1193   if (VT.getSizeInBits() != Op1.getValueSizeInBits())
1194     return DAG.UnrollVectorOp(Node);
1195 
1196   // Bitcast the operands to be the same type as the mask.
1197   // This is needed when we select between FP types because
1198   // the mask is a vector of integers.
1199   Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
1200   Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
1201 
1202   SDValue NotMask = DAG.getNOT(DL, Mask, VT);
1203 
1204   Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
1205   Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
1206   SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
1207   return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
1208 }
1209 
1210 SDValue VectorLegalizer::ExpandVP_SELECT(SDNode *Node) {
1211   // Implement VP_SELECT in terms of VP_XOR, VP_AND and VP_OR on platforms which
1212   // do not support it natively.
1213   SDLoc DL(Node);
1214 
1215   SDValue Mask = Node->getOperand(0);
1216   SDValue Op1 = Node->getOperand(1);
1217   SDValue Op2 = Node->getOperand(2);
1218   SDValue EVL = Node->getOperand(3);
1219 
1220   EVT VT = Mask.getValueType();
1221 
1222   // If we can't even use the basic vector operations of
1223   // VP_AND,VP_OR,VP_XOR, we will have to scalarize the op.
1224   if (TLI.getOperationAction(ISD::VP_AND, VT) == TargetLowering::Expand ||
1225       TLI.getOperationAction(ISD::VP_XOR, VT) == TargetLowering::Expand ||
1226       TLI.getOperationAction(ISD::VP_OR, VT) == TargetLowering::Expand)
1227     return DAG.UnrollVectorOp(Node);
1228 
1229   // This operation also isn't safe when the operands aren't also booleans.
1230   if (Op1.getValueType().getVectorElementType() != MVT::i1)
1231     return DAG.UnrollVectorOp(Node);
1232 
1233   SDValue Ones = DAG.getAllOnesConstant(DL, VT);
1234   SDValue NotMask = DAG.getNode(ISD::VP_XOR, DL, VT, Mask, Ones, Mask, EVL);
1235 
1236   Op1 = DAG.getNode(ISD::VP_AND, DL, VT, Op1, Mask, Mask, EVL);
1237   Op2 = DAG.getNode(ISD::VP_AND, DL, VT, Op2, NotMask, Mask, EVL);
1238   return DAG.getNode(ISD::VP_OR, DL, VT, Op1, Op2, Mask, EVL);
1239 }
1240 
1241 void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node,
1242                                        SmallVectorImpl<SDValue> &Results) {
1243   // Attempt to expand using TargetLowering.
1244   SDValue Result, Chain;
1245   if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) {
1246     Results.push_back(Result);
1247     if (Node->isStrictFPOpcode())
1248       Results.push_back(Chain);
1249     return;
1250   }
1251 
1252   // Otherwise go ahead and unroll.
1253   if (Node->isStrictFPOpcode()) {
1254     UnrollStrictFPOp(Node, Results);
1255     return;
1256   }
1257 
1258   Results.push_back(DAG.UnrollVectorOp(Node));
1259 }
1260 
1261 void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node,
1262                                           SmallVectorImpl<SDValue> &Results) {
1263   bool IsStrict = Node->isStrictFPOpcode();
1264   unsigned OpNo = IsStrict ? 1 : 0;
1265   SDValue Src = Node->getOperand(OpNo);
1266   EVT VT = Src.getValueType();
1267   SDLoc DL(Node);
1268 
1269   // Attempt to expand using TargetLowering.
1270   SDValue Result;
1271   SDValue Chain;
1272   if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) {
1273     Results.push_back(Result);
1274     if (IsStrict)
1275       Results.push_back(Chain);
1276     return;
1277   }
1278 
1279   // Make sure that the SINT_TO_FP and SRL instructions are available.
1280   if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) ==
1281                          TargetLowering::Expand) ||
1282        (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) ==
1283                         TargetLowering::Expand)) ||
1284       TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) {
1285     if (IsStrict) {
1286       UnrollStrictFPOp(Node, Results);
1287       return;
1288     }
1289 
1290     Results.push_back(DAG.UnrollVectorOp(Node));
1291     return;
1292   }
1293 
1294   unsigned BW = VT.getScalarSizeInBits();
1295   assert((BW == 64 || BW == 32) &&
1296          "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1297 
1298   SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
1299 
1300   // Constants to clear the upper part of the word.
1301   // Notice that we can also use SHL+SHR, but using a constant is slightly
1302   // faster on x86.
1303   uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1304   SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
1305 
1306   // Two to the power of half-word-size.
1307   SDValue TWOHW =
1308       DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0));
1309 
1310   // Clear upper part of LO, lower HI
1311   SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord);
1312   SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask);
1313 
1314   if (IsStrict) {
1315     // Convert hi and lo to floats
1316     // Convert the hi part back to the upper values
1317     // TODO: Can any fast-math-flags be set on these nodes?
1318     SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
1319                               {Node->getValueType(0), MVT::Other},
1320                               {Node->getOperand(0), HI});
1321     fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other},
1322                       {fHI.getValue(1), fHI, TWOHW});
1323     SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
1324                               {Node->getValueType(0), MVT::Other},
1325                               {Node->getOperand(0), LO});
1326 
1327     SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1),
1328                              fLO.getValue(1));
1329 
1330     // Add the two halves
1331     SDValue Result =
1332         DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other},
1333                     {TF, fHI, fLO});
1334 
1335     Results.push_back(Result);
1336     Results.push_back(Result.getValue(1));
1337     return;
1338   }
1339 
1340   // Convert hi and lo to floats
1341   // Convert the hi part back to the upper values
1342   // TODO: Can any fast-math-flags be set on these nodes?
1343   SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI);
1344   fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW);
1345   SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO);
1346 
1347   // Add the two halves
1348   Results.push_back(
1349       DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO));
1350 }
1351 
1352 SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) {
1353   if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) {
1354     SDLoc DL(Node);
1355     SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0));
1356     // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1357     return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero,
1358                        Node->getOperand(0));
1359   }
1360   return DAG.UnrollVectorOp(Node);
1361 }
1362 
1363 void VectorLegalizer::ExpandFSUB(SDNode *Node,
1364                                  SmallVectorImpl<SDValue> &Results) {
1365   // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1366   // we can defer this to operation legalization where it will be lowered as
1367   // a+(-b).
1368   EVT VT = Node->getValueType(0);
1369   if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
1370       TLI.isOperationLegalOrCustom(ISD::FADD, VT))
1371     return; // Defer to LegalizeDAG
1372 
1373   SDValue Tmp = DAG.UnrollVectorOp(Node);
1374   Results.push_back(Tmp);
1375 }
1376 
1377 void VectorLegalizer::ExpandSETCC(SDNode *Node,
1378                                   SmallVectorImpl<SDValue> &Results) {
1379   bool NeedInvert = false;
1380   SDLoc dl(Node);
1381   MVT OpVT = Node->getOperand(0).getSimpleValueType();
1382   ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get();
1383 
1384   if (TLI.getCondCodeAction(CCCode, OpVT) != TargetLowering::Expand) {
1385     Results.push_back(UnrollVSETCC(Node));
1386     return;
1387   }
1388 
1389   SDValue Chain;
1390   SDValue LHS = Node->getOperand(0);
1391   SDValue RHS = Node->getOperand(1);
1392   SDValue CC = Node->getOperand(2);
1393   bool Legalized = TLI.LegalizeSetCCCondCode(DAG, Node->getValueType(0), LHS,
1394                                              RHS, CC, NeedInvert, dl, Chain);
1395 
1396   if (Legalized) {
1397     // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
1398     // condition code, create a new SETCC node.
1399     if (CC.getNode())
1400       LHS = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), LHS, RHS, CC,
1401                         Node->getFlags());
1402 
1403     // If we expanded the SETCC by inverting the condition code, then wrap
1404     // the existing SETCC in a NOT to restore the intended condition.
1405     if (NeedInvert)
1406       LHS = DAG.getLogicalNOT(dl, LHS, LHS->getValueType(0));
1407   } else {
1408     // Otherwise, SETCC for the given comparison type must be completely
1409     // illegal; expand it into a SELECT_CC.
1410     EVT VT = Node->getValueType(0);
1411     LHS =
1412         DAG.getNode(ISD::SELECT_CC, dl, VT, LHS, RHS,
1413                     DAG.getBoolConstant(true, dl, VT, LHS.getValueType()),
1414                     DAG.getBoolConstant(false, dl, VT, LHS.getValueType()), CC);
1415     LHS->setFlags(Node->getFlags());
1416   }
1417 
1418   Results.push_back(LHS);
1419 }
1420 
1421 void VectorLegalizer::ExpandUADDSUBO(SDNode *Node,
1422                                      SmallVectorImpl<SDValue> &Results) {
1423   SDValue Result, Overflow;
1424   TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
1425   Results.push_back(Result);
1426   Results.push_back(Overflow);
1427 }
1428 
1429 void VectorLegalizer::ExpandSADDSUBO(SDNode *Node,
1430                                      SmallVectorImpl<SDValue> &Results) {
1431   SDValue Result, Overflow;
1432   TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
1433   Results.push_back(Result);
1434   Results.push_back(Overflow);
1435 }
1436 
1437 void VectorLegalizer::ExpandMULO(SDNode *Node,
1438                                  SmallVectorImpl<SDValue> &Results) {
1439   SDValue Result, Overflow;
1440   if (!TLI.expandMULO(Node, Result, Overflow, DAG))
1441     std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node);
1442 
1443   Results.push_back(Result);
1444   Results.push_back(Overflow);
1445 }
1446 
1447 void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node,
1448                                           SmallVectorImpl<SDValue> &Results) {
1449   SDNode *N = Node;
1450   if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N),
1451           N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG))
1452     Results.push_back(Expanded);
1453 }
1454 
1455 void VectorLegalizer::ExpandStrictFPOp(SDNode *Node,
1456                                        SmallVectorImpl<SDValue> &Results) {
1457   if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) {
1458     ExpandUINT_TO_FLOAT(Node, Results);
1459     return;
1460   }
1461   if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) {
1462     ExpandFP_TO_UINT(Node, Results);
1463     return;
1464   }
1465 
1466   UnrollStrictFPOp(Node, Results);
1467 }
1468 
1469 void VectorLegalizer::ExpandREM(SDNode *Node,
1470                                 SmallVectorImpl<SDValue> &Results) {
1471   assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) &&
1472          "Expected REM node");
1473 
1474   SDValue Result;
1475   if (!TLI.expandREM(Node, Result, DAG))
1476     Result = DAG.UnrollVectorOp(Node);
1477   Results.push_back(Result);
1478 }
1479 
1480 void VectorLegalizer::UnrollStrictFPOp(SDNode *Node,
1481                                        SmallVectorImpl<SDValue> &Results) {
1482   EVT VT = Node->getValueType(0);
1483   EVT EltVT = VT.getVectorElementType();
1484   unsigned NumElems = VT.getVectorNumElements();
1485   unsigned NumOpers = Node->getNumOperands();
1486   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1487 
1488   EVT TmpEltVT = EltVT;
1489   if (Node->getOpcode() == ISD::STRICT_FSETCC ||
1490       Node->getOpcode() == ISD::STRICT_FSETCCS)
1491     TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(),
1492                                       *DAG.getContext(), TmpEltVT);
1493 
1494   EVT ValueVTs[] = {TmpEltVT, MVT::Other};
1495   SDValue Chain = Node->getOperand(0);
1496   SDLoc dl(Node);
1497 
1498   SmallVector<SDValue, 32> OpValues;
1499   SmallVector<SDValue, 32> OpChains;
1500   for (unsigned i = 0; i < NumElems; ++i) {
1501     SmallVector<SDValue, 4> Opers;
1502     SDValue Idx = DAG.getVectorIdxConstant(i, dl);
1503 
1504     // The Chain is the first operand.
1505     Opers.push_back(Chain);
1506 
1507     // Now process the remaining operands.
1508     for (unsigned j = 1; j < NumOpers; ++j) {
1509       SDValue Oper = Node->getOperand(j);
1510       EVT OperVT = Oper.getValueType();
1511 
1512       if (OperVT.isVector())
1513         Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1514                            OperVT.getVectorElementType(), Oper, Idx);
1515 
1516       Opers.push_back(Oper);
1517     }
1518 
1519     SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers);
1520     SDValue ScalarResult = ScalarOp.getValue(0);
1521     SDValue ScalarChain = ScalarOp.getValue(1);
1522 
1523     if (Node->getOpcode() == ISD::STRICT_FSETCC ||
1524         Node->getOpcode() == ISD::STRICT_FSETCCS)
1525       ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult,
1526                                    DAG.getAllOnesConstant(dl, EltVT),
1527                                    DAG.getConstant(0, dl, EltVT));
1528 
1529     OpValues.push_back(ScalarResult);
1530     OpChains.push_back(ScalarChain);
1531   }
1532 
1533   SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
1534   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
1535 
1536   Results.push_back(Result);
1537   Results.push_back(NewChain);
1538 }
1539 
1540 SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) {
1541   EVT VT = Node->getValueType(0);
1542   unsigned NumElems = VT.getVectorNumElements();
1543   EVT EltVT = VT.getVectorElementType();
1544   SDValue LHS = Node->getOperand(0);
1545   SDValue RHS = Node->getOperand(1);
1546   SDValue CC = Node->getOperand(2);
1547   EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1548   SDLoc dl(Node);
1549   SmallVector<SDValue, 8> Ops(NumElems);
1550   for (unsigned i = 0; i < NumElems; ++i) {
1551     SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1552                                   DAG.getVectorIdxConstant(i, dl));
1553     SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1554                                   DAG.getVectorIdxConstant(i, dl));
1555     Ops[i] = DAG.getNode(ISD::SETCC, dl,
1556                          TLI.getSetCCResultType(DAG.getDataLayout(),
1557                                                 *DAG.getContext(), TmpEltVT),
1558                          LHSElem, RHSElem, CC);
1559     Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], DAG.getAllOnesConstant(dl, EltVT),
1560                            DAG.getConstant(0, dl, EltVT));
1561   }
1562   return DAG.getBuildVector(VT, dl, Ops);
1563 }
1564 
1565 bool SelectionDAG::LegalizeVectors() {
1566   return VectorLegalizer(*this).Run();
1567 }
1568