1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::LegalizeVectors method.
10 //
11 // The vector legalizer looks for vector operations which might need to be
12 // scalarized and legalizes them. This is a separate step from Legalize because
13 // scalarizing can introduce illegal types.  For example, suppose we have an
14 // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
16 // operation, which introduces nodes with the illegal type i64 which must be
17 // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
18 // the operation must be unrolled, which introduces nodes with the illegal
19 // type i8 which must be promoted.
20 //
21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
22 // or operations that happen to take a vector which are custom-lowered;
23 // the legalization for such operations never produces nodes
24 // with illegal types, so it's okay to put off legalizing them until
25 // SelectionDAG::Legalize runs.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/SelectionDAGNodes.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MachineValueType.h"
44 #include "llvm/Support/MathExtras.h"
45 #include <cassert>
46 #include <cstdint>
47 #include <iterator>
48 #include <utility>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "legalizevectorops"
53 
54 namespace {
55 
56 class VectorLegalizer {
57   SelectionDAG& DAG;
58   const TargetLowering &TLI;
59   bool Changed = false; // Keep track of whether anything changed
60 
61   /// For nodes that are of legal width, and that have more than one use, this
62   /// map indicates what regularized operand to use.  This allows us to avoid
63   /// legalizing the same thing more than once.
64   SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
65 
66   /// Adds a node to the translation cache.
67   void AddLegalizedOperand(SDValue From, SDValue To) {
68     LegalizedNodes.insert(std::make_pair(From, To));
69     // If someone requests legalization of the new node, return itself.
70     if (From != To)
71       LegalizedNodes.insert(std::make_pair(To, To));
72   }
73 
74   /// Legalizes the given node.
75   SDValue LegalizeOp(SDValue Op);
76 
77   /// Assuming the node is legal, "legalize" the results.
78   SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result);
79 
80   /// Make sure Results are legal and update the translation cache.
81   SDValue RecursivelyLegalizeResults(SDValue Op,
82                                      MutableArrayRef<SDValue> Results);
83 
84   /// Wrapper to interface LowerOperation with a vector of Results.
85   /// Returns false if the target wants to use default expansion. Otherwise
86   /// returns true. If return is true and the Results are empty, then the
87   /// target wants to keep the input node as is.
88   bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results);
89 
90   /// Implements unrolling a VSETCC.
91   SDValue UnrollVSETCC(SDNode *Node);
92 
93   /// Implement expand-based legalization of vector operations.
94   ///
95   /// This is just a high-level routine to dispatch to specific code paths for
96   /// operations to legalize them.
97   void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results);
98 
99   /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
100   /// FP_TO_SINT isn't legal.
101   void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
102 
103   /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
104   /// SINT_TO_FLOAT and SHR on vectors isn't legal.
105   void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
106 
107   /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
108   SDValue ExpandSEXTINREG(SDNode *Node);
109 
110   /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
111   ///
112   /// Shuffles the low lanes of the operand into place and bitcasts to the proper
113   /// type. The contents of the bits in the extended part of each element are
114   /// undef.
115   SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node);
116 
117   /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
118   ///
119   /// Shuffles the low lanes of the operand into place, bitcasts to the proper
120   /// type, then shifts left and arithmetic shifts right to introduce a sign
121   /// extension.
122   SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node);
123 
124   /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
125   ///
126   /// Shuffles the low lanes of the operand into place and blends zeros into
127   /// the remaining lanes, finally bitcasting to the proper type.
128   SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node);
129 
130   /// Expand bswap of vectors into a shuffle if legal.
131   SDValue ExpandBSWAP(SDNode *Node);
132 
133   /// Implement vselect in terms of XOR, AND, OR when blend is not
134   /// supported by the target.
135   SDValue ExpandVSELECT(SDNode *Node);
136   SDValue ExpandSELECT(SDNode *Node);
137   std::pair<SDValue, SDValue> ExpandLoad(SDNode *N);
138   SDValue ExpandStore(SDNode *N);
139   SDValue ExpandFNEG(SDNode *Node);
140   void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results);
141   void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results);
142   void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
143   void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
144   void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
145   void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results);
146   SDValue ExpandStrictFPOp(SDNode *Node);
147   void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
148 
149   void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
150 
151   /// Implements vector promotion.
152   ///
153   /// This is essentially just bitcasting the operands to a different type and
154   /// bitcasting the result back to the original type.
155   void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results);
156 
157   /// Implements [SU]INT_TO_FP vector promotion.
158   ///
159   /// This is a [zs]ext of the input operand to a larger integer type.
160   void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results);
161 
162   /// Implements FP_TO_[SU]INT vector promotion of the result type.
163   ///
164   /// It is promoted to a larger integer type.  The result is then
165   /// truncated back to the original type.
166   void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
167 
168 public:
169   VectorLegalizer(SelectionDAG& dag) :
170       DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
171 
172   /// Begin legalizer the vector operations in the DAG.
173   bool Run();
174 };
175 
176 } // end anonymous namespace
177 
178 bool VectorLegalizer::Run() {
179   // Before we start legalizing vector nodes, check if there are any vectors.
180   bool HasVectors = false;
181   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
182        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
183     // Check if the values of the nodes contain vectors. We don't need to check
184     // the operands because we are going to check their values at some point.
185     HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); });
186 
187     // If we found a vector node we can start the legalization.
188     if (HasVectors)
189       break;
190   }
191 
192   // If this basic block has no vectors then no need to legalize vectors.
193   if (!HasVectors)
194     return false;
195 
196   // The legalize process is inherently a bottom-up recursive process (users
197   // legalize their uses before themselves).  Given infinite stack space, we
198   // could just start legalizing on the root and traverse the whole graph.  In
199   // practice however, this causes us to run out of stack space on large basic
200   // blocks.  To avoid this problem, compute an ordering of the nodes where each
201   // node is only legalized after all of its operands are legalized.
202   DAG.AssignTopologicalOrder();
203   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
204        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
205     LegalizeOp(SDValue(&*I, 0));
206 
207   // Finally, it's possible the root changed.  Get the new root.
208   SDValue OldRoot = DAG.getRoot();
209   assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
210   DAG.setRoot(LegalizedNodes[OldRoot]);
211 
212   LegalizedNodes.clear();
213 
214   // Remove dead nodes now.
215   DAG.RemoveDeadNodes();
216 
217   return Changed;
218 }
219 
220 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) {
221   assert(Op->getNumValues() == Result->getNumValues() &&
222          "Unexpected number of results");
223   // Generic legalization: just pass the operand through.
224   for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i)
225     AddLegalizedOperand(Op.getValue(i), SDValue(Result, i));
226   return SDValue(Result, Op.getResNo());
227 }
228 
229 SDValue
230 VectorLegalizer::RecursivelyLegalizeResults(SDValue Op,
231                                             MutableArrayRef<SDValue> Results) {
232   assert(Results.size() == Op->getNumValues() &&
233          "Unexpected number of results");
234   // Make sure that the generated code is itself legal.
235   for (unsigned i = 0, e = Results.size(); i != e; ++i) {
236     Results[i] = LegalizeOp(Results[i]);
237     AddLegalizedOperand(Op.getValue(i), Results[i]);
238   }
239 
240   return Results[Op.getResNo()];
241 }
242 
243 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
244   // Note that LegalizeOp may be reentered even from single-use nodes, which
245   // means that we always must cache transformed nodes.
246   DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
247   if (I != LegalizedNodes.end()) return I->second;
248 
249   // Legalize the operands
250   SmallVector<SDValue, 8> Ops;
251   for (const SDValue &Oper : Op->op_values())
252     Ops.push_back(LegalizeOp(Oper));
253 
254   SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops);
255 
256   if (Op.getOpcode() == ISD::LOAD) {
257     LoadSDNode *LD = cast<LoadSDNode>(Node);
258     ISD::LoadExtType ExtType = LD->getExtensionType();
259     if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) {
260       LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: ";
261                  Node->dump(&DAG));
262       switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
263                                    LD->getMemoryVT())) {
264       default: llvm_unreachable("This action is not supported yet!");
265       case TargetLowering::Legal:
266         return TranslateLegalizeResults(Op, Node);
267       case TargetLowering::Custom: {
268         SmallVector<SDValue, 2> ResultVals;
269         if (LowerOperationWrapper(Node, ResultVals)) {
270           if (ResultVals.empty())
271             return TranslateLegalizeResults(Op, Node);
272 
273           Changed = true;
274           return RecursivelyLegalizeResults(Op, ResultVals);
275         }
276         LLVM_FALLTHROUGH;
277       }
278       case TargetLowering::Expand: {
279         Changed = true;
280         std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node);
281         AddLegalizedOperand(Op.getValue(0), Tmp.first);
282         AddLegalizedOperand(Op.getValue(1), Tmp.second);
283         return Op.getResNo() ? Tmp.first : Tmp.second;
284       }
285       }
286     }
287   } else if (Op.getOpcode() == ISD::STORE) {
288     StoreSDNode *ST = cast<StoreSDNode>(Node);
289     EVT StVT = ST->getMemoryVT();
290     MVT ValVT = ST->getValue().getSimpleValueType();
291     if (StVT.isVector() && ST->isTruncatingStore()) {
292       LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: ";
293                  Node->dump(&DAG));
294       switch (TLI.getTruncStoreAction(ValVT, StVT)) {
295       default: llvm_unreachable("This action is not supported yet!");
296       case TargetLowering::Legal:
297         return TranslateLegalizeResults(Op, Node);
298       case TargetLowering::Custom: {
299         SmallVector<SDValue, 1> ResultVals;
300         if (LowerOperationWrapper(Node, ResultVals)) {
301           if (ResultVals.empty())
302             return TranslateLegalizeResults(Op, Node);
303 
304           Changed = true;
305           return RecursivelyLegalizeResults(Op, ResultVals);
306         }
307         LLVM_FALLTHROUGH;
308       }
309       case TargetLowering::Expand: {
310         Changed = true;
311         SDValue Chain = ExpandStore(Node);
312         AddLegalizedOperand(Op, Chain);
313         return Chain;
314       }
315       }
316     }
317   }
318 
319   bool HasVectorValueOrOp =
320       llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) ||
321       llvm::any_of(Node->op_values(),
322                    [](SDValue O) { return O.getValueType().isVector(); });
323   if (!HasVectorValueOrOp)
324     return TranslateLegalizeResults(Op, Node);
325 
326   TargetLowering::LegalizeAction Action = TargetLowering::Legal;
327   EVT ValVT;
328   switch (Op.getOpcode()) {
329   default:
330     return TranslateLegalizeResults(Op, Node);
331   case ISD::MERGE_VALUES:
332     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
333     // This operation lies about being legal: when it claims to be legal,
334     // it should actually be expanded.
335     if (Action == TargetLowering::Legal)
336       Action = TargetLowering::Expand;
337     break;
338 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
339   case ISD::STRICT_##DAGN:
340 #include "llvm/IR/ConstrainedOps.def"
341     ValVT = Node->getValueType(0);
342     if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP ||
343         Op.getOpcode() == ISD::STRICT_UINT_TO_FP)
344       ValVT = Node->getOperand(1).getValueType();
345     Action = TLI.getOperationAction(Node->getOpcode(), ValVT);
346     // If we're asked to expand a strict vector floating-point operation,
347     // by default we're going to simply unroll it.  That is usually the
348     // best approach, except in the case where the resulting strict (scalar)
349     // operations would themselves use the fallback mutation to non-strict.
350     // In that specific case, just do the fallback on the vector op.
351     if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() &&
352         TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) ==
353             TargetLowering::Legal) {
354       EVT EltVT = ValVT.getVectorElementType();
355       if (TLI.getOperationAction(Node->getOpcode(), EltVT)
356           == TargetLowering::Expand &&
357           TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT)
358           == TargetLowering::Legal)
359         Action = TargetLowering::Legal;
360     }
361     break;
362   case ISD::ADD:
363   case ISD::SUB:
364   case ISD::MUL:
365   case ISD::MULHS:
366   case ISD::MULHU:
367   case ISD::SDIV:
368   case ISD::UDIV:
369   case ISD::SREM:
370   case ISD::UREM:
371   case ISD::SDIVREM:
372   case ISD::UDIVREM:
373   case ISD::FADD:
374   case ISD::FSUB:
375   case ISD::FMUL:
376   case ISD::FDIV:
377   case ISD::FREM:
378   case ISD::AND:
379   case ISD::OR:
380   case ISD::XOR:
381   case ISD::SHL:
382   case ISD::SRA:
383   case ISD::SRL:
384   case ISD::FSHL:
385   case ISD::FSHR:
386   case ISD::ROTL:
387   case ISD::ROTR:
388   case ISD::ABS:
389   case ISD::BSWAP:
390   case ISD::BITREVERSE:
391   case ISD::CTLZ:
392   case ISD::CTTZ:
393   case ISD::CTLZ_ZERO_UNDEF:
394   case ISD::CTTZ_ZERO_UNDEF:
395   case ISD::CTPOP:
396   case ISD::SELECT:
397   case ISD::VSELECT:
398   case ISD::SELECT_CC:
399   case ISD::SETCC:
400   case ISD::ZERO_EXTEND:
401   case ISD::ANY_EXTEND:
402   case ISD::TRUNCATE:
403   case ISD::SIGN_EXTEND:
404   case ISD::FP_TO_SINT:
405   case ISD::FP_TO_UINT:
406   case ISD::FNEG:
407   case ISD::FABS:
408   case ISD::FMINNUM:
409   case ISD::FMAXNUM:
410   case ISD::FMINNUM_IEEE:
411   case ISD::FMAXNUM_IEEE:
412   case ISD::FMINIMUM:
413   case ISD::FMAXIMUM:
414   case ISD::FCOPYSIGN:
415   case ISD::FSQRT:
416   case ISD::FSIN:
417   case ISD::FCOS:
418   case ISD::FPOWI:
419   case ISD::FPOW:
420   case ISD::FLOG:
421   case ISD::FLOG2:
422   case ISD::FLOG10:
423   case ISD::FEXP:
424   case ISD::FEXP2:
425   case ISD::FCEIL:
426   case ISD::FTRUNC:
427   case ISD::FRINT:
428   case ISD::FNEARBYINT:
429   case ISD::FROUND:
430   case ISD::FROUNDEVEN:
431   case ISD::FFLOOR:
432   case ISD::FP_ROUND:
433   case ISD::FP_EXTEND:
434   case ISD::FMA:
435   case ISD::SIGN_EXTEND_INREG:
436   case ISD::ANY_EXTEND_VECTOR_INREG:
437   case ISD::SIGN_EXTEND_VECTOR_INREG:
438   case ISD::ZERO_EXTEND_VECTOR_INREG:
439   case ISD::SMIN:
440   case ISD::SMAX:
441   case ISD::UMIN:
442   case ISD::UMAX:
443   case ISD::SMUL_LOHI:
444   case ISD::UMUL_LOHI:
445   case ISD::SADDO:
446   case ISD::UADDO:
447   case ISD::SSUBO:
448   case ISD::USUBO:
449   case ISD::SMULO:
450   case ISD::UMULO:
451   case ISD::FCANONICALIZE:
452   case ISD::SADDSAT:
453   case ISD::UADDSAT:
454   case ISD::SSUBSAT:
455   case ISD::USUBSAT:
456     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
457     break;
458   case ISD::SMULFIX:
459   case ISD::SMULFIXSAT:
460   case ISD::UMULFIX:
461   case ISD::UMULFIXSAT:
462   case ISD::SDIVFIX:
463   case ISD::SDIVFIXSAT:
464   case ISD::UDIVFIX:
465   case ISD::UDIVFIXSAT: {
466     unsigned Scale = Node->getConstantOperandVal(2);
467     Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
468                                               Node->getValueType(0), Scale);
469     break;
470   }
471   case ISD::SINT_TO_FP:
472   case ISD::UINT_TO_FP:
473   case ISD::VECREDUCE_ADD:
474   case ISD::VECREDUCE_MUL:
475   case ISD::VECREDUCE_AND:
476   case ISD::VECREDUCE_OR:
477   case ISD::VECREDUCE_XOR:
478   case ISD::VECREDUCE_SMAX:
479   case ISD::VECREDUCE_SMIN:
480   case ISD::VECREDUCE_UMAX:
481   case ISD::VECREDUCE_UMIN:
482   case ISD::VECREDUCE_FADD:
483   case ISD::VECREDUCE_FMUL:
484   case ISD::VECREDUCE_FMAX:
485   case ISD::VECREDUCE_FMIN:
486     Action = TLI.getOperationAction(Node->getOpcode(),
487                                     Node->getOperand(0).getValueType());
488     break;
489   }
490 
491   LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
492 
493   SmallVector<SDValue, 8> ResultVals;
494   switch (Action) {
495   default: llvm_unreachable("This action is not supported yet!");
496   case TargetLowering::Promote:
497     LLVM_DEBUG(dbgs() << "Promoting\n");
498     Promote(Node, ResultVals);
499     assert(!ResultVals.empty() && "No results for promotion?");
500     break;
501   case TargetLowering::Legal:
502     LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
503     break;
504   case TargetLowering::Custom:
505     LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
506     if (LowerOperationWrapper(Node, ResultVals))
507       break;
508     LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
509     LLVM_FALLTHROUGH;
510   case TargetLowering::Expand:
511     LLVM_DEBUG(dbgs() << "Expanding\n");
512     Expand(Node, ResultVals);
513     break;
514   }
515 
516   if (ResultVals.empty())
517     return TranslateLegalizeResults(Op, Node);
518 
519   Changed = true;
520   return RecursivelyLegalizeResults(Op, ResultVals);
521 }
522 
523 // FIME: This is very similar to the X86 override of
524 // TargetLowering::LowerOperationWrapper. Can we merge them somehow?
525 bool VectorLegalizer::LowerOperationWrapper(SDNode *Node,
526                                             SmallVectorImpl<SDValue> &Results) {
527   SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
528 
529   if (!Res.getNode())
530     return false;
531 
532   if (Res == SDValue(Node, 0))
533     return true;
534 
535   // If the original node has one result, take the return value from
536   // LowerOperation as is. It might not be result number 0.
537   if (Node->getNumValues() == 1) {
538     Results.push_back(Res);
539     return true;
540   }
541 
542   // If the original node has multiple results, then the return node should
543   // have the same number of results.
544   assert((Node->getNumValues() == Res->getNumValues()) &&
545          "Lowering returned the wrong number of results!");
546 
547   // Places new result values base on N result number.
548   for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I)
549     Results.push_back(Res.getValue(I));
550 
551   return true;
552 }
553 
554 void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
555   // For a few operations there is a specific concept for promotion based on
556   // the operand's type.
557   switch (Node->getOpcode()) {
558   case ISD::SINT_TO_FP:
559   case ISD::UINT_TO_FP:
560   case ISD::STRICT_SINT_TO_FP:
561   case ISD::STRICT_UINT_TO_FP:
562     // "Promote" the operation by extending the operand.
563     PromoteINT_TO_FP(Node, Results);
564     return;
565   case ISD::FP_TO_UINT:
566   case ISD::FP_TO_SINT:
567   case ISD::STRICT_FP_TO_UINT:
568   case ISD::STRICT_FP_TO_SINT:
569     // Promote the operation by extending the operand.
570     PromoteFP_TO_INT(Node, Results);
571     return;
572   case ISD::FP_ROUND:
573   case ISD::FP_EXTEND:
574     // These operations are used to do promotion so they can't be promoted
575     // themselves.
576     llvm_unreachable("Don't know how to promote this operation!");
577   }
578 
579   // There are currently two cases of vector promotion:
580   // 1) Bitcasting a vector of integers to a different type to a vector of the
581   //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
582   // 2) Extending a vector of floats to a vector of the same number of larger
583   //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
584   assert(Node->getNumValues() == 1 &&
585          "Can't promote a vector with multiple results!");
586   MVT VT = Node->getSimpleValueType(0);
587   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
588   SDLoc dl(Node);
589   SmallVector<SDValue, 4> Operands(Node->getNumOperands());
590 
591   for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
592     if (Node->getOperand(j).getValueType().isVector())
593       if (Node->getOperand(j)
594               .getValueType()
595               .getVectorElementType()
596               .isFloatingPoint() &&
597           NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
598         Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j));
599       else
600         Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j));
601     else
602       Operands[j] = Node->getOperand(j);
603   }
604 
605   SDValue Res =
606       DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags());
607 
608   if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
609       (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
610        NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
611     Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res, DAG.getIntPtrConstant(0, dl));
612   else
613     Res = DAG.getNode(ISD::BITCAST, dl, VT, Res);
614 
615   Results.push_back(Res);
616 }
617 
618 void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node,
619                                        SmallVectorImpl<SDValue> &Results) {
620   // INT_TO_FP operations may require the input operand be promoted even
621   // when the type is otherwise legal.
622   bool IsStrict = Node->isStrictFPOpcode();
623   MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType();
624   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
625   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
626          "Vectors have different number of elements!");
627 
628   SDLoc dl(Node);
629   SmallVector<SDValue, 4> Operands(Node->getNumOperands());
630 
631   unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP ||
632                   Node->getOpcode() == ISD::STRICT_UINT_TO_FP)
633                      ? ISD::ZERO_EXTEND
634                      : ISD::SIGN_EXTEND;
635   for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
636     if (Node->getOperand(j).getValueType().isVector())
637       Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j));
638     else
639       Operands[j] = Node->getOperand(j);
640   }
641 
642   if (IsStrict) {
643     SDValue Res = DAG.getNode(Node->getOpcode(), dl,
644                               {Node->getValueType(0), MVT::Other}, Operands);
645     Results.push_back(Res);
646     Results.push_back(Res.getValue(1));
647     return;
648   }
649 
650   SDValue Res =
651       DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands);
652   Results.push_back(Res);
653 }
654 
655 // For FP_TO_INT we promote the result type to a vector type with wider
656 // elements and then truncate the result.  This is different from the default
657 // PromoteVector which uses bitcast to promote thus assumning that the
658 // promoted vector type has the same overall size.
659 void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node,
660                                        SmallVectorImpl<SDValue> &Results) {
661   MVT VT = Node->getSimpleValueType(0);
662   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
663   bool IsStrict = Node->isStrictFPOpcode();
664   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
665          "Vectors have different number of elements!");
666 
667   unsigned NewOpc = Node->getOpcode();
668   // Change FP_TO_UINT to FP_TO_SINT if possible.
669   // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
670   if (NewOpc == ISD::FP_TO_UINT &&
671       TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
672     NewOpc = ISD::FP_TO_SINT;
673 
674   if (NewOpc == ISD::STRICT_FP_TO_UINT &&
675       TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT))
676     NewOpc = ISD::STRICT_FP_TO_SINT;
677 
678   SDLoc dl(Node);
679   SDValue Promoted, Chain;
680   if (IsStrict) {
681     Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other},
682                            {Node->getOperand(0), Node->getOperand(1)});
683     Chain = Promoted.getValue(1);
684   } else
685     Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0));
686 
687   // Assert that the converted value fits in the original type.  If it doesn't
688   // (eg: because the value being converted is too big), then the result of the
689   // original operation was undefined anyway, so the assert is still correct.
690   if (Node->getOpcode() == ISD::FP_TO_UINT ||
691       Node->getOpcode() == ISD::STRICT_FP_TO_UINT)
692     NewOpc = ISD::AssertZext;
693   else
694     NewOpc = ISD::AssertSext;
695 
696   Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted,
697                          DAG.getValueType(VT.getScalarType()));
698   Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
699   Results.push_back(Promoted);
700   if (IsStrict)
701     Results.push_back(Chain);
702 }
703 
704 std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) {
705   LoadSDNode *LD = cast<LoadSDNode>(N);
706   return TLI.scalarizeVectorLoad(LD, DAG);
707 }
708 
709 SDValue VectorLegalizer::ExpandStore(SDNode *N) {
710   StoreSDNode *ST = cast<StoreSDNode>(N);
711   SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
712   return TF;
713 }
714 
715 void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
716   SDValue Tmp;
717   switch (Node->getOpcode()) {
718   case ISD::MERGE_VALUES:
719     for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
720       Results.push_back(Node->getOperand(i));
721     return;
722   case ISD::SIGN_EXTEND_INREG:
723     Results.push_back(ExpandSEXTINREG(Node));
724     return;
725   case ISD::ANY_EXTEND_VECTOR_INREG:
726     Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node));
727     return;
728   case ISD::SIGN_EXTEND_VECTOR_INREG:
729     Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node));
730     return;
731   case ISD::ZERO_EXTEND_VECTOR_INREG:
732     Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node));
733     return;
734   case ISD::BSWAP:
735     Results.push_back(ExpandBSWAP(Node));
736     return;
737   case ISD::VSELECT:
738     Results.push_back(ExpandVSELECT(Node));
739     return;
740   case ISD::SELECT:
741     Results.push_back(ExpandSELECT(Node));
742     return;
743   case ISD::FP_TO_UINT:
744     ExpandFP_TO_UINT(Node, Results);
745     return;
746   case ISD::UINT_TO_FP:
747     ExpandUINT_TO_FLOAT(Node, Results);
748     return;
749   case ISD::FNEG:
750     Results.push_back(ExpandFNEG(Node));
751     return;
752   case ISD::FSUB:
753     ExpandFSUB(Node, Results);
754     return;
755   case ISD::SETCC:
756     Results.push_back(UnrollVSETCC(Node));
757     return;
758   case ISD::ABS:
759     if (TLI.expandABS(Node, Tmp, DAG)) {
760       Results.push_back(Tmp);
761       return;
762     }
763     break;
764   case ISD::BITREVERSE:
765     ExpandBITREVERSE(Node, Results);
766     return;
767   case ISD::CTPOP:
768     if (TLI.expandCTPOP(Node, Tmp, DAG)) {
769       Results.push_back(Tmp);
770       return;
771     }
772     break;
773   case ISD::CTLZ:
774   case ISD::CTLZ_ZERO_UNDEF:
775     if (TLI.expandCTLZ(Node, Tmp, DAG)) {
776       Results.push_back(Tmp);
777       return;
778     }
779     break;
780   case ISD::CTTZ:
781   case ISD::CTTZ_ZERO_UNDEF:
782     if (TLI.expandCTTZ(Node, Tmp, DAG)) {
783       Results.push_back(Tmp);
784       return;
785     }
786     break;
787   case ISD::FSHL:
788   case ISD::FSHR:
789     if (TLI.expandFunnelShift(Node, Tmp, DAG)) {
790       Results.push_back(Tmp);
791       return;
792     }
793     break;
794   case ISD::ROTL:
795   case ISD::ROTR:
796     if (TLI.expandROT(Node, Tmp, DAG)) {
797       Results.push_back(Tmp);
798       return;
799     }
800     break;
801   case ISD::FMINNUM:
802   case ISD::FMAXNUM:
803     if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) {
804       Results.push_back(Expanded);
805       return;
806     }
807     break;
808   case ISD::UADDO:
809   case ISD::USUBO:
810     ExpandUADDSUBO(Node, Results);
811     return;
812   case ISD::SADDO:
813   case ISD::SSUBO:
814     ExpandSADDSUBO(Node, Results);
815     return;
816   case ISD::UMULO:
817   case ISD::SMULO:
818     ExpandMULO(Node, Results);
819     return;
820   case ISD::USUBSAT:
821   case ISD::SSUBSAT:
822   case ISD::UADDSAT:
823   case ISD::SADDSAT:
824     if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) {
825       Results.push_back(Expanded);
826       return;
827     }
828     break;
829   case ISD::SMULFIX:
830   case ISD::UMULFIX:
831     if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) {
832       Results.push_back(Expanded);
833       return;
834     }
835     break;
836   case ISD::SMULFIXSAT:
837   case ISD::UMULFIXSAT:
838     // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly
839     // why. Maybe it results in worse codegen compared to the unroll for some
840     // targets? This should probably be investigated. And if we still prefer to
841     // unroll an explanation could be helpful.
842     break;
843   case ISD::SDIVFIX:
844   case ISD::UDIVFIX:
845     ExpandFixedPointDiv(Node, Results);
846     return;
847   case ISD::SDIVFIXSAT:
848   case ISD::UDIVFIXSAT:
849     break;
850 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
851   case ISD::STRICT_##DAGN:
852 #include "llvm/IR/ConstrainedOps.def"
853     ExpandStrictFPOp(Node, Results);
854     return;
855   case ISD::VECREDUCE_ADD:
856   case ISD::VECREDUCE_MUL:
857   case ISD::VECREDUCE_AND:
858   case ISD::VECREDUCE_OR:
859   case ISD::VECREDUCE_XOR:
860   case ISD::VECREDUCE_SMAX:
861   case ISD::VECREDUCE_SMIN:
862   case ISD::VECREDUCE_UMAX:
863   case ISD::VECREDUCE_UMIN:
864   case ISD::VECREDUCE_FADD:
865   case ISD::VECREDUCE_FMUL:
866   case ISD::VECREDUCE_FMAX:
867   case ISD::VECREDUCE_FMIN:
868     Results.push_back(TLI.expandVecReduce(Node, DAG));
869     return;
870   }
871 
872   Results.push_back(DAG.UnrollVectorOp(Node));
873 }
874 
875 SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) {
876   // Lower a select instruction where the condition is a scalar and the
877   // operands are vectors. Lower this select to VSELECT and implement it
878   // using XOR AND OR. The selector bit is broadcasted.
879   EVT VT = Node->getValueType(0);
880   SDLoc DL(Node);
881 
882   SDValue Mask = Node->getOperand(0);
883   SDValue Op1 = Node->getOperand(1);
884   SDValue Op2 = Node->getOperand(2);
885 
886   assert(VT.isVector() && !Mask.getValueType().isVector()
887          && Op1.getValueType() == Op2.getValueType() && "Invalid type");
888 
889   // If we can't even use the basic vector operations of
890   // AND,OR,XOR, we will have to scalarize the op.
891   // Notice that the operation may be 'promoted' which means that it is
892   // 'bitcasted' to another type which is handled.
893   // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
894   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
895       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
896       TLI.getOperationAction(ISD::OR,  VT) == TargetLowering::Expand ||
897       TLI.getOperationAction(ISD::BUILD_VECTOR,  VT) == TargetLowering::Expand)
898     return DAG.UnrollVectorOp(Node);
899 
900   // Generate a mask operand.
901   EVT MaskTy = VT.changeVectorElementTypeToInteger();
902 
903   // What is the size of each element in the vector mask.
904   EVT BitTy = MaskTy.getScalarType();
905 
906   Mask = DAG.getSelect(DL, BitTy, Mask,
907           DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
908                           BitTy),
909           DAG.getConstant(0, DL, BitTy));
910 
911   // Broadcast the mask so that the entire vector is all-one or all zero.
912   Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask);
913 
914   // Bitcast the operands to be the same type as the mask.
915   // This is needed when we select between FP types because
916   // the mask is a vector of integers.
917   Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
918   Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
919 
920   SDValue AllOnes = DAG.getConstant(
921             APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
922   SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
923 
924   Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
925   Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
926   SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
927   return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
928 }
929 
930 SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) {
931   EVT VT = Node->getValueType(0);
932 
933   // Make sure that the SRA and SHL instructions are available.
934   if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
935       TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
936     return DAG.UnrollVectorOp(Node);
937 
938   SDLoc DL(Node);
939   EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT();
940 
941   unsigned BW = VT.getScalarSizeInBits();
942   unsigned OrigBW = OrigTy.getScalarSizeInBits();
943   SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
944 
945   SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz);
946   return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
947 }
948 
949 // Generically expand a vector anyext in register to a shuffle of the relevant
950 // lanes into the appropriate locations, with other lanes left undef.
951 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) {
952   SDLoc DL(Node);
953   EVT VT = Node->getValueType(0);
954   int NumElements = VT.getVectorNumElements();
955   SDValue Src = Node->getOperand(0);
956   EVT SrcVT = Src.getValueType();
957   int NumSrcElements = SrcVT.getVectorNumElements();
958 
959   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
960   // into a larger vector type.
961   if (SrcVT.bitsLE(VT)) {
962     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
963            "ANY_EXTEND_VECTOR_INREG vector size mismatch");
964     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
965     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
966                              NumSrcElements);
967     Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
968                       Src, DAG.getVectorIdxConstant(0, DL));
969   }
970 
971   // Build a base mask of undef shuffles.
972   SmallVector<int, 16> ShuffleMask;
973   ShuffleMask.resize(NumSrcElements, -1);
974 
975   // Place the extended lanes into the correct locations.
976   int ExtLaneScale = NumSrcElements / NumElements;
977   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
978   for (int i = 0; i < NumElements; ++i)
979     ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
980 
981   return DAG.getNode(
982       ISD::BITCAST, DL, VT,
983       DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
984 }
985 
986 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) {
987   SDLoc DL(Node);
988   EVT VT = Node->getValueType(0);
989   SDValue Src = Node->getOperand(0);
990   EVT SrcVT = Src.getValueType();
991 
992   // First build an any-extend node which can be legalized above when we
993   // recurse through it.
994   SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src);
995 
996   // Now we need sign extend. Do this by shifting the elements. Even if these
997   // aren't legal operations, they have a better chance of being legalized
998   // without full scalarization than the sign extension does.
999   unsigned EltWidth = VT.getScalarSizeInBits();
1000   unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
1001   SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
1002   return DAG.getNode(ISD::SRA, DL, VT,
1003                      DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
1004                      ShiftAmount);
1005 }
1006 
1007 // Generically expand a vector zext in register to a shuffle of the relevant
1008 // lanes into the appropriate locations, a blend of zero into the high bits,
1009 // and a bitcast to the wider element type.
1010 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) {
1011   SDLoc DL(Node);
1012   EVT VT = Node->getValueType(0);
1013   int NumElements = VT.getVectorNumElements();
1014   SDValue Src = Node->getOperand(0);
1015   EVT SrcVT = Src.getValueType();
1016   int NumSrcElements = SrcVT.getVectorNumElements();
1017 
1018   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1019   // into a larger vector type.
1020   if (SrcVT.bitsLE(VT)) {
1021     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
1022            "ZERO_EXTEND_VECTOR_INREG vector size mismatch");
1023     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
1024     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
1025                              NumSrcElements);
1026     Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
1027                       Src, DAG.getVectorIdxConstant(0, DL));
1028   }
1029 
1030   // Build up a zero vector to blend into this one.
1031   SDValue Zero = DAG.getConstant(0, DL, SrcVT);
1032 
1033   // Shuffle the incoming lanes into the correct position, and pull all other
1034   // lanes from the zero vector.
1035   SmallVector<int, 16> ShuffleMask;
1036   ShuffleMask.reserve(NumSrcElements);
1037   for (int i = 0; i < NumSrcElements; ++i)
1038     ShuffleMask.push_back(i);
1039 
1040   int ExtLaneScale = NumSrcElements / NumElements;
1041   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
1042   for (int i = 0; i < NumElements; ++i)
1043     ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
1044 
1045   return DAG.getNode(ISD::BITCAST, DL, VT,
1046                      DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
1047 }
1048 
1049 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
1050   int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
1051   for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
1052     for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
1053       ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
1054 }
1055 
1056 SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) {
1057   EVT VT = Node->getValueType(0);
1058 
1059   // Generate a byte wise shuffle mask for the BSWAP.
1060   SmallVector<int, 16> ShuffleMask;
1061   createBSWAPShuffleMask(VT, ShuffleMask);
1062   EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
1063 
1064   // Only emit a shuffle if the mask is legal.
1065   if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
1066     return DAG.UnrollVectorOp(Node);
1067 
1068   SDLoc DL(Node);
1069   SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1070   Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
1071   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1072 }
1073 
1074 void VectorLegalizer::ExpandBITREVERSE(SDNode *Node,
1075                                        SmallVectorImpl<SDValue> &Results) {
1076   EVT VT = Node->getValueType(0);
1077 
1078   // If we have the scalar operation, it's probably cheaper to unroll it.
1079   if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) {
1080     SDValue Tmp = DAG.UnrollVectorOp(Node);
1081     Results.push_back(Tmp);
1082     return;
1083   }
1084 
1085   // If the vector element width is a whole number of bytes, test if its legal
1086   // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
1087   // vector. This greatly reduces the number of bit shifts necessary.
1088   unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
1089   if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
1090     SmallVector<int, 16> BSWAPMask;
1091     createBSWAPShuffleMask(VT, BSWAPMask);
1092 
1093     EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
1094     if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
1095         (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
1096          (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
1097           TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
1098           TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
1099           TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
1100       SDLoc DL(Node);
1101       SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1102       Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
1103                                 BSWAPMask);
1104       Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
1105       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
1106       Results.push_back(Op);
1107       return;
1108     }
1109   }
1110 
1111   // If we have the appropriate vector bit operations, it is better to use them
1112   // than unrolling and expanding each component.
1113   if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
1114       TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
1115       TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
1116       TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
1117     // Let LegalizeDAG handle this later.
1118     return;
1119 
1120   // Otherwise unroll.
1121   SDValue Tmp = DAG.UnrollVectorOp(Node);
1122   Results.push_back(Tmp);
1123 }
1124 
1125 SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) {
1126   // Implement VSELECT in terms of XOR, AND, OR
1127   // on platforms which do not support blend natively.
1128   SDLoc DL(Node);
1129 
1130   SDValue Mask = Node->getOperand(0);
1131   SDValue Op1 = Node->getOperand(1);
1132   SDValue Op2 = Node->getOperand(2);
1133 
1134   EVT VT = Mask.getValueType();
1135 
1136   // If we can't even use the basic vector operations of
1137   // AND,OR,XOR, we will have to scalarize the op.
1138   // Notice that the operation may be 'promoted' which means that it is
1139   // 'bitcasted' to another type which is handled.
1140   // This operation also isn't safe with AND, OR, XOR when the boolean
1141   // type is 0/1 as we need an all ones vector constant to mask with.
1142   // FIXME: Sign extend 1 to all ones if thats legal on the target.
1143   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1144       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1145       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
1146       TLI.getBooleanContents(Op1.getValueType()) !=
1147           TargetLowering::ZeroOrNegativeOneBooleanContent)
1148     return DAG.UnrollVectorOp(Node);
1149 
1150   // If the mask and the type are different sizes, unroll the vector op. This
1151   // can occur when getSetCCResultType returns something that is different in
1152   // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1153   if (VT.getSizeInBits() != Op1.getValueSizeInBits())
1154     return DAG.UnrollVectorOp(Node);
1155 
1156   // Bitcast the operands to be the same type as the mask.
1157   // This is needed when we select between FP types because
1158   // the mask is a vector of integers.
1159   Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
1160   Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
1161 
1162   SDValue AllOnes = DAG.getConstant(
1163     APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT);
1164   SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
1165 
1166   Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
1167   Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
1168   SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
1169   return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
1170 }
1171 
1172 void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node,
1173                                        SmallVectorImpl<SDValue> &Results) {
1174   // Attempt to expand using TargetLowering.
1175   SDValue Result, Chain;
1176   if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) {
1177     Results.push_back(Result);
1178     if (Node->isStrictFPOpcode())
1179       Results.push_back(Chain);
1180     return;
1181   }
1182 
1183   // Otherwise go ahead and unroll.
1184   if (Node->isStrictFPOpcode()) {
1185     UnrollStrictFPOp(Node, Results);
1186     return;
1187   }
1188 
1189   Results.push_back(DAG.UnrollVectorOp(Node));
1190 }
1191 
1192 void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node,
1193                                           SmallVectorImpl<SDValue> &Results) {
1194   bool IsStrict = Node->isStrictFPOpcode();
1195   unsigned OpNo = IsStrict ? 1 : 0;
1196   SDValue Src = Node->getOperand(OpNo);
1197   EVT VT = Src.getValueType();
1198   SDLoc DL(Node);
1199 
1200   // Attempt to expand using TargetLowering.
1201   SDValue Result;
1202   SDValue Chain;
1203   if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) {
1204     Results.push_back(Result);
1205     if (IsStrict)
1206       Results.push_back(Chain);
1207     return;
1208   }
1209 
1210   // Make sure that the SINT_TO_FP and SRL instructions are available.
1211   if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) ==
1212                          TargetLowering::Expand) ||
1213        (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) ==
1214                         TargetLowering::Expand)) ||
1215       TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) {
1216     if (IsStrict) {
1217       UnrollStrictFPOp(Node, Results);
1218       return;
1219     }
1220 
1221     Results.push_back(DAG.UnrollVectorOp(Node));
1222     return;
1223   }
1224 
1225   unsigned BW = VT.getScalarSizeInBits();
1226   assert((BW == 64 || BW == 32) &&
1227          "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1228 
1229   SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
1230 
1231   // Constants to clear the upper part of the word.
1232   // Notice that we can also use SHL+SHR, but using a constant is slightly
1233   // faster on x86.
1234   uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1235   SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
1236 
1237   // Two to the power of half-word-size.
1238   SDValue TWOHW =
1239       DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0));
1240 
1241   // Clear upper part of LO, lower HI
1242   SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord);
1243   SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask);
1244 
1245   if (IsStrict) {
1246     // Convert hi and lo to floats
1247     // Convert the hi part back to the upper values
1248     // TODO: Can any fast-math-flags be set on these nodes?
1249     SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
1250                               {Node->getValueType(0), MVT::Other},
1251                               {Node->getOperand(0), HI});
1252     fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other},
1253                       {fHI.getValue(1), fHI, TWOHW});
1254     SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
1255                               {Node->getValueType(0), MVT::Other},
1256                               {Node->getOperand(0), LO});
1257 
1258     SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1),
1259                              fLO.getValue(1));
1260 
1261     // Add the two halves
1262     SDValue Result =
1263         DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other},
1264                     {TF, fHI, fLO});
1265 
1266     Results.push_back(Result);
1267     Results.push_back(Result.getValue(1));
1268     return;
1269   }
1270 
1271   // Convert hi and lo to floats
1272   // Convert the hi part back to the upper values
1273   // TODO: Can any fast-math-flags be set on these nodes?
1274   SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI);
1275   fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW);
1276   SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO);
1277 
1278   // Add the two halves
1279   Results.push_back(
1280       DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO));
1281 }
1282 
1283 SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) {
1284   if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) {
1285     SDLoc DL(Node);
1286     SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0));
1287     // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1288     return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero,
1289                        Node->getOperand(0));
1290   }
1291   return DAG.UnrollVectorOp(Node);
1292 }
1293 
1294 void VectorLegalizer::ExpandFSUB(SDNode *Node,
1295                                  SmallVectorImpl<SDValue> &Results) {
1296   // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1297   // we can defer this to operation legalization where it will be lowered as
1298   // a+(-b).
1299   EVT VT = Node->getValueType(0);
1300   if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
1301       TLI.isOperationLegalOrCustom(ISD::FADD, VT))
1302     return; // Defer to LegalizeDAG
1303 
1304   SDValue Tmp = DAG.UnrollVectorOp(Node);
1305   Results.push_back(Tmp);
1306 }
1307 
1308 void VectorLegalizer::ExpandUADDSUBO(SDNode *Node,
1309                                      SmallVectorImpl<SDValue> &Results) {
1310   SDValue Result, Overflow;
1311   TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
1312   Results.push_back(Result);
1313   Results.push_back(Overflow);
1314 }
1315 
1316 void VectorLegalizer::ExpandSADDSUBO(SDNode *Node,
1317                                      SmallVectorImpl<SDValue> &Results) {
1318   SDValue Result, Overflow;
1319   TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
1320   Results.push_back(Result);
1321   Results.push_back(Overflow);
1322 }
1323 
1324 void VectorLegalizer::ExpandMULO(SDNode *Node,
1325                                  SmallVectorImpl<SDValue> &Results) {
1326   SDValue Result, Overflow;
1327   if (!TLI.expandMULO(Node, Result, Overflow, DAG))
1328     std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node);
1329 
1330   Results.push_back(Result);
1331   Results.push_back(Overflow);
1332 }
1333 
1334 void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node,
1335                                           SmallVectorImpl<SDValue> &Results) {
1336   SDNode *N = Node;
1337   if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N),
1338           N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG))
1339     Results.push_back(Expanded);
1340 }
1341 
1342 void VectorLegalizer::ExpandStrictFPOp(SDNode *Node,
1343                                        SmallVectorImpl<SDValue> &Results) {
1344   if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) {
1345     ExpandUINT_TO_FLOAT(Node, Results);
1346     return;
1347   }
1348   if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) {
1349     ExpandFP_TO_UINT(Node, Results);
1350     return;
1351   }
1352 
1353   UnrollStrictFPOp(Node, Results);
1354 }
1355 
1356 void VectorLegalizer::UnrollStrictFPOp(SDNode *Node,
1357                                        SmallVectorImpl<SDValue> &Results) {
1358   EVT VT = Node->getValueType(0);
1359   EVT EltVT = VT.getVectorElementType();
1360   unsigned NumElems = VT.getVectorNumElements();
1361   unsigned NumOpers = Node->getNumOperands();
1362   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1363 
1364   EVT TmpEltVT = EltVT;
1365   if (Node->getOpcode() == ISD::STRICT_FSETCC ||
1366       Node->getOpcode() == ISD::STRICT_FSETCCS)
1367     TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(),
1368                                       *DAG.getContext(), TmpEltVT);
1369 
1370   EVT ValueVTs[] = {TmpEltVT, MVT::Other};
1371   SDValue Chain = Node->getOperand(0);
1372   SDLoc dl(Node);
1373 
1374   SmallVector<SDValue, 32> OpValues;
1375   SmallVector<SDValue, 32> OpChains;
1376   for (unsigned i = 0; i < NumElems; ++i) {
1377     SmallVector<SDValue, 4> Opers;
1378     SDValue Idx = DAG.getVectorIdxConstant(i, dl);
1379 
1380     // The Chain is the first operand.
1381     Opers.push_back(Chain);
1382 
1383     // Now process the remaining operands.
1384     for (unsigned j = 1; j < NumOpers; ++j) {
1385       SDValue Oper = Node->getOperand(j);
1386       EVT OperVT = Oper.getValueType();
1387 
1388       if (OperVT.isVector())
1389         Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1390                            OperVT.getVectorElementType(), Oper, Idx);
1391 
1392       Opers.push_back(Oper);
1393     }
1394 
1395     SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers);
1396     SDValue ScalarResult = ScalarOp.getValue(0);
1397     SDValue ScalarChain = ScalarOp.getValue(1);
1398 
1399     if (Node->getOpcode() == ISD::STRICT_FSETCC ||
1400         Node->getOpcode() == ISD::STRICT_FSETCCS)
1401       ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult,
1402                            DAG.getConstant(APInt::getAllOnesValue
1403                                            (EltVT.getSizeInBits()), dl, EltVT),
1404                            DAG.getConstant(0, dl, EltVT));
1405 
1406     OpValues.push_back(ScalarResult);
1407     OpChains.push_back(ScalarChain);
1408   }
1409 
1410   SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
1411   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
1412 
1413   Results.push_back(Result);
1414   Results.push_back(NewChain);
1415 }
1416 
1417 SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) {
1418   EVT VT = Node->getValueType(0);
1419   unsigned NumElems = VT.getVectorNumElements();
1420   EVT EltVT = VT.getVectorElementType();
1421   SDValue LHS = Node->getOperand(0);
1422   SDValue RHS = Node->getOperand(1);
1423   SDValue CC = Node->getOperand(2);
1424   EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1425   SDLoc dl(Node);
1426   SmallVector<SDValue, 8> Ops(NumElems);
1427   for (unsigned i = 0; i < NumElems; ++i) {
1428     SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1429                                   DAG.getVectorIdxConstant(i, dl));
1430     SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1431                                   DAG.getVectorIdxConstant(i, dl));
1432     Ops[i] = DAG.getNode(ISD::SETCC, dl,
1433                          TLI.getSetCCResultType(DAG.getDataLayout(),
1434                                                 *DAG.getContext(), TmpEltVT),
1435                          LHSElem, RHSElem, CC);
1436     Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
1437                            DAG.getConstant(APInt::getAllOnesValue
1438                                            (EltVT.getSizeInBits()), dl, EltVT),
1439                            DAG.getConstant(0, dl, EltVT));
1440   }
1441   return DAG.getBuildVector(VT, dl, Ops);
1442 }
1443 
1444 bool SelectionDAG::LegalizeVectors() {
1445   return VectorLegalizer(*this).Run();
1446 }
1447