1 //===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SelectionDAG::LegalizeVectors method. 11 // 12 // The vector legalizer looks for vector operations which might need to be 13 // scalarized and legalizes them. This is a separate step from Legalize because 14 // scalarizing can introduce illegal types. For example, suppose we have an 15 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 17 // operation, which introduces nodes with the illegal type i64 which must be 18 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 19 // the operation must be unrolled, which introduces nodes with the illegal 20 // type i8 which must be promoted. 21 // 22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 23 // or operations that happen to take a vector which are custom-lowered; 24 // the legalization for such operations never produces nodes 25 // with illegal types, so it's okay to put off legalizing them until 26 // SelectionDAG::Legalize runs. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/Target/TargetLowering.h" 32 using namespace llvm; 33 34 namespace { 35 class VectorLegalizer { 36 SelectionDAG& DAG; 37 const TargetLowering &TLI; 38 bool Changed; // Keep track of whether anything changed 39 40 /// LegalizedNodes - For nodes that are of legal width, and that have more 41 /// than one use, this map indicates what regularized operand to use. This 42 /// allows us to avoid legalizing the same thing more than once. 43 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 44 45 // Adds a node to the translation cache 46 void AddLegalizedOperand(SDValue From, SDValue To) { 47 LegalizedNodes.insert(std::make_pair(From, To)); 48 // If someone requests legalization of the new node, return itself. 49 if (From != To) 50 LegalizedNodes.insert(std::make_pair(To, To)); 51 } 52 53 // Legalizes the given node 54 SDValue LegalizeOp(SDValue Op); 55 // Assuming the node is legal, "legalize" the results 56 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); 57 // Implements unrolling a VSETCC. 58 SDValue UnrollVSETCC(SDValue Op); 59 // Implements expansion for FNEG; falls back to UnrollVectorOp if FSUB 60 // isn't legal. 61 // Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 62 // SINT_TO_FLOAT and SHR on vectors isn't legal. 63 SDValue ExpandUINT_TO_FLOAT(SDValue Op); 64 // Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 65 SDValue ExpandSEXTINREG(SDValue Op); 66 // Implement vselect in terms of XOR, AND, OR when blend is not supported 67 // by the target. 68 SDValue ExpandVSELECT(SDValue Op); 69 SDValue ExpandSELECT(SDValue Op); 70 SDValue ExpandLoad(SDValue Op); 71 SDValue ExpandStore(SDValue Op); 72 SDValue ExpandFNEG(SDValue Op); 73 // Implements vector promotion; this is essentially just bitcasting the 74 // operands to a different type and bitcasting the result back to the 75 // original type. 76 SDValue PromoteVectorOp(SDValue Op); 77 // Implements [SU]INT_TO_FP vector promotion; this is a [zs]ext of the input 78 // operand to the next size up. 79 SDValue PromoteVectorOpINT_TO_FP(SDValue Op); 80 // Implements FP_TO_[SU]INT vector promotion of the result type; it is 81 // promoted to the next size up integer type. The result is then truncated 82 // back to the original type. 83 SDValue PromoteVectorOpFP_TO_INT(SDValue Op, bool isSigned); 84 85 public: 86 bool Run(); 87 VectorLegalizer(SelectionDAG& dag) : 88 DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {} 89 }; 90 91 bool VectorLegalizer::Run() { 92 // Before we start legalizing vector nodes, check if there are any vectors. 93 bool HasVectors = false; 94 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 95 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 96 // Check if the values of the nodes contain vectors. We don't need to check 97 // the operands because we are going to check their values at some point. 98 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); 99 J != E; ++J) 100 HasVectors |= J->isVector(); 101 102 // If we found a vector node we can start the legalization. 103 if (HasVectors) 104 break; 105 } 106 107 // If this basic block has no vectors then no need to legalize vectors. 108 if (!HasVectors) 109 return false; 110 111 // The legalize process is inherently a bottom-up recursive process (users 112 // legalize their uses before themselves). Given infinite stack space, we 113 // could just start legalizing on the root and traverse the whole graph. In 114 // practice however, this causes us to run out of stack space on large basic 115 // blocks. To avoid this problem, compute an ordering of the nodes where each 116 // node is only legalized after all of its operands are legalized. 117 DAG.AssignTopologicalOrder(); 118 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 119 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 120 LegalizeOp(SDValue(I, 0)); 121 122 // Finally, it's possible the root changed. Get the new root. 123 SDValue OldRoot = DAG.getRoot(); 124 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 125 DAG.setRoot(LegalizedNodes[OldRoot]); 126 127 LegalizedNodes.clear(); 128 129 // Remove dead nodes now. 130 DAG.RemoveDeadNodes(); 131 132 return Changed; 133 } 134 135 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { 136 // Generic legalization: just pass the operand through. 137 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) 138 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 139 return Result.getValue(Op.getResNo()); 140 } 141 142 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 143 // Note that LegalizeOp may be reentered even from single-use nodes, which 144 // means that we always must cache transformed nodes. 145 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 146 if (I != LegalizedNodes.end()) return I->second; 147 148 SDNode* Node = Op.getNode(); 149 150 // Legalize the operands 151 SmallVector<SDValue, 8> Ops; 152 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 153 Ops.push_back(LegalizeOp(Node->getOperand(i))); 154 155 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0); 156 157 if (Op.getOpcode() == ISD::LOAD) { 158 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 159 ISD::LoadExtType ExtType = LD->getExtensionType(); 160 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) { 161 if (TLI.isLoadExtLegal(LD->getExtensionType(), LD->getMemoryVT())) 162 return TranslateLegalizeResults(Op, Result); 163 Changed = true; 164 return LegalizeOp(ExpandLoad(Op)); 165 } 166 } else if (Op.getOpcode() == ISD::STORE) { 167 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 168 EVT StVT = ST->getMemoryVT(); 169 MVT ValVT = ST->getValue().getSimpleValueType(); 170 if (StVT.isVector() && ST->isTruncatingStore()) 171 switch (TLI.getTruncStoreAction(ValVT, StVT.getSimpleVT())) { 172 default: llvm_unreachable("This action is not supported yet!"); 173 case TargetLowering::Legal: 174 return TranslateLegalizeResults(Op, Result); 175 case TargetLowering::Custom: 176 Changed = true; 177 return TranslateLegalizeResults(Op, TLI.LowerOperation(Result, DAG)); 178 case TargetLowering::Expand: 179 Changed = true; 180 return LegalizeOp(ExpandStore(Op)); 181 } 182 } 183 184 bool HasVectorValue = false; 185 for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end(); 186 J != E; 187 ++J) 188 HasVectorValue |= J->isVector(); 189 if (!HasVectorValue) 190 return TranslateLegalizeResults(Op, Result); 191 192 EVT QueryType; 193 switch (Op.getOpcode()) { 194 default: 195 return TranslateLegalizeResults(Op, Result); 196 case ISD::ADD: 197 case ISD::SUB: 198 case ISD::MUL: 199 case ISD::SDIV: 200 case ISD::UDIV: 201 case ISD::SREM: 202 case ISD::UREM: 203 case ISD::FADD: 204 case ISD::FSUB: 205 case ISD::FMUL: 206 case ISD::FDIV: 207 case ISD::FREM: 208 case ISD::AND: 209 case ISD::OR: 210 case ISD::XOR: 211 case ISD::SHL: 212 case ISD::SRA: 213 case ISD::SRL: 214 case ISD::ROTL: 215 case ISD::ROTR: 216 case ISD::BSWAP: 217 case ISD::CTLZ: 218 case ISD::CTTZ: 219 case ISD::CTLZ_ZERO_UNDEF: 220 case ISD::CTTZ_ZERO_UNDEF: 221 case ISD::CTPOP: 222 case ISD::SELECT: 223 case ISD::VSELECT: 224 case ISD::SELECT_CC: 225 case ISD::SETCC: 226 case ISD::ZERO_EXTEND: 227 case ISD::ANY_EXTEND: 228 case ISD::TRUNCATE: 229 case ISD::SIGN_EXTEND: 230 case ISD::FP_TO_SINT: 231 case ISD::FP_TO_UINT: 232 case ISD::FNEG: 233 case ISD::FABS: 234 case ISD::FCOPYSIGN: 235 case ISD::FSQRT: 236 case ISD::FSIN: 237 case ISD::FCOS: 238 case ISD::FPOWI: 239 case ISD::FPOW: 240 case ISD::FLOG: 241 case ISD::FLOG2: 242 case ISD::FLOG10: 243 case ISD::FEXP: 244 case ISD::FEXP2: 245 case ISD::FCEIL: 246 case ISD::FTRUNC: 247 case ISD::FRINT: 248 case ISD::FNEARBYINT: 249 case ISD::FROUND: 250 case ISD::FFLOOR: 251 case ISD::FP_ROUND: 252 case ISD::FP_EXTEND: 253 case ISD::FMA: 254 case ISD::SIGN_EXTEND_INREG: 255 QueryType = Node->getValueType(0); 256 break; 257 case ISD::FP_ROUND_INREG: 258 QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 259 break; 260 case ISD::SINT_TO_FP: 261 case ISD::UINT_TO_FP: 262 QueryType = Node->getOperand(0).getValueType(); 263 break; 264 } 265 266 switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) { 267 case TargetLowering::Promote: 268 switch (Op.getOpcode()) { 269 default: 270 // "Promote" the operation by bitcasting 271 Result = PromoteVectorOp(Op); 272 Changed = true; 273 break; 274 case ISD::SINT_TO_FP: 275 case ISD::UINT_TO_FP: 276 // "Promote" the operation by extending the operand. 277 Result = PromoteVectorOpINT_TO_FP(Op); 278 Changed = true; 279 break; 280 case ISD::FP_TO_UINT: 281 case ISD::FP_TO_SINT: 282 // Promote the operation by extending the operand. 283 Result = PromoteVectorOpFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT); 284 Changed = true; 285 break; 286 } 287 break; 288 case TargetLowering::Legal: break; 289 case TargetLowering::Custom: { 290 SDValue Tmp1 = TLI.LowerOperation(Op, DAG); 291 if (Tmp1.getNode()) { 292 Result = Tmp1; 293 break; 294 } 295 // FALL THROUGH 296 } 297 case TargetLowering::Expand: 298 if (Node->getOpcode() == ISD::SIGN_EXTEND_INREG) 299 Result = ExpandSEXTINREG(Op); 300 else if (Node->getOpcode() == ISD::VSELECT) 301 Result = ExpandVSELECT(Op); 302 else if (Node->getOpcode() == ISD::SELECT) 303 Result = ExpandSELECT(Op); 304 else if (Node->getOpcode() == ISD::UINT_TO_FP) 305 Result = ExpandUINT_TO_FLOAT(Op); 306 else if (Node->getOpcode() == ISD::FNEG) 307 Result = ExpandFNEG(Op); 308 else if (Node->getOpcode() == ISD::SETCC) 309 Result = UnrollVSETCC(Op); 310 else 311 Result = DAG.UnrollVectorOp(Op.getNode()); 312 break; 313 } 314 315 // Make sure that the generated code is itself legal. 316 if (Result != Op) { 317 Result = LegalizeOp(Result); 318 Changed = true; 319 } 320 321 // Note that LegalizeOp may be reentered even from single-use nodes, which 322 // means that we always must cache transformed nodes. 323 AddLegalizedOperand(Op, Result); 324 return Result; 325 } 326 327 SDValue VectorLegalizer::PromoteVectorOp(SDValue Op) { 328 // Vector "promotion" is basically just bitcasting and doing the operation 329 // in a different type. For example, x86 promotes ISD::AND on v2i32 to 330 // v1i64. 331 MVT VT = Op.getSimpleValueType(); 332 assert(Op.getNode()->getNumValues() == 1 && 333 "Can't promote a vector with multiple results!"); 334 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 335 SDLoc dl(Op); 336 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 337 338 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 339 if (Op.getOperand(j).getValueType().isVector()) 340 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); 341 else 342 Operands[j] = Op.getOperand(j); 343 } 344 345 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands); 346 347 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 348 } 349 350 SDValue VectorLegalizer::PromoteVectorOpINT_TO_FP(SDValue Op) { 351 // INT_TO_FP operations may require the input operand be promoted even 352 // when the type is otherwise legal. 353 EVT VT = Op.getOperand(0).getValueType(); 354 assert(Op.getNode()->getNumValues() == 1 && 355 "Can't promote a vector with multiple results!"); 356 357 // Normal getTypeToPromoteTo() doesn't work here, as that will promote 358 // by widening the vector w/ the same element width and twice the number 359 // of elements. We want the other way around, the same number of elements, 360 // each twice the width. 361 // 362 // Increase the bitwidth of the element to the next pow-of-two 363 // (which is greater than 8 bits). 364 365 EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext()); 366 assert(NVT.isSimple() && "Promoting to a non-simple vector type!"); 367 SDLoc dl(Op); 368 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 369 370 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : 371 ISD::SIGN_EXTEND; 372 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 373 if (Op.getOperand(j).getValueType().isVector()) 374 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j)); 375 else 376 Operands[j] = Op.getOperand(j); 377 } 378 379 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands); 380 } 381 382 // For FP_TO_INT we promote the result type to a vector type with wider 383 // elements and then truncate the result. This is different from the default 384 // PromoteVector which uses bitcast to promote thus assumning that the 385 // promoted vector type has the same overall size. 386 SDValue VectorLegalizer::PromoteVectorOpFP_TO_INT(SDValue Op, bool isSigned) { 387 assert(Op.getNode()->getNumValues() == 1 && 388 "Can't promote a vector with multiple results!"); 389 EVT VT = Op.getValueType(); 390 391 EVT NewVT; 392 unsigned NewOpc; 393 while (1) { 394 NewVT = VT.widenIntegerVectorElementType(*DAG.getContext()); 395 assert(NewVT.isSimple() && "Promoting to a non-simple vector type!"); 396 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) { 397 NewOpc = ISD::FP_TO_SINT; 398 break; 399 } 400 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) { 401 NewOpc = ISD::FP_TO_UINT; 402 break; 403 } 404 } 405 406 SDLoc loc(Op); 407 SDValue promoted = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0)); 408 return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted); 409 } 410 411 412 SDValue VectorLegalizer::ExpandLoad(SDValue Op) { 413 SDLoc dl(Op); 414 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 415 SDValue Chain = LD->getChain(); 416 SDValue BasePTR = LD->getBasePtr(); 417 EVT SrcVT = LD->getMemoryVT(); 418 ISD::LoadExtType ExtType = LD->getExtensionType(); 419 420 SmallVector<SDValue, 8> Vals; 421 SmallVector<SDValue, 8> LoadChains; 422 unsigned NumElem = SrcVT.getVectorNumElements(); 423 424 EVT SrcEltVT = SrcVT.getScalarType(); 425 EVT DstEltVT = Op.getNode()->getValueType(0).getScalarType(); 426 427 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { 428 // When elements in a vector is not byte-addressable, we cannot directly 429 // load each element by advancing pointer, which could only address bytes. 430 // Instead, we load all significant words, mask bits off, and concatenate 431 // them to form each element. Finally, they are extended to destination 432 // scalar type to build the destination vector. 433 EVT WideVT = TLI.getPointerTy(); 434 435 assert(WideVT.isRound() && 436 "Could not handle the sophisticated case when the widest integer is" 437 " not power of 2."); 438 assert(WideVT.bitsGE(SrcEltVT) && 439 "Type is not legalized?"); 440 441 unsigned WideBytes = WideVT.getStoreSize(); 442 unsigned Offset = 0; 443 unsigned RemainingBytes = SrcVT.getStoreSize(); 444 SmallVector<SDValue, 8> LoadVals; 445 446 while (RemainingBytes > 0) { 447 SDValue ScalarLoad; 448 unsigned LoadBytes = WideBytes; 449 450 if (RemainingBytes >= LoadBytes) { 451 ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR, 452 LD->getPointerInfo().getWithOffset(Offset), 453 LD->isVolatile(), LD->isNonTemporal(), 454 LD->isInvariant(), LD->getAlignment(), 455 LD->getTBAAInfo()); 456 } else { 457 EVT LoadVT = WideVT; 458 while (RemainingBytes < LoadBytes) { 459 LoadBytes >>= 1; // Reduce the load size by half. 460 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); 461 } 462 ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, 463 LD->getPointerInfo().getWithOffset(Offset), 464 LoadVT, LD->isVolatile(), 465 LD->isNonTemporal(), LD->getAlignment(), 466 LD->getTBAAInfo()); 467 } 468 469 RemainingBytes -= LoadBytes; 470 Offset += LoadBytes; 471 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 472 DAG.getConstant(LoadBytes, BasePTR.getValueType())); 473 474 LoadVals.push_back(ScalarLoad.getValue(0)); 475 LoadChains.push_back(ScalarLoad.getValue(1)); 476 } 477 478 // Extract bits, pack and extend/trunc them into destination type. 479 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 480 SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, WideVT); 481 482 unsigned BitOffset = 0; 483 unsigned WideIdx = 0; 484 unsigned WideBits = WideVT.getSizeInBits(); 485 486 for (unsigned Idx = 0; Idx != NumElem; ++Idx) { 487 SDValue Lo, Hi, ShAmt; 488 489 if (BitOffset < WideBits) { 490 ShAmt = DAG.getConstant(BitOffset, TLI.getShiftAmountTy(WideVT)); 491 Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); 492 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); 493 } 494 495 BitOffset += SrcEltBits; 496 if (BitOffset >= WideBits) { 497 WideIdx++; 498 Offset -= WideBits; 499 if (Offset > 0) { 500 ShAmt = DAG.getConstant(SrcEltBits - Offset, 501 TLI.getShiftAmountTy(WideVT)); 502 Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); 503 Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask); 504 } 505 } 506 507 if (Hi.getNode()) 508 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); 509 510 switch (ExtType) { 511 default: llvm_unreachable("Unknown extended-load op!"); 512 case ISD::EXTLOAD: 513 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); 514 break; 515 case ISD::ZEXTLOAD: 516 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); 517 break; 518 case ISD::SEXTLOAD: 519 ShAmt = DAG.getConstant(WideBits - SrcEltBits, 520 TLI.getShiftAmountTy(WideVT)); 521 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); 522 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); 523 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); 524 break; 525 } 526 Vals.push_back(Lo); 527 } 528 } else { 529 unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8; 530 531 for (unsigned Idx=0; Idx<NumElem; Idx++) { 532 SDValue ScalarLoad = DAG.getExtLoad(ExtType, dl, 533 Op.getNode()->getValueType(0).getScalarType(), 534 Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride), 535 SrcVT.getScalarType(), 536 LD->isVolatile(), LD->isNonTemporal(), 537 LD->getAlignment(), LD->getTBAAInfo()); 538 539 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 540 DAG.getConstant(Stride, BasePTR.getValueType())); 541 542 Vals.push_back(ScalarLoad.getValue(0)); 543 LoadChains.push_back(ScalarLoad.getValue(1)); 544 } 545 } 546 547 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 548 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, 549 Op.getNode()->getValueType(0), Vals); 550 551 AddLegalizedOperand(Op.getValue(0), Value); 552 AddLegalizedOperand(Op.getValue(1), NewChain); 553 554 return (Op.getResNo() ? NewChain : Value); 555 } 556 557 SDValue VectorLegalizer::ExpandStore(SDValue Op) { 558 SDLoc dl(Op); 559 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 560 SDValue Chain = ST->getChain(); 561 SDValue BasePTR = ST->getBasePtr(); 562 SDValue Value = ST->getValue(); 563 EVT StVT = ST->getMemoryVT(); 564 565 unsigned Alignment = ST->getAlignment(); 566 bool isVolatile = ST->isVolatile(); 567 bool isNonTemporal = ST->isNonTemporal(); 568 const MDNode *TBAAInfo = ST->getTBAAInfo(); 569 570 unsigned NumElem = StVT.getVectorNumElements(); 571 // The type of the data we want to save 572 EVT RegVT = Value.getValueType(); 573 EVT RegSclVT = RegVT.getScalarType(); 574 // The type of data as saved in memory. 575 EVT MemSclVT = StVT.getScalarType(); 576 577 // Cast floats into integers 578 unsigned ScalarSize = MemSclVT.getSizeInBits(); 579 580 // Round odd types to the next pow of two. 581 if (!isPowerOf2_32(ScalarSize)) 582 ScalarSize = NextPowerOf2(ScalarSize); 583 584 // Store Stride in bytes 585 unsigned Stride = ScalarSize/8; 586 // Extract each of the elements from the original vector 587 // and save them into memory individually. 588 SmallVector<SDValue, 8> Stores; 589 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 590 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 591 RegSclVT, Value, DAG.getConstant(Idx, TLI.getVectorIdxTy())); 592 593 // This scalar TruncStore may be illegal, but we legalize it later. 594 SDValue Store = DAG.getTruncStore(Chain, dl, Ex, BasePTR, 595 ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT, 596 isVolatile, isNonTemporal, Alignment, TBAAInfo); 597 598 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 599 DAG.getConstant(Stride, BasePTR.getValueType())); 600 601 Stores.push_back(Store); 602 } 603 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 604 AddLegalizedOperand(Op, TF); 605 return TF; 606 } 607 608 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) { 609 // Lower a select instruction where the condition is a scalar and the 610 // operands are vectors. Lower this select to VSELECT and implement it 611 // using XOR AND OR. The selector bit is broadcasted. 612 EVT VT = Op.getValueType(); 613 SDLoc DL(Op); 614 615 SDValue Mask = Op.getOperand(0); 616 SDValue Op1 = Op.getOperand(1); 617 SDValue Op2 = Op.getOperand(2); 618 619 assert(VT.isVector() && !Mask.getValueType().isVector() 620 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 621 622 unsigned NumElem = VT.getVectorNumElements(); 623 624 // If we can't even use the basic vector operations of 625 // AND,OR,XOR, we will have to scalarize the op. 626 // Notice that the operation may be 'promoted' which means that it is 627 // 'bitcasted' to another type which is handled. 628 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 629 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 630 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 631 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 632 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 633 return DAG.UnrollVectorOp(Op.getNode()); 634 635 // Generate a mask operand. 636 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 637 638 // What is the size of each element in the vector mask. 639 EVT BitTy = MaskTy.getScalarType(); 640 641 Mask = DAG.getSelect(DL, BitTy, Mask, 642 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), BitTy), 643 DAG.getConstant(0, BitTy)); 644 645 // Broadcast the mask so that the entire vector is all-one or all zero. 646 SmallVector<SDValue, 8> Ops(NumElem, Mask); 647 Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, Ops); 648 649 // Bitcast the operands to be the same type as the mask. 650 // This is needed when we select between FP types because 651 // the mask is a vector of integers. 652 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 653 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 654 655 SDValue AllOnes = DAG.getConstant( 656 APInt::getAllOnesValue(BitTy.getSizeInBits()), MaskTy); 657 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 658 659 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 660 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 661 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 662 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 663 } 664 665 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) { 666 EVT VT = Op.getValueType(); 667 668 // Make sure that the SRA and SHL instructions are available. 669 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 670 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 671 return DAG.UnrollVectorOp(Op.getNode()); 672 673 SDLoc DL(Op); 674 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT(); 675 676 unsigned BW = VT.getScalarType().getSizeInBits(); 677 unsigned OrigBW = OrigTy.getScalarType().getSizeInBits(); 678 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, VT); 679 680 Op = Op.getOperand(0); 681 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz); 682 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 683 } 684 685 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { 686 // Implement VSELECT in terms of XOR, AND, OR 687 // on platforms which do not support blend natively. 688 SDLoc DL(Op); 689 690 SDValue Mask = Op.getOperand(0); 691 SDValue Op1 = Op.getOperand(1); 692 SDValue Op2 = Op.getOperand(2); 693 694 EVT VT = Mask.getValueType(); 695 696 // If we can't even use the basic vector operations of 697 // AND,OR,XOR, we will have to scalarize the op. 698 // Notice that the operation may be 'promoted' which means that it is 699 // 'bitcasted' to another type which is handled. 700 // This operation also isn't safe with AND, OR, XOR when the boolean 701 // type is 0/1 as we need an all ones vector constant to mask with. 702 // FIXME: Sign extend 1 to all ones if thats legal on the target. 703 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 704 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 705 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 706 TLI.getBooleanContents(true) != 707 TargetLowering::ZeroOrNegativeOneBooleanContent) 708 return DAG.UnrollVectorOp(Op.getNode()); 709 710 // If the mask and the type are different sizes, unroll the vector op. This 711 // can occur when getSetCCResultType returns something that is different in 712 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 713 if (VT.getSizeInBits() != Op1.getValueType().getSizeInBits()) 714 return DAG.UnrollVectorOp(Op.getNode()); 715 716 // Bitcast the operands to be the same type as the mask. 717 // This is needed when we select between FP types because 718 // the mask is a vector of integers. 719 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 720 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 721 722 SDValue AllOnes = DAG.getConstant( 723 APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), VT); 724 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 725 726 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 727 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 728 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 729 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 730 } 731 732 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { 733 EVT VT = Op.getOperand(0).getValueType(); 734 SDLoc DL(Op); 735 736 // Make sure that the SINT_TO_FP and SRL instructions are available. 737 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand || 738 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) 739 return DAG.UnrollVectorOp(Op.getNode()); 740 741 EVT SVT = VT.getScalarType(); 742 assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) && 743 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 744 745 unsigned BW = SVT.getSizeInBits(); 746 SDValue HalfWord = DAG.getConstant(BW/2, VT); 747 748 // Constants to clear the upper part of the word. 749 // Notice that we can also use SHL+SHR, but using a constant is slightly 750 // faster on x86. 751 uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF; 752 SDValue HalfWordMask = DAG.getConstant(HWMask, VT); 753 754 // Two to the power of half-word-size. 755 SDValue TWOHW = DAG.getConstantFP((1<<(BW/2)), Op.getValueType()); 756 757 // Clear upper part of LO, lower HI 758 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); 759 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); 760 761 // Convert hi and lo to floats 762 // Convert the hi part back to the upper values 763 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); 764 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); 765 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); 766 767 // Add the two halves 768 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); 769 } 770 771 772 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { 773 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { 774 SDValue Zero = DAG.getConstantFP(-0.0, Op.getValueType()); 775 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 776 Zero, Op.getOperand(0)); 777 } 778 return DAG.UnrollVectorOp(Op.getNode()); 779 } 780 781 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { 782 EVT VT = Op.getValueType(); 783 unsigned NumElems = VT.getVectorNumElements(); 784 EVT EltVT = VT.getVectorElementType(); 785 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); 786 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 787 SDLoc dl(Op); 788 SmallVector<SDValue, 8> Ops(NumElems); 789 for (unsigned i = 0; i < NumElems; ++i) { 790 SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 791 DAG.getConstant(i, TLI.getVectorIdxTy())); 792 SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 793 DAG.getConstant(i, TLI.getVectorIdxTy())); 794 Ops[i] = DAG.getNode(ISD::SETCC, dl, 795 TLI.getSetCCResultType(*DAG.getContext(), TmpEltVT), 796 LHSElem, RHSElem, CC); 797 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 798 DAG.getConstant(APInt::getAllOnesValue 799 (EltVT.getSizeInBits()), EltVT), 800 DAG.getConstant(0, EltVT)); 801 } 802 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 803 } 804 805 } 806 807 bool SelectionDAG::LegalizeVectors() { 808 return VectorLegalizer(*this).Run(); 809 } 810