1 //===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SelectionDAG::LegalizeVectors method. 11 // 12 // The vector legalizer looks for vector operations which might need to be 13 // scalarized and legalizes them. This is a separate step from Legalize because 14 // scalarizing can introduce illegal types. For example, suppose we have an 15 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 17 // operation, which introduces nodes with the illegal type i64 which must be 18 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 19 // the operation must be unrolled, which introduces nodes with the illegal 20 // type i8 which must be promoted. 21 // 22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 23 // or operations that happen to take a vector which are custom-lowered; 24 // the legalization for such operations never produces nodes 25 // with illegal types, so it's okay to put off legalizing them until 26 // SelectionDAG::Legalize runs. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/Target/TargetLowering.h" 32 using namespace llvm; 33 34 namespace { 35 class VectorLegalizer { 36 SelectionDAG& DAG; 37 const TargetLowering &TLI; 38 bool Changed; // Keep track of whether anything changed 39 40 /// For nodes that are of legal width, and that have more than one use, this 41 /// map indicates what regularized operand to use. This allows us to avoid 42 /// legalizing the same thing more than once. 43 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 44 45 /// \brief Adds a node to the translation cache. 46 void AddLegalizedOperand(SDValue From, SDValue To) { 47 LegalizedNodes.insert(std::make_pair(From, To)); 48 // If someone requests legalization of the new node, return itself. 49 if (From != To) 50 LegalizedNodes.insert(std::make_pair(To, To)); 51 } 52 53 /// \brief Legalizes the given node. 54 SDValue LegalizeOp(SDValue Op); 55 56 /// \brief Assuming the node is legal, "legalize" the results. 57 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); 58 59 /// \brief Implements unrolling a VSETCC. 60 SDValue UnrollVSETCC(SDValue Op); 61 62 /// \brief Implement expand-based legalization of vector operations. 63 /// 64 /// This is just a high-level routine to dispatch to specific code paths for 65 /// operations to legalize them. 66 SDValue Expand(SDValue Op); 67 68 /// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if 69 /// FSUB isn't legal. 70 /// 71 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 72 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 73 SDValue ExpandUINT_TO_FLOAT(SDValue Op); 74 75 /// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 76 SDValue ExpandSEXTINREG(SDValue Op); 77 78 /// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG. 79 /// 80 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 81 /// type. The contents of the bits in the extended part of each element are 82 /// undef. 83 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op); 84 85 /// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG. 86 /// 87 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 88 /// type, then shifts left and arithmetic shifts right to introduce a sign 89 /// extension. 90 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op); 91 92 /// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG. 93 /// 94 /// Shuffles the low lanes of the operand into place and blends zeros into 95 /// the remaining lanes, finally bitcasting to the proper type. 96 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op); 97 98 /// \brief Expand bswap of vectors into a shuffle if legal. 99 SDValue ExpandBSWAP(SDValue Op); 100 101 /// \brief Implement vselect in terms of XOR, AND, OR when blend is not 102 /// supported by the target. 103 SDValue ExpandVSELECT(SDValue Op); 104 SDValue ExpandSELECT(SDValue Op); 105 SDValue ExpandLoad(SDValue Op); 106 SDValue ExpandStore(SDValue Op); 107 SDValue ExpandFNEG(SDValue Op); 108 109 /// \brief Implements vector promotion. 110 /// 111 /// This is essentially just bitcasting the operands to a different type and 112 /// bitcasting the result back to the original type. 113 SDValue Promote(SDValue Op); 114 115 /// \brief Implements [SU]INT_TO_FP vector promotion. 116 /// 117 /// This is a [zs]ext of the input operand to the next size up. 118 SDValue PromoteINT_TO_FP(SDValue Op); 119 120 /// \brief Implements FP_TO_[SU]INT vector promotion of the result type. 121 /// 122 /// It is promoted to the next size up integer type. The result is then 123 /// truncated back to the original type. 124 SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned); 125 126 public: 127 /// \brief Begin legalizer the vector operations in the DAG. 128 bool Run(); 129 VectorLegalizer(SelectionDAG& dag) : 130 DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {} 131 }; 132 133 bool VectorLegalizer::Run() { 134 // Before we start legalizing vector nodes, check if there are any vectors. 135 bool HasVectors = false; 136 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 137 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 138 // Check if the values of the nodes contain vectors. We don't need to check 139 // the operands because we are going to check their values at some point. 140 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); 141 J != E; ++J) 142 HasVectors |= J->isVector(); 143 144 // If we found a vector node we can start the legalization. 145 if (HasVectors) 146 break; 147 } 148 149 // If this basic block has no vectors then no need to legalize vectors. 150 if (!HasVectors) 151 return false; 152 153 // The legalize process is inherently a bottom-up recursive process (users 154 // legalize their uses before themselves). Given infinite stack space, we 155 // could just start legalizing on the root and traverse the whole graph. In 156 // practice however, this causes us to run out of stack space on large basic 157 // blocks. To avoid this problem, compute an ordering of the nodes where each 158 // node is only legalized after all of its operands are legalized. 159 DAG.AssignTopologicalOrder(); 160 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 161 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 162 LegalizeOp(SDValue(I, 0)); 163 164 // Finally, it's possible the root changed. Get the new root. 165 SDValue OldRoot = DAG.getRoot(); 166 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 167 DAG.setRoot(LegalizedNodes[OldRoot]); 168 169 LegalizedNodes.clear(); 170 171 // Remove dead nodes now. 172 DAG.RemoveDeadNodes(); 173 174 return Changed; 175 } 176 177 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { 178 // Generic legalization: just pass the operand through. 179 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) 180 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 181 return Result.getValue(Op.getResNo()); 182 } 183 184 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 185 // Note that LegalizeOp may be reentered even from single-use nodes, which 186 // means that we always must cache transformed nodes. 187 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 188 if (I != LegalizedNodes.end()) return I->second; 189 190 SDNode* Node = Op.getNode(); 191 192 // Legalize the operands 193 SmallVector<SDValue, 8> Ops; 194 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 195 Ops.push_back(LegalizeOp(Node->getOperand(i))); 196 197 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0); 198 199 if (Op.getOpcode() == ISD::LOAD) { 200 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 201 ISD::LoadExtType ExtType = LD->getExtensionType(); 202 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) 203 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getMemoryVT())) { 204 default: llvm_unreachable("This action is not supported yet!"); 205 case TargetLowering::Legal: 206 return TranslateLegalizeResults(Op, Result); 207 case TargetLowering::Custom: 208 if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) { 209 Changed = true; 210 if (Lowered->getNumValues() != Op->getNumValues()) { 211 // This expanded to something other than the load. Assume the 212 // lowering code took care of any chain values, and just handle the 213 // returned value. 214 assert(Result.getValue(1).use_empty() && 215 "There are still live users of the old chain!"); 216 return LegalizeOp(Lowered); 217 } else { 218 return TranslateLegalizeResults(Op, Lowered); 219 } 220 } 221 case TargetLowering::Expand: 222 Changed = true; 223 return LegalizeOp(ExpandLoad(Op)); 224 } 225 } else if (Op.getOpcode() == ISD::STORE) { 226 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 227 EVT StVT = ST->getMemoryVT(); 228 MVT ValVT = ST->getValue().getSimpleValueType(); 229 if (StVT.isVector() && ST->isTruncatingStore()) 230 switch (TLI.getTruncStoreAction(ValVT, StVT.getSimpleVT())) { 231 default: llvm_unreachable("This action is not supported yet!"); 232 case TargetLowering::Legal: 233 return TranslateLegalizeResults(Op, Result); 234 case TargetLowering::Custom: 235 Changed = true; 236 return TranslateLegalizeResults(Op, TLI.LowerOperation(Result, DAG)); 237 case TargetLowering::Expand: 238 Changed = true; 239 return LegalizeOp(ExpandStore(Op)); 240 } 241 } 242 243 bool HasVectorValue = false; 244 for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end(); 245 J != E; 246 ++J) 247 HasVectorValue |= J->isVector(); 248 if (!HasVectorValue) 249 return TranslateLegalizeResults(Op, Result); 250 251 EVT QueryType; 252 switch (Op.getOpcode()) { 253 default: 254 return TranslateLegalizeResults(Op, Result); 255 case ISD::ADD: 256 case ISD::SUB: 257 case ISD::MUL: 258 case ISD::SDIV: 259 case ISD::UDIV: 260 case ISD::SREM: 261 case ISD::UREM: 262 case ISD::FADD: 263 case ISD::FSUB: 264 case ISD::FMUL: 265 case ISD::FDIV: 266 case ISD::FREM: 267 case ISD::AND: 268 case ISD::OR: 269 case ISD::XOR: 270 case ISD::SHL: 271 case ISD::SRA: 272 case ISD::SRL: 273 case ISD::ROTL: 274 case ISD::ROTR: 275 case ISD::BSWAP: 276 case ISD::CTLZ: 277 case ISD::CTTZ: 278 case ISD::CTLZ_ZERO_UNDEF: 279 case ISD::CTTZ_ZERO_UNDEF: 280 case ISD::CTPOP: 281 case ISD::SELECT: 282 case ISD::VSELECT: 283 case ISD::SELECT_CC: 284 case ISD::SETCC: 285 case ISD::ZERO_EXTEND: 286 case ISD::ANY_EXTEND: 287 case ISD::TRUNCATE: 288 case ISD::SIGN_EXTEND: 289 case ISD::FP_TO_SINT: 290 case ISD::FP_TO_UINT: 291 case ISD::FNEG: 292 case ISD::FABS: 293 case ISD::FCOPYSIGN: 294 case ISD::FSQRT: 295 case ISD::FSIN: 296 case ISD::FCOS: 297 case ISD::FPOWI: 298 case ISD::FPOW: 299 case ISD::FLOG: 300 case ISD::FLOG2: 301 case ISD::FLOG10: 302 case ISD::FEXP: 303 case ISD::FEXP2: 304 case ISD::FCEIL: 305 case ISD::FTRUNC: 306 case ISD::FRINT: 307 case ISD::FNEARBYINT: 308 case ISD::FROUND: 309 case ISD::FFLOOR: 310 case ISD::FP_ROUND: 311 case ISD::FP_EXTEND: 312 case ISD::FMA: 313 case ISD::SIGN_EXTEND_INREG: 314 case ISD::ANY_EXTEND_VECTOR_INREG: 315 case ISD::SIGN_EXTEND_VECTOR_INREG: 316 case ISD::ZERO_EXTEND_VECTOR_INREG: 317 QueryType = Node->getValueType(0); 318 break; 319 case ISD::FP_ROUND_INREG: 320 QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 321 break; 322 case ISD::SINT_TO_FP: 323 case ISD::UINT_TO_FP: 324 QueryType = Node->getOperand(0).getValueType(); 325 break; 326 } 327 328 switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) { 329 case TargetLowering::Promote: 330 Result = Promote(Op); 331 Changed = true; 332 break; 333 case TargetLowering::Legal: 334 break; 335 case TargetLowering::Custom: { 336 SDValue Tmp1 = TLI.LowerOperation(Op, DAG); 337 if (Tmp1.getNode()) { 338 Result = Tmp1; 339 break; 340 } 341 // FALL THROUGH 342 } 343 case TargetLowering::Expand: 344 Result = Expand(Op); 345 } 346 347 // Make sure that the generated code is itself legal. 348 if (Result != Op) { 349 Result = LegalizeOp(Result); 350 Changed = true; 351 } 352 353 // Note that LegalizeOp may be reentered even from single-use nodes, which 354 // means that we always must cache transformed nodes. 355 AddLegalizedOperand(Op, Result); 356 return Result; 357 } 358 359 SDValue VectorLegalizer::Promote(SDValue Op) { 360 // For a few operations there is a specific concept for promotion based on 361 // the operand's type. 362 switch (Op.getOpcode()) { 363 case ISD::SINT_TO_FP: 364 case ISD::UINT_TO_FP: 365 // "Promote" the operation by extending the operand. 366 return PromoteINT_TO_FP(Op); 367 case ISD::FP_TO_UINT: 368 case ISD::FP_TO_SINT: 369 // Promote the operation by extending the operand. 370 return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT); 371 } 372 373 // There are currently two cases of vector promotion: 374 // 1) Bitcasting a vector of integers to a different type to a vector of the 375 // same overall length. For example, x86 promotes ISD::AND on v2i32 to v1i64. 376 // 2) Extending a vector of floats to a vector of the same number oflarger 377 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 378 MVT VT = Op.getSimpleValueType(); 379 assert(Op.getNode()->getNumValues() == 1 && 380 "Can't promote a vector with multiple results!"); 381 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 382 SDLoc dl(Op); 383 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 384 385 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 386 if (Op.getOperand(j).getValueType().isVector()) 387 if (Op.getOperand(j) 388 .getValueType() 389 .getVectorElementType() 390 .isFloatingPoint()) 391 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j)); 392 else 393 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); 394 else 395 Operands[j] = Op.getOperand(j); 396 } 397 398 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands); 399 if (VT.isFloatingPoint() || 400 (VT.isVector() && VT.getVectorElementType().isFloatingPoint())) 401 return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0)); 402 else 403 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 404 } 405 406 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) { 407 // INT_TO_FP operations may require the input operand be promoted even 408 // when the type is otherwise legal. 409 EVT VT = Op.getOperand(0).getValueType(); 410 assert(Op.getNode()->getNumValues() == 1 && 411 "Can't promote a vector with multiple results!"); 412 413 // Normal getTypeToPromoteTo() doesn't work here, as that will promote 414 // by widening the vector w/ the same element width and twice the number 415 // of elements. We want the other way around, the same number of elements, 416 // each twice the width. 417 // 418 // Increase the bitwidth of the element to the next pow-of-two 419 // (which is greater than 8 bits). 420 421 EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext()); 422 assert(NVT.isSimple() && "Promoting to a non-simple vector type!"); 423 SDLoc dl(Op); 424 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 425 426 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : 427 ISD::SIGN_EXTEND; 428 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 429 if (Op.getOperand(j).getValueType().isVector()) 430 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j)); 431 else 432 Operands[j] = Op.getOperand(j); 433 } 434 435 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands); 436 } 437 438 // For FP_TO_INT we promote the result type to a vector type with wider 439 // elements and then truncate the result. This is different from the default 440 // PromoteVector which uses bitcast to promote thus assumning that the 441 // promoted vector type has the same overall size. 442 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) { 443 assert(Op.getNode()->getNumValues() == 1 && 444 "Can't promote a vector with multiple results!"); 445 EVT VT = Op.getValueType(); 446 447 EVT NewVT; 448 unsigned NewOpc; 449 while (1) { 450 NewVT = VT.widenIntegerVectorElementType(*DAG.getContext()); 451 assert(NewVT.isSimple() && "Promoting to a non-simple vector type!"); 452 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) { 453 NewOpc = ISD::FP_TO_SINT; 454 break; 455 } 456 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) { 457 NewOpc = ISD::FP_TO_UINT; 458 break; 459 } 460 } 461 462 SDLoc loc(Op); 463 SDValue promoted = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0)); 464 return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted); 465 } 466 467 468 SDValue VectorLegalizer::ExpandLoad(SDValue Op) { 469 SDLoc dl(Op); 470 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 471 SDValue Chain = LD->getChain(); 472 SDValue BasePTR = LD->getBasePtr(); 473 EVT SrcVT = LD->getMemoryVT(); 474 ISD::LoadExtType ExtType = LD->getExtensionType(); 475 476 SmallVector<SDValue, 8> Vals; 477 SmallVector<SDValue, 8> LoadChains; 478 unsigned NumElem = SrcVT.getVectorNumElements(); 479 480 EVT SrcEltVT = SrcVT.getScalarType(); 481 EVT DstEltVT = Op.getNode()->getValueType(0).getScalarType(); 482 483 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { 484 // When elements in a vector is not byte-addressable, we cannot directly 485 // load each element by advancing pointer, which could only address bytes. 486 // Instead, we load all significant words, mask bits off, and concatenate 487 // them to form each element. Finally, they are extended to destination 488 // scalar type to build the destination vector. 489 EVT WideVT = TLI.getPointerTy(); 490 491 assert(WideVT.isRound() && 492 "Could not handle the sophisticated case when the widest integer is" 493 " not power of 2."); 494 assert(WideVT.bitsGE(SrcEltVT) && 495 "Type is not legalized?"); 496 497 unsigned WideBytes = WideVT.getStoreSize(); 498 unsigned Offset = 0; 499 unsigned RemainingBytes = SrcVT.getStoreSize(); 500 SmallVector<SDValue, 8> LoadVals; 501 502 while (RemainingBytes > 0) { 503 SDValue ScalarLoad; 504 unsigned LoadBytes = WideBytes; 505 506 if (RemainingBytes >= LoadBytes) { 507 ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR, 508 LD->getPointerInfo().getWithOffset(Offset), 509 LD->isVolatile(), LD->isNonTemporal(), 510 LD->isInvariant(), LD->getAlignment(), 511 LD->getAAInfo()); 512 } else { 513 EVT LoadVT = WideVT; 514 while (RemainingBytes < LoadBytes) { 515 LoadBytes >>= 1; // Reduce the load size by half. 516 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); 517 } 518 ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, 519 LD->getPointerInfo().getWithOffset(Offset), 520 LoadVT, LD->isVolatile(), 521 LD->isNonTemporal(), LD->isInvariant(), 522 LD->getAlignment(), LD->getAAInfo()); 523 } 524 525 RemainingBytes -= LoadBytes; 526 Offset += LoadBytes; 527 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 528 DAG.getConstant(LoadBytes, BasePTR.getValueType())); 529 530 LoadVals.push_back(ScalarLoad.getValue(0)); 531 LoadChains.push_back(ScalarLoad.getValue(1)); 532 } 533 534 // Extract bits, pack and extend/trunc them into destination type. 535 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 536 SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, WideVT); 537 538 unsigned BitOffset = 0; 539 unsigned WideIdx = 0; 540 unsigned WideBits = WideVT.getSizeInBits(); 541 542 for (unsigned Idx = 0; Idx != NumElem; ++Idx) { 543 SDValue Lo, Hi, ShAmt; 544 545 if (BitOffset < WideBits) { 546 ShAmt = DAG.getConstant(BitOffset, TLI.getShiftAmountTy(WideVT)); 547 Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); 548 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); 549 } 550 551 BitOffset += SrcEltBits; 552 if (BitOffset >= WideBits) { 553 WideIdx++; 554 Offset -= WideBits; 555 if (Offset > 0) { 556 ShAmt = DAG.getConstant(SrcEltBits - Offset, 557 TLI.getShiftAmountTy(WideVT)); 558 Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); 559 Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask); 560 } 561 } 562 563 if (Hi.getNode()) 564 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); 565 566 switch (ExtType) { 567 default: llvm_unreachable("Unknown extended-load op!"); 568 case ISD::EXTLOAD: 569 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); 570 break; 571 case ISD::ZEXTLOAD: 572 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); 573 break; 574 case ISD::SEXTLOAD: 575 ShAmt = DAG.getConstant(WideBits - SrcEltBits, 576 TLI.getShiftAmountTy(WideVT)); 577 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); 578 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); 579 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); 580 break; 581 } 582 Vals.push_back(Lo); 583 } 584 } else { 585 unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8; 586 587 for (unsigned Idx=0; Idx<NumElem; Idx++) { 588 SDValue ScalarLoad = DAG.getExtLoad(ExtType, dl, 589 Op.getNode()->getValueType(0).getScalarType(), 590 Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride), 591 SrcVT.getScalarType(), 592 LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), 593 LD->getAlignment(), LD->getAAInfo()); 594 595 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 596 DAG.getConstant(Stride, BasePTR.getValueType())); 597 598 Vals.push_back(ScalarLoad.getValue(0)); 599 LoadChains.push_back(ScalarLoad.getValue(1)); 600 } 601 } 602 603 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 604 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, 605 Op.getNode()->getValueType(0), Vals); 606 607 AddLegalizedOperand(Op.getValue(0), Value); 608 AddLegalizedOperand(Op.getValue(1), NewChain); 609 610 return (Op.getResNo() ? NewChain : Value); 611 } 612 613 SDValue VectorLegalizer::ExpandStore(SDValue Op) { 614 SDLoc dl(Op); 615 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 616 SDValue Chain = ST->getChain(); 617 SDValue BasePTR = ST->getBasePtr(); 618 SDValue Value = ST->getValue(); 619 EVT StVT = ST->getMemoryVT(); 620 621 unsigned Alignment = ST->getAlignment(); 622 bool isVolatile = ST->isVolatile(); 623 bool isNonTemporal = ST->isNonTemporal(); 624 AAMDNodes AAInfo = ST->getAAInfo(); 625 626 unsigned NumElem = StVT.getVectorNumElements(); 627 // The type of the data we want to save 628 EVT RegVT = Value.getValueType(); 629 EVT RegSclVT = RegVT.getScalarType(); 630 // The type of data as saved in memory. 631 EVT MemSclVT = StVT.getScalarType(); 632 633 // Cast floats into integers 634 unsigned ScalarSize = MemSclVT.getSizeInBits(); 635 636 // Round odd types to the next pow of two. 637 if (!isPowerOf2_32(ScalarSize)) 638 ScalarSize = NextPowerOf2(ScalarSize); 639 640 // Store Stride in bytes 641 unsigned Stride = ScalarSize/8; 642 // Extract each of the elements from the original vector 643 // and save them into memory individually. 644 SmallVector<SDValue, 8> Stores; 645 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 646 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 647 RegSclVT, Value, DAG.getConstant(Idx, TLI.getVectorIdxTy())); 648 649 // This scalar TruncStore may be illegal, but we legalize it later. 650 SDValue Store = DAG.getTruncStore(Chain, dl, Ex, BasePTR, 651 ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT, 652 isVolatile, isNonTemporal, Alignment, AAInfo); 653 654 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 655 DAG.getConstant(Stride, BasePTR.getValueType())); 656 657 Stores.push_back(Store); 658 } 659 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 660 AddLegalizedOperand(Op, TF); 661 return TF; 662 } 663 664 SDValue VectorLegalizer::Expand(SDValue Op) { 665 switch (Op->getOpcode()) { 666 case ISD::SIGN_EXTEND_INREG: 667 return ExpandSEXTINREG(Op); 668 case ISD::ANY_EXTEND_VECTOR_INREG: 669 return ExpandANY_EXTEND_VECTOR_INREG(Op); 670 case ISD::SIGN_EXTEND_VECTOR_INREG: 671 return ExpandSIGN_EXTEND_VECTOR_INREG(Op); 672 case ISD::ZERO_EXTEND_VECTOR_INREG: 673 return ExpandZERO_EXTEND_VECTOR_INREG(Op); 674 case ISD::BSWAP: 675 return ExpandBSWAP(Op); 676 case ISD::VSELECT: 677 return ExpandVSELECT(Op); 678 case ISD::SELECT: 679 return ExpandSELECT(Op); 680 case ISD::UINT_TO_FP: 681 return ExpandUINT_TO_FLOAT(Op); 682 case ISD::FNEG: 683 return ExpandFNEG(Op); 684 case ISD::SETCC: 685 return UnrollVSETCC(Op); 686 default: 687 return DAG.UnrollVectorOp(Op.getNode()); 688 } 689 } 690 691 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) { 692 // Lower a select instruction where the condition is a scalar and the 693 // operands are vectors. Lower this select to VSELECT and implement it 694 // using XOR AND OR. The selector bit is broadcasted. 695 EVT VT = Op.getValueType(); 696 SDLoc DL(Op); 697 698 SDValue Mask = Op.getOperand(0); 699 SDValue Op1 = Op.getOperand(1); 700 SDValue Op2 = Op.getOperand(2); 701 702 assert(VT.isVector() && !Mask.getValueType().isVector() 703 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 704 705 unsigned NumElem = VT.getVectorNumElements(); 706 707 // If we can't even use the basic vector operations of 708 // AND,OR,XOR, we will have to scalarize the op. 709 // Notice that the operation may be 'promoted' which means that it is 710 // 'bitcasted' to another type which is handled. 711 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 712 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 713 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 714 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 715 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 716 return DAG.UnrollVectorOp(Op.getNode()); 717 718 // Generate a mask operand. 719 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 720 721 // What is the size of each element in the vector mask. 722 EVT BitTy = MaskTy.getScalarType(); 723 724 Mask = DAG.getSelect(DL, BitTy, Mask, 725 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), BitTy), 726 DAG.getConstant(0, BitTy)); 727 728 // Broadcast the mask so that the entire vector is all-one or all zero. 729 SmallVector<SDValue, 8> Ops(NumElem, Mask); 730 Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, Ops); 731 732 // Bitcast the operands to be the same type as the mask. 733 // This is needed when we select between FP types because 734 // the mask is a vector of integers. 735 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 736 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 737 738 SDValue AllOnes = DAG.getConstant( 739 APInt::getAllOnesValue(BitTy.getSizeInBits()), MaskTy); 740 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 741 742 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 743 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 744 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 745 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 746 } 747 748 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) { 749 EVT VT = Op.getValueType(); 750 751 // Make sure that the SRA and SHL instructions are available. 752 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 753 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 754 return DAG.UnrollVectorOp(Op.getNode()); 755 756 SDLoc DL(Op); 757 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT(); 758 759 unsigned BW = VT.getScalarType().getSizeInBits(); 760 unsigned OrigBW = OrigTy.getScalarType().getSizeInBits(); 761 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, VT); 762 763 Op = Op.getOperand(0); 764 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz); 765 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 766 } 767 768 // Generically expand a vector anyext in register to a shuffle of the relevant 769 // lanes into the appropriate locations, with other lanes left undef. 770 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) { 771 SDLoc DL(Op); 772 EVT VT = Op.getValueType(); 773 int NumElements = VT.getVectorNumElements(); 774 SDValue Src = Op.getOperand(0); 775 EVT SrcVT = Src.getValueType(); 776 int NumSrcElements = SrcVT.getVectorNumElements(); 777 778 // Build a base mask of undef shuffles. 779 SmallVector<int, 16> ShuffleMask; 780 ShuffleMask.resize(NumSrcElements, -1); 781 782 // Place the extended lanes into the correct locations. 783 int ExtLaneScale = NumSrcElements / NumElements; 784 int EndianOffset = TLI.isBigEndian() ? ExtLaneScale - 1 : 0; 785 for (int i = 0; i < NumElements; ++i) 786 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 787 788 return DAG.getNode( 789 ISD::BITCAST, DL, VT, 790 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 791 } 792 793 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) { 794 SDLoc DL(Op); 795 EVT VT = Op.getValueType(); 796 SDValue Src = Op.getOperand(0); 797 EVT SrcVT = Src.getValueType(); 798 799 // First build an any-extend node which can be legalized above when we 800 // recurse through it. 801 Op = DAG.getAnyExtendVectorInReg(Src, DL, VT); 802 803 // Now we need sign extend. Do this by shifting the elements. Even if these 804 // aren't legal operations, they have a better chance of being legalized 805 // without full scalarization than the sign extension does. 806 unsigned EltWidth = VT.getVectorElementType().getSizeInBits(); 807 unsigned SrcEltWidth = SrcVT.getVectorElementType().getSizeInBits(); 808 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, VT); 809 return DAG.getNode(ISD::SRA, DL, VT, 810 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 811 ShiftAmount); 812 } 813 814 // Generically expand a vector zext in register to a shuffle of the relevant 815 // lanes into the appropriate locations, a blend of zero into the high bits, 816 // and a bitcast to the wider element type. 817 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) { 818 SDLoc DL(Op); 819 EVT VT = Op.getValueType(); 820 int NumElements = VT.getVectorNumElements(); 821 SDValue Src = Op.getOperand(0); 822 EVT SrcVT = Src.getValueType(); 823 int NumSrcElements = SrcVT.getVectorNumElements(); 824 825 // Build up a zero vector to blend into this one. 826 EVT SrcScalarVT = SrcVT.getScalarType(); 827 SDValue ScalarZero = DAG.getTargetConstant(0, SrcScalarVT); 828 SmallVector<SDValue, 4> BuildVectorOperands(NumSrcElements, ScalarZero); 829 SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, DL, SrcVT, BuildVectorOperands); 830 831 // Shuffle the incoming lanes into the correct position, and pull all other 832 // lanes from the zero vector. 833 SmallVector<int, 16> ShuffleMask; 834 ShuffleMask.reserve(NumSrcElements); 835 for (int i = 0; i < NumSrcElements; ++i) 836 ShuffleMask.push_back(i); 837 838 int ExtLaneScale = NumSrcElements / NumElements; 839 int EndianOffset = TLI.isBigEndian() ? ExtLaneScale - 1 : 0; 840 for (int i = 0; i < NumElements; ++i) 841 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 842 843 return DAG.getNode(ISD::BITCAST, DL, VT, 844 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 845 } 846 847 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) { 848 EVT VT = Op.getValueType(); 849 850 // Generate a byte wise shuffle mask for the BSWAP. 851 SmallVector<int, 16> ShuffleMask; 852 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 853 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 854 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 855 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 856 857 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 858 859 // Only emit a shuffle if the mask is legal. 860 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) 861 return DAG.UnrollVectorOp(Op.getNode()); 862 863 SDLoc DL(Op); 864 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 865 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 866 ShuffleMask.data()); 867 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 868 } 869 870 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { 871 // Implement VSELECT in terms of XOR, AND, OR 872 // on platforms which do not support blend natively. 873 SDLoc DL(Op); 874 875 SDValue Mask = Op.getOperand(0); 876 SDValue Op1 = Op.getOperand(1); 877 SDValue Op2 = Op.getOperand(2); 878 879 EVT VT = Mask.getValueType(); 880 881 // If we can't even use the basic vector operations of 882 // AND,OR,XOR, we will have to scalarize the op. 883 // Notice that the operation may be 'promoted' which means that it is 884 // 'bitcasted' to another type which is handled. 885 // This operation also isn't safe with AND, OR, XOR when the boolean 886 // type is 0/1 as we need an all ones vector constant to mask with. 887 // FIXME: Sign extend 1 to all ones if thats legal on the target. 888 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 889 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 890 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 891 TLI.getBooleanContents(Op1.getValueType()) != 892 TargetLowering::ZeroOrNegativeOneBooleanContent) 893 return DAG.UnrollVectorOp(Op.getNode()); 894 895 // If the mask and the type are different sizes, unroll the vector op. This 896 // can occur when getSetCCResultType returns something that is different in 897 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 898 if (VT.getSizeInBits() != Op1.getValueType().getSizeInBits()) 899 return DAG.UnrollVectorOp(Op.getNode()); 900 901 // Bitcast the operands to be the same type as the mask. 902 // This is needed when we select between FP types because 903 // the mask is a vector of integers. 904 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 905 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 906 907 SDValue AllOnes = DAG.getConstant( 908 APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), VT); 909 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 910 911 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 912 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 913 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 914 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 915 } 916 917 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { 918 EVT VT = Op.getOperand(0).getValueType(); 919 SDLoc DL(Op); 920 921 // Make sure that the SINT_TO_FP and SRL instructions are available. 922 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand || 923 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) 924 return DAG.UnrollVectorOp(Op.getNode()); 925 926 EVT SVT = VT.getScalarType(); 927 assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) && 928 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 929 930 unsigned BW = SVT.getSizeInBits(); 931 SDValue HalfWord = DAG.getConstant(BW/2, VT); 932 933 // Constants to clear the upper part of the word. 934 // Notice that we can also use SHL+SHR, but using a constant is slightly 935 // faster on x86. 936 uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF; 937 SDValue HalfWordMask = DAG.getConstant(HWMask, VT); 938 939 // Two to the power of half-word-size. 940 SDValue TWOHW = DAG.getConstantFP((1<<(BW/2)), Op.getValueType()); 941 942 // Clear upper part of LO, lower HI 943 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); 944 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); 945 946 // Convert hi and lo to floats 947 // Convert the hi part back to the upper values 948 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); 949 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); 950 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); 951 952 // Add the two halves 953 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); 954 } 955 956 957 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { 958 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { 959 SDValue Zero = DAG.getConstantFP(-0.0, Op.getValueType()); 960 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 961 Zero, Op.getOperand(0)); 962 } 963 return DAG.UnrollVectorOp(Op.getNode()); 964 } 965 966 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { 967 EVT VT = Op.getValueType(); 968 unsigned NumElems = VT.getVectorNumElements(); 969 EVT EltVT = VT.getVectorElementType(); 970 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); 971 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 972 SDLoc dl(Op); 973 SmallVector<SDValue, 8> Ops(NumElems); 974 for (unsigned i = 0; i < NumElems; ++i) { 975 SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 976 DAG.getConstant(i, TLI.getVectorIdxTy())); 977 SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 978 DAG.getConstant(i, TLI.getVectorIdxTy())); 979 Ops[i] = DAG.getNode(ISD::SETCC, dl, 980 TLI.getSetCCResultType(*DAG.getContext(), TmpEltVT), 981 LHSElem, RHSElem, CC); 982 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 983 DAG.getConstant(APInt::getAllOnesValue 984 (EltVT.getSizeInBits()), EltVT), 985 DAG.getConstant(0, EltVT)); 986 } 987 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 988 } 989 990 } 991 992 bool SelectionDAG::LegalizeVectors() { 993 return VectorLegalizer(*this).Run(); 994 } 995