1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SelectionDAG::LegalizeVectors method.
11 //
12 // The vector legalizer looks for vector operations which might need to be
13 // scalarized and legalizes them. This is a separate step from Legalize because
14 // scalarizing can introduce illegal types.  For example, suppose we have an
15 // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
17 // operation, which introduces nodes with the illegal type i64 which must be
18 // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
19 // the operation must be unrolled, which introduces nodes with the illegal
20 // type i8 which must be promoted.
21 //
22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
23 // or operations that happen to take a vector which are custom-lowered;
24 // the legalization for such operations never produces nodes
25 // with illegal types, so it's okay to put off legalizing them until
26 // SelectionDAG::Legalize runs.
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #include "llvm/ADT/APInt.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/SelectionDAG.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/ValueTypes.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MachineValueType.h"
44 #include "llvm/Support/MathExtras.h"
45 #include <cassert>
46 #include <cstdint>
47 #include <iterator>
48 #include <utility>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "legalizevectorops"
53 
54 namespace {
55 
56 class VectorLegalizer {
57   SelectionDAG& DAG;
58   const TargetLowering &TLI;
59   bool Changed = false; // Keep track of whether anything changed
60 
61   /// For nodes that are of legal width, and that have more than one use, this
62   /// map indicates what regularized operand to use.  This allows us to avoid
63   /// legalizing the same thing more than once.
64   SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
65 
66   /// Adds a node to the translation cache.
67   void AddLegalizedOperand(SDValue From, SDValue To) {
68     LegalizedNodes.insert(std::make_pair(From, To));
69     // If someone requests legalization of the new node, return itself.
70     if (From != To)
71       LegalizedNodes.insert(std::make_pair(To, To));
72   }
73 
74   /// Legalizes the given node.
75   SDValue LegalizeOp(SDValue Op);
76 
77   /// Assuming the node is legal, "legalize" the results.
78   SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
79 
80   /// Implements unrolling a VSETCC.
81   SDValue UnrollVSETCC(SDValue Op);
82 
83   /// Implement expand-based legalization of vector operations.
84   ///
85   /// This is just a high-level routine to dispatch to specific code paths for
86   /// operations to legalize them.
87   SDValue Expand(SDValue Op);
88 
89   /// Implements expansion for FNEG; falls back to UnrollVectorOp if
90   /// FSUB isn't legal.
91   ///
92   /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
93   /// SINT_TO_FLOAT and SHR on vectors isn't legal.
94   SDValue ExpandUINT_TO_FLOAT(SDValue Op);
95 
96   /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
97   SDValue ExpandSEXTINREG(SDValue Op);
98 
99   /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
100   ///
101   /// Shuffles the low lanes of the operand into place and bitcasts to the proper
102   /// type. The contents of the bits in the extended part of each element are
103   /// undef.
104   SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op);
105 
106   /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
107   ///
108   /// Shuffles the low lanes of the operand into place, bitcasts to the proper
109   /// type, then shifts left and arithmetic shifts right to introduce a sign
110   /// extension.
111   SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op);
112 
113   /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
114   ///
115   /// Shuffles the low lanes of the operand into place and blends zeros into
116   /// the remaining lanes, finally bitcasting to the proper type.
117   SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op);
118 
119   /// Expand bswap of vectors into a shuffle if legal.
120   SDValue ExpandBSWAP(SDValue Op);
121 
122   /// Implement vselect in terms of XOR, AND, OR when blend is not
123   /// supported by the target.
124   SDValue ExpandVSELECT(SDValue Op);
125   SDValue ExpandSELECT(SDValue Op);
126   SDValue ExpandLoad(SDValue Op);
127   SDValue ExpandStore(SDValue Op);
128   SDValue ExpandFNEG(SDValue Op);
129   SDValue ExpandFSUB(SDValue Op);
130   SDValue ExpandBITREVERSE(SDValue Op);
131   SDValue ExpandCTLZ(SDValue Op);
132   SDValue ExpandCTTZ_ZERO_UNDEF(SDValue Op);
133   SDValue ExpandStrictFPOp(SDValue Op);
134 
135   /// Implements vector promotion.
136   ///
137   /// This is essentially just bitcasting the operands to a different type and
138   /// bitcasting the result back to the original type.
139   SDValue Promote(SDValue Op);
140 
141   /// Implements [SU]INT_TO_FP vector promotion.
142   ///
143   /// This is a [zs]ext of the input operand to a larger integer type.
144   SDValue PromoteINT_TO_FP(SDValue Op);
145 
146   /// Implements FP_TO_[SU]INT vector promotion of the result type.
147   ///
148   /// It is promoted to a larger integer type.  The result is then
149   /// truncated back to the original type.
150   SDValue PromoteFP_TO_INT(SDValue Op);
151 
152 public:
153   VectorLegalizer(SelectionDAG& dag) :
154       DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
155 
156   /// Begin legalizer the vector operations in the DAG.
157   bool Run();
158 };
159 
160 } // end anonymous namespace
161 
162 bool VectorLegalizer::Run() {
163   // Before we start legalizing vector nodes, check if there are any vectors.
164   bool HasVectors = false;
165   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
166        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
167     // Check if the values of the nodes contain vectors. We don't need to check
168     // the operands because we are going to check their values at some point.
169     for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
170          J != E; ++J)
171       HasVectors |= J->isVector();
172 
173     // If we found a vector node we can start the legalization.
174     if (HasVectors)
175       break;
176   }
177 
178   // If this basic block has no vectors then no need to legalize vectors.
179   if (!HasVectors)
180     return false;
181 
182   // The legalize process is inherently a bottom-up recursive process (users
183   // legalize their uses before themselves).  Given infinite stack space, we
184   // could just start legalizing on the root and traverse the whole graph.  In
185   // practice however, this causes us to run out of stack space on large basic
186   // blocks.  To avoid this problem, compute an ordering of the nodes where each
187   // node is only legalized after all of its operands are legalized.
188   DAG.AssignTopologicalOrder();
189   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
190        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
191     LegalizeOp(SDValue(&*I, 0));
192 
193   // Finally, it's possible the root changed.  Get the new root.
194   SDValue OldRoot = DAG.getRoot();
195   assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
196   DAG.setRoot(LegalizedNodes[OldRoot]);
197 
198   LegalizedNodes.clear();
199 
200   // Remove dead nodes now.
201   DAG.RemoveDeadNodes();
202 
203   return Changed;
204 }
205 
206 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
207   // Generic legalization: just pass the operand through.
208   for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
209     AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
210   return Result.getValue(Op.getResNo());
211 }
212 
213 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
214   // Note that LegalizeOp may be reentered even from single-use nodes, which
215   // means that we always must cache transformed nodes.
216   DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
217   if (I != LegalizedNodes.end()) return I->second;
218 
219   SDNode* Node = Op.getNode();
220 
221   // Legalize the operands
222   SmallVector<SDValue, 8> Ops;
223   for (const SDValue &Op : Node->op_values())
224     Ops.push_back(LegalizeOp(Op));
225 
226   SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops),
227                            Op.getResNo());
228 
229   bool HasVectorValue = false;
230   if (Op.getOpcode() == ISD::LOAD) {
231     LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
232     ISD::LoadExtType ExtType = LD->getExtensionType();
233     if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) {
234       LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: ";
235                  Node->dump(&DAG));
236       switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
237                                    LD->getMemoryVT())) {
238       default: llvm_unreachable("This action is not supported yet!");
239       case TargetLowering::Legal:
240         return TranslateLegalizeResults(Op, Result);
241       case TargetLowering::Custom:
242         if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) {
243           if (Lowered == Result)
244             return TranslateLegalizeResults(Op, Lowered);
245           Changed = true;
246           if (Lowered->getNumValues() != Op->getNumValues()) {
247             // This expanded to something other than the load. Assume the
248             // lowering code took care of any chain values, and just handle the
249             // returned value.
250             assert(Result.getValue(1).use_empty() &&
251                    "There are still live users of the old chain!");
252             return LegalizeOp(Lowered);
253           }
254           return TranslateLegalizeResults(Op, Lowered);
255         }
256         LLVM_FALLTHROUGH;
257       case TargetLowering::Expand:
258         Changed = true;
259         return LegalizeOp(ExpandLoad(Op));
260       }
261     }
262   } else if (Op.getOpcode() == ISD::STORE) {
263     StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
264     EVT StVT = ST->getMemoryVT();
265     MVT ValVT = ST->getValue().getSimpleValueType();
266     if (StVT.isVector() && ST->isTruncatingStore()) {
267       LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: ";
268                  Node->dump(&DAG));
269       switch (TLI.getTruncStoreAction(ValVT, StVT)) {
270       default: llvm_unreachable("This action is not supported yet!");
271       case TargetLowering::Legal:
272         return TranslateLegalizeResults(Op, Result);
273       case TargetLowering::Custom: {
274         SDValue Lowered = TLI.LowerOperation(Result, DAG);
275         Changed = Lowered != Result;
276         return TranslateLegalizeResults(Op, Lowered);
277       }
278       case TargetLowering::Expand:
279         Changed = true;
280         return LegalizeOp(ExpandStore(Op));
281       }
282     }
283   } else if (Op.getOpcode() == ISD::MSCATTER || Op.getOpcode() == ISD::MSTORE)
284     HasVectorValue = true;
285 
286   for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end();
287        J != E;
288        ++J)
289     HasVectorValue |= J->isVector();
290   if (!HasVectorValue)
291     return TranslateLegalizeResults(Op, Result);
292 
293   TargetLowering::LegalizeAction Action = TargetLowering::Legal;
294   switch (Op.getOpcode()) {
295   default:
296     return TranslateLegalizeResults(Op, Result);
297   case ISD::STRICT_FADD:
298   case ISD::STRICT_FSUB:
299   case ISD::STRICT_FMUL:
300   case ISD::STRICT_FDIV:
301   case ISD::STRICT_FREM:
302   case ISD::STRICT_FSQRT:
303   case ISD::STRICT_FMA:
304   case ISD::STRICT_FPOW:
305   case ISD::STRICT_FPOWI:
306   case ISD::STRICT_FSIN:
307   case ISD::STRICT_FCOS:
308   case ISD::STRICT_FEXP:
309   case ISD::STRICT_FEXP2:
310   case ISD::STRICT_FLOG:
311   case ISD::STRICT_FLOG10:
312   case ISD::STRICT_FLOG2:
313   case ISD::STRICT_FRINT:
314   case ISD::STRICT_FNEARBYINT:
315     // These pseudo-ops get legalized as if they were their non-strict
316     // equivalent.  For instance, if ISD::FSQRT is legal then ISD::STRICT_FSQRT
317     // is also legal, but if ISD::FSQRT requires expansion then so does
318     // ISD::STRICT_FSQRT.
319     Action = TLI.getStrictFPOperationAction(Node->getOpcode(),
320                                             Node->getValueType(0));
321     break;
322   case ISD::ADD:
323   case ISD::SUB:
324   case ISD::MUL:
325   case ISD::SDIV:
326   case ISD::UDIV:
327   case ISD::SREM:
328   case ISD::UREM:
329   case ISD::SDIVREM:
330   case ISD::UDIVREM:
331   case ISD::FADD:
332   case ISD::FSUB:
333   case ISD::FMUL:
334   case ISD::FDIV:
335   case ISD::FREM:
336   case ISD::AND:
337   case ISD::OR:
338   case ISD::XOR:
339   case ISD::SHL:
340   case ISD::SRA:
341   case ISD::SRL:
342   case ISD::ROTL:
343   case ISD::ROTR:
344   case ISD::BSWAP:
345   case ISD::BITREVERSE:
346   case ISD::CTLZ:
347   case ISD::CTTZ:
348   case ISD::CTLZ_ZERO_UNDEF:
349   case ISD::CTTZ_ZERO_UNDEF:
350   case ISD::CTPOP:
351   case ISD::SELECT:
352   case ISD::VSELECT:
353   case ISD::SELECT_CC:
354   case ISD::SETCC:
355   case ISD::ZERO_EXTEND:
356   case ISD::ANY_EXTEND:
357   case ISD::TRUNCATE:
358   case ISD::SIGN_EXTEND:
359   case ISD::FP_TO_SINT:
360   case ISD::FP_TO_UINT:
361   case ISD::FNEG:
362   case ISD::FABS:
363   case ISD::FMINNUM:
364   case ISD::FMAXNUM:
365   case ISD::FMINNAN:
366   case ISD::FMAXNAN:
367   case ISD::FCOPYSIGN:
368   case ISD::FSQRT:
369   case ISD::FSIN:
370   case ISD::FCOS:
371   case ISD::FPOWI:
372   case ISD::FPOW:
373   case ISD::FLOG:
374   case ISD::FLOG2:
375   case ISD::FLOG10:
376   case ISD::FEXP:
377   case ISD::FEXP2:
378   case ISD::FCEIL:
379   case ISD::FTRUNC:
380   case ISD::FRINT:
381   case ISD::FNEARBYINT:
382   case ISD::FROUND:
383   case ISD::FFLOOR:
384   case ISD::FP_ROUND:
385   case ISD::FP_EXTEND:
386   case ISD::FMA:
387   case ISD::SIGN_EXTEND_INREG:
388   case ISD::ANY_EXTEND_VECTOR_INREG:
389   case ISD::SIGN_EXTEND_VECTOR_INREG:
390   case ISD::ZERO_EXTEND_VECTOR_INREG:
391   case ISD::SMIN:
392   case ISD::SMAX:
393   case ISD::UMIN:
394   case ISD::UMAX:
395   case ISD::SMUL_LOHI:
396   case ISD::UMUL_LOHI:
397   case ISD::FCANONICALIZE:
398     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
399     break;
400   case ISD::FP_ROUND_INREG:
401     Action = TLI.getOperationAction(Node->getOpcode(),
402                cast<VTSDNode>(Node->getOperand(1))->getVT());
403     break;
404   case ISD::SINT_TO_FP:
405   case ISD::UINT_TO_FP:
406     Action = TLI.getOperationAction(Node->getOpcode(),
407                                     Node->getOperand(0).getValueType());
408     break;
409   case ISD::MSCATTER:
410     Action = TLI.getOperationAction(Node->getOpcode(),
411                cast<MaskedScatterSDNode>(Node)->getValue().getValueType());
412     break;
413   case ISD::MSTORE:
414     Action = TLI.getOperationAction(Node->getOpcode(),
415                cast<MaskedStoreSDNode>(Node)->getValue().getValueType());
416     break;
417   }
418 
419   LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
420 
421   switch (Action) {
422   default: llvm_unreachable("This action is not supported yet!");
423   case TargetLowering::Promote:
424     Result = Promote(Op);
425     Changed = true;
426     break;
427   case TargetLowering::Legal:
428     LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
429     break;
430   case TargetLowering::Custom: {
431     LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
432     if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) {
433       LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
434       Result = Tmp1;
435       break;
436     }
437     LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
438     LLVM_FALLTHROUGH;
439   }
440   case TargetLowering::Expand:
441     Result = Expand(Op);
442   }
443 
444   // Make sure that the generated code is itself legal.
445   if (Result != Op) {
446     Result = LegalizeOp(Result);
447     Changed = true;
448   }
449 
450   // Note that LegalizeOp may be reentered even from single-use nodes, which
451   // means that we always must cache transformed nodes.
452   AddLegalizedOperand(Op, Result);
453   return Result;
454 }
455 
456 SDValue VectorLegalizer::Promote(SDValue Op) {
457   // For a few operations there is a specific concept for promotion based on
458   // the operand's type.
459   switch (Op.getOpcode()) {
460   case ISD::SINT_TO_FP:
461   case ISD::UINT_TO_FP:
462     // "Promote" the operation by extending the operand.
463     return PromoteINT_TO_FP(Op);
464   case ISD::FP_TO_UINT:
465   case ISD::FP_TO_SINT:
466     // Promote the operation by extending the operand.
467     return PromoteFP_TO_INT(Op);
468   }
469 
470   // There are currently two cases of vector promotion:
471   // 1) Bitcasting a vector of integers to a different type to a vector of the
472   //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
473   // 2) Extending a vector of floats to a vector of the same number of larger
474   //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
475   MVT VT = Op.getSimpleValueType();
476   assert(Op.getNode()->getNumValues() == 1 &&
477          "Can't promote a vector with multiple results!");
478   MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
479   SDLoc dl(Op);
480   SmallVector<SDValue, 4> Operands(Op.getNumOperands());
481 
482   for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
483     if (Op.getOperand(j).getValueType().isVector())
484       if (Op.getOperand(j)
485               .getValueType()
486               .getVectorElementType()
487               .isFloatingPoint() &&
488           NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
489         Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j));
490       else
491         Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
492     else
493       Operands[j] = Op.getOperand(j);
494   }
495 
496   Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags());
497   if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
498       (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
499        NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
500     return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl));
501   else
502     return DAG.getNode(ISD::BITCAST, dl, VT, Op);
503 }
504 
505 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) {
506   // INT_TO_FP operations may require the input operand be promoted even
507   // when the type is otherwise legal.
508   MVT VT = Op.getOperand(0).getSimpleValueType();
509   MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
510   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
511          "Vectors have different number of elements!");
512 
513   SDLoc dl(Op);
514   SmallVector<SDValue, 4> Operands(Op.getNumOperands());
515 
516   unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND :
517     ISD::SIGN_EXTEND;
518   for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
519     if (Op.getOperand(j).getValueType().isVector())
520       Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
521     else
522       Operands[j] = Op.getOperand(j);
523   }
524 
525   return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands);
526 }
527 
528 // For FP_TO_INT we promote the result type to a vector type with wider
529 // elements and then truncate the result.  This is different from the default
530 // PromoteVector which uses bitcast to promote thus assumning that the
531 // promoted vector type has the same overall size.
532 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op) {
533   MVT VT = Op.getSimpleValueType();
534   MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
535   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
536          "Vectors have different number of elements!");
537 
538   unsigned NewOpc = Op->getOpcode();
539   // Change FP_TO_UINT to FP_TO_SINT if possible.
540   // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
541   if (NewOpc == ISD::FP_TO_UINT &&
542       TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
543     NewOpc = ISD::FP_TO_SINT;
544 
545   SDLoc dl(Op);
546   SDValue Promoted  = DAG.getNode(NewOpc, dl, NVT, Op.getOperand(0));
547 
548   // Assert that the converted value fits in the original type.  If it doesn't
549   // (eg: because the value being converted is too big), then the result of the
550   // original operation was undefined anyway, so the assert is still correct.
551   Promoted = DAG.getNode(Op->getOpcode() == ISD::FP_TO_UINT ? ISD::AssertZext
552                                                             : ISD::AssertSext,
553                          dl, NVT, Promoted,
554                          DAG.getValueType(VT.getScalarType()));
555   return DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
556 }
557 
558 SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
559   LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
560 
561   EVT SrcVT = LD->getMemoryVT();
562   EVT SrcEltVT = SrcVT.getScalarType();
563   unsigned NumElem = SrcVT.getVectorNumElements();
564 
565   SDValue NewChain;
566   SDValue Value;
567   if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
568     SDLoc dl(Op);
569 
570     SmallVector<SDValue, 8> Vals;
571     SmallVector<SDValue, 8> LoadChains;
572 
573     EVT DstEltVT = LD->getValueType(0).getScalarType();
574     SDValue Chain = LD->getChain();
575     SDValue BasePTR = LD->getBasePtr();
576     ISD::LoadExtType ExtType = LD->getExtensionType();
577 
578     // When elements in a vector is not byte-addressable, we cannot directly
579     // load each element by advancing pointer, which could only address bytes.
580     // Instead, we load all significant words, mask bits off, and concatenate
581     // them to form each element. Finally, they are extended to destination
582     // scalar type to build the destination vector.
583     EVT WideVT = TLI.getPointerTy(DAG.getDataLayout());
584 
585     assert(WideVT.isRound() &&
586            "Could not handle the sophisticated case when the widest integer is"
587            " not power of 2.");
588     assert(WideVT.bitsGE(SrcEltVT) &&
589            "Type is not legalized?");
590 
591     unsigned WideBytes = WideVT.getStoreSize();
592     unsigned Offset = 0;
593     unsigned RemainingBytes = SrcVT.getStoreSize();
594     SmallVector<SDValue, 8> LoadVals;
595     while (RemainingBytes > 0) {
596       SDValue ScalarLoad;
597       unsigned LoadBytes = WideBytes;
598 
599       if (RemainingBytes >= LoadBytes) {
600         ScalarLoad =
601             DAG.getLoad(WideVT, dl, Chain, BasePTR,
602                         LD->getPointerInfo().getWithOffset(Offset),
603                         MinAlign(LD->getAlignment(), Offset),
604                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
605       } else {
606         EVT LoadVT = WideVT;
607         while (RemainingBytes < LoadBytes) {
608           LoadBytes >>= 1; // Reduce the load size by half.
609           LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
610         }
611         ScalarLoad =
612             DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
613                            LD->getPointerInfo().getWithOffset(Offset), LoadVT,
614                            MinAlign(LD->getAlignment(), Offset),
615                            LD->getMemOperand()->getFlags(), LD->getAAInfo());
616       }
617 
618       RemainingBytes -= LoadBytes;
619       Offset += LoadBytes;
620 
621       BasePTR = DAG.getObjectPtrOffset(dl, BasePTR, LoadBytes);
622 
623       LoadVals.push_back(ScalarLoad.getValue(0));
624       LoadChains.push_back(ScalarLoad.getValue(1));
625     }
626 
627     // Extract bits, pack and extend/trunc them into destination type.
628     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
629     SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT);
630 
631     unsigned BitOffset = 0;
632     unsigned WideIdx = 0;
633     unsigned WideBits = WideVT.getSizeInBits();
634 
635     for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
636       SDValue Lo, Hi, ShAmt;
637 
638       if (BitOffset < WideBits) {
639         ShAmt = DAG.getConstant(
640             BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
641         Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
642         Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
643       }
644 
645       BitOffset += SrcEltBits;
646       if (BitOffset >= WideBits) {
647         WideIdx++;
648         BitOffset -= WideBits;
649         if (BitOffset > 0) {
650           ShAmt = DAG.getConstant(
651               SrcEltBits - BitOffset, dl,
652               TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
653           Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
654           Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask);
655         }
656       }
657 
658       if (Hi.getNode())
659         Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
660 
661       switch (ExtType) {
662       default: llvm_unreachable("Unknown extended-load op!");
663       case ISD::EXTLOAD:
664         Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
665         break;
666       case ISD::ZEXTLOAD:
667         Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
668         break;
669       case ISD::SEXTLOAD:
670         ShAmt =
671             DAG.getConstant(WideBits - SrcEltBits, dl,
672                             TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
673         Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
674         Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
675         Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
676         break;
677       }
678       Vals.push_back(Lo);
679     }
680 
681     NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
682     Value = DAG.getBuildVector(Op.getNode()->getValueType(0), dl, Vals);
683   } else {
684     SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG);
685     // Skip past MERGE_VALUE node if known.
686     if (Scalarized->getOpcode() == ISD::MERGE_VALUES) {
687       NewChain = Scalarized.getOperand(1);
688       Value = Scalarized.getOperand(0);
689     } else {
690       NewChain = Scalarized.getValue(1);
691       Value = Scalarized.getValue(0);
692     }
693   }
694 
695   AddLegalizedOperand(Op.getValue(0), Value);
696   AddLegalizedOperand(Op.getValue(1), NewChain);
697 
698   return (Op.getResNo() ? NewChain : Value);
699 }
700 
701 SDValue VectorLegalizer::ExpandStore(SDValue Op) {
702   StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
703   SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
704   AddLegalizedOperand(Op, TF);
705   return TF;
706 }
707 
708 SDValue VectorLegalizer::Expand(SDValue Op) {
709   switch (Op->getOpcode()) {
710   case ISD::SIGN_EXTEND_INREG:
711     return ExpandSEXTINREG(Op);
712   case ISD::ANY_EXTEND_VECTOR_INREG:
713     return ExpandANY_EXTEND_VECTOR_INREG(Op);
714   case ISD::SIGN_EXTEND_VECTOR_INREG:
715     return ExpandSIGN_EXTEND_VECTOR_INREG(Op);
716   case ISD::ZERO_EXTEND_VECTOR_INREG:
717     return ExpandZERO_EXTEND_VECTOR_INREG(Op);
718   case ISD::BSWAP:
719     return ExpandBSWAP(Op);
720   case ISD::VSELECT:
721     return ExpandVSELECT(Op);
722   case ISD::SELECT:
723     return ExpandSELECT(Op);
724   case ISD::UINT_TO_FP:
725     return ExpandUINT_TO_FLOAT(Op);
726   case ISD::FNEG:
727     return ExpandFNEG(Op);
728   case ISD::FSUB:
729     return ExpandFSUB(Op);
730   case ISD::SETCC:
731     return UnrollVSETCC(Op);
732   case ISD::BITREVERSE:
733     return ExpandBITREVERSE(Op);
734   case ISD::CTLZ:
735   case ISD::CTLZ_ZERO_UNDEF:
736     return ExpandCTLZ(Op);
737   case ISD::CTTZ_ZERO_UNDEF:
738     return ExpandCTTZ_ZERO_UNDEF(Op);
739   case ISD::STRICT_FADD:
740   case ISD::STRICT_FSUB:
741   case ISD::STRICT_FMUL:
742   case ISD::STRICT_FDIV:
743   case ISD::STRICT_FREM:
744   case ISD::STRICT_FSQRT:
745   case ISD::STRICT_FMA:
746   case ISD::STRICT_FPOW:
747   case ISD::STRICT_FPOWI:
748   case ISD::STRICT_FSIN:
749   case ISD::STRICT_FCOS:
750   case ISD::STRICT_FEXP:
751   case ISD::STRICT_FEXP2:
752   case ISD::STRICT_FLOG:
753   case ISD::STRICT_FLOG10:
754   case ISD::STRICT_FLOG2:
755   case ISD::STRICT_FRINT:
756   case ISD::STRICT_FNEARBYINT:
757     return ExpandStrictFPOp(Op);
758   default:
759     return DAG.UnrollVectorOp(Op.getNode());
760   }
761 }
762 
763 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
764   // Lower a select instruction where the condition is a scalar and the
765   // operands are vectors. Lower this select to VSELECT and implement it
766   // using XOR AND OR. The selector bit is broadcasted.
767   EVT VT = Op.getValueType();
768   SDLoc DL(Op);
769 
770   SDValue Mask = Op.getOperand(0);
771   SDValue Op1 = Op.getOperand(1);
772   SDValue Op2 = Op.getOperand(2);
773 
774   assert(VT.isVector() && !Mask.getValueType().isVector()
775          && Op1.getValueType() == Op2.getValueType() && "Invalid type");
776 
777   // If we can't even use the basic vector operations of
778   // AND,OR,XOR, we will have to scalarize the op.
779   // Notice that the operation may be 'promoted' which means that it is
780   // 'bitcasted' to another type which is handled.
781   // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
782   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
783       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
784       TLI.getOperationAction(ISD::OR,  VT) == TargetLowering::Expand ||
785       TLI.getOperationAction(ISD::BUILD_VECTOR,  VT) == TargetLowering::Expand)
786     return DAG.UnrollVectorOp(Op.getNode());
787 
788   // Generate a mask operand.
789   EVT MaskTy = VT.changeVectorElementTypeToInteger();
790 
791   // What is the size of each element in the vector mask.
792   EVT BitTy = MaskTy.getScalarType();
793 
794   Mask = DAG.getSelect(DL, BitTy, Mask,
795           DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
796                           BitTy),
797           DAG.getConstant(0, DL, BitTy));
798 
799   // Broadcast the mask so that the entire vector is all-one or all zero.
800   Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask);
801 
802   // Bitcast the operands to be the same type as the mask.
803   // This is needed when we select between FP types because
804   // the mask is a vector of integers.
805   Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
806   Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
807 
808   SDValue AllOnes = DAG.getConstant(
809             APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
810   SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
811 
812   Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
813   Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
814   SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
815   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
816 }
817 
818 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
819   EVT VT = Op.getValueType();
820 
821   // Make sure that the SRA and SHL instructions are available.
822   if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
823       TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
824     return DAG.UnrollVectorOp(Op.getNode());
825 
826   SDLoc DL(Op);
827   EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
828 
829   unsigned BW = VT.getScalarSizeInBits();
830   unsigned OrigBW = OrigTy.getScalarSizeInBits();
831   SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
832 
833   Op = Op.getOperand(0);
834   Op =   DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
835   return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
836 }
837 
838 // Generically expand a vector anyext in register to a shuffle of the relevant
839 // lanes into the appropriate locations, with other lanes left undef.
840 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) {
841   SDLoc DL(Op);
842   EVT VT = Op.getValueType();
843   int NumElements = VT.getVectorNumElements();
844   SDValue Src = Op.getOperand(0);
845   EVT SrcVT = Src.getValueType();
846   int NumSrcElements = SrcVT.getVectorNumElements();
847 
848   // Build a base mask of undef shuffles.
849   SmallVector<int, 16> ShuffleMask;
850   ShuffleMask.resize(NumSrcElements, -1);
851 
852   // Place the extended lanes into the correct locations.
853   int ExtLaneScale = NumSrcElements / NumElements;
854   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
855   for (int i = 0; i < NumElements; ++i)
856     ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
857 
858   return DAG.getNode(
859       ISD::BITCAST, DL, VT,
860       DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
861 }
862 
863 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) {
864   SDLoc DL(Op);
865   EVT VT = Op.getValueType();
866   SDValue Src = Op.getOperand(0);
867   EVT SrcVT = Src.getValueType();
868 
869   // First build an any-extend node which can be legalized above when we
870   // recurse through it.
871   Op = DAG.getAnyExtendVectorInReg(Src, DL, VT);
872 
873   // Now we need sign extend. Do this by shifting the elements. Even if these
874   // aren't legal operations, they have a better chance of being legalized
875   // without full scalarization than the sign extension does.
876   unsigned EltWidth = VT.getScalarSizeInBits();
877   unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
878   SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
879   return DAG.getNode(ISD::SRA, DL, VT,
880                      DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
881                      ShiftAmount);
882 }
883 
884 // Generically expand a vector zext in register to a shuffle of the relevant
885 // lanes into the appropriate locations, a blend of zero into the high bits,
886 // and a bitcast to the wider element type.
887 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) {
888   SDLoc DL(Op);
889   EVT VT = Op.getValueType();
890   int NumElements = VT.getVectorNumElements();
891   SDValue Src = Op.getOperand(0);
892   EVT SrcVT = Src.getValueType();
893   int NumSrcElements = SrcVT.getVectorNumElements();
894 
895   // Build up a zero vector to blend into this one.
896   SDValue Zero = DAG.getConstant(0, DL, SrcVT);
897 
898   // Shuffle the incoming lanes into the correct position, and pull all other
899   // lanes from the zero vector.
900   SmallVector<int, 16> ShuffleMask;
901   ShuffleMask.reserve(NumSrcElements);
902   for (int i = 0; i < NumSrcElements; ++i)
903     ShuffleMask.push_back(i);
904 
905   int ExtLaneScale = NumSrcElements / NumElements;
906   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
907   for (int i = 0; i < NumElements; ++i)
908     ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
909 
910   return DAG.getNode(ISD::BITCAST, DL, VT,
911                      DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
912 }
913 
914 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
915   int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
916   for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
917     for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
918       ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
919 }
920 
921 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) {
922   EVT VT = Op.getValueType();
923 
924   // Generate a byte wise shuffle mask for the BSWAP.
925   SmallVector<int, 16> ShuffleMask;
926   createBSWAPShuffleMask(VT, ShuffleMask);
927   EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
928 
929   // Only emit a shuffle if the mask is legal.
930   if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
931     return DAG.UnrollVectorOp(Op.getNode());
932 
933   SDLoc DL(Op);
934   Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
935   Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
936   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
937 }
938 
939 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) {
940   EVT VT = Op.getValueType();
941 
942   // If we have the scalar operation, it's probably cheaper to unroll it.
943   if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType()))
944     return DAG.UnrollVectorOp(Op.getNode());
945 
946   // If the vector element width is a whole number of bytes, test if its legal
947   // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
948   // vector. This greatly reduces the number of bit shifts necessary.
949   unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
950   if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
951     SmallVector<int, 16> BSWAPMask;
952     createBSWAPShuffleMask(VT, BSWAPMask);
953 
954     EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
955     if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
956         (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
957          (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
958           TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
959           TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
960           TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
961       SDLoc DL(Op);
962       Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
963       Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
964                                 BSWAPMask);
965       Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
966       return DAG.getNode(ISD::BITCAST, DL, VT, Op);
967     }
968   }
969 
970   // If we have the appropriate vector bit operations, it is better to use them
971   // than unrolling and expanding each component.
972   if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) ||
973       !TLI.isOperationLegalOrCustom(ISD::SRL, VT) ||
974       !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
975       !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
976     return DAG.UnrollVectorOp(Op.getNode());
977 
978   // Let LegalizeDAG handle this later.
979   return Op;
980 }
981 
982 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
983   // Implement VSELECT in terms of XOR, AND, OR
984   // on platforms which do not support blend natively.
985   SDLoc DL(Op);
986 
987   SDValue Mask = Op.getOperand(0);
988   SDValue Op1 = Op.getOperand(1);
989   SDValue Op2 = Op.getOperand(2);
990 
991   EVT VT = Mask.getValueType();
992 
993   // If we can't even use the basic vector operations of
994   // AND,OR,XOR, we will have to scalarize the op.
995   // Notice that the operation may be 'promoted' which means that it is
996   // 'bitcasted' to another type which is handled.
997   // This operation also isn't safe with AND, OR, XOR when the boolean
998   // type is 0/1 as we need an all ones vector constant to mask with.
999   // FIXME: Sign extend 1 to all ones if thats legal on the target.
1000   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1001       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1002       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
1003       TLI.getBooleanContents(Op1.getValueType()) !=
1004           TargetLowering::ZeroOrNegativeOneBooleanContent)
1005     return DAG.UnrollVectorOp(Op.getNode());
1006 
1007   // If the mask and the type are different sizes, unroll the vector op. This
1008   // can occur when getSetCCResultType returns something that is different in
1009   // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1010   if (VT.getSizeInBits() != Op1.getValueSizeInBits())
1011     return DAG.UnrollVectorOp(Op.getNode());
1012 
1013   // Bitcast the operands to be the same type as the mask.
1014   // This is needed when we select between FP types because
1015   // the mask is a vector of integers.
1016   Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
1017   Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
1018 
1019   SDValue AllOnes = DAG.getConstant(
1020     APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT);
1021   SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
1022 
1023   Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
1024   Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
1025   SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
1026   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
1027 }
1028 
1029 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
1030   EVT VT = Op.getOperand(0).getValueType();
1031   SDLoc DL(Op);
1032 
1033   // Make sure that the SINT_TO_FP and SRL instructions are available.
1034   if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand ||
1035       TLI.getOperationAction(ISD::SRL,        VT) == TargetLowering::Expand)
1036     return DAG.UnrollVectorOp(Op.getNode());
1037 
1038   unsigned BW = VT.getScalarSizeInBits();
1039   assert((BW == 64 || BW == 32) &&
1040          "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1041 
1042   SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
1043 
1044   // Constants to clear the upper part of the word.
1045   // Notice that we can also use SHL+SHR, but using a constant is slightly
1046   // faster on x86.
1047   uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1048   SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
1049 
1050   // Two to the power of half-word-size.
1051   SDValue TWOHW = DAG.getConstantFP(1ULL << (BW / 2), DL, Op.getValueType());
1052 
1053   // Clear upper part of LO, lower HI
1054   SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
1055   SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask);
1056 
1057   // Convert hi and lo to floats
1058   // Convert the hi part back to the upper values
1059   // TODO: Can any fast-math-flags be set on these nodes?
1060   SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
1061           fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
1062   SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);
1063 
1064   // Add the two halves
1065   return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
1066 }
1067 
1068 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
1069   if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
1070     SDLoc DL(Op);
1071     SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType());
1072     // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1073     return DAG.getNode(ISD::FSUB, DL, Op.getValueType(),
1074                        Zero, Op.getOperand(0));
1075   }
1076   return DAG.UnrollVectorOp(Op.getNode());
1077 }
1078 
1079 SDValue VectorLegalizer::ExpandFSUB(SDValue Op) {
1080   // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1081   // we can defer this to operation legalization where it will be lowered as
1082   // a+(-b).
1083   EVT VT = Op.getValueType();
1084   if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
1085       TLI.isOperationLegalOrCustom(ISD::FADD, VT))
1086     return Op; // Defer to LegalizeDAG
1087 
1088   return DAG.UnrollVectorOp(Op.getNode());
1089 }
1090 
1091 SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) {
1092   EVT VT = Op.getValueType();
1093   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
1094 
1095   // If the non-ZERO_UNDEF version is supported we can use that instead.
1096   if (Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
1097       TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) {
1098     SDLoc DL(Op);
1099     return DAG.getNode(ISD::CTLZ, DL, Op.getValueType(), Op.getOperand(0));
1100   }
1101 
1102   // If CTPOP is available we can lower with a CTPOP based method:
1103   // u16 ctlz(u16 x) {
1104   //   x |= (x >> 1);
1105   //   x |= (x >> 2);
1106   //   x |= (x >> 4);
1107   //   x |= (x >> 8);
1108   //   return ctpop(~x);
1109   // }
1110   // Ref: "Hacker's Delight" by Henry Warren
1111   if (isPowerOf2_32(NumBitsPerElt) &&
1112       TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
1113       TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
1114       TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT) &&
1115       TLI.isOperationLegalOrCustomOrPromote(ISD::XOR, VT)) {
1116     SDLoc DL(Op);
1117     SDValue Res = Op.getOperand(0);
1118     EVT ShiftTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
1119 
1120     for (unsigned i = 1; i != NumBitsPerElt; i *= 2)
1121       Res = DAG.getNode(
1122           ISD::OR, DL, VT, Res,
1123           DAG.getNode(ISD::SRL, DL, VT, Res, DAG.getConstant(i, DL, ShiftTy)));
1124 
1125     Res = DAG.getNOT(DL, Res, VT);
1126     return DAG.getNode(ISD::CTPOP, DL, VT, Res);
1127   }
1128 
1129   // Otherwise go ahead and unroll.
1130   return DAG.UnrollVectorOp(Op.getNode());
1131 }
1132 
1133 SDValue VectorLegalizer::ExpandCTTZ_ZERO_UNDEF(SDValue Op) {
1134   // If the non-ZERO_UNDEF version is supported we can use that instead.
1135   if (TLI.isOperationLegalOrCustom(ISD::CTTZ, Op.getValueType())) {
1136     SDLoc DL(Op);
1137     return DAG.getNode(ISD::CTTZ, DL, Op.getValueType(), Op.getOperand(0));
1138   }
1139 
1140   // Otherwise go ahead and unroll.
1141   return DAG.UnrollVectorOp(Op.getNode());
1142 }
1143 
1144 SDValue VectorLegalizer::ExpandStrictFPOp(SDValue Op) {
1145   EVT VT = Op.getValueType();
1146   EVT EltVT = VT.getVectorElementType();
1147   unsigned NumElems = VT.getVectorNumElements();
1148   unsigned NumOpers = Op.getNumOperands();
1149   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1150   EVT ValueVTs[] = {EltVT, MVT::Other};
1151   SDValue Chain = Op.getOperand(0);
1152   SDLoc dl(Op);
1153 
1154   SmallVector<SDValue, 32> OpValues;
1155   SmallVector<SDValue, 32> OpChains;
1156   for (unsigned i = 0; i < NumElems; ++i) {
1157     SmallVector<SDValue, 4> Opers;
1158     SDValue Idx = DAG.getConstant(i, dl,
1159                                   TLI.getVectorIdxTy(DAG.getDataLayout()));
1160 
1161     // The Chain is the first operand.
1162     Opers.push_back(Chain);
1163 
1164     // Now process the remaining operands.
1165     for (unsigned j = 1; j < NumOpers; ++j) {
1166       SDValue Oper = Op.getOperand(j);
1167       EVT OperVT = Oper.getValueType();
1168 
1169       if (OperVT.isVector())
1170         Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1171                            EltVT, Oper, Idx);
1172 
1173       Opers.push_back(Oper);
1174     }
1175 
1176     SDValue ScalarOp = DAG.getNode(Op->getOpcode(), dl, ValueVTs, Opers);
1177 
1178     OpValues.push_back(ScalarOp.getValue(0));
1179     OpChains.push_back(ScalarOp.getValue(1));
1180   }
1181 
1182   SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
1183   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
1184 
1185   AddLegalizedOperand(Op.getValue(0), Result);
1186   AddLegalizedOperand(Op.getValue(1), NewChain);
1187 
1188   return NewChain;
1189 }
1190 
1191 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
1192   EVT VT = Op.getValueType();
1193   unsigned NumElems = VT.getVectorNumElements();
1194   EVT EltVT = VT.getVectorElementType();
1195   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
1196   EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1197   SDLoc dl(Op);
1198   SmallVector<SDValue, 8> Ops(NumElems);
1199   for (unsigned i = 0; i < NumElems; ++i) {
1200     SDValue LHSElem = DAG.getNode(
1201         ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1202         DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1203     SDValue RHSElem = DAG.getNode(
1204         ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1205         DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1206     Ops[i] = DAG.getNode(ISD::SETCC, dl,
1207                          TLI.getSetCCResultType(DAG.getDataLayout(),
1208                                                 *DAG.getContext(), TmpEltVT),
1209                          LHSElem, RHSElem, CC);
1210     Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
1211                            DAG.getConstant(APInt::getAllOnesValue
1212                                            (EltVT.getSizeInBits()), dl, EltVT),
1213                            DAG.getConstant(0, dl, EltVT));
1214   }
1215   return DAG.getBuildVector(VT, dl, Ops);
1216 }
1217 
1218 bool SelectionDAG::LegalizeVectors() {
1219   return VectorLegalizer(*this).Run();
1220 }
1221