1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SelectionDAG::LegalizeVectors method. 11 // 12 // The vector legalizer looks for vector operations which might need to be 13 // scalarized and legalizes them. This is a separate step from Legalize because 14 // scalarizing can introduce illegal types. For example, suppose we have an 15 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 17 // operation, which introduces nodes with the illegal type i64 which must be 18 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 19 // the operation must be unrolled, which introduces nodes with the illegal 20 // type i8 which must be promoted. 21 // 22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 23 // or operations that happen to take a vector which are custom-lowered; 24 // the legalization for such operations never produces nodes 25 // with illegal types, so it's okay to put off legalizing them until 26 // SelectionDAG::Legalize runs. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/ADT/APInt.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/CodeGen/ISDOpcodes.h" 34 #include "llvm/CodeGen/MachineMemOperand.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/SelectionDAGNodes.h" 37 #include "llvm/CodeGen/TargetLowering.h" 38 #include "llvm/CodeGen/ValueTypes.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Compiler.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include <cassert> 46 #include <cstdint> 47 #include <iterator> 48 #include <utility> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "legalizevectorops" 53 54 namespace { 55 56 class VectorLegalizer { 57 SelectionDAG& DAG; 58 const TargetLowering &TLI; 59 bool Changed = false; // Keep track of whether anything changed 60 61 /// For nodes that are of legal width, and that have more than one use, this 62 /// map indicates what regularized operand to use. This allows us to avoid 63 /// legalizing the same thing more than once. 64 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 65 66 /// Adds a node to the translation cache. 67 void AddLegalizedOperand(SDValue From, SDValue To) { 68 LegalizedNodes.insert(std::make_pair(From, To)); 69 // If someone requests legalization of the new node, return itself. 70 if (From != To) 71 LegalizedNodes.insert(std::make_pair(To, To)); 72 } 73 74 /// Legalizes the given node. 75 SDValue LegalizeOp(SDValue Op); 76 77 /// Assuming the node is legal, "legalize" the results. 78 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); 79 80 /// Implements unrolling a VSETCC. 81 SDValue UnrollVSETCC(SDValue Op); 82 83 /// Implement expand-based legalization of vector operations. 84 /// 85 /// This is just a high-level routine to dispatch to specific code paths for 86 /// operations to legalize them. 87 SDValue Expand(SDValue Op); 88 89 /// Implements expansion for FNEG; falls back to UnrollVectorOp if 90 /// FSUB isn't legal. 91 /// 92 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 93 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 94 SDValue ExpandUINT_TO_FLOAT(SDValue Op); 95 96 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 97 SDValue ExpandSEXTINREG(SDValue Op); 98 99 /// Implement expansion for ANY_EXTEND_VECTOR_INREG. 100 /// 101 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 102 /// type. The contents of the bits in the extended part of each element are 103 /// undef. 104 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op); 105 106 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG. 107 /// 108 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 109 /// type, then shifts left and arithmetic shifts right to introduce a sign 110 /// extension. 111 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op); 112 113 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG. 114 /// 115 /// Shuffles the low lanes of the operand into place and blends zeros into 116 /// the remaining lanes, finally bitcasting to the proper type. 117 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op); 118 119 /// Expand bswap of vectors into a shuffle if legal. 120 SDValue ExpandBSWAP(SDValue Op); 121 122 /// Implement vselect in terms of XOR, AND, OR when blend is not 123 /// supported by the target. 124 SDValue ExpandVSELECT(SDValue Op); 125 SDValue ExpandSELECT(SDValue Op); 126 SDValue ExpandLoad(SDValue Op); 127 SDValue ExpandStore(SDValue Op); 128 SDValue ExpandFNEG(SDValue Op); 129 SDValue ExpandFSUB(SDValue Op); 130 SDValue ExpandBITREVERSE(SDValue Op); 131 SDValue ExpandCTLZ(SDValue Op); 132 SDValue ExpandCTTZ_ZERO_UNDEF(SDValue Op); 133 SDValue ExpandStrictFPOp(SDValue Op); 134 135 /// Implements vector promotion. 136 /// 137 /// This is essentially just bitcasting the operands to a different type and 138 /// bitcasting the result back to the original type. 139 SDValue Promote(SDValue Op); 140 141 /// Implements [SU]INT_TO_FP vector promotion. 142 /// 143 /// This is a [zs]ext of the input operand to a larger integer type. 144 SDValue PromoteINT_TO_FP(SDValue Op); 145 146 /// Implements FP_TO_[SU]INT vector promotion of the result type. 147 /// 148 /// It is promoted to a larger integer type. The result is then 149 /// truncated back to the original type. 150 SDValue PromoteFP_TO_INT(SDValue Op); 151 152 public: 153 VectorLegalizer(SelectionDAG& dag) : 154 DAG(dag), TLI(dag.getTargetLoweringInfo()) {} 155 156 /// Begin legalizer the vector operations in the DAG. 157 bool Run(); 158 }; 159 160 } // end anonymous namespace 161 162 bool VectorLegalizer::Run() { 163 // Before we start legalizing vector nodes, check if there are any vectors. 164 bool HasVectors = false; 165 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 166 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 167 // Check if the values of the nodes contain vectors. We don't need to check 168 // the operands because we are going to check their values at some point. 169 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); 170 J != E; ++J) 171 HasVectors |= J->isVector(); 172 173 // If we found a vector node we can start the legalization. 174 if (HasVectors) 175 break; 176 } 177 178 // If this basic block has no vectors then no need to legalize vectors. 179 if (!HasVectors) 180 return false; 181 182 // The legalize process is inherently a bottom-up recursive process (users 183 // legalize their uses before themselves). Given infinite stack space, we 184 // could just start legalizing on the root and traverse the whole graph. In 185 // practice however, this causes us to run out of stack space on large basic 186 // blocks. To avoid this problem, compute an ordering of the nodes where each 187 // node is only legalized after all of its operands are legalized. 188 DAG.AssignTopologicalOrder(); 189 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 190 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 191 LegalizeOp(SDValue(&*I, 0)); 192 193 // Finally, it's possible the root changed. Get the new root. 194 SDValue OldRoot = DAG.getRoot(); 195 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 196 DAG.setRoot(LegalizedNodes[OldRoot]); 197 198 LegalizedNodes.clear(); 199 200 // Remove dead nodes now. 201 DAG.RemoveDeadNodes(); 202 203 return Changed; 204 } 205 206 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { 207 // Generic legalization: just pass the operand through. 208 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) 209 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 210 return Result.getValue(Op.getResNo()); 211 } 212 213 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 214 // Note that LegalizeOp may be reentered even from single-use nodes, which 215 // means that we always must cache transformed nodes. 216 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 217 if (I != LegalizedNodes.end()) return I->second; 218 219 SDNode* Node = Op.getNode(); 220 221 // Legalize the operands 222 SmallVector<SDValue, 8> Ops; 223 for (const SDValue &Op : Node->op_values()) 224 Ops.push_back(LegalizeOp(Op)); 225 226 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 227 Op.getResNo()); 228 229 bool HasVectorValue = false; 230 if (Op.getOpcode() == ISD::LOAD) { 231 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 232 ISD::LoadExtType ExtType = LD->getExtensionType(); 233 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) { 234 LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: "; 235 Node->dump(&DAG)); 236 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), 237 LD->getMemoryVT())) { 238 default: llvm_unreachable("This action is not supported yet!"); 239 case TargetLowering::Legal: 240 return TranslateLegalizeResults(Op, Result); 241 case TargetLowering::Custom: 242 if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) { 243 if (Lowered == Result) 244 return TranslateLegalizeResults(Op, Lowered); 245 Changed = true; 246 if (Lowered->getNumValues() != Op->getNumValues()) { 247 // This expanded to something other than the load. Assume the 248 // lowering code took care of any chain values, and just handle the 249 // returned value. 250 assert(Result.getValue(1).use_empty() && 251 "There are still live users of the old chain!"); 252 return LegalizeOp(Lowered); 253 } 254 return TranslateLegalizeResults(Op, Lowered); 255 } 256 LLVM_FALLTHROUGH; 257 case TargetLowering::Expand: 258 Changed = true; 259 return LegalizeOp(ExpandLoad(Op)); 260 } 261 } 262 } else if (Op.getOpcode() == ISD::STORE) { 263 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 264 EVT StVT = ST->getMemoryVT(); 265 MVT ValVT = ST->getValue().getSimpleValueType(); 266 if (StVT.isVector() && ST->isTruncatingStore()) { 267 LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: "; 268 Node->dump(&DAG)); 269 switch (TLI.getTruncStoreAction(ValVT, StVT)) { 270 default: llvm_unreachable("This action is not supported yet!"); 271 case TargetLowering::Legal: 272 return TranslateLegalizeResults(Op, Result); 273 case TargetLowering::Custom: { 274 SDValue Lowered = TLI.LowerOperation(Result, DAG); 275 Changed = Lowered != Result; 276 return TranslateLegalizeResults(Op, Lowered); 277 } 278 case TargetLowering::Expand: 279 Changed = true; 280 return LegalizeOp(ExpandStore(Op)); 281 } 282 } 283 } else if (Op.getOpcode() == ISD::MSCATTER || Op.getOpcode() == ISD::MSTORE) 284 HasVectorValue = true; 285 286 for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end(); 287 J != E; 288 ++J) 289 HasVectorValue |= J->isVector(); 290 if (!HasVectorValue) 291 return TranslateLegalizeResults(Op, Result); 292 293 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 294 switch (Op.getOpcode()) { 295 default: 296 return TranslateLegalizeResults(Op, Result); 297 case ISD::STRICT_FADD: 298 case ISD::STRICT_FSUB: 299 case ISD::STRICT_FMUL: 300 case ISD::STRICT_FDIV: 301 case ISD::STRICT_FREM: 302 case ISD::STRICT_FSQRT: 303 case ISD::STRICT_FMA: 304 case ISD::STRICT_FPOW: 305 case ISD::STRICT_FPOWI: 306 case ISD::STRICT_FSIN: 307 case ISD::STRICT_FCOS: 308 case ISD::STRICT_FEXP: 309 case ISD::STRICT_FEXP2: 310 case ISD::STRICT_FLOG: 311 case ISD::STRICT_FLOG10: 312 case ISD::STRICT_FLOG2: 313 case ISD::STRICT_FRINT: 314 case ISD::STRICT_FNEARBYINT: 315 // These pseudo-ops get legalized as if they were their non-strict 316 // equivalent. For instance, if ISD::FSQRT is legal then ISD::STRICT_FSQRT 317 // is also legal, but if ISD::FSQRT requires expansion then so does 318 // ISD::STRICT_FSQRT. 319 Action = TLI.getStrictFPOperationAction(Node->getOpcode(), 320 Node->getValueType(0)); 321 break; 322 case ISD::ADD: 323 case ISD::SUB: 324 case ISD::MUL: 325 case ISD::SDIV: 326 case ISD::UDIV: 327 case ISD::SREM: 328 case ISD::UREM: 329 case ISD::SDIVREM: 330 case ISD::UDIVREM: 331 case ISD::FADD: 332 case ISD::FSUB: 333 case ISD::FMUL: 334 case ISD::FDIV: 335 case ISD::FREM: 336 case ISD::AND: 337 case ISD::OR: 338 case ISD::XOR: 339 case ISD::SHL: 340 case ISD::SRA: 341 case ISD::SRL: 342 case ISD::ROTL: 343 case ISD::ROTR: 344 case ISD::BSWAP: 345 case ISD::BITREVERSE: 346 case ISD::CTLZ: 347 case ISD::CTTZ: 348 case ISD::CTLZ_ZERO_UNDEF: 349 case ISD::CTTZ_ZERO_UNDEF: 350 case ISD::CTPOP: 351 case ISD::SELECT: 352 case ISD::VSELECT: 353 case ISD::SELECT_CC: 354 case ISD::SETCC: 355 case ISD::ZERO_EXTEND: 356 case ISD::ANY_EXTEND: 357 case ISD::TRUNCATE: 358 case ISD::SIGN_EXTEND: 359 case ISD::FP_TO_SINT: 360 case ISD::FP_TO_UINT: 361 case ISD::FNEG: 362 case ISD::FABS: 363 case ISD::FMINNUM: 364 case ISD::FMAXNUM: 365 case ISD::FMINNAN: 366 case ISD::FMAXNAN: 367 case ISD::FCOPYSIGN: 368 case ISD::FSQRT: 369 case ISD::FSIN: 370 case ISD::FCOS: 371 case ISD::FPOWI: 372 case ISD::FPOW: 373 case ISD::FLOG: 374 case ISD::FLOG2: 375 case ISD::FLOG10: 376 case ISD::FEXP: 377 case ISD::FEXP2: 378 case ISD::FCEIL: 379 case ISD::FTRUNC: 380 case ISD::FRINT: 381 case ISD::FNEARBYINT: 382 case ISD::FROUND: 383 case ISD::FFLOOR: 384 case ISD::FP_ROUND: 385 case ISD::FP_EXTEND: 386 case ISD::FMA: 387 case ISD::SIGN_EXTEND_INREG: 388 case ISD::ANY_EXTEND_VECTOR_INREG: 389 case ISD::SIGN_EXTEND_VECTOR_INREG: 390 case ISD::ZERO_EXTEND_VECTOR_INREG: 391 case ISD::SMIN: 392 case ISD::SMAX: 393 case ISD::UMIN: 394 case ISD::UMAX: 395 case ISD::SMUL_LOHI: 396 case ISD::UMUL_LOHI: 397 case ISD::FCANONICALIZE: 398 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 399 break; 400 case ISD::FP_ROUND_INREG: 401 Action = TLI.getOperationAction(Node->getOpcode(), 402 cast<VTSDNode>(Node->getOperand(1))->getVT()); 403 break; 404 case ISD::SINT_TO_FP: 405 case ISD::UINT_TO_FP: 406 Action = TLI.getOperationAction(Node->getOpcode(), 407 Node->getOperand(0).getValueType()); 408 break; 409 case ISD::MSCATTER: 410 Action = TLI.getOperationAction(Node->getOpcode(), 411 cast<MaskedScatterSDNode>(Node)->getValue().getValueType()); 412 break; 413 case ISD::MSTORE: 414 Action = TLI.getOperationAction(Node->getOpcode(), 415 cast<MaskedStoreSDNode>(Node)->getValue().getValueType()); 416 break; 417 } 418 419 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG)); 420 421 switch (Action) { 422 default: llvm_unreachable("This action is not supported yet!"); 423 case TargetLowering::Promote: 424 Result = Promote(Op); 425 Changed = true; 426 break; 427 case TargetLowering::Legal: 428 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 429 break; 430 case TargetLowering::Custom: { 431 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 432 if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) { 433 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 434 Result = Tmp1; 435 break; 436 } 437 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 438 LLVM_FALLTHROUGH; 439 } 440 case TargetLowering::Expand: 441 Result = Expand(Op); 442 } 443 444 // Make sure that the generated code is itself legal. 445 if (Result != Op) { 446 Result = LegalizeOp(Result); 447 Changed = true; 448 } 449 450 // Note that LegalizeOp may be reentered even from single-use nodes, which 451 // means that we always must cache transformed nodes. 452 AddLegalizedOperand(Op, Result); 453 return Result; 454 } 455 456 SDValue VectorLegalizer::Promote(SDValue Op) { 457 // For a few operations there is a specific concept for promotion based on 458 // the operand's type. 459 switch (Op.getOpcode()) { 460 case ISD::SINT_TO_FP: 461 case ISD::UINT_TO_FP: 462 // "Promote" the operation by extending the operand. 463 return PromoteINT_TO_FP(Op); 464 case ISD::FP_TO_UINT: 465 case ISD::FP_TO_SINT: 466 // Promote the operation by extending the operand. 467 return PromoteFP_TO_INT(Op); 468 } 469 470 // There are currently two cases of vector promotion: 471 // 1) Bitcasting a vector of integers to a different type to a vector of the 472 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 473 // 2) Extending a vector of floats to a vector of the same number of larger 474 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 475 MVT VT = Op.getSimpleValueType(); 476 assert(Op.getNode()->getNumValues() == 1 && 477 "Can't promote a vector with multiple results!"); 478 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 479 SDLoc dl(Op); 480 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 481 482 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 483 if (Op.getOperand(j).getValueType().isVector()) 484 if (Op.getOperand(j) 485 .getValueType() 486 .getVectorElementType() 487 .isFloatingPoint() && 488 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 489 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j)); 490 else 491 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); 492 else 493 Operands[j] = Op.getOperand(j); 494 } 495 496 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags()); 497 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 498 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 499 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 500 return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl)); 501 else 502 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 503 } 504 505 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) { 506 // INT_TO_FP operations may require the input operand be promoted even 507 // when the type is otherwise legal. 508 MVT VT = Op.getOperand(0).getSimpleValueType(); 509 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 510 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 511 "Vectors have different number of elements!"); 512 513 SDLoc dl(Op); 514 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 515 516 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : 517 ISD::SIGN_EXTEND; 518 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 519 if (Op.getOperand(j).getValueType().isVector()) 520 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j)); 521 else 522 Operands[j] = Op.getOperand(j); 523 } 524 525 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands); 526 } 527 528 // For FP_TO_INT we promote the result type to a vector type with wider 529 // elements and then truncate the result. This is different from the default 530 // PromoteVector which uses bitcast to promote thus assumning that the 531 // promoted vector type has the same overall size. 532 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op) { 533 MVT VT = Op.getSimpleValueType(); 534 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 535 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 536 "Vectors have different number of elements!"); 537 538 unsigned NewOpc = Op->getOpcode(); 539 // Change FP_TO_UINT to FP_TO_SINT if possible. 540 // TODO: Should we only do this if FP_TO_UINT itself isn't legal? 541 if (NewOpc == ISD::FP_TO_UINT && 542 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT)) 543 NewOpc = ISD::FP_TO_SINT; 544 545 SDLoc dl(Op); 546 SDValue Promoted = DAG.getNode(NewOpc, dl, NVT, Op.getOperand(0)); 547 548 // Assert that the converted value fits in the original type. If it doesn't 549 // (eg: because the value being converted is too big), then the result of the 550 // original operation was undefined anyway, so the assert is still correct. 551 Promoted = DAG.getNode(Op->getOpcode() == ISD::FP_TO_UINT ? ISD::AssertZext 552 : ISD::AssertSext, 553 dl, NVT, Promoted, 554 DAG.getValueType(VT.getScalarType())); 555 return DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted); 556 } 557 558 SDValue VectorLegalizer::ExpandLoad(SDValue Op) { 559 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 560 561 EVT SrcVT = LD->getMemoryVT(); 562 EVT SrcEltVT = SrcVT.getScalarType(); 563 unsigned NumElem = SrcVT.getVectorNumElements(); 564 565 SDValue NewChain; 566 SDValue Value; 567 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { 568 SDLoc dl(Op); 569 570 SmallVector<SDValue, 8> Vals; 571 SmallVector<SDValue, 8> LoadChains; 572 573 EVT DstEltVT = LD->getValueType(0).getScalarType(); 574 SDValue Chain = LD->getChain(); 575 SDValue BasePTR = LD->getBasePtr(); 576 ISD::LoadExtType ExtType = LD->getExtensionType(); 577 578 // When elements in a vector is not byte-addressable, we cannot directly 579 // load each element by advancing pointer, which could only address bytes. 580 // Instead, we load all significant words, mask bits off, and concatenate 581 // them to form each element. Finally, they are extended to destination 582 // scalar type to build the destination vector. 583 EVT WideVT = TLI.getPointerTy(DAG.getDataLayout()); 584 585 assert(WideVT.isRound() && 586 "Could not handle the sophisticated case when the widest integer is" 587 " not power of 2."); 588 assert(WideVT.bitsGE(SrcEltVT) && 589 "Type is not legalized?"); 590 591 unsigned WideBytes = WideVT.getStoreSize(); 592 unsigned Offset = 0; 593 unsigned RemainingBytes = SrcVT.getStoreSize(); 594 SmallVector<SDValue, 8> LoadVals; 595 while (RemainingBytes > 0) { 596 SDValue ScalarLoad; 597 unsigned LoadBytes = WideBytes; 598 599 if (RemainingBytes >= LoadBytes) { 600 ScalarLoad = 601 DAG.getLoad(WideVT, dl, Chain, BasePTR, 602 LD->getPointerInfo().getWithOffset(Offset), 603 MinAlign(LD->getAlignment(), Offset), 604 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 605 } else { 606 EVT LoadVT = WideVT; 607 while (RemainingBytes < LoadBytes) { 608 LoadBytes >>= 1; // Reduce the load size by half. 609 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); 610 } 611 ScalarLoad = 612 DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, 613 LD->getPointerInfo().getWithOffset(Offset), LoadVT, 614 MinAlign(LD->getAlignment(), Offset), 615 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 616 } 617 618 RemainingBytes -= LoadBytes; 619 Offset += LoadBytes; 620 621 BasePTR = DAG.getObjectPtrOffset(dl, BasePTR, LoadBytes); 622 623 LoadVals.push_back(ScalarLoad.getValue(0)); 624 LoadChains.push_back(ScalarLoad.getValue(1)); 625 } 626 627 // Extract bits, pack and extend/trunc them into destination type. 628 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 629 SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT); 630 631 unsigned BitOffset = 0; 632 unsigned WideIdx = 0; 633 unsigned WideBits = WideVT.getSizeInBits(); 634 635 for (unsigned Idx = 0; Idx != NumElem; ++Idx) { 636 SDValue Lo, Hi, ShAmt; 637 638 if (BitOffset < WideBits) { 639 ShAmt = DAG.getConstant( 640 BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 641 Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); 642 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); 643 } 644 645 BitOffset += SrcEltBits; 646 if (BitOffset >= WideBits) { 647 WideIdx++; 648 BitOffset -= WideBits; 649 if (BitOffset > 0) { 650 ShAmt = DAG.getConstant( 651 SrcEltBits - BitOffset, dl, 652 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 653 Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); 654 Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask); 655 } 656 } 657 658 if (Hi.getNode()) 659 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); 660 661 switch (ExtType) { 662 default: llvm_unreachable("Unknown extended-load op!"); 663 case ISD::EXTLOAD: 664 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); 665 break; 666 case ISD::ZEXTLOAD: 667 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); 668 break; 669 case ISD::SEXTLOAD: 670 ShAmt = 671 DAG.getConstant(WideBits - SrcEltBits, dl, 672 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 673 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); 674 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); 675 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); 676 break; 677 } 678 Vals.push_back(Lo); 679 } 680 681 NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 682 Value = DAG.getBuildVector(Op.getNode()->getValueType(0), dl, Vals); 683 } else { 684 SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG); 685 // Skip past MERGE_VALUE node if known. 686 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) { 687 NewChain = Scalarized.getOperand(1); 688 Value = Scalarized.getOperand(0); 689 } else { 690 NewChain = Scalarized.getValue(1); 691 Value = Scalarized.getValue(0); 692 } 693 } 694 695 AddLegalizedOperand(Op.getValue(0), Value); 696 AddLegalizedOperand(Op.getValue(1), NewChain); 697 698 return (Op.getResNo() ? NewChain : Value); 699 } 700 701 SDValue VectorLegalizer::ExpandStore(SDValue Op) { 702 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 703 SDValue TF = TLI.scalarizeVectorStore(ST, DAG); 704 AddLegalizedOperand(Op, TF); 705 return TF; 706 } 707 708 SDValue VectorLegalizer::Expand(SDValue Op) { 709 switch (Op->getOpcode()) { 710 case ISD::SIGN_EXTEND_INREG: 711 return ExpandSEXTINREG(Op); 712 case ISD::ANY_EXTEND_VECTOR_INREG: 713 return ExpandANY_EXTEND_VECTOR_INREG(Op); 714 case ISD::SIGN_EXTEND_VECTOR_INREG: 715 return ExpandSIGN_EXTEND_VECTOR_INREG(Op); 716 case ISD::ZERO_EXTEND_VECTOR_INREG: 717 return ExpandZERO_EXTEND_VECTOR_INREG(Op); 718 case ISD::BSWAP: 719 return ExpandBSWAP(Op); 720 case ISD::VSELECT: 721 return ExpandVSELECT(Op); 722 case ISD::SELECT: 723 return ExpandSELECT(Op); 724 case ISD::UINT_TO_FP: 725 return ExpandUINT_TO_FLOAT(Op); 726 case ISD::FNEG: 727 return ExpandFNEG(Op); 728 case ISD::FSUB: 729 return ExpandFSUB(Op); 730 case ISD::SETCC: 731 return UnrollVSETCC(Op); 732 case ISD::BITREVERSE: 733 return ExpandBITREVERSE(Op); 734 case ISD::CTLZ: 735 case ISD::CTLZ_ZERO_UNDEF: 736 return ExpandCTLZ(Op); 737 case ISD::CTTZ_ZERO_UNDEF: 738 return ExpandCTTZ_ZERO_UNDEF(Op); 739 case ISD::STRICT_FADD: 740 case ISD::STRICT_FSUB: 741 case ISD::STRICT_FMUL: 742 case ISD::STRICT_FDIV: 743 case ISD::STRICT_FREM: 744 case ISD::STRICT_FSQRT: 745 case ISD::STRICT_FMA: 746 case ISD::STRICT_FPOW: 747 case ISD::STRICT_FPOWI: 748 case ISD::STRICT_FSIN: 749 case ISD::STRICT_FCOS: 750 case ISD::STRICT_FEXP: 751 case ISD::STRICT_FEXP2: 752 case ISD::STRICT_FLOG: 753 case ISD::STRICT_FLOG10: 754 case ISD::STRICT_FLOG2: 755 case ISD::STRICT_FRINT: 756 case ISD::STRICT_FNEARBYINT: 757 return ExpandStrictFPOp(Op); 758 default: 759 return DAG.UnrollVectorOp(Op.getNode()); 760 } 761 } 762 763 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) { 764 // Lower a select instruction where the condition is a scalar and the 765 // operands are vectors. Lower this select to VSELECT and implement it 766 // using XOR AND OR. The selector bit is broadcasted. 767 EVT VT = Op.getValueType(); 768 SDLoc DL(Op); 769 770 SDValue Mask = Op.getOperand(0); 771 SDValue Op1 = Op.getOperand(1); 772 SDValue Op2 = Op.getOperand(2); 773 774 assert(VT.isVector() && !Mask.getValueType().isVector() 775 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 776 777 // If we can't even use the basic vector operations of 778 // AND,OR,XOR, we will have to scalarize the op. 779 // Notice that the operation may be 'promoted' which means that it is 780 // 'bitcasted' to another type which is handled. 781 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 782 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 783 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 784 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 785 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 786 return DAG.UnrollVectorOp(Op.getNode()); 787 788 // Generate a mask operand. 789 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 790 791 // What is the size of each element in the vector mask. 792 EVT BitTy = MaskTy.getScalarType(); 793 794 Mask = DAG.getSelect(DL, BitTy, Mask, 795 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, 796 BitTy), 797 DAG.getConstant(0, DL, BitTy)); 798 799 // Broadcast the mask so that the entire vector is all-one or all zero. 800 Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask); 801 802 // Bitcast the operands to be the same type as the mask. 803 // This is needed when we select between FP types because 804 // the mask is a vector of integers. 805 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 806 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 807 808 SDValue AllOnes = DAG.getConstant( 809 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy); 810 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 811 812 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 813 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 814 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 815 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 816 } 817 818 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) { 819 EVT VT = Op.getValueType(); 820 821 // Make sure that the SRA and SHL instructions are available. 822 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 823 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 824 return DAG.UnrollVectorOp(Op.getNode()); 825 826 SDLoc DL(Op); 827 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT(); 828 829 unsigned BW = VT.getScalarSizeInBits(); 830 unsigned OrigBW = OrigTy.getScalarSizeInBits(); 831 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 832 833 Op = Op.getOperand(0); 834 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz); 835 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 836 } 837 838 // Generically expand a vector anyext in register to a shuffle of the relevant 839 // lanes into the appropriate locations, with other lanes left undef. 840 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) { 841 SDLoc DL(Op); 842 EVT VT = Op.getValueType(); 843 int NumElements = VT.getVectorNumElements(); 844 SDValue Src = Op.getOperand(0); 845 EVT SrcVT = Src.getValueType(); 846 int NumSrcElements = SrcVT.getVectorNumElements(); 847 848 // Build a base mask of undef shuffles. 849 SmallVector<int, 16> ShuffleMask; 850 ShuffleMask.resize(NumSrcElements, -1); 851 852 // Place the extended lanes into the correct locations. 853 int ExtLaneScale = NumSrcElements / NumElements; 854 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 855 for (int i = 0; i < NumElements; ++i) 856 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 857 858 return DAG.getNode( 859 ISD::BITCAST, DL, VT, 860 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 861 } 862 863 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) { 864 SDLoc DL(Op); 865 EVT VT = Op.getValueType(); 866 SDValue Src = Op.getOperand(0); 867 EVT SrcVT = Src.getValueType(); 868 869 // First build an any-extend node which can be legalized above when we 870 // recurse through it. 871 Op = DAG.getAnyExtendVectorInReg(Src, DL, VT); 872 873 // Now we need sign extend. Do this by shifting the elements. Even if these 874 // aren't legal operations, they have a better chance of being legalized 875 // without full scalarization than the sign extension does. 876 unsigned EltWidth = VT.getScalarSizeInBits(); 877 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); 878 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 879 return DAG.getNode(ISD::SRA, DL, VT, 880 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 881 ShiftAmount); 882 } 883 884 // Generically expand a vector zext in register to a shuffle of the relevant 885 // lanes into the appropriate locations, a blend of zero into the high bits, 886 // and a bitcast to the wider element type. 887 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) { 888 SDLoc DL(Op); 889 EVT VT = Op.getValueType(); 890 int NumElements = VT.getVectorNumElements(); 891 SDValue Src = Op.getOperand(0); 892 EVT SrcVT = Src.getValueType(); 893 int NumSrcElements = SrcVT.getVectorNumElements(); 894 895 // Build up a zero vector to blend into this one. 896 SDValue Zero = DAG.getConstant(0, DL, SrcVT); 897 898 // Shuffle the incoming lanes into the correct position, and pull all other 899 // lanes from the zero vector. 900 SmallVector<int, 16> ShuffleMask; 901 ShuffleMask.reserve(NumSrcElements); 902 for (int i = 0; i < NumSrcElements; ++i) 903 ShuffleMask.push_back(i); 904 905 int ExtLaneScale = NumSrcElements / NumElements; 906 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 907 for (int i = 0; i < NumElements; ++i) 908 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 909 910 return DAG.getNode(ISD::BITCAST, DL, VT, 911 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 912 } 913 914 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) { 915 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 916 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 917 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 918 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 919 } 920 921 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) { 922 EVT VT = Op.getValueType(); 923 924 // Generate a byte wise shuffle mask for the BSWAP. 925 SmallVector<int, 16> ShuffleMask; 926 createBSWAPShuffleMask(VT, ShuffleMask); 927 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 928 929 // Only emit a shuffle if the mask is legal. 930 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) 931 return DAG.UnrollVectorOp(Op.getNode()); 932 933 SDLoc DL(Op); 934 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 935 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); 936 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 937 } 938 939 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) { 940 EVT VT = Op.getValueType(); 941 942 // If we have the scalar operation, it's probably cheaper to unroll it. 943 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) 944 return DAG.UnrollVectorOp(Op.getNode()); 945 946 // If the vector element width is a whole number of bytes, test if its legal 947 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte 948 // vector. This greatly reduces the number of bit shifts necessary. 949 unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); 950 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { 951 SmallVector<int, 16> BSWAPMask; 952 createBSWAPShuffleMask(VT, BSWAPMask); 953 954 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); 955 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && 956 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || 957 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && 958 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && 959 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && 960 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { 961 SDLoc DL(Op); 962 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 963 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 964 BSWAPMask); 965 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); 966 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 967 } 968 } 969 970 // If we have the appropriate vector bit operations, it is better to use them 971 // than unrolling and expanding each component. 972 if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) || 973 !TLI.isOperationLegalOrCustom(ISD::SRL, VT) || 974 !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 975 !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) 976 return DAG.UnrollVectorOp(Op.getNode()); 977 978 // Let LegalizeDAG handle this later. 979 return Op; 980 } 981 982 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { 983 // Implement VSELECT in terms of XOR, AND, OR 984 // on platforms which do not support blend natively. 985 SDLoc DL(Op); 986 987 SDValue Mask = Op.getOperand(0); 988 SDValue Op1 = Op.getOperand(1); 989 SDValue Op2 = Op.getOperand(2); 990 991 EVT VT = Mask.getValueType(); 992 993 // If we can't even use the basic vector operations of 994 // AND,OR,XOR, we will have to scalarize the op. 995 // Notice that the operation may be 'promoted' which means that it is 996 // 'bitcasted' to another type which is handled. 997 // This operation also isn't safe with AND, OR, XOR when the boolean 998 // type is 0/1 as we need an all ones vector constant to mask with. 999 // FIXME: Sign extend 1 to all ones if thats legal on the target. 1000 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 1001 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 1002 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 1003 TLI.getBooleanContents(Op1.getValueType()) != 1004 TargetLowering::ZeroOrNegativeOneBooleanContent) 1005 return DAG.UnrollVectorOp(Op.getNode()); 1006 1007 // If the mask and the type are different sizes, unroll the vector op. This 1008 // can occur when getSetCCResultType returns something that is different in 1009 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 1010 if (VT.getSizeInBits() != Op1.getValueSizeInBits()) 1011 return DAG.UnrollVectorOp(Op.getNode()); 1012 1013 // Bitcast the operands to be the same type as the mask. 1014 // This is needed when we select between FP types because 1015 // the mask is a vector of integers. 1016 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 1017 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 1018 1019 SDValue AllOnes = DAG.getConstant( 1020 APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT); 1021 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 1022 1023 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 1024 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 1025 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 1026 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 1027 } 1028 1029 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { 1030 EVT VT = Op.getOperand(0).getValueType(); 1031 SDLoc DL(Op); 1032 1033 // Make sure that the SINT_TO_FP and SRL instructions are available. 1034 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand || 1035 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) 1036 return DAG.UnrollVectorOp(Op.getNode()); 1037 1038 unsigned BW = VT.getScalarSizeInBits(); 1039 assert((BW == 64 || BW == 32) && 1040 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 1041 1042 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT); 1043 1044 // Constants to clear the upper part of the word. 1045 // Notice that we can also use SHL+SHR, but using a constant is slightly 1046 // faster on x86. 1047 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; 1048 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 1049 1050 // Two to the power of half-word-size. 1051 SDValue TWOHW = DAG.getConstantFP(1ULL << (BW / 2), DL, Op.getValueType()); 1052 1053 // Clear upper part of LO, lower HI 1054 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); 1055 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); 1056 1057 // Convert hi and lo to floats 1058 // Convert the hi part back to the upper values 1059 // TODO: Can any fast-math-flags be set on these nodes? 1060 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); 1061 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); 1062 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); 1063 1064 // Add the two halves 1065 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); 1066 } 1067 1068 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { 1069 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { 1070 SDLoc DL(Op); 1071 SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType()); 1072 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. 1073 return DAG.getNode(ISD::FSUB, DL, Op.getValueType(), 1074 Zero, Op.getOperand(0)); 1075 } 1076 return DAG.UnrollVectorOp(Op.getNode()); 1077 } 1078 1079 SDValue VectorLegalizer::ExpandFSUB(SDValue Op) { 1080 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal, 1081 // we can defer this to operation legalization where it will be lowered as 1082 // a+(-b). 1083 EVT VT = Op.getValueType(); 1084 if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && 1085 TLI.isOperationLegalOrCustom(ISD::FADD, VT)) 1086 return Op; // Defer to LegalizeDAG 1087 1088 return DAG.UnrollVectorOp(Op.getNode()); 1089 } 1090 1091 SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) { 1092 EVT VT = Op.getValueType(); 1093 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 1094 1095 // If the non-ZERO_UNDEF version is supported we can use that instead. 1096 if (Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF && 1097 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) { 1098 SDLoc DL(Op); 1099 return DAG.getNode(ISD::CTLZ, DL, Op.getValueType(), Op.getOperand(0)); 1100 } 1101 1102 // If CTPOP is available we can lower with a CTPOP based method: 1103 // u16 ctlz(u16 x) { 1104 // x |= (x >> 1); 1105 // x |= (x >> 2); 1106 // x |= (x >> 4); 1107 // x |= (x >> 8); 1108 // return ctpop(~x); 1109 // } 1110 // Ref: "Hacker's Delight" by Henry Warren 1111 if (isPowerOf2_32(NumBitsPerElt) && 1112 TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && 1113 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 1114 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT) && 1115 TLI.isOperationLegalOrCustomOrPromote(ISD::XOR, VT)) { 1116 SDLoc DL(Op); 1117 SDValue Res = Op.getOperand(0); 1118 EVT ShiftTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 1119 1120 for (unsigned i = 1; i != NumBitsPerElt; i *= 2) 1121 Res = DAG.getNode( 1122 ISD::OR, DL, VT, Res, 1123 DAG.getNode(ISD::SRL, DL, VT, Res, DAG.getConstant(i, DL, ShiftTy))); 1124 1125 Res = DAG.getNOT(DL, Res, VT); 1126 return DAG.getNode(ISD::CTPOP, DL, VT, Res); 1127 } 1128 1129 // Otherwise go ahead and unroll. 1130 return DAG.UnrollVectorOp(Op.getNode()); 1131 } 1132 1133 SDValue VectorLegalizer::ExpandCTTZ_ZERO_UNDEF(SDValue Op) { 1134 // If the non-ZERO_UNDEF version is supported we can use that instead. 1135 if (TLI.isOperationLegalOrCustom(ISD::CTTZ, Op.getValueType())) { 1136 SDLoc DL(Op); 1137 return DAG.getNode(ISD::CTTZ, DL, Op.getValueType(), Op.getOperand(0)); 1138 } 1139 1140 // Otherwise go ahead and unroll. 1141 return DAG.UnrollVectorOp(Op.getNode()); 1142 } 1143 1144 SDValue VectorLegalizer::ExpandStrictFPOp(SDValue Op) { 1145 EVT VT = Op.getValueType(); 1146 EVT EltVT = VT.getVectorElementType(); 1147 unsigned NumElems = VT.getVectorNumElements(); 1148 unsigned NumOpers = Op.getNumOperands(); 1149 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1150 EVT ValueVTs[] = {EltVT, MVT::Other}; 1151 SDValue Chain = Op.getOperand(0); 1152 SDLoc dl(Op); 1153 1154 SmallVector<SDValue, 32> OpValues; 1155 SmallVector<SDValue, 32> OpChains; 1156 for (unsigned i = 0; i < NumElems; ++i) { 1157 SmallVector<SDValue, 4> Opers; 1158 SDValue Idx = DAG.getConstant(i, dl, 1159 TLI.getVectorIdxTy(DAG.getDataLayout())); 1160 1161 // The Chain is the first operand. 1162 Opers.push_back(Chain); 1163 1164 // Now process the remaining operands. 1165 for (unsigned j = 1; j < NumOpers; ++j) { 1166 SDValue Oper = Op.getOperand(j); 1167 EVT OperVT = Oper.getValueType(); 1168 1169 if (OperVT.isVector()) 1170 Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 1171 EltVT, Oper, Idx); 1172 1173 Opers.push_back(Oper); 1174 } 1175 1176 SDValue ScalarOp = DAG.getNode(Op->getOpcode(), dl, ValueVTs, Opers); 1177 1178 OpValues.push_back(ScalarOp.getValue(0)); 1179 OpChains.push_back(ScalarOp.getValue(1)); 1180 } 1181 1182 SDValue Result = DAG.getBuildVector(VT, dl, OpValues); 1183 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains); 1184 1185 AddLegalizedOperand(Op.getValue(0), Result); 1186 AddLegalizedOperand(Op.getValue(1), NewChain); 1187 1188 return NewChain; 1189 } 1190 1191 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { 1192 EVT VT = Op.getValueType(); 1193 unsigned NumElems = VT.getVectorNumElements(); 1194 EVT EltVT = VT.getVectorElementType(); 1195 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); 1196 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1197 SDLoc dl(Op); 1198 SmallVector<SDValue, 8> Ops(NumElems); 1199 for (unsigned i = 0; i < NumElems; ++i) { 1200 SDValue LHSElem = DAG.getNode( 1201 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1202 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1203 SDValue RHSElem = DAG.getNode( 1204 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1205 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1206 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1207 TLI.getSetCCResultType(DAG.getDataLayout(), 1208 *DAG.getContext(), TmpEltVT), 1209 LHSElem, RHSElem, CC); 1210 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 1211 DAG.getConstant(APInt::getAllOnesValue 1212 (EltVT.getSizeInBits()), dl, EltVT), 1213 DAG.getConstant(0, dl, EltVT)); 1214 } 1215 return DAG.getBuildVector(VT, dl, Ops); 1216 } 1217 1218 bool SelectionDAG::LegalizeVectors() { 1219 return VectorLegalizer(*this).Run(); 1220 } 1221