1 //===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SelectionDAG::LegalizeVectors method. 11 // 12 // The vector legalizer looks for vector operations which might need to be 13 // scalarized and legalizes them. This is a separate step from Legalize because 14 // scalarizing can introduce illegal types. For example, suppose we have an 15 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 17 // operation, which introduces nodes with the illegal type i64 which must be 18 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 19 // the operation must be unrolled, which introduces nodes with the illegal 20 // type i8 which must be promoted. 21 // 22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 23 // or operations that happen to take a vector which are custom-lowered; 24 // the legalization for such operations never produces nodes 25 // with illegal types, so it's okay to put off legalizing them until 26 // SelectionDAG::Legalize runs. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/Target/TargetLowering.h" 32 using namespace llvm; 33 34 namespace { 35 class VectorLegalizer { 36 SelectionDAG& DAG; 37 const TargetLowering &TLI; 38 bool Changed; // Keep track of whether anything changed 39 40 /// For nodes that are of legal width, and that have more than one use, this 41 /// map indicates what regularized operand to use. This allows us to avoid 42 /// legalizing the same thing more than once. 43 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 44 45 /// \brief Adds a node to the translation cache. 46 void AddLegalizedOperand(SDValue From, SDValue To) { 47 LegalizedNodes.insert(std::make_pair(From, To)); 48 // If someone requests legalization of the new node, return itself. 49 if (From != To) 50 LegalizedNodes.insert(std::make_pair(To, To)); 51 } 52 53 /// \brief Legalizes the given node. 54 SDValue LegalizeOp(SDValue Op); 55 56 /// \brief Assuming the node is legal, "legalize" the results. 57 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); 58 59 /// \brief Implements unrolling a VSETCC. 60 SDValue UnrollVSETCC(SDValue Op); 61 62 /// \brief Implement expand-based legalization of vector operations. 63 /// 64 /// This is just a high-level routine to dispatch to specific code paths for 65 /// operations to legalize them. 66 SDValue Expand(SDValue Op); 67 68 /// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if 69 /// FSUB isn't legal. 70 /// 71 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 72 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 73 SDValue ExpandUINT_TO_FLOAT(SDValue Op); 74 75 /// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 76 SDValue ExpandSEXTINREG(SDValue Op); 77 78 /// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG. 79 /// 80 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 81 /// type. The contents of the bits in the extended part of each element are 82 /// undef. 83 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op); 84 85 /// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG. 86 /// 87 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 88 /// type, then shifts left and arithmetic shifts right to introduce a sign 89 /// extension. 90 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op); 91 92 /// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG. 93 /// 94 /// Shuffles the low lanes of the operand into place and blends zeros into 95 /// the remaining lanes, finally bitcasting to the proper type. 96 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op); 97 98 /// \brief Expand bswap of vectors into a shuffle if legal. 99 SDValue ExpandBSWAP(SDValue Op); 100 101 /// \brief Implement vselect in terms of XOR, AND, OR when blend is not 102 /// supported by the target. 103 SDValue ExpandVSELECT(SDValue Op); 104 SDValue ExpandSELECT(SDValue Op); 105 SDValue ExpandLoad(SDValue Op); 106 SDValue ExpandStore(SDValue Op); 107 SDValue ExpandFNEG(SDValue Op); 108 SDValue ExpandABSDIFF(SDValue Op); 109 110 /// \brief Implements vector promotion. 111 /// 112 /// This is essentially just bitcasting the operands to a different type and 113 /// bitcasting the result back to the original type. 114 SDValue Promote(SDValue Op); 115 116 /// \brief Implements [SU]INT_TO_FP vector promotion. 117 /// 118 /// This is a [zs]ext of the input operand to the next size up. 119 SDValue PromoteINT_TO_FP(SDValue Op); 120 121 /// \brief Implements FP_TO_[SU]INT vector promotion of the result type. 122 /// 123 /// It is promoted to the next size up integer type. The result is then 124 /// truncated back to the original type. 125 SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned); 126 127 public: 128 /// \brief Begin legalizer the vector operations in the DAG. 129 bool Run(); 130 VectorLegalizer(SelectionDAG& dag) : 131 DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {} 132 }; 133 134 bool VectorLegalizer::Run() { 135 // Before we start legalizing vector nodes, check if there are any vectors. 136 bool HasVectors = false; 137 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 138 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 139 // Check if the values of the nodes contain vectors. We don't need to check 140 // the operands because we are going to check their values at some point. 141 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); 142 J != E; ++J) 143 HasVectors |= J->isVector(); 144 145 // If we found a vector node we can start the legalization. 146 if (HasVectors) 147 break; 148 } 149 150 // If this basic block has no vectors then no need to legalize vectors. 151 if (!HasVectors) 152 return false; 153 154 // The legalize process is inherently a bottom-up recursive process (users 155 // legalize their uses before themselves). Given infinite stack space, we 156 // could just start legalizing on the root and traverse the whole graph. In 157 // practice however, this causes us to run out of stack space on large basic 158 // blocks. To avoid this problem, compute an ordering of the nodes where each 159 // node is only legalized after all of its operands are legalized. 160 DAG.AssignTopologicalOrder(); 161 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 162 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 163 LegalizeOp(SDValue(&*I, 0)); 164 165 // Finally, it's possible the root changed. Get the new root. 166 SDValue OldRoot = DAG.getRoot(); 167 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 168 DAG.setRoot(LegalizedNodes[OldRoot]); 169 170 LegalizedNodes.clear(); 171 172 // Remove dead nodes now. 173 DAG.RemoveDeadNodes(); 174 175 return Changed; 176 } 177 178 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { 179 // Generic legalization: just pass the operand through. 180 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) 181 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 182 return Result.getValue(Op.getResNo()); 183 } 184 185 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 186 // Note that LegalizeOp may be reentered even from single-use nodes, which 187 // means that we always must cache transformed nodes. 188 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 189 if (I != LegalizedNodes.end()) return I->second; 190 191 SDNode* Node = Op.getNode(); 192 193 // Legalize the operands 194 SmallVector<SDValue, 8> Ops; 195 for (const SDValue &Op : Node->op_values()) 196 Ops.push_back(LegalizeOp(Op)); 197 198 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0); 199 200 bool HasVectorValue = false; 201 if (Op.getOpcode() == ISD::LOAD) { 202 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 203 ISD::LoadExtType ExtType = LD->getExtensionType(); 204 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) 205 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), 206 LD->getMemoryVT())) { 207 default: llvm_unreachable("This action is not supported yet!"); 208 case TargetLowering::Legal: 209 return TranslateLegalizeResults(Op, Result); 210 case TargetLowering::Custom: 211 if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) { 212 if (Lowered == Result) 213 return TranslateLegalizeResults(Op, Lowered); 214 Changed = true; 215 if (Lowered->getNumValues() != Op->getNumValues()) { 216 // This expanded to something other than the load. Assume the 217 // lowering code took care of any chain values, and just handle the 218 // returned value. 219 assert(Result.getValue(1).use_empty() && 220 "There are still live users of the old chain!"); 221 return LegalizeOp(Lowered); 222 } 223 return TranslateLegalizeResults(Op, Lowered); 224 } 225 case TargetLowering::Expand: 226 Changed = true; 227 return LegalizeOp(ExpandLoad(Op)); 228 } 229 } else if (Op.getOpcode() == ISD::STORE) { 230 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 231 EVT StVT = ST->getMemoryVT(); 232 MVT ValVT = ST->getValue().getSimpleValueType(); 233 if (StVT.isVector() && ST->isTruncatingStore()) 234 switch (TLI.getTruncStoreAction(ValVT, StVT.getSimpleVT())) { 235 default: llvm_unreachable("This action is not supported yet!"); 236 case TargetLowering::Legal: 237 return TranslateLegalizeResults(Op, Result); 238 case TargetLowering::Custom: { 239 SDValue Lowered = TLI.LowerOperation(Result, DAG); 240 Changed = Lowered != Result; 241 return TranslateLegalizeResults(Op, Lowered); 242 } 243 case TargetLowering::Expand: 244 Changed = true; 245 return LegalizeOp(ExpandStore(Op)); 246 } 247 } else if (Op.getOpcode() == ISD::MSCATTER) 248 HasVectorValue = true; 249 250 for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end(); 251 J != E; 252 ++J) 253 HasVectorValue |= J->isVector(); 254 if (!HasVectorValue) 255 return TranslateLegalizeResults(Op, Result); 256 257 EVT QueryType; 258 switch (Op.getOpcode()) { 259 default: 260 return TranslateLegalizeResults(Op, Result); 261 case ISD::ADD: 262 case ISD::SUB: 263 case ISD::MUL: 264 case ISD::SDIV: 265 case ISD::UDIV: 266 case ISD::SREM: 267 case ISD::UREM: 268 case ISD::SDIVREM: 269 case ISD::UDIVREM: 270 case ISD::FADD: 271 case ISD::FSUB: 272 case ISD::FMUL: 273 case ISD::FDIV: 274 case ISD::FREM: 275 case ISD::AND: 276 case ISD::OR: 277 case ISD::XOR: 278 case ISD::SHL: 279 case ISD::SRA: 280 case ISD::SRL: 281 case ISD::ROTL: 282 case ISD::ROTR: 283 case ISD::BSWAP: 284 case ISD::CTLZ: 285 case ISD::CTTZ: 286 case ISD::CTLZ_ZERO_UNDEF: 287 case ISD::CTTZ_ZERO_UNDEF: 288 case ISD::CTPOP: 289 case ISD::SELECT: 290 case ISD::VSELECT: 291 case ISD::SELECT_CC: 292 case ISD::SETCC: 293 case ISD::ZERO_EXTEND: 294 case ISD::ANY_EXTEND: 295 case ISD::TRUNCATE: 296 case ISD::SIGN_EXTEND: 297 case ISD::FP_TO_SINT: 298 case ISD::FP_TO_UINT: 299 case ISD::FNEG: 300 case ISD::FABS: 301 case ISD::FMINNUM: 302 case ISD::FMAXNUM: 303 case ISD::FMINNAN: 304 case ISD::FMAXNAN: 305 case ISD::FCOPYSIGN: 306 case ISD::FSQRT: 307 case ISD::FSIN: 308 case ISD::FCOS: 309 case ISD::FPOWI: 310 case ISD::FPOW: 311 case ISD::FLOG: 312 case ISD::FLOG2: 313 case ISD::FLOG10: 314 case ISD::FEXP: 315 case ISD::FEXP2: 316 case ISD::FCEIL: 317 case ISD::FTRUNC: 318 case ISD::FRINT: 319 case ISD::FNEARBYINT: 320 case ISD::FROUND: 321 case ISD::FFLOOR: 322 case ISD::FP_ROUND: 323 case ISD::FP_EXTEND: 324 case ISD::FMA: 325 case ISD::SIGN_EXTEND_INREG: 326 case ISD::ANY_EXTEND_VECTOR_INREG: 327 case ISD::SIGN_EXTEND_VECTOR_INREG: 328 case ISD::ZERO_EXTEND_VECTOR_INREG: 329 case ISD::SMIN: 330 case ISD::SMAX: 331 case ISD::UMIN: 332 case ISD::UMAX: 333 case ISD::UABSDIFF: 334 case ISD::SABSDIFF: 335 QueryType = Node->getValueType(0); 336 break; 337 case ISD::FP_ROUND_INREG: 338 QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 339 break; 340 case ISD::SINT_TO_FP: 341 case ISD::UINT_TO_FP: 342 QueryType = Node->getOperand(0).getValueType(); 343 break; 344 case ISD::MSCATTER: 345 QueryType = cast<MaskedScatterSDNode>(Node)->getValue().getValueType(); 346 break; 347 } 348 349 switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) { 350 default: llvm_unreachable("This action is not supported yet!"); 351 case TargetLowering::Promote: 352 Result = Promote(Op); 353 Changed = true; 354 break; 355 case TargetLowering::Legal: 356 break; 357 case TargetLowering::Custom: { 358 SDValue Tmp1 = TLI.LowerOperation(Op, DAG); 359 if (Tmp1.getNode()) { 360 Result = Tmp1; 361 break; 362 } 363 // FALL THROUGH 364 } 365 case TargetLowering::Expand: 366 Result = Expand(Op); 367 } 368 369 // Make sure that the generated code is itself legal. 370 if (Result != Op) { 371 Result = LegalizeOp(Result); 372 Changed = true; 373 } 374 375 // Note that LegalizeOp may be reentered even from single-use nodes, which 376 // means that we always must cache transformed nodes. 377 AddLegalizedOperand(Op, Result); 378 return Result; 379 } 380 381 SDValue VectorLegalizer::Promote(SDValue Op) { 382 // For a few operations there is a specific concept for promotion based on 383 // the operand's type. 384 switch (Op.getOpcode()) { 385 case ISD::SINT_TO_FP: 386 case ISD::UINT_TO_FP: 387 // "Promote" the operation by extending the operand. 388 return PromoteINT_TO_FP(Op); 389 case ISD::FP_TO_UINT: 390 case ISD::FP_TO_SINT: 391 // Promote the operation by extending the operand. 392 return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT); 393 } 394 395 // There are currently two cases of vector promotion: 396 // 1) Bitcasting a vector of integers to a different type to a vector of the 397 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 398 // 2) Extending a vector of floats to a vector of the same number of larger 399 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 400 MVT VT = Op.getSimpleValueType(); 401 assert(Op.getNode()->getNumValues() == 1 && 402 "Can't promote a vector with multiple results!"); 403 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 404 SDLoc dl(Op); 405 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 406 407 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 408 if (Op.getOperand(j).getValueType().isVector()) 409 if (Op.getOperand(j) 410 .getValueType() 411 .getVectorElementType() 412 .isFloatingPoint() && 413 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 414 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j)); 415 else 416 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); 417 else 418 Operands[j] = Op.getOperand(j); 419 } 420 421 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags()); 422 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 423 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 424 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 425 return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl)); 426 else 427 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 428 } 429 430 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) { 431 // INT_TO_FP operations may require the input operand be promoted even 432 // when the type is otherwise legal. 433 EVT VT = Op.getOperand(0).getValueType(); 434 assert(Op.getNode()->getNumValues() == 1 && 435 "Can't promote a vector with multiple results!"); 436 437 // Normal getTypeToPromoteTo() doesn't work here, as that will promote 438 // by widening the vector w/ the same element width and twice the number 439 // of elements. We want the other way around, the same number of elements, 440 // each twice the width. 441 // 442 // Increase the bitwidth of the element to the next pow-of-two 443 // (which is greater than 8 bits). 444 445 EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext()); 446 assert(NVT.isSimple() && "Promoting to a non-simple vector type!"); 447 SDLoc dl(Op); 448 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 449 450 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : 451 ISD::SIGN_EXTEND; 452 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 453 if (Op.getOperand(j).getValueType().isVector()) 454 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j)); 455 else 456 Operands[j] = Op.getOperand(j); 457 } 458 459 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands); 460 } 461 462 // For FP_TO_INT we promote the result type to a vector type with wider 463 // elements and then truncate the result. This is different from the default 464 // PromoteVector which uses bitcast to promote thus assumning that the 465 // promoted vector type has the same overall size. 466 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) { 467 assert(Op.getNode()->getNumValues() == 1 && 468 "Can't promote a vector with multiple results!"); 469 EVT VT = Op.getValueType(); 470 471 EVT NewVT; 472 unsigned NewOpc; 473 while (1) { 474 NewVT = VT.widenIntegerVectorElementType(*DAG.getContext()); 475 assert(NewVT.isSimple() && "Promoting to a non-simple vector type!"); 476 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) { 477 NewOpc = ISD::FP_TO_SINT; 478 break; 479 } 480 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) { 481 NewOpc = ISD::FP_TO_UINT; 482 break; 483 } 484 } 485 486 SDLoc loc(Op); 487 SDValue promoted = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0)); 488 return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted); 489 } 490 491 492 SDValue VectorLegalizer::ExpandLoad(SDValue Op) { 493 SDLoc dl(Op); 494 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 495 SDValue Chain = LD->getChain(); 496 SDValue BasePTR = LD->getBasePtr(); 497 EVT SrcVT = LD->getMemoryVT(); 498 ISD::LoadExtType ExtType = LD->getExtensionType(); 499 500 SmallVector<SDValue, 8> Vals; 501 SmallVector<SDValue, 8> LoadChains; 502 unsigned NumElem = SrcVT.getVectorNumElements(); 503 504 EVT SrcEltVT = SrcVT.getScalarType(); 505 EVT DstEltVT = Op.getNode()->getValueType(0).getScalarType(); 506 507 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { 508 // When elements in a vector is not byte-addressable, we cannot directly 509 // load each element by advancing pointer, which could only address bytes. 510 // Instead, we load all significant words, mask bits off, and concatenate 511 // them to form each element. Finally, they are extended to destination 512 // scalar type to build the destination vector. 513 EVT WideVT = TLI.getPointerTy(DAG.getDataLayout()); 514 515 assert(WideVT.isRound() && 516 "Could not handle the sophisticated case when the widest integer is" 517 " not power of 2."); 518 assert(WideVT.bitsGE(SrcEltVT) && 519 "Type is not legalized?"); 520 521 unsigned WideBytes = WideVT.getStoreSize(); 522 unsigned Offset = 0; 523 unsigned RemainingBytes = SrcVT.getStoreSize(); 524 SmallVector<SDValue, 8> LoadVals; 525 526 while (RemainingBytes > 0) { 527 SDValue ScalarLoad; 528 unsigned LoadBytes = WideBytes; 529 530 if (RemainingBytes >= LoadBytes) { 531 ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR, 532 LD->getPointerInfo().getWithOffset(Offset), 533 LD->isVolatile(), LD->isNonTemporal(), 534 LD->isInvariant(), 535 MinAlign(LD->getAlignment(), Offset), 536 LD->getAAInfo()); 537 } else { 538 EVT LoadVT = WideVT; 539 while (RemainingBytes < LoadBytes) { 540 LoadBytes >>= 1; // Reduce the load size by half. 541 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); 542 } 543 ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, 544 LD->getPointerInfo().getWithOffset(Offset), 545 LoadVT, LD->isVolatile(), 546 LD->isNonTemporal(), LD->isInvariant(), 547 MinAlign(LD->getAlignment(), Offset), 548 LD->getAAInfo()); 549 } 550 551 RemainingBytes -= LoadBytes; 552 Offset += LoadBytes; 553 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 554 DAG.getConstant(LoadBytes, dl, 555 BasePTR.getValueType())); 556 557 LoadVals.push_back(ScalarLoad.getValue(0)); 558 LoadChains.push_back(ScalarLoad.getValue(1)); 559 } 560 561 // Extract bits, pack and extend/trunc them into destination type. 562 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 563 SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT); 564 565 unsigned BitOffset = 0; 566 unsigned WideIdx = 0; 567 unsigned WideBits = WideVT.getSizeInBits(); 568 569 for (unsigned Idx = 0; Idx != NumElem; ++Idx) { 570 SDValue Lo, Hi, ShAmt; 571 572 if (BitOffset < WideBits) { 573 ShAmt = DAG.getConstant( 574 BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 575 Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); 576 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); 577 } 578 579 BitOffset += SrcEltBits; 580 if (BitOffset >= WideBits) { 581 WideIdx++; 582 BitOffset -= WideBits; 583 if (BitOffset > 0) { 584 ShAmt = DAG.getConstant( 585 SrcEltBits - BitOffset, dl, 586 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 587 Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); 588 Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask); 589 } 590 } 591 592 if (Hi.getNode()) 593 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); 594 595 switch (ExtType) { 596 default: llvm_unreachable("Unknown extended-load op!"); 597 case ISD::EXTLOAD: 598 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); 599 break; 600 case ISD::ZEXTLOAD: 601 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); 602 break; 603 case ISD::SEXTLOAD: 604 ShAmt = 605 DAG.getConstant(WideBits - SrcEltBits, dl, 606 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 607 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); 608 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); 609 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); 610 break; 611 } 612 Vals.push_back(Lo); 613 } 614 } else { 615 unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8; 616 617 for (unsigned Idx=0; Idx<NumElem; Idx++) { 618 SDValue ScalarLoad = DAG.getExtLoad(ExtType, dl, 619 Op.getNode()->getValueType(0).getScalarType(), 620 Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride), 621 SrcVT.getScalarType(), 622 LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), 623 MinAlign(LD->getAlignment(), Idx * Stride), LD->getAAInfo()); 624 625 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 626 DAG.getConstant(Stride, dl, BasePTR.getValueType())); 627 628 Vals.push_back(ScalarLoad.getValue(0)); 629 LoadChains.push_back(ScalarLoad.getValue(1)); 630 } 631 } 632 633 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 634 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, 635 Op.getNode()->getValueType(0), Vals); 636 637 AddLegalizedOperand(Op.getValue(0), Value); 638 AddLegalizedOperand(Op.getValue(1), NewChain); 639 640 return (Op.getResNo() ? NewChain : Value); 641 } 642 643 SDValue VectorLegalizer::ExpandStore(SDValue Op) { 644 SDLoc dl(Op); 645 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 646 SDValue Chain = ST->getChain(); 647 SDValue BasePTR = ST->getBasePtr(); 648 SDValue Value = ST->getValue(); 649 EVT StVT = ST->getMemoryVT(); 650 651 unsigned Alignment = ST->getAlignment(); 652 bool isVolatile = ST->isVolatile(); 653 bool isNonTemporal = ST->isNonTemporal(); 654 AAMDNodes AAInfo = ST->getAAInfo(); 655 656 unsigned NumElem = StVT.getVectorNumElements(); 657 // The type of the data we want to save 658 EVT RegVT = Value.getValueType(); 659 EVT RegSclVT = RegVT.getScalarType(); 660 // The type of data as saved in memory. 661 EVT MemSclVT = StVT.getScalarType(); 662 663 // Cast floats into integers 664 unsigned ScalarSize = MemSclVT.getSizeInBits(); 665 666 // Round odd types to the next pow of two. 667 if (!isPowerOf2_32(ScalarSize)) 668 ScalarSize = NextPowerOf2(ScalarSize); 669 670 // Store Stride in bytes 671 unsigned Stride = ScalarSize/8; 672 // Extract each of the elements from the original vector 673 // and save them into memory individually. 674 SmallVector<SDValue, 8> Stores; 675 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 676 SDValue Ex = DAG.getNode( 677 ISD::EXTRACT_VECTOR_ELT, dl, RegSclVT, Value, 678 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 679 680 // This scalar TruncStore may be illegal, but we legalize it later. 681 SDValue Store = DAG.getTruncStore(Chain, dl, Ex, BasePTR, 682 ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT, 683 isVolatile, isNonTemporal, MinAlign(Alignment, Idx*Stride), 684 AAInfo); 685 686 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 687 DAG.getConstant(Stride, dl, BasePTR.getValueType())); 688 689 Stores.push_back(Store); 690 } 691 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 692 AddLegalizedOperand(Op, TF); 693 return TF; 694 } 695 696 SDValue VectorLegalizer::Expand(SDValue Op) { 697 switch (Op->getOpcode()) { 698 case ISD::SIGN_EXTEND_INREG: 699 return ExpandSEXTINREG(Op); 700 case ISD::ANY_EXTEND_VECTOR_INREG: 701 return ExpandANY_EXTEND_VECTOR_INREG(Op); 702 case ISD::SIGN_EXTEND_VECTOR_INREG: 703 return ExpandSIGN_EXTEND_VECTOR_INREG(Op); 704 case ISD::ZERO_EXTEND_VECTOR_INREG: 705 return ExpandZERO_EXTEND_VECTOR_INREG(Op); 706 case ISD::BSWAP: 707 return ExpandBSWAP(Op); 708 case ISD::VSELECT: 709 return ExpandVSELECT(Op); 710 case ISD::SELECT: 711 return ExpandSELECT(Op); 712 case ISD::UINT_TO_FP: 713 return ExpandUINT_TO_FLOAT(Op); 714 case ISD::FNEG: 715 return ExpandFNEG(Op); 716 case ISD::SETCC: 717 return UnrollVSETCC(Op); 718 case ISD::UABSDIFF: 719 case ISD::SABSDIFF: 720 return ExpandABSDIFF(Op); 721 default: 722 return DAG.UnrollVectorOp(Op.getNode()); 723 } 724 } 725 726 SDValue VectorLegalizer::ExpandABSDIFF(SDValue Op) { 727 SDLoc dl(Op); 728 SDValue Op0 = Op.getOperand(0); 729 SDValue Op1 = Op.getOperand(1); 730 EVT VT = Op.getValueType(); 731 732 // For unsigned intrinsic, promote the type to handle unsigned overflow. 733 bool isUabsdiff = (Op->getOpcode() == ISD::UABSDIFF); 734 if (isUabsdiff) { 735 VT = VT.widenIntegerVectorElementType(*DAG.getContext()); 736 Op0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op0); 737 Op1 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op1); 738 } 739 740 SDNodeFlags Flags; 741 Flags.setNoSignedWrap(!isUabsdiff); 742 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Op0, Op1, &Flags); 743 if (isUabsdiff) 744 return DAG.getNode(ISD::TRUNCATE, dl, Op.getValueType(), Sub); 745 746 SDValue Cmp = 747 DAG.getNode(ISD::SETCC, dl, TLI.getSetCCResultType(DAG.getDataLayout(), 748 *DAG.getContext(), VT), 749 Sub, DAG.getConstant(0, dl, VT), DAG.getCondCode(ISD::SETGE)); 750 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), Sub, &Flags); 751 return DAG.getNode(ISD::VSELECT, dl, VT, Cmp, Sub, Neg); 752 } 753 754 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) { 755 // Lower a select instruction where the condition is a scalar and the 756 // operands are vectors. Lower this select to VSELECT and implement it 757 // using XOR AND OR. The selector bit is broadcasted. 758 EVT VT = Op.getValueType(); 759 SDLoc DL(Op); 760 761 SDValue Mask = Op.getOperand(0); 762 SDValue Op1 = Op.getOperand(1); 763 SDValue Op2 = Op.getOperand(2); 764 765 assert(VT.isVector() && !Mask.getValueType().isVector() 766 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 767 768 unsigned NumElem = VT.getVectorNumElements(); 769 770 // If we can't even use the basic vector operations of 771 // AND,OR,XOR, we will have to scalarize the op. 772 // Notice that the operation may be 'promoted' which means that it is 773 // 'bitcasted' to another type which is handled. 774 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 775 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 776 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 777 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 778 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 779 return DAG.UnrollVectorOp(Op.getNode()); 780 781 // Generate a mask operand. 782 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 783 784 // What is the size of each element in the vector mask. 785 EVT BitTy = MaskTy.getScalarType(); 786 787 Mask = DAG.getSelect(DL, BitTy, Mask, 788 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, 789 BitTy), 790 DAG.getConstant(0, DL, BitTy)); 791 792 // Broadcast the mask so that the entire vector is all-one or all zero. 793 SmallVector<SDValue, 8> Ops(NumElem, Mask); 794 Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, Ops); 795 796 // Bitcast the operands to be the same type as the mask. 797 // This is needed when we select between FP types because 798 // the mask is a vector of integers. 799 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 800 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 801 802 SDValue AllOnes = DAG.getConstant( 803 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy); 804 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 805 806 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 807 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 808 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 809 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 810 } 811 812 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) { 813 EVT VT = Op.getValueType(); 814 815 // Make sure that the SRA and SHL instructions are available. 816 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 817 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 818 return DAG.UnrollVectorOp(Op.getNode()); 819 820 SDLoc DL(Op); 821 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT(); 822 823 unsigned BW = VT.getScalarType().getSizeInBits(); 824 unsigned OrigBW = OrigTy.getScalarType().getSizeInBits(); 825 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 826 827 Op = Op.getOperand(0); 828 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz); 829 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 830 } 831 832 // Generically expand a vector anyext in register to a shuffle of the relevant 833 // lanes into the appropriate locations, with other lanes left undef. 834 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) { 835 SDLoc DL(Op); 836 EVT VT = Op.getValueType(); 837 int NumElements = VT.getVectorNumElements(); 838 SDValue Src = Op.getOperand(0); 839 EVT SrcVT = Src.getValueType(); 840 int NumSrcElements = SrcVT.getVectorNumElements(); 841 842 // Build a base mask of undef shuffles. 843 SmallVector<int, 16> ShuffleMask; 844 ShuffleMask.resize(NumSrcElements, -1); 845 846 // Place the extended lanes into the correct locations. 847 int ExtLaneScale = NumSrcElements / NumElements; 848 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 849 for (int i = 0; i < NumElements; ++i) 850 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 851 852 return DAG.getNode( 853 ISD::BITCAST, DL, VT, 854 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 855 } 856 857 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) { 858 SDLoc DL(Op); 859 EVT VT = Op.getValueType(); 860 SDValue Src = Op.getOperand(0); 861 EVT SrcVT = Src.getValueType(); 862 863 // First build an any-extend node which can be legalized above when we 864 // recurse through it. 865 Op = DAG.getAnyExtendVectorInReg(Src, DL, VT); 866 867 // Now we need sign extend. Do this by shifting the elements. Even if these 868 // aren't legal operations, they have a better chance of being legalized 869 // without full scalarization than the sign extension does. 870 unsigned EltWidth = VT.getVectorElementType().getSizeInBits(); 871 unsigned SrcEltWidth = SrcVT.getVectorElementType().getSizeInBits(); 872 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 873 return DAG.getNode(ISD::SRA, DL, VT, 874 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 875 ShiftAmount); 876 } 877 878 // Generically expand a vector zext in register to a shuffle of the relevant 879 // lanes into the appropriate locations, a blend of zero into the high bits, 880 // and a bitcast to the wider element type. 881 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) { 882 SDLoc DL(Op); 883 EVT VT = Op.getValueType(); 884 int NumElements = VT.getVectorNumElements(); 885 SDValue Src = Op.getOperand(0); 886 EVT SrcVT = Src.getValueType(); 887 int NumSrcElements = SrcVT.getVectorNumElements(); 888 889 // Build up a zero vector to blend into this one. 890 EVT SrcScalarVT = SrcVT.getScalarType(); 891 SDValue ScalarZero = DAG.getTargetConstant(0, DL, SrcScalarVT); 892 SmallVector<SDValue, 4> BuildVectorOperands(NumSrcElements, ScalarZero); 893 SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, DL, SrcVT, BuildVectorOperands); 894 895 // Shuffle the incoming lanes into the correct position, and pull all other 896 // lanes from the zero vector. 897 SmallVector<int, 16> ShuffleMask; 898 ShuffleMask.reserve(NumSrcElements); 899 for (int i = 0; i < NumSrcElements; ++i) 900 ShuffleMask.push_back(i); 901 902 int ExtLaneScale = NumSrcElements / NumElements; 903 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 904 for (int i = 0; i < NumElements; ++i) 905 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 906 907 return DAG.getNode(ISD::BITCAST, DL, VT, 908 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 909 } 910 911 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) { 912 EVT VT = Op.getValueType(); 913 914 // Generate a byte wise shuffle mask for the BSWAP. 915 SmallVector<int, 16> ShuffleMask; 916 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 917 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 918 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 919 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 920 921 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 922 923 // Only emit a shuffle if the mask is legal. 924 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) 925 return DAG.UnrollVectorOp(Op.getNode()); 926 927 SDLoc DL(Op); 928 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 929 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 930 ShuffleMask.data()); 931 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 932 } 933 934 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { 935 // Implement VSELECT in terms of XOR, AND, OR 936 // on platforms which do not support blend natively. 937 SDLoc DL(Op); 938 939 SDValue Mask = Op.getOperand(0); 940 SDValue Op1 = Op.getOperand(1); 941 SDValue Op2 = Op.getOperand(2); 942 943 EVT VT = Mask.getValueType(); 944 945 // If we can't even use the basic vector operations of 946 // AND,OR,XOR, we will have to scalarize the op. 947 // Notice that the operation may be 'promoted' which means that it is 948 // 'bitcasted' to another type which is handled. 949 // This operation also isn't safe with AND, OR, XOR when the boolean 950 // type is 0/1 as we need an all ones vector constant to mask with. 951 // FIXME: Sign extend 1 to all ones if thats legal on the target. 952 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 953 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 954 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 955 TLI.getBooleanContents(Op1.getValueType()) != 956 TargetLowering::ZeroOrNegativeOneBooleanContent) 957 return DAG.UnrollVectorOp(Op.getNode()); 958 959 // If the mask and the type are different sizes, unroll the vector op. This 960 // can occur when getSetCCResultType returns something that is different in 961 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 962 if (VT.getSizeInBits() != Op1.getValueType().getSizeInBits()) 963 return DAG.UnrollVectorOp(Op.getNode()); 964 965 // Bitcast the operands to be the same type as the mask. 966 // This is needed when we select between FP types because 967 // the mask is a vector of integers. 968 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 969 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 970 971 SDValue AllOnes = DAG.getConstant( 972 APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), DL, VT); 973 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 974 975 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 976 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 977 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 978 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 979 } 980 981 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { 982 EVT VT = Op.getOperand(0).getValueType(); 983 SDLoc DL(Op); 984 985 // Make sure that the SINT_TO_FP and SRL instructions are available. 986 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand || 987 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) 988 return DAG.UnrollVectorOp(Op.getNode()); 989 990 EVT SVT = VT.getScalarType(); 991 assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) && 992 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 993 994 unsigned BW = SVT.getSizeInBits(); 995 SDValue HalfWord = DAG.getConstant(BW/2, DL, VT); 996 997 // Constants to clear the upper part of the word. 998 // Notice that we can also use SHL+SHR, but using a constant is slightly 999 // faster on x86. 1000 uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF; 1001 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 1002 1003 // Two to the power of half-word-size. 1004 SDValue TWOHW = DAG.getConstantFP(1 << (BW/2), DL, Op.getValueType()); 1005 1006 // Clear upper part of LO, lower HI 1007 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); 1008 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); 1009 1010 // Convert hi and lo to floats 1011 // Convert the hi part back to the upper values 1012 // TODO: Can any fast-math-flags be set on these nodes? 1013 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); 1014 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); 1015 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); 1016 1017 // Add the two halves 1018 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); 1019 } 1020 1021 1022 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { 1023 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { 1024 SDLoc DL(Op); 1025 SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType()); 1026 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. 1027 return DAG.getNode(ISD::FSUB, DL, Op.getValueType(), 1028 Zero, Op.getOperand(0)); 1029 } 1030 return DAG.UnrollVectorOp(Op.getNode()); 1031 } 1032 1033 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { 1034 EVT VT = Op.getValueType(); 1035 unsigned NumElems = VT.getVectorNumElements(); 1036 EVT EltVT = VT.getVectorElementType(); 1037 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); 1038 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1039 SDLoc dl(Op); 1040 SmallVector<SDValue, 8> Ops(NumElems); 1041 for (unsigned i = 0; i < NumElems; ++i) { 1042 SDValue LHSElem = DAG.getNode( 1043 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1044 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1045 SDValue RHSElem = DAG.getNode( 1046 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1047 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1048 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1049 TLI.getSetCCResultType(DAG.getDataLayout(), 1050 *DAG.getContext(), TmpEltVT), 1051 LHSElem, RHSElem, CC); 1052 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 1053 DAG.getConstant(APInt::getAllOnesValue 1054 (EltVT.getSizeInBits()), dl, EltVT), 1055 DAG.getConstant(0, dl, EltVT)); 1056 } 1057 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 1058 } 1059 1060 } 1061 1062 bool SelectionDAG::LegalizeVectors() { 1063 return VectorLegalizer(*this).Run(); 1064 } 1065