1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::LegalizeVectors method. 10 // 11 // The vector legalizer looks for vector operations which might need to be 12 // scalarized and legalizes them. This is a separate step from Legalize because 13 // scalarizing can introduce illegal types. For example, suppose we have an 14 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 16 // operation, which introduces nodes with the illegal type i64 which must be 17 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 18 // the operation must be unrolled, which introduces nodes with the illegal 19 // type i8 which must be promoted. 20 // 21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 22 // or operations that happen to take a vector which are custom-lowered; 23 // the legalization for such operations never produces nodes 24 // with illegal types, so it's okay to put off legalizing them until 25 // SelectionDAG::Legalize runs. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/SelectionDAGNodes.h" 36 #include "llvm/CodeGen/TargetLowering.h" 37 #include "llvm/CodeGen/ValueTypes.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Support/MachineValueType.h" 43 #include "llvm/Support/MathExtras.h" 44 #include <cassert> 45 #include <cstdint> 46 #include <iterator> 47 #include <utility> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "legalizevectorops" 52 53 namespace { 54 55 class VectorLegalizer { 56 SelectionDAG& DAG; 57 const TargetLowering &TLI; 58 bool Changed = false; // Keep track of whether anything changed 59 60 /// For nodes that are of legal width, and that have more than one use, this 61 /// map indicates what regularized operand to use. This allows us to avoid 62 /// legalizing the same thing more than once. 63 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 64 65 /// Adds a node to the translation cache. 66 void AddLegalizedOperand(SDValue From, SDValue To) { 67 LegalizedNodes.insert(std::make_pair(From, To)); 68 // If someone requests legalization of the new node, return itself. 69 if (From != To) 70 LegalizedNodes.insert(std::make_pair(To, To)); 71 } 72 73 /// Legalizes the given node. 74 SDValue LegalizeOp(SDValue Op); 75 76 /// Assuming the node is legal, "legalize" the results. 77 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); 78 79 /// Implements unrolling a VSETCC. 80 SDValue UnrollVSETCC(SDValue Op); 81 82 /// Implement expand-based legalization of vector operations. 83 /// 84 /// This is just a high-level routine to dispatch to specific code paths for 85 /// operations to legalize them. 86 SDValue Expand(SDValue Op); 87 88 /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if 89 /// FP_TO_SINT isn't legal. 90 SDValue ExpandFP_TO_UINT(SDValue Op); 91 92 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 93 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 94 SDValue ExpandUINT_TO_FLOAT(SDValue Op); 95 96 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 97 SDValue ExpandSEXTINREG(SDValue Op); 98 99 /// Implement expansion for ANY_EXTEND_VECTOR_INREG. 100 /// 101 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 102 /// type. The contents of the bits in the extended part of each element are 103 /// undef. 104 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op); 105 106 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG. 107 /// 108 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 109 /// type, then shifts left and arithmetic shifts right to introduce a sign 110 /// extension. 111 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op); 112 113 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG. 114 /// 115 /// Shuffles the low lanes of the operand into place and blends zeros into 116 /// the remaining lanes, finally bitcasting to the proper type. 117 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op); 118 119 /// Implement expand-based legalization of ABS vector operations. 120 /// If following expanding is legal/custom then do it: 121 /// (ABS x) --> (XOR (ADD x, (SRA x, sizeof(x)-1)), (SRA x, sizeof(x)-1)) 122 /// else unroll the operation. 123 SDValue ExpandABS(SDValue Op); 124 125 /// Expand bswap of vectors into a shuffle if legal. 126 SDValue ExpandBSWAP(SDValue Op); 127 128 /// Implement vselect in terms of XOR, AND, OR when blend is not 129 /// supported by the target. 130 SDValue ExpandVSELECT(SDValue Op); 131 SDValue ExpandSELECT(SDValue Op); 132 SDValue ExpandLoad(SDValue Op); 133 SDValue ExpandStore(SDValue Op); 134 SDValue ExpandFNEG(SDValue Op); 135 SDValue ExpandFSUB(SDValue Op); 136 SDValue ExpandBITREVERSE(SDValue Op); 137 SDValue ExpandCTPOP(SDValue Op); 138 SDValue ExpandCTLZ(SDValue Op); 139 SDValue ExpandCTTZ(SDValue Op); 140 SDValue ExpandFunnelShift(SDValue Op); 141 SDValue ExpandROT(SDValue Op); 142 SDValue ExpandFMINNUM_FMAXNUM(SDValue Op); 143 SDValue ExpandUADDSUBO(SDValue Op); 144 SDValue ExpandSADDSUBO(SDValue Op); 145 SDValue ExpandMULO(SDValue Op); 146 SDValue ExpandAddSubSat(SDValue Op); 147 SDValue ExpandFixedPointMul(SDValue Op); 148 SDValue ExpandStrictFPOp(SDValue Op); 149 150 /// Implements vector promotion. 151 /// 152 /// This is essentially just bitcasting the operands to a different type and 153 /// bitcasting the result back to the original type. 154 SDValue Promote(SDValue Op); 155 156 /// Implements [SU]INT_TO_FP vector promotion. 157 /// 158 /// This is a [zs]ext of the input operand to a larger integer type. 159 SDValue PromoteINT_TO_FP(SDValue Op); 160 161 /// Implements FP_TO_[SU]INT vector promotion of the result type. 162 /// 163 /// It is promoted to a larger integer type. The result is then 164 /// truncated back to the original type. 165 SDValue PromoteFP_TO_INT(SDValue Op); 166 167 public: 168 VectorLegalizer(SelectionDAG& dag) : 169 DAG(dag), TLI(dag.getTargetLoweringInfo()) {} 170 171 /// Begin legalizer the vector operations in the DAG. 172 bool Run(); 173 }; 174 175 } // end anonymous namespace 176 177 bool VectorLegalizer::Run() { 178 // Before we start legalizing vector nodes, check if there are any vectors. 179 bool HasVectors = false; 180 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 181 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 182 // Check if the values of the nodes contain vectors. We don't need to check 183 // the operands because we are going to check their values at some point. 184 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); 185 J != E; ++J) 186 HasVectors |= J->isVector(); 187 188 // If we found a vector node we can start the legalization. 189 if (HasVectors) 190 break; 191 } 192 193 // If this basic block has no vectors then no need to legalize vectors. 194 if (!HasVectors) 195 return false; 196 197 // The legalize process is inherently a bottom-up recursive process (users 198 // legalize their uses before themselves). Given infinite stack space, we 199 // could just start legalizing on the root and traverse the whole graph. In 200 // practice however, this causes us to run out of stack space on large basic 201 // blocks. To avoid this problem, compute an ordering of the nodes where each 202 // node is only legalized after all of its operands are legalized. 203 DAG.AssignTopologicalOrder(); 204 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 205 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 206 LegalizeOp(SDValue(&*I, 0)); 207 208 // Finally, it's possible the root changed. Get the new root. 209 SDValue OldRoot = DAG.getRoot(); 210 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 211 DAG.setRoot(LegalizedNodes[OldRoot]); 212 213 LegalizedNodes.clear(); 214 215 // Remove dead nodes now. 216 DAG.RemoveDeadNodes(); 217 218 return Changed; 219 } 220 221 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { 222 // Generic legalization: just pass the operand through. 223 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) 224 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 225 return Result.getValue(Op.getResNo()); 226 } 227 228 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 229 // Note that LegalizeOp may be reentered even from single-use nodes, which 230 // means that we always must cache transformed nodes. 231 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 232 if (I != LegalizedNodes.end()) return I->second; 233 234 SDNode* Node = Op.getNode(); 235 236 // Legalize the operands 237 SmallVector<SDValue, 8> Ops; 238 for (const SDValue &Op : Node->op_values()) 239 Ops.push_back(LegalizeOp(Op)); 240 241 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 242 Op.getResNo()); 243 244 if (Op.getOpcode() == ISD::LOAD) { 245 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 246 ISD::LoadExtType ExtType = LD->getExtensionType(); 247 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) { 248 LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: "; 249 Node->dump(&DAG)); 250 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), 251 LD->getMemoryVT())) { 252 default: llvm_unreachable("This action is not supported yet!"); 253 case TargetLowering::Legal: 254 return TranslateLegalizeResults(Op, Result); 255 case TargetLowering::Custom: 256 if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) { 257 assert(Lowered->getNumValues() == Op->getNumValues() && 258 "Unexpected number of results"); 259 if (Lowered != Result) { 260 // Make sure the new code is also legal. 261 Lowered = LegalizeOp(Lowered); 262 Changed = true; 263 } 264 return TranslateLegalizeResults(Op, Lowered); 265 } 266 LLVM_FALLTHROUGH; 267 case TargetLowering::Expand: 268 Changed = true; 269 return ExpandLoad(Op); 270 } 271 } 272 } else if (Op.getOpcode() == ISD::STORE) { 273 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 274 EVT StVT = ST->getMemoryVT(); 275 MVT ValVT = ST->getValue().getSimpleValueType(); 276 if (StVT.isVector() && ST->isTruncatingStore()) { 277 LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: "; 278 Node->dump(&DAG)); 279 switch (TLI.getTruncStoreAction(ValVT, StVT)) { 280 default: llvm_unreachable("This action is not supported yet!"); 281 case TargetLowering::Legal: 282 return TranslateLegalizeResults(Op, Result); 283 case TargetLowering::Custom: { 284 SDValue Lowered = TLI.LowerOperation(Result, DAG); 285 if (Lowered != Result) { 286 // Make sure the new code is also legal. 287 Lowered = LegalizeOp(Lowered); 288 Changed = true; 289 } 290 return TranslateLegalizeResults(Op, Lowered); 291 } 292 case TargetLowering::Expand: 293 Changed = true; 294 return ExpandStore(Op); 295 } 296 } 297 } 298 299 bool HasVectorValueOrOp = false; 300 for (auto J = Node->value_begin(), E = Node->value_end(); J != E; ++J) 301 HasVectorValueOrOp |= J->isVector(); 302 for (const SDValue &Op : Node->op_values()) 303 HasVectorValueOrOp |= Op.getValueType().isVector(); 304 305 if (!HasVectorValueOrOp) 306 return TranslateLegalizeResults(Op, Result); 307 308 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 309 switch (Op.getOpcode()) { 310 default: 311 return TranslateLegalizeResults(Op, Result); 312 case ISD::STRICT_FADD: 313 case ISD::STRICT_FSUB: 314 case ISD::STRICT_FMUL: 315 case ISD::STRICT_FDIV: 316 case ISD::STRICT_FREM: 317 case ISD::STRICT_FSQRT: 318 case ISD::STRICT_FMA: 319 case ISD::STRICT_FPOW: 320 case ISD::STRICT_FPOWI: 321 case ISD::STRICT_FSIN: 322 case ISD::STRICT_FCOS: 323 case ISD::STRICT_FEXP: 324 case ISD::STRICT_FEXP2: 325 case ISD::STRICT_FLOG: 326 case ISD::STRICT_FLOG10: 327 case ISD::STRICT_FLOG2: 328 case ISD::STRICT_FRINT: 329 case ISD::STRICT_FNEARBYINT: 330 case ISD::STRICT_FMAXNUM: 331 case ISD::STRICT_FMINNUM: 332 case ISD::STRICT_FCEIL: 333 case ISD::STRICT_FFLOOR: 334 case ISD::STRICT_FROUND: 335 case ISD::STRICT_FTRUNC: 336 case ISD::STRICT_FP_ROUND: 337 case ISD::STRICT_FP_EXTEND: 338 // These pseudo-ops get legalized as if they were their non-strict 339 // equivalent. For instance, if ISD::FSQRT is legal then ISD::STRICT_FSQRT 340 // is also legal, but if ISD::FSQRT requires expansion then so does 341 // ISD::STRICT_FSQRT. 342 Action = TLI.getStrictFPOperationAction(Node->getOpcode(), 343 Node->getValueType(0)); 344 break; 345 case ISD::ADD: 346 case ISD::SUB: 347 case ISD::MUL: 348 case ISD::MULHS: 349 case ISD::MULHU: 350 case ISD::SDIV: 351 case ISD::UDIV: 352 case ISD::SREM: 353 case ISD::UREM: 354 case ISD::SDIVREM: 355 case ISD::UDIVREM: 356 case ISD::FADD: 357 case ISD::FSUB: 358 case ISD::FMUL: 359 case ISD::FDIV: 360 case ISD::FREM: 361 case ISD::AND: 362 case ISD::OR: 363 case ISD::XOR: 364 case ISD::SHL: 365 case ISD::SRA: 366 case ISD::SRL: 367 case ISD::FSHL: 368 case ISD::FSHR: 369 case ISD::ROTL: 370 case ISD::ROTR: 371 case ISD::ABS: 372 case ISD::BSWAP: 373 case ISD::BITREVERSE: 374 case ISD::CTLZ: 375 case ISD::CTTZ: 376 case ISD::CTLZ_ZERO_UNDEF: 377 case ISD::CTTZ_ZERO_UNDEF: 378 case ISD::CTPOP: 379 case ISD::SELECT: 380 case ISD::VSELECT: 381 case ISD::SELECT_CC: 382 case ISD::SETCC: 383 case ISD::ZERO_EXTEND: 384 case ISD::ANY_EXTEND: 385 case ISD::TRUNCATE: 386 case ISD::SIGN_EXTEND: 387 case ISD::FP_TO_SINT: 388 case ISD::FP_TO_UINT: 389 case ISD::FNEG: 390 case ISD::FABS: 391 case ISD::FMINNUM: 392 case ISD::FMAXNUM: 393 case ISD::FMINNUM_IEEE: 394 case ISD::FMAXNUM_IEEE: 395 case ISD::FMINIMUM: 396 case ISD::FMAXIMUM: 397 case ISD::FCOPYSIGN: 398 case ISD::FSQRT: 399 case ISD::FSIN: 400 case ISD::FCOS: 401 case ISD::FPOWI: 402 case ISD::FPOW: 403 case ISD::FLOG: 404 case ISD::FLOG2: 405 case ISD::FLOG10: 406 case ISD::FEXP: 407 case ISD::FEXP2: 408 case ISD::FCEIL: 409 case ISD::FTRUNC: 410 case ISD::FRINT: 411 case ISD::FNEARBYINT: 412 case ISD::FROUND: 413 case ISD::FFLOOR: 414 case ISD::FP_ROUND: 415 case ISD::FP_EXTEND: 416 case ISD::FMA: 417 case ISD::SIGN_EXTEND_INREG: 418 case ISD::ANY_EXTEND_VECTOR_INREG: 419 case ISD::SIGN_EXTEND_VECTOR_INREG: 420 case ISD::ZERO_EXTEND_VECTOR_INREG: 421 case ISD::SMIN: 422 case ISD::SMAX: 423 case ISD::UMIN: 424 case ISD::UMAX: 425 case ISD::SMUL_LOHI: 426 case ISD::UMUL_LOHI: 427 case ISD::SADDO: 428 case ISD::UADDO: 429 case ISD::SSUBO: 430 case ISD::USUBO: 431 case ISD::SMULO: 432 case ISD::UMULO: 433 case ISD::FCANONICALIZE: 434 case ISD::SADDSAT: 435 case ISD::UADDSAT: 436 case ISD::SSUBSAT: 437 case ISD::USUBSAT: 438 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 439 break; 440 case ISD::SMULFIX: 441 case ISD::SMULFIXSAT: 442 case ISD::UMULFIX: { 443 unsigned Scale = Node->getConstantOperandVal(2); 444 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 445 Node->getValueType(0), Scale); 446 break; 447 } 448 case ISD::FP_ROUND_INREG: 449 Action = TLI.getOperationAction(Node->getOpcode(), 450 cast<VTSDNode>(Node->getOperand(1))->getVT()); 451 break; 452 case ISD::SINT_TO_FP: 453 case ISD::UINT_TO_FP: 454 case ISD::VECREDUCE_ADD: 455 case ISD::VECREDUCE_MUL: 456 case ISD::VECREDUCE_AND: 457 case ISD::VECREDUCE_OR: 458 case ISD::VECREDUCE_XOR: 459 case ISD::VECREDUCE_SMAX: 460 case ISD::VECREDUCE_SMIN: 461 case ISD::VECREDUCE_UMAX: 462 case ISD::VECREDUCE_UMIN: 463 case ISD::VECREDUCE_FADD: 464 case ISD::VECREDUCE_FMUL: 465 case ISD::VECREDUCE_FMAX: 466 case ISD::VECREDUCE_FMIN: 467 Action = TLI.getOperationAction(Node->getOpcode(), 468 Node->getOperand(0).getValueType()); 469 break; 470 } 471 472 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG)); 473 474 switch (Action) { 475 default: llvm_unreachable("This action is not supported yet!"); 476 case TargetLowering::Promote: 477 Result = Promote(Op); 478 Changed = true; 479 break; 480 case TargetLowering::Legal: 481 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 482 break; 483 case TargetLowering::Custom: { 484 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 485 if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) { 486 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 487 Result = Tmp1; 488 break; 489 } 490 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 491 LLVM_FALLTHROUGH; 492 } 493 case TargetLowering::Expand: 494 Result = Expand(Op); 495 } 496 497 // Make sure that the generated code is itself legal. 498 if (Result != Op) { 499 Result = LegalizeOp(Result); 500 Changed = true; 501 } 502 503 // Note that LegalizeOp may be reentered even from single-use nodes, which 504 // means that we always must cache transformed nodes. 505 AddLegalizedOperand(Op, Result); 506 return Result; 507 } 508 509 SDValue VectorLegalizer::Promote(SDValue Op) { 510 // For a few operations there is a specific concept for promotion based on 511 // the operand's type. 512 switch (Op.getOpcode()) { 513 case ISD::SINT_TO_FP: 514 case ISD::UINT_TO_FP: 515 // "Promote" the operation by extending the operand. 516 return PromoteINT_TO_FP(Op); 517 case ISD::FP_TO_UINT: 518 case ISD::FP_TO_SINT: 519 // Promote the operation by extending the operand. 520 return PromoteFP_TO_INT(Op); 521 } 522 523 // There are currently two cases of vector promotion: 524 // 1) Bitcasting a vector of integers to a different type to a vector of the 525 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 526 // 2) Extending a vector of floats to a vector of the same number of larger 527 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 528 MVT VT = Op.getSimpleValueType(); 529 assert(Op.getNode()->getNumValues() == 1 && 530 "Can't promote a vector with multiple results!"); 531 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 532 SDLoc dl(Op); 533 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 534 535 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 536 if (Op.getOperand(j).getValueType().isVector()) 537 if (Op.getOperand(j) 538 .getValueType() 539 .getVectorElementType() 540 .isFloatingPoint() && 541 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 542 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j)); 543 else 544 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); 545 else 546 Operands[j] = Op.getOperand(j); 547 } 548 549 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags()); 550 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 551 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 552 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 553 return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl)); 554 else 555 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 556 } 557 558 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) { 559 // INT_TO_FP operations may require the input operand be promoted even 560 // when the type is otherwise legal. 561 MVT VT = Op.getOperand(0).getSimpleValueType(); 562 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 563 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 564 "Vectors have different number of elements!"); 565 566 SDLoc dl(Op); 567 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 568 569 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : 570 ISD::SIGN_EXTEND; 571 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 572 if (Op.getOperand(j).getValueType().isVector()) 573 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j)); 574 else 575 Operands[j] = Op.getOperand(j); 576 } 577 578 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands); 579 } 580 581 // For FP_TO_INT we promote the result type to a vector type with wider 582 // elements and then truncate the result. This is different from the default 583 // PromoteVector which uses bitcast to promote thus assumning that the 584 // promoted vector type has the same overall size. 585 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op) { 586 MVT VT = Op.getSimpleValueType(); 587 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 588 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 589 "Vectors have different number of elements!"); 590 591 unsigned NewOpc = Op->getOpcode(); 592 // Change FP_TO_UINT to FP_TO_SINT if possible. 593 // TODO: Should we only do this if FP_TO_UINT itself isn't legal? 594 if (NewOpc == ISD::FP_TO_UINT && 595 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT)) 596 NewOpc = ISD::FP_TO_SINT; 597 598 SDLoc dl(Op); 599 SDValue Promoted = DAG.getNode(NewOpc, dl, NVT, Op.getOperand(0)); 600 601 // Assert that the converted value fits in the original type. If it doesn't 602 // (eg: because the value being converted is too big), then the result of the 603 // original operation was undefined anyway, so the assert is still correct. 604 Promoted = DAG.getNode(Op->getOpcode() == ISD::FP_TO_UINT ? ISD::AssertZext 605 : ISD::AssertSext, 606 dl, NVT, Promoted, 607 DAG.getValueType(VT.getScalarType())); 608 return DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted); 609 } 610 611 SDValue VectorLegalizer::ExpandLoad(SDValue Op) { 612 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 613 614 EVT SrcVT = LD->getMemoryVT(); 615 EVT SrcEltVT = SrcVT.getScalarType(); 616 unsigned NumElem = SrcVT.getVectorNumElements(); 617 618 SDValue NewChain; 619 SDValue Value; 620 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { 621 SDLoc dl(Op); 622 623 SmallVector<SDValue, 8> Vals; 624 SmallVector<SDValue, 8> LoadChains; 625 626 EVT DstEltVT = LD->getValueType(0).getScalarType(); 627 SDValue Chain = LD->getChain(); 628 SDValue BasePTR = LD->getBasePtr(); 629 ISD::LoadExtType ExtType = LD->getExtensionType(); 630 631 // When elements in a vector is not byte-addressable, we cannot directly 632 // load each element by advancing pointer, which could only address bytes. 633 // Instead, we load all significant words, mask bits off, and concatenate 634 // them to form each element. Finally, they are extended to destination 635 // scalar type to build the destination vector. 636 EVT WideVT = TLI.getPointerTy(DAG.getDataLayout()); 637 638 assert(WideVT.isRound() && 639 "Could not handle the sophisticated case when the widest integer is" 640 " not power of 2."); 641 assert(WideVT.bitsGE(SrcEltVT) && 642 "Type is not legalized?"); 643 644 unsigned WideBytes = WideVT.getStoreSize(); 645 unsigned Offset = 0; 646 unsigned RemainingBytes = SrcVT.getStoreSize(); 647 SmallVector<SDValue, 8> LoadVals; 648 while (RemainingBytes > 0) { 649 SDValue ScalarLoad; 650 unsigned LoadBytes = WideBytes; 651 652 if (RemainingBytes >= LoadBytes) { 653 ScalarLoad = 654 DAG.getLoad(WideVT, dl, Chain, BasePTR, 655 LD->getPointerInfo().getWithOffset(Offset), 656 MinAlign(LD->getAlignment(), Offset), 657 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 658 } else { 659 EVT LoadVT = WideVT; 660 while (RemainingBytes < LoadBytes) { 661 LoadBytes >>= 1; // Reduce the load size by half. 662 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); 663 } 664 ScalarLoad = 665 DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, 666 LD->getPointerInfo().getWithOffset(Offset), LoadVT, 667 MinAlign(LD->getAlignment(), Offset), 668 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 669 } 670 671 RemainingBytes -= LoadBytes; 672 Offset += LoadBytes; 673 674 BasePTR = DAG.getObjectPtrOffset(dl, BasePTR, LoadBytes); 675 676 LoadVals.push_back(ScalarLoad.getValue(0)); 677 LoadChains.push_back(ScalarLoad.getValue(1)); 678 } 679 680 unsigned BitOffset = 0; 681 unsigned WideIdx = 0; 682 unsigned WideBits = WideVT.getSizeInBits(); 683 684 // Extract bits, pack and extend/trunc them into destination type. 685 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 686 SDValue SrcEltBitMask = DAG.getConstant( 687 APInt::getLowBitsSet(WideBits, SrcEltBits), dl, WideVT); 688 689 for (unsigned Idx = 0; Idx != NumElem; ++Idx) { 690 assert(BitOffset < WideBits && "Unexpected offset!"); 691 692 SDValue ShAmt = DAG.getConstant( 693 BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 694 SDValue Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); 695 696 BitOffset += SrcEltBits; 697 if (BitOffset >= WideBits) { 698 WideIdx++; 699 BitOffset -= WideBits; 700 if (BitOffset > 0) { 701 ShAmt = DAG.getConstant( 702 SrcEltBits - BitOffset, dl, 703 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 704 SDValue Hi = 705 DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); 706 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); 707 } 708 } 709 710 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); 711 712 switch (ExtType) { 713 default: llvm_unreachable("Unknown extended-load op!"); 714 case ISD::EXTLOAD: 715 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); 716 break; 717 case ISD::ZEXTLOAD: 718 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); 719 break; 720 case ISD::SEXTLOAD: 721 ShAmt = 722 DAG.getConstant(WideBits - SrcEltBits, dl, 723 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 724 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); 725 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); 726 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); 727 break; 728 } 729 Vals.push_back(Lo); 730 } 731 732 NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 733 Value = DAG.getBuildVector(Op.getNode()->getValueType(0), dl, Vals); 734 } else { 735 SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG); 736 // Skip past MERGE_VALUE node if known. 737 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) { 738 NewChain = Scalarized.getOperand(1); 739 Value = Scalarized.getOperand(0); 740 } else { 741 NewChain = Scalarized.getValue(1); 742 Value = Scalarized.getValue(0); 743 } 744 } 745 746 AddLegalizedOperand(Op.getValue(0), Value); 747 AddLegalizedOperand(Op.getValue(1), NewChain); 748 749 return (Op.getResNo() ? NewChain : Value); 750 } 751 752 SDValue VectorLegalizer::ExpandStore(SDValue Op) { 753 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 754 SDValue TF = TLI.scalarizeVectorStore(ST, DAG); 755 AddLegalizedOperand(Op, TF); 756 return TF; 757 } 758 759 SDValue VectorLegalizer::Expand(SDValue Op) { 760 switch (Op->getOpcode()) { 761 case ISD::SIGN_EXTEND_INREG: 762 return ExpandSEXTINREG(Op); 763 case ISD::ANY_EXTEND_VECTOR_INREG: 764 return ExpandANY_EXTEND_VECTOR_INREG(Op); 765 case ISD::SIGN_EXTEND_VECTOR_INREG: 766 return ExpandSIGN_EXTEND_VECTOR_INREG(Op); 767 case ISD::ZERO_EXTEND_VECTOR_INREG: 768 return ExpandZERO_EXTEND_VECTOR_INREG(Op); 769 case ISD::BSWAP: 770 return ExpandBSWAP(Op); 771 case ISD::VSELECT: 772 return ExpandVSELECT(Op); 773 case ISD::SELECT: 774 return ExpandSELECT(Op); 775 case ISD::FP_TO_UINT: 776 return ExpandFP_TO_UINT(Op); 777 case ISD::UINT_TO_FP: 778 return ExpandUINT_TO_FLOAT(Op); 779 case ISD::FNEG: 780 return ExpandFNEG(Op); 781 case ISD::FSUB: 782 return ExpandFSUB(Op); 783 case ISD::SETCC: 784 return UnrollVSETCC(Op); 785 case ISD::ABS: 786 return ExpandABS(Op); 787 case ISD::BITREVERSE: 788 return ExpandBITREVERSE(Op); 789 case ISD::CTPOP: 790 return ExpandCTPOP(Op); 791 case ISD::CTLZ: 792 case ISD::CTLZ_ZERO_UNDEF: 793 return ExpandCTLZ(Op); 794 case ISD::CTTZ: 795 case ISD::CTTZ_ZERO_UNDEF: 796 return ExpandCTTZ(Op); 797 case ISD::FSHL: 798 case ISD::FSHR: 799 return ExpandFunnelShift(Op); 800 case ISD::ROTL: 801 case ISD::ROTR: 802 return ExpandROT(Op); 803 case ISD::FMINNUM: 804 case ISD::FMAXNUM: 805 return ExpandFMINNUM_FMAXNUM(Op); 806 case ISD::UADDO: 807 case ISD::USUBO: 808 return ExpandUADDSUBO(Op); 809 case ISD::SADDO: 810 case ISD::SSUBO: 811 return ExpandSADDSUBO(Op); 812 case ISD::UMULO: 813 case ISD::SMULO: 814 return ExpandMULO(Op); 815 case ISD::USUBSAT: 816 case ISD::SSUBSAT: 817 case ISD::UADDSAT: 818 case ISD::SADDSAT: 819 return ExpandAddSubSat(Op); 820 case ISD::SMULFIX: 821 case ISD::UMULFIX: 822 return ExpandFixedPointMul(Op); 823 case ISD::STRICT_FADD: 824 case ISD::STRICT_FSUB: 825 case ISD::STRICT_FMUL: 826 case ISD::STRICT_FDIV: 827 case ISD::STRICT_FREM: 828 case ISD::STRICT_FSQRT: 829 case ISD::STRICT_FMA: 830 case ISD::STRICT_FPOW: 831 case ISD::STRICT_FPOWI: 832 case ISD::STRICT_FSIN: 833 case ISD::STRICT_FCOS: 834 case ISD::STRICT_FEXP: 835 case ISD::STRICT_FEXP2: 836 case ISD::STRICT_FLOG: 837 case ISD::STRICT_FLOG10: 838 case ISD::STRICT_FLOG2: 839 case ISD::STRICT_FRINT: 840 case ISD::STRICT_FNEARBYINT: 841 case ISD::STRICT_FMAXNUM: 842 case ISD::STRICT_FMINNUM: 843 case ISD::STRICT_FCEIL: 844 case ISD::STRICT_FFLOOR: 845 case ISD::STRICT_FROUND: 846 case ISD::STRICT_FTRUNC: 847 return ExpandStrictFPOp(Op); 848 case ISD::VECREDUCE_ADD: 849 case ISD::VECREDUCE_MUL: 850 case ISD::VECREDUCE_AND: 851 case ISD::VECREDUCE_OR: 852 case ISD::VECREDUCE_XOR: 853 case ISD::VECREDUCE_SMAX: 854 case ISD::VECREDUCE_SMIN: 855 case ISD::VECREDUCE_UMAX: 856 case ISD::VECREDUCE_UMIN: 857 case ISD::VECREDUCE_FADD: 858 case ISD::VECREDUCE_FMUL: 859 case ISD::VECREDUCE_FMAX: 860 case ISD::VECREDUCE_FMIN: 861 return TLI.expandVecReduce(Op.getNode(), DAG); 862 default: 863 return DAG.UnrollVectorOp(Op.getNode()); 864 } 865 } 866 867 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) { 868 // Lower a select instruction where the condition is a scalar and the 869 // operands are vectors. Lower this select to VSELECT and implement it 870 // using XOR AND OR. The selector bit is broadcasted. 871 EVT VT = Op.getValueType(); 872 SDLoc DL(Op); 873 874 SDValue Mask = Op.getOperand(0); 875 SDValue Op1 = Op.getOperand(1); 876 SDValue Op2 = Op.getOperand(2); 877 878 assert(VT.isVector() && !Mask.getValueType().isVector() 879 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 880 881 // If we can't even use the basic vector operations of 882 // AND,OR,XOR, we will have to scalarize the op. 883 // Notice that the operation may be 'promoted' which means that it is 884 // 'bitcasted' to another type which is handled. 885 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 886 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 887 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 888 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 889 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 890 return DAG.UnrollVectorOp(Op.getNode()); 891 892 // Generate a mask operand. 893 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 894 895 // What is the size of each element in the vector mask. 896 EVT BitTy = MaskTy.getScalarType(); 897 898 Mask = DAG.getSelect(DL, BitTy, Mask, 899 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, 900 BitTy), 901 DAG.getConstant(0, DL, BitTy)); 902 903 // Broadcast the mask so that the entire vector is all-one or all zero. 904 Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask); 905 906 // Bitcast the operands to be the same type as the mask. 907 // This is needed when we select between FP types because 908 // the mask is a vector of integers. 909 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 910 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 911 912 SDValue AllOnes = DAG.getConstant( 913 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy); 914 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 915 916 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 917 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 918 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 919 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 920 } 921 922 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) { 923 EVT VT = Op.getValueType(); 924 925 // Make sure that the SRA and SHL instructions are available. 926 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 927 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 928 return DAG.UnrollVectorOp(Op.getNode()); 929 930 SDLoc DL(Op); 931 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT(); 932 933 unsigned BW = VT.getScalarSizeInBits(); 934 unsigned OrigBW = OrigTy.getScalarSizeInBits(); 935 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 936 937 Op = Op.getOperand(0); 938 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz); 939 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 940 } 941 942 // Generically expand a vector anyext in register to a shuffle of the relevant 943 // lanes into the appropriate locations, with other lanes left undef. 944 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) { 945 SDLoc DL(Op); 946 EVT VT = Op.getValueType(); 947 int NumElements = VT.getVectorNumElements(); 948 SDValue Src = Op.getOperand(0); 949 EVT SrcVT = Src.getValueType(); 950 int NumSrcElements = SrcVT.getVectorNumElements(); 951 952 // Build a base mask of undef shuffles. 953 SmallVector<int, 16> ShuffleMask; 954 ShuffleMask.resize(NumSrcElements, -1); 955 956 // Place the extended lanes into the correct locations. 957 int ExtLaneScale = NumSrcElements / NumElements; 958 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 959 for (int i = 0; i < NumElements; ++i) 960 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 961 962 return DAG.getNode( 963 ISD::BITCAST, DL, VT, 964 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 965 } 966 967 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) { 968 SDLoc DL(Op); 969 EVT VT = Op.getValueType(); 970 SDValue Src = Op.getOperand(0); 971 EVT SrcVT = Src.getValueType(); 972 973 // First build an any-extend node which can be legalized above when we 974 // recurse through it. 975 Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src); 976 977 // Now we need sign extend. Do this by shifting the elements. Even if these 978 // aren't legal operations, they have a better chance of being legalized 979 // without full scalarization than the sign extension does. 980 unsigned EltWidth = VT.getScalarSizeInBits(); 981 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); 982 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 983 return DAG.getNode(ISD::SRA, DL, VT, 984 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 985 ShiftAmount); 986 } 987 988 // Generically expand a vector zext in register to a shuffle of the relevant 989 // lanes into the appropriate locations, a blend of zero into the high bits, 990 // and a bitcast to the wider element type. 991 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) { 992 SDLoc DL(Op); 993 EVT VT = Op.getValueType(); 994 int NumElements = VT.getVectorNumElements(); 995 SDValue Src = Op.getOperand(0); 996 EVT SrcVT = Src.getValueType(); 997 int NumSrcElements = SrcVT.getVectorNumElements(); 998 999 // Build up a zero vector to blend into this one. 1000 SDValue Zero = DAG.getConstant(0, DL, SrcVT); 1001 1002 // Shuffle the incoming lanes into the correct position, and pull all other 1003 // lanes from the zero vector. 1004 SmallVector<int, 16> ShuffleMask; 1005 ShuffleMask.reserve(NumSrcElements); 1006 for (int i = 0; i < NumSrcElements; ++i) 1007 ShuffleMask.push_back(i); 1008 1009 int ExtLaneScale = NumSrcElements / NumElements; 1010 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 1011 for (int i = 0; i < NumElements; ++i) 1012 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 1013 1014 return DAG.getNode(ISD::BITCAST, DL, VT, 1015 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 1016 } 1017 1018 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) { 1019 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 1020 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 1021 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 1022 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 1023 } 1024 1025 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) { 1026 EVT VT = Op.getValueType(); 1027 1028 // Generate a byte wise shuffle mask for the BSWAP. 1029 SmallVector<int, 16> ShuffleMask; 1030 createBSWAPShuffleMask(VT, ShuffleMask); 1031 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 1032 1033 // Only emit a shuffle if the mask is legal. 1034 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) 1035 return DAG.UnrollVectorOp(Op.getNode()); 1036 1037 SDLoc DL(Op); 1038 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 1039 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); 1040 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 1041 } 1042 1043 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) { 1044 EVT VT = Op.getValueType(); 1045 1046 // If we have the scalar operation, it's probably cheaper to unroll it. 1047 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) 1048 return DAG.UnrollVectorOp(Op.getNode()); 1049 1050 // If the vector element width is a whole number of bytes, test if its legal 1051 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte 1052 // vector. This greatly reduces the number of bit shifts necessary. 1053 unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); 1054 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { 1055 SmallVector<int, 16> BSWAPMask; 1056 createBSWAPShuffleMask(VT, BSWAPMask); 1057 1058 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); 1059 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && 1060 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || 1061 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && 1062 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && 1063 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && 1064 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { 1065 SDLoc DL(Op); 1066 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 1067 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 1068 BSWAPMask); 1069 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); 1070 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 1071 } 1072 } 1073 1074 // If we have the appropriate vector bit operations, it is better to use them 1075 // than unrolling and expanding each component. 1076 if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) || 1077 !TLI.isOperationLegalOrCustom(ISD::SRL, VT) || 1078 !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 1079 !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) 1080 return DAG.UnrollVectorOp(Op.getNode()); 1081 1082 // Let LegalizeDAG handle this later. 1083 return Op; 1084 } 1085 1086 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { 1087 // Implement VSELECT in terms of XOR, AND, OR 1088 // on platforms which do not support blend natively. 1089 SDLoc DL(Op); 1090 1091 SDValue Mask = Op.getOperand(0); 1092 SDValue Op1 = Op.getOperand(1); 1093 SDValue Op2 = Op.getOperand(2); 1094 1095 EVT VT = Mask.getValueType(); 1096 1097 // If we can't even use the basic vector operations of 1098 // AND,OR,XOR, we will have to scalarize the op. 1099 // Notice that the operation may be 'promoted' which means that it is 1100 // 'bitcasted' to another type which is handled. 1101 // This operation also isn't safe with AND, OR, XOR when the boolean 1102 // type is 0/1 as we need an all ones vector constant to mask with. 1103 // FIXME: Sign extend 1 to all ones if thats legal on the target. 1104 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 1105 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 1106 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 1107 TLI.getBooleanContents(Op1.getValueType()) != 1108 TargetLowering::ZeroOrNegativeOneBooleanContent) 1109 return DAG.UnrollVectorOp(Op.getNode()); 1110 1111 // If the mask and the type are different sizes, unroll the vector op. This 1112 // can occur when getSetCCResultType returns something that is different in 1113 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 1114 if (VT.getSizeInBits() != Op1.getValueSizeInBits()) 1115 return DAG.UnrollVectorOp(Op.getNode()); 1116 1117 // Bitcast the operands to be the same type as the mask. 1118 // This is needed when we select between FP types because 1119 // the mask is a vector of integers. 1120 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 1121 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 1122 1123 SDValue AllOnes = DAG.getConstant( 1124 APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT); 1125 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 1126 1127 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 1128 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 1129 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 1130 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 1131 } 1132 1133 SDValue VectorLegalizer::ExpandABS(SDValue Op) { 1134 // Attempt to expand using TargetLowering. 1135 SDValue Result; 1136 if (TLI.expandABS(Op.getNode(), Result, DAG)) 1137 return Result; 1138 1139 // Otherwise go ahead and unroll. 1140 return DAG.UnrollVectorOp(Op.getNode()); 1141 } 1142 1143 SDValue VectorLegalizer::ExpandFP_TO_UINT(SDValue Op) { 1144 // Attempt to expand using TargetLowering. 1145 SDValue Result; 1146 if (TLI.expandFP_TO_UINT(Op.getNode(), Result, DAG)) 1147 return Result; 1148 1149 // Otherwise go ahead and unroll. 1150 return DAG.UnrollVectorOp(Op.getNode()); 1151 } 1152 1153 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { 1154 EVT VT = Op.getOperand(0).getValueType(); 1155 SDLoc DL(Op); 1156 1157 // Attempt to expand using TargetLowering. 1158 SDValue Result; 1159 if (TLI.expandUINT_TO_FP(Op.getNode(), Result, DAG)) 1160 return Result; 1161 1162 // Make sure that the SINT_TO_FP and SRL instructions are available. 1163 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand || 1164 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) 1165 return DAG.UnrollVectorOp(Op.getNode()); 1166 1167 unsigned BW = VT.getScalarSizeInBits(); 1168 assert((BW == 64 || BW == 32) && 1169 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 1170 1171 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT); 1172 1173 // Constants to clear the upper part of the word. 1174 // Notice that we can also use SHL+SHR, but using a constant is slightly 1175 // faster on x86. 1176 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; 1177 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 1178 1179 // Two to the power of half-word-size. 1180 SDValue TWOHW = DAG.getConstantFP(1ULL << (BW / 2), DL, Op.getValueType()); 1181 1182 // Clear upper part of LO, lower HI 1183 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); 1184 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); 1185 1186 // Convert hi and lo to floats 1187 // Convert the hi part back to the upper values 1188 // TODO: Can any fast-math-flags be set on these nodes? 1189 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); 1190 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); 1191 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); 1192 1193 // Add the two halves 1194 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); 1195 } 1196 1197 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { 1198 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { 1199 SDLoc DL(Op); 1200 SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType()); 1201 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. 1202 return DAG.getNode(ISD::FSUB, DL, Op.getValueType(), 1203 Zero, Op.getOperand(0)); 1204 } 1205 return DAG.UnrollVectorOp(Op.getNode()); 1206 } 1207 1208 SDValue VectorLegalizer::ExpandFSUB(SDValue Op) { 1209 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal, 1210 // we can defer this to operation legalization where it will be lowered as 1211 // a+(-b). 1212 EVT VT = Op.getValueType(); 1213 if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && 1214 TLI.isOperationLegalOrCustom(ISD::FADD, VT)) 1215 return Op; // Defer to LegalizeDAG 1216 1217 return DAG.UnrollVectorOp(Op.getNode()); 1218 } 1219 1220 SDValue VectorLegalizer::ExpandCTPOP(SDValue Op) { 1221 SDValue Result; 1222 if (TLI.expandCTPOP(Op.getNode(), Result, DAG)) 1223 return Result; 1224 1225 return DAG.UnrollVectorOp(Op.getNode()); 1226 } 1227 1228 SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) { 1229 SDValue Result; 1230 if (TLI.expandCTLZ(Op.getNode(), Result, DAG)) 1231 return Result; 1232 1233 return DAG.UnrollVectorOp(Op.getNode()); 1234 } 1235 1236 SDValue VectorLegalizer::ExpandCTTZ(SDValue Op) { 1237 SDValue Result; 1238 if (TLI.expandCTTZ(Op.getNode(), Result, DAG)) 1239 return Result; 1240 1241 return DAG.UnrollVectorOp(Op.getNode()); 1242 } 1243 1244 SDValue VectorLegalizer::ExpandFunnelShift(SDValue Op) { 1245 SDValue Result; 1246 if (TLI.expandFunnelShift(Op.getNode(), Result, DAG)) 1247 return Result; 1248 1249 return DAG.UnrollVectorOp(Op.getNode()); 1250 } 1251 1252 SDValue VectorLegalizer::ExpandROT(SDValue Op) { 1253 SDValue Result; 1254 if (TLI.expandROT(Op.getNode(), Result, DAG)) 1255 return Result; 1256 1257 return DAG.UnrollVectorOp(Op.getNode()); 1258 } 1259 1260 SDValue VectorLegalizer::ExpandFMINNUM_FMAXNUM(SDValue Op) { 1261 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Op.getNode(), DAG)) 1262 return Expanded; 1263 return DAG.UnrollVectorOp(Op.getNode()); 1264 } 1265 1266 SDValue VectorLegalizer::ExpandUADDSUBO(SDValue Op) { 1267 SDValue Result, Overflow; 1268 TLI.expandUADDSUBO(Op.getNode(), Result, Overflow, DAG); 1269 1270 if (Op.getResNo() == 0) { 1271 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow)); 1272 return Result; 1273 } else { 1274 AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result)); 1275 return Overflow; 1276 } 1277 } 1278 1279 SDValue VectorLegalizer::ExpandSADDSUBO(SDValue Op) { 1280 SDValue Result, Overflow; 1281 TLI.expandSADDSUBO(Op.getNode(), Result, Overflow, DAG); 1282 1283 if (Op.getResNo() == 0) { 1284 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow)); 1285 return Result; 1286 } else { 1287 AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result)); 1288 return Overflow; 1289 } 1290 } 1291 1292 SDValue VectorLegalizer::ExpandMULO(SDValue Op) { 1293 SDValue Result, Overflow; 1294 if (!TLI.expandMULO(Op.getNode(), Result, Overflow, DAG)) 1295 std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Op.getNode()); 1296 1297 if (Op.getResNo() == 0) { 1298 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow)); 1299 return Result; 1300 } else { 1301 AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result)); 1302 return Overflow; 1303 } 1304 } 1305 1306 SDValue VectorLegalizer::ExpandAddSubSat(SDValue Op) { 1307 if (SDValue Expanded = TLI.expandAddSubSat(Op.getNode(), DAG)) 1308 return Expanded; 1309 return DAG.UnrollVectorOp(Op.getNode()); 1310 } 1311 1312 SDValue VectorLegalizer::ExpandFixedPointMul(SDValue Op) { 1313 if (SDValue Expanded = TLI.expandFixedPointMul(Op.getNode(), DAG)) 1314 return Expanded; 1315 return DAG.UnrollVectorOp(Op.getNode()); 1316 } 1317 1318 SDValue VectorLegalizer::ExpandStrictFPOp(SDValue Op) { 1319 EVT VT = Op.getValueType(); 1320 EVT EltVT = VT.getVectorElementType(); 1321 unsigned NumElems = VT.getVectorNumElements(); 1322 unsigned NumOpers = Op.getNumOperands(); 1323 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1324 EVT ValueVTs[] = {EltVT, MVT::Other}; 1325 SDValue Chain = Op.getOperand(0); 1326 SDLoc dl(Op); 1327 1328 SmallVector<SDValue, 32> OpValues; 1329 SmallVector<SDValue, 32> OpChains; 1330 for (unsigned i = 0; i < NumElems; ++i) { 1331 SmallVector<SDValue, 4> Opers; 1332 SDValue Idx = DAG.getConstant(i, dl, 1333 TLI.getVectorIdxTy(DAG.getDataLayout())); 1334 1335 // The Chain is the first operand. 1336 Opers.push_back(Chain); 1337 1338 // Now process the remaining operands. 1339 for (unsigned j = 1; j < NumOpers; ++j) { 1340 SDValue Oper = Op.getOperand(j); 1341 EVT OperVT = Oper.getValueType(); 1342 1343 if (OperVT.isVector()) 1344 Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 1345 OperVT.getVectorElementType(), Oper, Idx); 1346 1347 Opers.push_back(Oper); 1348 } 1349 1350 SDValue ScalarOp = DAG.getNode(Op->getOpcode(), dl, ValueVTs, Opers); 1351 1352 OpValues.push_back(ScalarOp.getValue(0)); 1353 OpChains.push_back(ScalarOp.getValue(1)); 1354 } 1355 1356 SDValue Result = DAG.getBuildVector(VT, dl, OpValues); 1357 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains); 1358 1359 AddLegalizedOperand(Op.getValue(0), Result); 1360 AddLegalizedOperand(Op.getValue(1), NewChain); 1361 1362 return Op.getResNo() ? NewChain : Result; 1363 } 1364 1365 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { 1366 EVT VT = Op.getValueType(); 1367 unsigned NumElems = VT.getVectorNumElements(); 1368 EVT EltVT = VT.getVectorElementType(); 1369 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); 1370 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1371 SDLoc dl(Op); 1372 SmallVector<SDValue, 8> Ops(NumElems); 1373 for (unsigned i = 0; i < NumElems; ++i) { 1374 SDValue LHSElem = DAG.getNode( 1375 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1376 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1377 SDValue RHSElem = DAG.getNode( 1378 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1379 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1380 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1381 TLI.getSetCCResultType(DAG.getDataLayout(), 1382 *DAG.getContext(), TmpEltVT), 1383 LHSElem, RHSElem, CC); 1384 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 1385 DAG.getConstant(APInt::getAllOnesValue 1386 (EltVT.getSizeInBits()), dl, EltVT), 1387 DAG.getConstant(0, dl, EltVT)); 1388 } 1389 return DAG.getBuildVector(VT, dl, Ops); 1390 } 1391 1392 bool SelectionDAG::LegalizeVectors() { 1393 return VectorLegalizer(*this).Run(); 1394 } 1395