1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SelectionDAG::LegalizeVectors method. 11 // 12 // The vector legalizer looks for vector operations which might need to be 13 // scalarized and legalizes them. This is a separate step from Legalize because 14 // scalarizing can introduce illegal types. For example, suppose we have an 15 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 17 // operation, which introduces nodes with the illegal type i64 which must be 18 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 19 // the operation must be unrolled, which introduces nodes with the illegal 20 // type i8 which must be promoted. 21 // 22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 23 // or operations that happen to take a vector which are custom-lowered; 24 // the legalization for such operations never produces nodes 25 // with illegal types, so it's okay to put off legalizing them until 26 // SelectionDAG::Legalize runs. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/ADT/APInt.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/CodeGen/ISDOpcodes.h" 34 #include "llvm/CodeGen/MachineMemOperand.h" 35 #include "llvm/CodeGen/MachineValueType.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/ValueTypes.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Compiler.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MathExtras.h" 44 #include "llvm/Target/TargetLowering.h" 45 #include <cassert> 46 #include <cstdint> 47 #include <iterator> 48 #include <utility> 49 50 using namespace llvm; 51 52 namespace { 53 54 class VectorLegalizer { 55 SelectionDAG& DAG; 56 const TargetLowering &TLI; 57 bool Changed = false; // Keep track of whether anything changed 58 59 /// For nodes that are of legal width, and that have more than one use, this 60 /// map indicates what regularized operand to use. This allows us to avoid 61 /// legalizing the same thing more than once. 62 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 63 64 /// \brief Adds a node to the translation cache. 65 void AddLegalizedOperand(SDValue From, SDValue To) { 66 LegalizedNodes.insert(std::make_pair(From, To)); 67 // If someone requests legalization of the new node, return itself. 68 if (From != To) 69 LegalizedNodes.insert(std::make_pair(To, To)); 70 } 71 72 /// \brief Legalizes the given node. 73 SDValue LegalizeOp(SDValue Op); 74 75 /// \brief Assuming the node is legal, "legalize" the results. 76 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); 77 78 /// \brief Implements unrolling a VSETCC. 79 SDValue UnrollVSETCC(SDValue Op); 80 81 /// \brief Implement expand-based legalization of vector operations. 82 /// 83 /// This is just a high-level routine to dispatch to specific code paths for 84 /// operations to legalize them. 85 SDValue Expand(SDValue Op); 86 87 /// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if 88 /// FSUB isn't legal. 89 /// 90 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 91 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 92 SDValue ExpandUINT_TO_FLOAT(SDValue Op); 93 94 /// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 95 SDValue ExpandSEXTINREG(SDValue Op); 96 97 /// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG. 98 /// 99 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 100 /// type. The contents of the bits in the extended part of each element are 101 /// undef. 102 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op); 103 104 /// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG. 105 /// 106 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 107 /// type, then shifts left and arithmetic shifts right to introduce a sign 108 /// extension. 109 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op); 110 111 /// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG. 112 /// 113 /// Shuffles the low lanes of the operand into place and blends zeros into 114 /// the remaining lanes, finally bitcasting to the proper type. 115 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op); 116 117 /// \brief Expand bswap of vectors into a shuffle if legal. 118 SDValue ExpandBSWAP(SDValue Op); 119 120 /// \brief Implement vselect in terms of XOR, AND, OR when blend is not 121 /// supported by the target. 122 SDValue ExpandVSELECT(SDValue Op); 123 SDValue ExpandSELECT(SDValue Op); 124 SDValue ExpandLoad(SDValue Op); 125 SDValue ExpandStore(SDValue Op); 126 SDValue ExpandFNEG(SDValue Op); 127 SDValue ExpandFSUB(SDValue Op); 128 SDValue ExpandBITREVERSE(SDValue Op); 129 SDValue ExpandCTLZ(SDValue Op); 130 SDValue ExpandCTTZ_ZERO_UNDEF(SDValue Op); 131 132 /// \brief Implements vector promotion. 133 /// 134 /// This is essentially just bitcasting the operands to a different type and 135 /// bitcasting the result back to the original type. 136 SDValue Promote(SDValue Op); 137 138 /// \brief Implements [SU]INT_TO_FP vector promotion. 139 /// 140 /// This is a [zs]ext of the input operand to the next size up. 141 SDValue PromoteINT_TO_FP(SDValue Op); 142 143 /// \brief Implements FP_TO_[SU]INT vector promotion of the result type. 144 /// 145 /// It is promoted to the next size up integer type. The result is then 146 /// truncated back to the original type. 147 SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned); 148 149 public: 150 VectorLegalizer(SelectionDAG& dag) : 151 DAG(dag), TLI(dag.getTargetLoweringInfo()) {} 152 153 /// \brief Begin legalizer the vector operations in the DAG. 154 bool Run(); 155 }; 156 157 } // end anonymous namespace 158 159 bool VectorLegalizer::Run() { 160 // Before we start legalizing vector nodes, check if there are any vectors. 161 bool HasVectors = false; 162 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 163 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 164 // Check if the values of the nodes contain vectors. We don't need to check 165 // the operands because we are going to check their values at some point. 166 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); 167 J != E; ++J) 168 HasVectors |= J->isVector(); 169 170 // If we found a vector node we can start the legalization. 171 if (HasVectors) 172 break; 173 } 174 175 // If this basic block has no vectors then no need to legalize vectors. 176 if (!HasVectors) 177 return false; 178 179 // The legalize process is inherently a bottom-up recursive process (users 180 // legalize their uses before themselves). Given infinite stack space, we 181 // could just start legalizing on the root and traverse the whole graph. In 182 // practice however, this causes us to run out of stack space on large basic 183 // blocks. To avoid this problem, compute an ordering of the nodes where each 184 // node is only legalized after all of its operands are legalized. 185 DAG.AssignTopologicalOrder(); 186 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 187 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 188 LegalizeOp(SDValue(&*I, 0)); 189 190 // Finally, it's possible the root changed. Get the new root. 191 SDValue OldRoot = DAG.getRoot(); 192 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 193 DAG.setRoot(LegalizedNodes[OldRoot]); 194 195 LegalizedNodes.clear(); 196 197 // Remove dead nodes now. 198 DAG.RemoveDeadNodes(); 199 200 return Changed; 201 } 202 203 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { 204 // Generic legalization: just pass the operand through. 205 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) 206 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 207 return Result.getValue(Op.getResNo()); 208 } 209 210 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 211 // Note that LegalizeOp may be reentered even from single-use nodes, which 212 // means that we always must cache transformed nodes. 213 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 214 if (I != LegalizedNodes.end()) return I->second; 215 216 SDNode* Node = Op.getNode(); 217 218 // Legalize the operands 219 SmallVector<SDValue, 8> Ops; 220 for (const SDValue &Op : Node->op_values()) 221 Ops.push_back(LegalizeOp(Op)); 222 223 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0); 224 225 bool HasVectorValue = false; 226 if (Op.getOpcode() == ISD::LOAD) { 227 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 228 ISD::LoadExtType ExtType = LD->getExtensionType(); 229 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) 230 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), 231 LD->getMemoryVT())) { 232 default: llvm_unreachable("This action is not supported yet!"); 233 case TargetLowering::Legal: 234 return TranslateLegalizeResults(Op, Result); 235 case TargetLowering::Custom: 236 if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) { 237 if (Lowered == Result) 238 return TranslateLegalizeResults(Op, Lowered); 239 Changed = true; 240 if (Lowered->getNumValues() != Op->getNumValues()) { 241 // This expanded to something other than the load. Assume the 242 // lowering code took care of any chain values, and just handle the 243 // returned value. 244 assert(Result.getValue(1).use_empty() && 245 "There are still live users of the old chain!"); 246 return LegalizeOp(Lowered); 247 } 248 return TranslateLegalizeResults(Op, Lowered); 249 } 250 LLVM_FALLTHROUGH; 251 case TargetLowering::Expand: 252 Changed = true; 253 return LegalizeOp(ExpandLoad(Op)); 254 } 255 } else if (Op.getOpcode() == ISD::STORE) { 256 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 257 EVT StVT = ST->getMemoryVT(); 258 MVT ValVT = ST->getValue().getSimpleValueType(); 259 if (StVT.isVector() && ST->isTruncatingStore()) 260 switch (TLI.getTruncStoreAction(ValVT, StVT)) { 261 default: llvm_unreachable("This action is not supported yet!"); 262 case TargetLowering::Legal: 263 return TranslateLegalizeResults(Op, Result); 264 case TargetLowering::Custom: { 265 SDValue Lowered = TLI.LowerOperation(Result, DAG); 266 Changed = Lowered != Result; 267 return TranslateLegalizeResults(Op, Lowered); 268 } 269 case TargetLowering::Expand: 270 Changed = true; 271 return LegalizeOp(ExpandStore(Op)); 272 } 273 } else if (Op.getOpcode() == ISD::MSCATTER || Op.getOpcode() == ISD::MSTORE) 274 HasVectorValue = true; 275 276 for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end(); 277 J != E; 278 ++J) 279 HasVectorValue |= J->isVector(); 280 if (!HasVectorValue) 281 return TranslateLegalizeResults(Op, Result); 282 283 EVT QueryType; 284 switch (Op.getOpcode()) { 285 default: 286 return TranslateLegalizeResults(Op, Result); 287 case ISD::ADD: 288 case ISD::SUB: 289 case ISD::MUL: 290 case ISD::SDIV: 291 case ISD::UDIV: 292 case ISD::SREM: 293 case ISD::UREM: 294 case ISD::SDIVREM: 295 case ISD::UDIVREM: 296 case ISD::FADD: 297 case ISD::FSUB: 298 case ISD::FMUL: 299 case ISD::FDIV: 300 case ISD::FREM: 301 case ISD::AND: 302 case ISD::OR: 303 case ISD::XOR: 304 case ISD::SHL: 305 case ISD::SRA: 306 case ISD::SRL: 307 case ISD::ROTL: 308 case ISD::ROTR: 309 case ISD::BSWAP: 310 case ISD::BITREVERSE: 311 case ISD::CTLZ: 312 case ISD::CTTZ: 313 case ISD::CTLZ_ZERO_UNDEF: 314 case ISD::CTTZ_ZERO_UNDEF: 315 case ISD::CTPOP: 316 case ISD::SELECT: 317 case ISD::VSELECT: 318 case ISD::SELECT_CC: 319 case ISD::SETCC: 320 case ISD::ZERO_EXTEND: 321 case ISD::ANY_EXTEND: 322 case ISD::TRUNCATE: 323 case ISD::SIGN_EXTEND: 324 case ISD::FP_TO_SINT: 325 case ISD::FP_TO_UINT: 326 case ISD::FNEG: 327 case ISD::FABS: 328 case ISD::FMINNUM: 329 case ISD::FMAXNUM: 330 case ISD::FMINNAN: 331 case ISD::FMAXNAN: 332 case ISD::FCOPYSIGN: 333 case ISD::FSQRT: 334 case ISD::FSIN: 335 case ISD::FCOS: 336 case ISD::FPOWI: 337 case ISD::FPOW: 338 case ISD::FLOG: 339 case ISD::FLOG2: 340 case ISD::FLOG10: 341 case ISD::FEXP: 342 case ISD::FEXP2: 343 case ISD::FCEIL: 344 case ISD::FTRUNC: 345 case ISD::FRINT: 346 case ISD::FNEARBYINT: 347 case ISD::FROUND: 348 case ISD::FFLOOR: 349 case ISD::FP_ROUND: 350 case ISD::FP_EXTEND: 351 case ISD::FMA: 352 case ISD::SIGN_EXTEND_INREG: 353 case ISD::ANY_EXTEND_VECTOR_INREG: 354 case ISD::SIGN_EXTEND_VECTOR_INREG: 355 case ISD::ZERO_EXTEND_VECTOR_INREG: 356 case ISD::SMIN: 357 case ISD::SMAX: 358 case ISD::UMIN: 359 case ISD::UMAX: 360 case ISD::SMUL_LOHI: 361 case ISD::UMUL_LOHI: 362 QueryType = Node->getValueType(0); 363 break; 364 case ISD::FP_ROUND_INREG: 365 QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 366 break; 367 case ISD::SINT_TO_FP: 368 case ISD::UINT_TO_FP: 369 QueryType = Node->getOperand(0).getValueType(); 370 break; 371 case ISD::MSCATTER: 372 QueryType = cast<MaskedScatterSDNode>(Node)->getValue().getValueType(); 373 break; 374 case ISD::MSTORE: 375 QueryType = cast<MaskedStoreSDNode>(Node)->getValue().getValueType(); 376 break; 377 } 378 379 switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) { 380 default: llvm_unreachable("This action is not supported yet!"); 381 case TargetLowering::Promote: 382 Result = Promote(Op); 383 Changed = true; 384 break; 385 case TargetLowering::Legal: 386 break; 387 case TargetLowering::Custom: { 388 if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) { 389 Result = Tmp1; 390 break; 391 } 392 LLVM_FALLTHROUGH; 393 } 394 case TargetLowering::Expand: 395 Result = Expand(Op); 396 } 397 398 // Make sure that the generated code is itself legal. 399 if (Result != Op) { 400 Result = LegalizeOp(Result); 401 Changed = true; 402 } 403 404 // Note that LegalizeOp may be reentered even from single-use nodes, which 405 // means that we always must cache transformed nodes. 406 AddLegalizedOperand(Op, Result); 407 return Result; 408 } 409 410 SDValue VectorLegalizer::Promote(SDValue Op) { 411 // For a few operations there is a specific concept for promotion based on 412 // the operand's type. 413 switch (Op.getOpcode()) { 414 case ISD::SINT_TO_FP: 415 case ISD::UINT_TO_FP: 416 // "Promote" the operation by extending the operand. 417 return PromoteINT_TO_FP(Op); 418 case ISD::FP_TO_UINT: 419 case ISD::FP_TO_SINT: 420 // Promote the operation by extending the operand. 421 return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT); 422 } 423 424 // There are currently two cases of vector promotion: 425 // 1) Bitcasting a vector of integers to a different type to a vector of the 426 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 427 // 2) Extending a vector of floats to a vector of the same number of larger 428 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 429 MVT VT = Op.getSimpleValueType(); 430 assert(Op.getNode()->getNumValues() == 1 && 431 "Can't promote a vector with multiple results!"); 432 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 433 SDLoc dl(Op); 434 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 435 436 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 437 if (Op.getOperand(j).getValueType().isVector()) 438 if (Op.getOperand(j) 439 .getValueType() 440 .getVectorElementType() 441 .isFloatingPoint() && 442 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 443 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j)); 444 else 445 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); 446 else 447 Operands[j] = Op.getOperand(j); 448 } 449 450 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags()); 451 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 452 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 453 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 454 return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl)); 455 else 456 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 457 } 458 459 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) { 460 // INT_TO_FP operations may require the input operand be promoted even 461 // when the type is otherwise legal. 462 EVT VT = Op.getOperand(0).getValueType(); 463 assert(Op.getNode()->getNumValues() == 1 && 464 "Can't promote a vector with multiple results!"); 465 466 // Normal getTypeToPromoteTo() doesn't work here, as that will promote 467 // by widening the vector w/ the same element width and twice the number 468 // of elements. We want the other way around, the same number of elements, 469 // each twice the width. 470 // 471 // Increase the bitwidth of the element to the next pow-of-two 472 // (which is greater than 8 bits). 473 474 EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext()); 475 assert(NVT.isSimple() && "Promoting to a non-simple vector type!"); 476 SDLoc dl(Op); 477 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 478 479 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : 480 ISD::SIGN_EXTEND; 481 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 482 if (Op.getOperand(j).getValueType().isVector()) 483 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j)); 484 else 485 Operands[j] = Op.getOperand(j); 486 } 487 488 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands); 489 } 490 491 // For FP_TO_INT we promote the result type to a vector type with wider 492 // elements and then truncate the result. This is different from the default 493 // PromoteVector which uses bitcast to promote thus assumning that the 494 // promoted vector type has the same overall size. 495 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) { 496 assert(Op.getNode()->getNumValues() == 1 && 497 "Can't promote a vector with multiple results!"); 498 EVT VT = Op.getValueType(); 499 500 EVT NewVT; 501 unsigned NewOpc; 502 while (true) { 503 NewVT = VT.widenIntegerVectorElementType(*DAG.getContext()); 504 assert(NewVT.isSimple() && "Promoting to a non-simple vector type!"); 505 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) { 506 NewOpc = ISD::FP_TO_SINT; 507 break; 508 } 509 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) { 510 NewOpc = ISD::FP_TO_UINT; 511 break; 512 } 513 } 514 515 SDLoc loc(Op); 516 SDValue promoted = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0)); 517 return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted); 518 } 519 520 SDValue VectorLegalizer::ExpandLoad(SDValue Op) { 521 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 522 523 EVT SrcVT = LD->getMemoryVT(); 524 EVT SrcEltVT = SrcVT.getScalarType(); 525 unsigned NumElem = SrcVT.getVectorNumElements(); 526 527 SDValue NewChain; 528 SDValue Value; 529 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { 530 SDLoc dl(Op); 531 532 SmallVector<SDValue, 8> Vals; 533 SmallVector<SDValue, 8> LoadChains; 534 535 EVT DstEltVT = LD->getValueType(0).getScalarType(); 536 SDValue Chain = LD->getChain(); 537 SDValue BasePTR = LD->getBasePtr(); 538 ISD::LoadExtType ExtType = LD->getExtensionType(); 539 540 // When elements in a vector is not byte-addressable, we cannot directly 541 // load each element by advancing pointer, which could only address bytes. 542 // Instead, we load all significant words, mask bits off, and concatenate 543 // them to form each element. Finally, they are extended to destination 544 // scalar type to build the destination vector. 545 EVT WideVT = TLI.getPointerTy(DAG.getDataLayout()); 546 547 assert(WideVT.isRound() && 548 "Could not handle the sophisticated case when the widest integer is" 549 " not power of 2."); 550 assert(WideVT.bitsGE(SrcEltVT) && 551 "Type is not legalized?"); 552 553 unsigned WideBytes = WideVT.getStoreSize(); 554 unsigned Offset = 0; 555 unsigned RemainingBytes = SrcVT.getStoreSize(); 556 SmallVector<SDValue, 8> LoadVals; 557 558 while (RemainingBytes > 0) { 559 SDValue ScalarLoad; 560 unsigned LoadBytes = WideBytes; 561 562 if (RemainingBytes >= LoadBytes) { 563 ScalarLoad = 564 DAG.getLoad(WideVT, dl, Chain, BasePTR, 565 LD->getPointerInfo().getWithOffset(Offset), 566 MinAlign(LD->getAlignment(), Offset), 567 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 568 } else { 569 EVT LoadVT = WideVT; 570 while (RemainingBytes < LoadBytes) { 571 LoadBytes >>= 1; // Reduce the load size by half. 572 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); 573 } 574 ScalarLoad = 575 DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, 576 LD->getPointerInfo().getWithOffset(Offset), LoadVT, 577 MinAlign(LD->getAlignment(), Offset), 578 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 579 } 580 581 RemainingBytes -= LoadBytes; 582 Offset += LoadBytes; 583 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 584 DAG.getConstant(LoadBytes, dl, 585 BasePTR.getValueType())); 586 587 LoadVals.push_back(ScalarLoad.getValue(0)); 588 LoadChains.push_back(ScalarLoad.getValue(1)); 589 } 590 591 // Extract bits, pack and extend/trunc them into destination type. 592 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 593 SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT); 594 595 unsigned BitOffset = 0; 596 unsigned WideIdx = 0; 597 unsigned WideBits = WideVT.getSizeInBits(); 598 599 for (unsigned Idx = 0; Idx != NumElem; ++Idx) { 600 SDValue Lo, Hi, ShAmt; 601 602 if (BitOffset < WideBits) { 603 ShAmt = DAG.getConstant( 604 BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 605 Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); 606 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); 607 } 608 609 BitOffset += SrcEltBits; 610 if (BitOffset >= WideBits) { 611 WideIdx++; 612 BitOffset -= WideBits; 613 if (BitOffset > 0) { 614 ShAmt = DAG.getConstant( 615 SrcEltBits - BitOffset, dl, 616 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 617 Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); 618 Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask); 619 } 620 } 621 622 if (Hi.getNode()) 623 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); 624 625 switch (ExtType) { 626 default: llvm_unreachable("Unknown extended-load op!"); 627 case ISD::EXTLOAD: 628 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); 629 break; 630 case ISD::ZEXTLOAD: 631 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); 632 break; 633 case ISD::SEXTLOAD: 634 ShAmt = 635 DAG.getConstant(WideBits - SrcEltBits, dl, 636 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 637 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); 638 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); 639 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); 640 break; 641 } 642 Vals.push_back(Lo); 643 } 644 645 NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 646 Value = DAG.getBuildVector(Op.getNode()->getValueType(0), dl, Vals); 647 } else { 648 SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG); 649 650 NewChain = Scalarized.getValue(1); 651 Value = Scalarized.getValue(0); 652 } 653 654 AddLegalizedOperand(Op.getValue(0), Value); 655 AddLegalizedOperand(Op.getValue(1), NewChain); 656 657 return (Op.getResNo() ? NewChain : Value); 658 } 659 660 SDValue VectorLegalizer::ExpandStore(SDValue Op) { 661 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 662 663 EVT StVT = ST->getMemoryVT(); 664 EVT MemSclVT = StVT.getScalarType(); 665 unsigned ScalarSize = MemSclVT.getSizeInBits(); 666 667 // Round odd types to the next pow of two. 668 if (!isPowerOf2_32(ScalarSize)) { 669 // FIXME: This is completely broken and inconsistent with ExpandLoad 670 // handling. 671 672 // For sub-byte element sizes, this ends up with 0 stride between elements, 673 // so the same element just gets re-written to the same location. There seem 674 // to be tests explicitly testing for this broken behavior though. tests 675 // for this broken behavior. 676 677 LLVMContext &Ctx = *DAG.getContext(); 678 679 EVT NewMemVT 680 = EVT::getVectorVT(Ctx, 681 MemSclVT.getIntegerVT(Ctx, NextPowerOf2(ScalarSize)), 682 StVT.getVectorNumElements()); 683 684 SDValue NewVectorStore = DAG.getTruncStore( 685 ST->getChain(), SDLoc(Op), ST->getValue(), ST->getBasePtr(), 686 ST->getPointerInfo(), NewMemVT, ST->getAlignment(), 687 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 688 ST = cast<StoreSDNode>(NewVectorStore.getNode()); 689 } 690 691 SDValue TF = TLI.scalarizeVectorStore(ST, DAG); 692 AddLegalizedOperand(Op, TF); 693 return TF; 694 } 695 696 SDValue VectorLegalizer::Expand(SDValue Op) { 697 switch (Op->getOpcode()) { 698 case ISD::SIGN_EXTEND_INREG: 699 return ExpandSEXTINREG(Op); 700 case ISD::ANY_EXTEND_VECTOR_INREG: 701 return ExpandANY_EXTEND_VECTOR_INREG(Op); 702 case ISD::SIGN_EXTEND_VECTOR_INREG: 703 return ExpandSIGN_EXTEND_VECTOR_INREG(Op); 704 case ISD::ZERO_EXTEND_VECTOR_INREG: 705 return ExpandZERO_EXTEND_VECTOR_INREG(Op); 706 case ISD::BSWAP: 707 return ExpandBSWAP(Op); 708 case ISD::VSELECT: 709 return ExpandVSELECT(Op); 710 case ISD::SELECT: 711 return ExpandSELECT(Op); 712 case ISD::UINT_TO_FP: 713 return ExpandUINT_TO_FLOAT(Op); 714 case ISD::FNEG: 715 return ExpandFNEG(Op); 716 case ISD::FSUB: 717 return ExpandFSUB(Op); 718 case ISD::SETCC: 719 return UnrollVSETCC(Op); 720 case ISD::BITREVERSE: 721 return ExpandBITREVERSE(Op); 722 case ISD::CTLZ: 723 case ISD::CTLZ_ZERO_UNDEF: 724 return ExpandCTLZ(Op); 725 case ISD::CTTZ_ZERO_UNDEF: 726 return ExpandCTTZ_ZERO_UNDEF(Op); 727 default: 728 return DAG.UnrollVectorOp(Op.getNode()); 729 } 730 } 731 732 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) { 733 // Lower a select instruction where the condition is a scalar and the 734 // operands are vectors. Lower this select to VSELECT and implement it 735 // using XOR AND OR. The selector bit is broadcasted. 736 EVT VT = Op.getValueType(); 737 SDLoc DL(Op); 738 739 SDValue Mask = Op.getOperand(0); 740 SDValue Op1 = Op.getOperand(1); 741 SDValue Op2 = Op.getOperand(2); 742 743 assert(VT.isVector() && !Mask.getValueType().isVector() 744 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 745 746 // If we can't even use the basic vector operations of 747 // AND,OR,XOR, we will have to scalarize the op. 748 // Notice that the operation may be 'promoted' which means that it is 749 // 'bitcasted' to another type which is handled. 750 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 751 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 752 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 753 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 754 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 755 return DAG.UnrollVectorOp(Op.getNode()); 756 757 // Generate a mask operand. 758 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 759 760 // What is the size of each element in the vector mask. 761 EVT BitTy = MaskTy.getScalarType(); 762 763 Mask = DAG.getSelect(DL, BitTy, Mask, 764 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, 765 BitTy), 766 DAG.getConstant(0, DL, BitTy)); 767 768 // Broadcast the mask so that the entire vector is all-one or all zero. 769 Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask); 770 771 // Bitcast the operands to be the same type as the mask. 772 // This is needed when we select between FP types because 773 // the mask is a vector of integers. 774 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 775 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 776 777 SDValue AllOnes = DAG.getConstant( 778 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy); 779 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 780 781 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 782 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 783 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 784 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 785 } 786 787 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) { 788 EVT VT = Op.getValueType(); 789 790 // Make sure that the SRA and SHL instructions are available. 791 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 792 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 793 return DAG.UnrollVectorOp(Op.getNode()); 794 795 SDLoc DL(Op); 796 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT(); 797 798 unsigned BW = VT.getScalarSizeInBits(); 799 unsigned OrigBW = OrigTy.getScalarSizeInBits(); 800 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 801 802 Op = Op.getOperand(0); 803 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz); 804 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 805 } 806 807 // Generically expand a vector anyext in register to a shuffle of the relevant 808 // lanes into the appropriate locations, with other lanes left undef. 809 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) { 810 SDLoc DL(Op); 811 EVT VT = Op.getValueType(); 812 int NumElements = VT.getVectorNumElements(); 813 SDValue Src = Op.getOperand(0); 814 EVT SrcVT = Src.getValueType(); 815 int NumSrcElements = SrcVT.getVectorNumElements(); 816 817 // Build a base mask of undef shuffles. 818 SmallVector<int, 16> ShuffleMask; 819 ShuffleMask.resize(NumSrcElements, -1); 820 821 // Place the extended lanes into the correct locations. 822 int ExtLaneScale = NumSrcElements / NumElements; 823 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 824 for (int i = 0; i < NumElements; ++i) 825 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 826 827 return DAG.getNode( 828 ISD::BITCAST, DL, VT, 829 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 830 } 831 832 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) { 833 SDLoc DL(Op); 834 EVT VT = Op.getValueType(); 835 SDValue Src = Op.getOperand(0); 836 EVT SrcVT = Src.getValueType(); 837 838 // First build an any-extend node which can be legalized above when we 839 // recurse through it. 840 Op = DAG.getAnyExtendVectorInReg(Src, DL, VT); 841 842 // Now we need sign extend. Do this by shifting the elements. Even if these 843 // aren't legal operations, they have a better chance of being legalized 844 // without full scalarization than the sign extension does. 845 unsigned EltWidth = VT.getScalarSizeInBits(); 846 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); 847 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 848 return DAG.getNode(ISD::SRA, DL, VT, 849 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 850 ShiftAmount); 851 } 852 853 // Generically expand a vector zext in register to a shuffle of the relevant 854 // lanes into the appropriate locations, a blend of zero into the high bits, 855 // and a bitcast to the wider element type. 856 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) { 857 SDLoc DL(Op); 858 EVT VT = Op.getValueType(); 859 int NumElements = VT.getVectorNumElements(); 860 SDValue Src = Op.getOperand(0); 861 EVT SrcVT = Src.getValueType(); 862 int NumSrcElements = SrcVT.getVectorNumElements(); 863 864 // Build up a zero vector to blend into this one. 865 SDValue Zero = DAG.getConstant(0, DL, SrcVT); 866 867 // Shuffle the incoming lanes into the correct position, and pull all other 868 // lanes from the zero vector. 869 SmallVector<int, 16> ShuffleMask; 870 ShuffleMask.reserve(NumSrcElements); 871 for (int i = 0; i < NumSrcElements; ++i) 872 ShuffleMask.push_back(i); 873 874 int ExtLaneScale = NumSrcElements / NumElements; 875 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 876 for (int i = 0; i < NumElements; ++i) 877 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 878 879 return DAG.getNode(ISD::BITCAST, DL, VT, 880 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 881 } 882 883 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) { 884 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 885 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 886 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 887 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 888 } 889 890 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) { 891 EVT VT = Op.getValueType(); 892 893 // Generate a byte wise shuffle mask for the BSWAP. 894 SmallVector<int, 16> ShuffleMask; 895 createBSWAPShuffleMask(VT, ShuffleMask); 896 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 897 898 // Only emit a shuffle if the mask is legal. 899 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) 900 return DAG.UnrollVectorOp(Op.getNode()); 901 902 SDLoc DL(Op); 903 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 904 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); 905 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 906 } 907 908 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) { 909 EVT VT = Op.getValueType(); 910 911 // If we have the scalar operation, it's probably cheaper to unroll it. 912 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) 913 return DAG.UnrollVectorOp(Op.getNode()); 914 915 // If the vector element width is a whole number of bytes, test if its legal 916 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte 917 // vector. This greatly reduces the number of bit shifts necessary. 918 unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); 919 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { 920 SmallVector<int, 16> BSWAPMask; 921 createBSWAPShuffleMask(VT, BSWAPMask); 922 923 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); 924 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && 925 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || 926 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && 927 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && 928 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && 929 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { 930 SDLoc DL(Op); 931 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 932 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 933 BSWAPMask); 934 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); 935 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 936 } 937 } 938 939 // If we have the appropriate vector bit operations, it is better to use them 940 // than unrolling and expanding each component. 941 if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) || 942 !TLI.isOperationLegalOrCustom(ISD::SRL, VT) || 943 !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 944 !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) 945 return DAG.UnrollVectorOp(Op.getNode()); 946 947 // Let LegalizeDAG handle this later. 948 return Op; 949 } 950 951 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { 952 // Implement VSELECT in terms of XOR, AND, OR 953 // on platforms which do not support blend natively. 954 SDLoc DL(Op); 955 956 SDValue Mask = Op.getOperand(0); 957 SDValue Op1 = Op.getOperand(1); 958 SDValue Op2 = Op.getOperand(2); 959 960 EVT VT = Mask.getValueType(); 961 962 // If we can't even use the basic vector operations of 963 // AND,OR,XOR, we will have to scalarize the op. 964 // Notice that the operation may be 'promoted' which means that it is 965 // 'bitcasted' to another type which is handled. 966 // This operation also isn't safe with AND, OR, XOR when the boolean 967 // type is 0/1 as we need an all ones vector constant to mask with. 968 // FIXME: Sign extend 1 to all ones if thats legal on the target. 969 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 970 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 971 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 972 TLI.getBooleanContents(Op1.getValueType()) != 973 TargetLowering::ZeroOrNegativeOneBooleanContent) 974 return DAG.UnrollVectorOp(Op.getNode()); 975 976 // If the mask and the type are different sizes, unroll the vector op. This 977 // can occur when getSetCCResultType returns something that is different in 978 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 979 if (VT.getSizeInBits() != Op1.getValueSizeInBits()) 980 return DAG.UnrollVectorOp(Op.getNode()); 981 982 // Bitcast the operands to be the same type as the mask. 983 // This is needed when we select between FP types because 984 // the mask is a vector of integers. 985 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 986 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 987 988 SDValue AllOnes = DAG.getConstant( 989 APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT); 990 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 991 992 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 993 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 994 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 995 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 996 } 997 998 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { 999 EVT VT = Op.getOperand(0).getValueType(); 1000 SDLoc DL(Op); 1001 1002 // Make sure that the SINT_TO_FP and SRL instructions are available. 1003 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand || 1004 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) 1005 return DAG.UnrollVectorOp(Op.getNode()); 1006 1007 unsigned BW = VT.getScalarSizeInBits(); 1008 assert((BW == 64 || BW == 32) && 1009 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 1010 1011 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT); 1012 1013 // Constants to clear the upper part of the word. 1014 // Notice that we can also use SHL+SHR, but using a constant is slightly 1015 // faster on x86. 1016 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; 1017 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 1018 1019 // Two to the power of half-word-size. 1020 SDValue TWOHW = DAG.getConstantFP(1 << (BW / 2), DL, Op.getValueType()); 1021 1022 // Clear upper part of LO, lower HI 1023 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); 1024 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); 1025 1026 // Convert hi and lo to floats 1027 // Convert the hi part back to the upper values 1028 // TODO: Can any fast-math-flags be set on these nodes? 1029 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); 1030 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); 1031 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); 1032 1033 // Add the two halves 1034 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); 1035 } 1036 1037 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { 1038 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { 1039 SDLoc DL(Op); 1040 SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType()); 1041 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. 1042 return DAG.getNode(ISD::FSUB, DL, Op.getValueType(), 1043 Zero, Op.getOperand(0)); 1044 } 1045 return DAG.UnrollVectorOp(Op.getNode()); 1046 } 1047 1048 SDValue VectorLegalizer::ExpandFSUB(SDValue Op) { 1049 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal, 1050 // we can defer this to operation legalization where it will be lowered as 1051 // a+(-b). 1052 EVT VT = Op.getValueType(); 1053 if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && 1054 TLI.isOperationLegalOrCustom(ISD::FADD, VT)) 1055 return Op; // Defer to LegalizeDAG 1056 1057 return DAG.UnrollVectorOp(Op.getNode()); 1058 } 1059 1060 SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) { 1061 EVT VT = Op.getValueType(); 1062 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 1063 1064 // If the non-ZERO_UNDEF version is supported we can use that instead. 1065 if (Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF && 1066 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) { 1067 SDLoc DL(Op); 1068 return DAG.getNode(ISD::CTLZ, DL, Op.getValueType(), Op.getOperand(0)); 1069 } 1070 1071 // If CTPOP is available we can lower with a CTPOP based method: 1072 // u16 ctlz(u16 x) { 1073 // x |= (x >> 1); 1074 // x |= (x >> 2); 1075 // x |= (x >> 4); 1076 // x |= (x >> 8); 1077 // return ctpop(~x); 1078 // } 1079 // Ref: "Hacker's Delight" by Henry Warren 1080 if (isPowerOf2_32(NumBitsPerElt) && 1081 TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && 1082 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 1083 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT) && 1084 TLI.isOperationLegalOrCustomOrPromote(ISD::XOR, VT)) { 1085 SDLoc DL(Op); 1086 SDValue Res = Op.getOperand(0); 1087 EVT ShiftTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 1088 1089 for (unsigned i = 1; i != NumBitsPerElt; i *= 2) 1090 Res = DAG.getNode( 1091 ISD::OR, DL, VT, Res, 1092 DAG.getNode(ISD::SRL, DL, VT, Res, DAG.getConstant(i, DL, ShiftTy))); 1093 1094 Res = DAG.getNOT(DL, Res, VT); 1095 return DAG.getNode(ISD::CTPOP, DL, VT, Res); 1096 } 1097 1098 // Otherwise go ahead and unroll. 1099 return DAG.UnrollVectorOp(Op.getNode()); 1100 } 1101 1102 SDValue VectorLegalizer::ExpandCTTZ_ZERO_UNDEF(SDValue Op) { 1103 // If the non-ZERO_UNDEF version is supported we can use that instead. 1104 if (TLI.isOperationLegalOrCustom(ISD::CTTZ, Op.getValueType())) { 1105 SDLoc DL(Op); 1106 return DAG.getNode(ISD::CTTZ, DL, Op.getValueType(), Op.getOperand(0)); 1107 } 1108 1109 // Otherwise go ahead and unroll. 1110 return DAG.UnrollVectorOp(Op.getNode()); 1111 } 1112 1113 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { 1114 EVT VT = Op.getValueType(); 1115 unsigned NumElems = VT.getVectorNumElements(); 1116 EVT EltVT = VT.getVectorElementType(); 1117 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); 1118 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1119 SDLoc dl(Op); 1120 SmallVector<SDValue, 8> Ops(NumElems); 1121 for (unsigned i = 0; i < NumElems; ++i) { 1122 SDValue LHSElem = DAG.getNode( 1123 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1124 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1125 SDValue RHSElem = DAG.getNode( 1126 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1127 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1128 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1129 TLI.getSetCCResultType(DAG.getDataLayout(), 1130 *DAG.getContext(), TmpEltVT), 1131 LHSElem, RHSElem, CC); 1132 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 1133 DAG.getConstant(APInt::getAllOnesValue 1134 (EltVT.getSizeInBits()), dl, EltVT), 1135 DAG.getConstant(0, dl, EltVT)); 1136 } 1137 return DAG.getBuildVector(VT, dl, Ops); 1138 } 1139 1140 bool SelectionDAG::LegalizeVectors() { 1141 return VectorLegalizer(*this).Run(); 1142 } 1143