1 //===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SelectionDAG::LegalizeVectors method. 11 // 12 // The vector legalizer looks for vector operations which might need to be 13 // scalarized and legalizes them. This is a separate step from Legalize because 14 // scalarizing can introduce illegal types. For example, suppose we have an 15 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 17 // operation, which introduces nodes with the illegal type i64 which must be 18 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 19 // the operation must be unrolled, which introduces nodes with the illegal 20 // type i8 which must be promoted. 21 // 22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 23 // or operations that happen to take a vector which are custom-lowered; 24 // the legalization for such operations never produces nodes 25 // with illegal types, so it's okay to put off legalizing them until 26 // SelectionDAG::Legalize runs. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/Target/TargetLowering.h" 32 using namespace llvm; 33 34 namespace { 35 class VectorLegalizer { 36 SelectionDAG& DAG; 37 const TargetLowering &TLI; 38 bool Changed; // Keep track of whether anything changed 39 40 /// For nodes that are of legal width, and that have more than one use, this 41 /// map indicates what regularized operand to use. This allows us to avoid 42 /// legalizing the same thing more than once. 43 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 44 45 /// \brief Adds a node to the translation cache. 46 void AddLegalizedOperand(SDValue From, SDValue To) { 47 LegalizedNodes.insert(std::make_pair(From, To)); 48 // If someone requests legalization of the new node, return itself. 49 if (From != To) 50 LegalizedNodes.insert(std::make_pair(To, To)); 51 } 52 53 /// \brief Legalizes the given node. 54 SDValue LegalizeOp(SDValue Op); 55 56 /// \brief Assuming the node is legal, "legalize" the results. 57 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); 58 59 /// \brief Implements unrolling a VSETCC. 60 SDValue UnrollVSETCC(SDValue Op); 61 62 /// \brief Implement expand-based legalization of vector operations. 63 /// 64 /// This is just a high-level routine to dispatch to specific code paths for 65 /// operations to legalize them. 66 SDValue Expand(SDValue Op); 67 68 /// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if 69 /// FSUB isn't legal. 70 /// 71 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 72 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 73 SDValue ExpandUINT_TO_FLOAT(SDValue Op); 74 75 /// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 76 SDValue ExpandSEXTINREG(SDValue Op); 77 78 /// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG. 79 /// 80 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 81 /// type. The contents of the bits in the extended part of each element are 82 /// undef. 83 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op); 84 85 /// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG. 86 /// 87 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 88 /// type, then shifts left and arithmetic shifts right to introduce a sign 89 /// extension. 90 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op); 91 92 /// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG. 93 /// 94 /// Shuffles the low lanes of the operand into place and blends zeros into 95 /// the remaining lanes, finally bitcasting to the proper type. 96 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op); 97 98 /// \brief Expand bswap of vectors into a shuffle if legal. 99 SDValue ExpandBSWAP(SDValue Op); 100 101 /// \brief Implement vselect in terms of XOR, AND, OR when blend is not 102 /// supported by the target. 103 SDValue ExpandVSELECT(SDValue Op); 104 SDValue ExpandSELECT(SDValue Op); 105 SDValue ExpandLoad(SDValue Op); 106 SDValue ExpandStore(SDValue Op); 107 SDValue ExpandFNEG(SDValue Op); 108 109 /// \brief Implements vector promotion. 110 /// 111 /// This is essentially just bitcasting the operands to a different type and 112 /// bitcasting the result back to the original type. 113 SDValue Promote(SDValue Op); 114 115 /// \brief Implements [SU]INT_TO_FP vector promotion. 116 /// 117 /// This is a [zs]ext of the input operand to the next size up. 118 SDValue PromoteINT_TO_FP(SDValue Op); 119 120 /// \brief Implements FP_TO_[SU]INT vector promotion of the result type. 121 /// 122 /// It is promoted to the next size up integer type. The result is then 123 /// truncated back to the original type. 124 SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned); 125 126 public: 127 /// \brief Begin legalizer the vector operations in the DAG. 128 bool Run(); 129 VectorLegalizer(SelectionDAG& dag) : 130 DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {} 131 }; 132 133 bool VectorLegalizer::Run() { 134 // Before we start legalizing vector nodes, check if there are any vectors. 135 bool HasVectors = false; 136 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 137 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 138 // Check if the values of the nodes contain vectors. We don't need to check 139 // the operands because we are going to check their values at some point. 140 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); 141 J != E; ++J) 142 HasVectors |= J->isVector(); 143 144 // If we found a vector node we can start the legalization. 145 if (HasVectors) 146 break; 147 } 148 149 // If this basic block has no vectors then no need to legalize vectors. 150 if (!HasVectors) 151 return false; 152 153 // The legalize process is inherently a bottom-up recursive process (users 154 // legalize their uses before themselves). Given infinite stack space, we 155 // could just start legalizing on the root and traverse the whole graph. In 156 // practice however, this causes us to run out of stack space on large basic 157 // blocks. To avoid this problem, compute an ordering of the nodes where each 158 // node is only legalized after all of its operands are legalized. 159 DAG.AssignTopologicalOrder(); 160 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 161 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 162 LegalizeOp(SDValue(I, 0)); 163 164 // Finally, it's possible the root changed. Get the new root. 165 SDValue OldRoot = DAG.getRoot(); 166 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 167 DAG.setRoot(LegalizedNodes[OldRoot]); 168 169 LegalizedNodes.clear(); 170 171 // Remove dead nodes now. 172 DAG.RemoveDeadNodes(); 173 174 return Changed; 175 } 176 177 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { 178 // Generic legalization: just pass the operand through. 179 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) 180 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 181 return Result.getValue(Op.getResNo()); 182 } 183 184 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 185 // Note that LegalizeOp may be reentered even from single-use nodes, which 186 // means that we always must cache transformed nodes. 187 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 188 if (I != LegalizedNodes.end()) return I->second; 189 190 SDNode* Node = Op.getNode(); 191 192 // Legalize the operands 193 SmallVector<SDValue, 8> Ops; 194 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 195 Ops.push_back(LegalizeOp(Node->getOperand(i))); 196 197 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0); 198 199 if (Op.getOpcode() == ISD::LOAD) { 200 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 201 ISD::LoadExtType ExtType = LD->getExtensionType(); 202 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) 203 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), 204 LD->getMemoryVT())) { 205 default: llvm_unreachable("This action is not supported yet!"); 206 case TargetLowering::Legal: 207 return TranslateLegalizeResults(Op, Result); 208 case TargetLowering::Custom: 209 if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) { 210 Changed = true; 211 if (Lowered->getNumValues() != Op->getNumValues()) { 212 // This expanded to something other than the load. Assume the 213 // lowering code took care of any chain values, and just handle the 214 // returned value. 215 assert(Result.getValue(1).use_empty() && 216 "There are still live users of the old chain!"); 217 return LegalizeOp(Lowered); 218 } else { 219 return TranslateLegalizeResults(Op, Lowered); 220 } 221 } 222 case TargetLowering::Expand: 223 Changed = true; 224 return LegalizeOp(ExpandLoad(Op)); 225 } 226 } else if (Op.getOpcode() == ISD::STORE) { 227 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 228 EVT StVT = ST->getMemoryVT(); 229 MVT ValVT = ST->getValue().getSimpleValueType(); 230 if (StVT.isVector() && ST->isTruncatingStore()) 231 switch (TLI.getTruncStoreAction(ValVT, StVT.getSimpleVT())) { 232 default: llvm_unreachable("This action is not supported yet!"); 233 case TargetLowering::Legal: 234 return TranslateLegalizeResults(Op, Result); 235 case TargetLowering::Custom: 236 Changed = true; 237 return TranslateLegalizeResults(Op, TLI.LowerOperation(Result, DAG)); 238 case TargetLowering::Expand: 239 Changed = true; 240 return LegalizeOp(ExpandStore(Op)); 241 } 242 } 243 244 bool HasVectorValue = false; 245 for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end(); 246 J != E; 247 ++J) 248 HasVectorValue |= J->isVector(); 249 if (!HasVectorValue) 250 return TranslateLegalizeResults(Op, Result); 251 252 EVT QueryType; 253 switch (Op.getOpcode()) { 254 default: 255 return TranslateLegalizeResults(Op, Result); 256 case ISD::ADD: 257 case ISD::SUB: 258 case ISD::MUL: 259 case ISD::SDIV: 260 case ISD::UDIV: 261 case ISD::SREM: 262 case ISD::UREM: 263 case ISD::FADD: 264 case ISD::FSUB: 265 case ISD::FMUL: 266 case ISD::FDIV: 267 case ISD::FREM: 268 case ISD::AND: 269 case ISD::OR: 270 case ISD::XOR: 271 case ISD::SHL: 272 case ISD::SRA: 273 case ISD::SRL: 274 case ISD::ROTL: 275 case ISD::ROTR: 276 case ISD::BSWAP: 277 case ISD::CTLZ: 278 case ISD::CTTZ: 279 case ISD::CTLZ_ZERO_UNDEF: 280 case ISD::CTTZ_ZERO_UNDEF: 281 case ISD::CTPOP: 282 case ISD::SELECT: 283 case ISD::VSELECT: 284 case ISD::SELECT_CC: 285 case ISD::SETCC: 286 case ISD::ZERO_EXTEND: 287 case ISD::ANY_EXTEND: 288 case ISD::TRUNCATE: 289 case ISD::SIGN_EXTEND: 290 case ISD::FP_TO_SINT: 291 case ISD::FP_TO_UINT: 292 case ISD::FNEG: 293 case ISD::FABS: 294 case ISD::FMINNUM: 295 case ISD::FMAXNUM: 296 case ISD::FCOPYSIGN: 297 case ISD::FSQRT: 298 case ISD::FSIN: 299 case ISD::FCOS: 300 case ISD::FPOWI: 301 case ISD::FPOW: 302 case ISD::FLOG: 303 case ISD::FLOG2: 304 case ISD::FLOG10: 305 case ISD::FEXP: 306 case ISD::FEXP2: 307 case ISD::FCEIL: 308 case ISD::FTRUNC: 309 case ISD::FRINT: 310 case ISD::FNEARBYINT: 311 case ISD::FROUND: 312 case ISD::FFLOOR: 313 case ISD::FP_ROUND: 314 case ISD::FP_EXTEND: 315 case ISD::FMA: 316 case ISD::SIGN_EXTEND_INREG: 317 case ISD::ANY_EXTEND_VECTOR_INREG: 318 case ISD::SIGN_EXTEND_VECTOR_INREG: 319 case ISD::ZERO_EXTEND_VECTOR_INREG: 320 QueryType = Node->getValueType(0); 321 break; 322 case ISD::FP_ROUND_INREG: 323 QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 324 break; 325 case ISD::SINT_TO_FP: 326 case ISD::UINT_TO_FP: 327 QueryType = Node->getOperand(0).getValueType(); 328 break; 329 } 330 331 switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) { 332 case TargetLowering::Promote: 333 Result = Promote(Op); 334 Changed = true; 335 break; 336 case TargetLowering::Legal: 337 break; 338 case TargetLowering::Custom: { 339 SDValue Tmp1 = TLI.LowerOperation(Op, DAG); 340 if (Tmp1.getNode()) { 341 Result = Tmp1; 342 break; 343 } 344 // FALL THROUGH 345 } 346 case TargetLowering::Expand: 347 Result = Expand(Op); 348 } 349 350 // Make sure that the generated code is itself legal. 351 if (Result != Op) { 352 Result = LegalizeOp(Result); 353 Changed = true; 354 } 355 356 // Note that LegalizeOp may be reentered even from single-use nodes, which 357 // means that we always must cache transformed nodes. 358 AddLegalizedOperand(Op, Result); 359 return Result; 360 } 361 362 SDValue VectorLegalizer::Promote(SDValue Op) { 363 // For a few operations there is a specific concept for promotion based on 364 // the operand's type. 365 switch (Op.getOpcode()) { 366 case ISD::SINT_TO_FP: 367 case ISD::UINT_TO_FP: 368 // "Promote" the operation by extending the operand. 369 return PromoteINT_TO_FP(Op); 370 case ISD::FP_TO_UINT: 371 case ISD::FP_TO_SINT: 372 // Promote the operation by extending the operand. 373 return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT); 374 } 375 376 // There are currently two cases of vector promotion: 377 // 1) Bitcasting a vector of integers to a different type to a vector of the 378 // same overall length. For example, x86 promotes ISD::AND on v2i32 to v1i64. 379 // 2) Extending a vector of floats to a vector of the same number oflarger 380 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 381 MVT VT = Op.getSimpleValueType(); 382 assert(Op.getNode()->getNumValues() == 1 && 383 "Can't promote a vector with multiple results!"); 384 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 385 SDLoc dl(Op); 386 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 387 388 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 389 if (Op.getOperand(j).getValueType().isVector()) 390 if (Op.getOperand(j) 391 .getValueType() 392 .getVectorElementType() 393 .isFloatingPoint()) 394 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j)); 395 else 396 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); 397 else 398 Operands[j] = Op.getOperand(j); 399 } 400 401 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands); 402 if (VT.isFloatingPoint() || 403 (VT.isVector() && VT.getVectorElementType().isFloatingPoint())) 404 return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0)); 405 else 406 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 407 } 408 409 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) { 410 // INT_TO_FP operations may require the input operand be promoted even 411 // when the type is otherwise legal. 412 EVT VT = Op.getOperand(0).getValueType(); 413 assert(Op.getNode()->getNumValues() == 1 && 414 "Can't promote a vector with multiple results!"); 415 416 // Normal getTypeToPromoteTo() doesn't work here, as that will promote 417 // by widening the vector w/ the same element width and twice the number 418 // of elements. We want the other way around, the same number of elements, 419 // each twice the width. 420 // 421 // Increase the bitwidth of the element to the next pow-of-two 422 // (which is greater than 8 bits). 423 424 EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext()); 425 assert(NVT.isSimple() && "Promoting to a non-simple vector type!"); 426 SDLoc dl(Op); 427 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 428 429 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : 430 ISD::SIGN_EXTEND; 431 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 432 if (Op.getOperand(j).getValueType().isVector()) 433 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j)); 434 else 435 Operands[j] = Op.getOperand(j); 436 } 437 438 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands); 439 } 440 441 // For FP_TO_INT we promote the result type to a vector type with wider 442 // elements and then truncate the result. This is different from the default 443 // PromoteVector which uses bitcast to promote thus assumning that the 444 // promoted vector type has the same overall size. 445 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) { 446 assert(Op.getNode()->getNumValues() == 1 && 447 "Can't promote a vector with multiple results!"); 448 EVT VT = Op.getValueType(); 449 450 EVT NewVT; 451 unsigned NewOpc; 452 while (1) { 453 NewVT = VT.widenIntegerVectorElementType(*DAG.getContext()); 454 assert(NewVT.isSimple() && "Promoting to a non-simple vector type!"); 455 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) { 456 NewOpc = ISD::FP_TO_SINT; 457 break; 458 } 459 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) { 460 NewOpc = ISD::FP_TO_UINT; 461 break; 462 } 463 } 464 465 SDLoc loc(Op); 466 SDValue promoted = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0)); 467 return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted); 468 } 469 470 471 SDValue VectorLegalizer::ExpandLoad(SDValue Op) { 472 SDLoc dl(Op); 473 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 474 SDValue Chain = LD->getChain(); 475 SDValue BasePTR = LD->getBasePtr(); 476 EVT SrcVT = LD->getMemoryVT(); 477 ISD::LoadExtType ExtType = LD->getExtensionType(); 478 479 SmallVector<SDValue, 8> Vals; 480 SmallVector<SDValue, 8> LoadChains; 481 unsigned NumElem = SrcVT.getVectorNumElements(); 482 483 EVT SrcEltVT = SrcVT.getScalarType(); 484 EVT DstEltVT = Op.getNode()->getValueType(0).getScalarType(); 485 486 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { 487 // When elements in a vector is not byte-addressable, we cannot directly 488 // load each element by advancing pointer, which could only address bytes. 489 // Instead, we load all significant words, mask bits off, and concatenate 490 // them to form each element. Finally, they are extended to destination 491 // scalar type to build the destination vector. 492 EVT WideVT = TLI.getPointerTy(); 493 494 assert(WideVT.isRound() && 495 "Could not handle the sophisticated case when the widest integer is" 496 " not power of 2."); 497 assert(WideVT.bitsGE(SrcEltVT) && 498 "Type is not legalized?"); 499 500 unsigned WideBytes = WideVT.getStoreSize(); 501 unsigned Offset = 0; 502 unsigned RemainingBytes = SrcVT.getStoreSize(); 503 SmallVector<SDValue, 8> LoadVals; 504 505 while (RemainingBytes > 0) { 506 SDValue ScalarLoad; 507 unsigned LoadBytes = WideBytes; 508 509 if (RemainingBytes >= LoadBytes) { 510 ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR, 511 LD->getPointerInfo().getWithOffset(Offset), 512 LD->isVolatile(), LD->isNonTemporal(), 513 LD->isInvariant(), LD->getAlignment(), 514 LD->getAAInfo()); 515 } else { 516 EVT LoadVT = WideVT; 517 while (RemainingBytes < LoadBytes) { 518 LoadBytes >>= 1; // Reduce the load size by half. 519 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); 520 } 521 ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, 522 LD->getPointerInfo().getWithOffset(Offset), 523 LoadVT, LD->isVolatile(), 524 LD->isNonTemporal(), LD->isInvariant(), 525 LD->getAlignment(), LD->getAAInfo()); 526 } 527 528 RemainingBytes -= LoadBytes; 529 Offset += LoadBytes; 530 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 531 DAG.getConstant(LoadBytes, BasePTR.getValueType())); 532 533 LoadVals.push_back(ScalarLoad.getValue(0)); 534 LoadChains.push_back(ScalarLoad.getValue(1)); 535 } 536 537 // Extract bits, pack and extend/trunc them into destination type. 538 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 539 SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, WideVT); 540 541 unsigned BitOffset = 0; 542 unsigned WideIdx = 0; 543 unsigned WideBits = WideVT.getSizeInBits(); 544 545 for (unsigned Idx = 0; Idx != NumElem; ++Idx) { 546 SDValue Lo, Hi, ShAmt; 547 548 if (BitOffset < WideBits) { 549 ShAmt = DAG.getConstant(BitOffset, TLI.getShiftAmountTy(WideVT)); 550 Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); 551 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); 552 } 553 554 BitOffset += SrcEltBits; 555 if (BitOffset >= WideBits) { 556 WideIdx++; 557 Offset -= WideBits; 558 if (Offset > 0) { 559 ShAmt = DAG.getConstant(SrcEltBits - Offset, 560 TLI.getShiftAmountTy(WideVT)); 561 Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); 562 Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask); 563 } 564 } 565 566 if (Hi.getNode()) 567 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); 568 569 switch (ExtType) { 570 default: llvm_unreachable("Unknown extended-load op!"); 571 case ISD::EXTLOAD: 572 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); 573 break; 574 case ISD::ZEXTLOAD: 575 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); 576 break; 577 case ISD::SEXTLOAD: 578 ShAmt = DAG.getConstant(WideBits - SrcEltBits, 579 TLI.getShiftAmountTy(WideVT)); 580 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); 581 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); 582 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); 583 break; 584 } 585 Vals.push_back(Lo); 586 } 587 } else { 588 unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8; 589 590 for (unsigned Idx=0; Idx<NumElem; Idx++) { 591 SDValue ScalarLoad = DAG.getExtLoad(ExtType, dl, 592 Op.getNode()->getValueType(0).getScalarType(), 593 Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride), 594 SrcVT.getScalarType(), 595 LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), 596 LD->getAlignment(), LD->getAAInfo()); 597 598 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 599 DAG.getConstant(Stride, BasePTR.getValueType())); 600 601 Vals.push_back(ScalarLoad.getValue(0)); 602 LoadChains.push_back(ScalarLoad.getValue(1)); 603 } 604 } 605 606 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 607 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, 608 Op.getNode()->getValueType(0), Vals); 609 610 AddLegalizedOperand(Op.getValue(0), Value); 611 AddLegalizedOperand(Op.getValue(1), NewChain); 612 613 return (Op.getResNo() ? NewChain : Value); 614 } 615 616 SDValue VectorLegalizer::ExpandStore(SDValue Op) { 617 SDLoc dl(Op); 618 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 619 SDValue Chain = ST->getChain(); 620 SDValue BasePTR = ST->getBasePtr(); 621 SDValue Value = ST->getValue(); 622 EVT StVT = ST->getMemoryVT(); 623 624 unsigned Alignment = ST->getAlignment(); 625 bool isVolatile = ST->isVolatile(); 626 bool isNonTemporal = ST->isNonTemporal(); 627 AAMDNodes AAInfo = ST->getAAInfo(); 628 629 unsigned NumElem = StVT.getVectorNumElements(); 630 // The type of the data we want to save 631 EVT RegVT = Value.getValueType(); 632 EVT RegSclVT = RegVT.getScalarType(); 633 // The type of data as saved in memory. 634 EVT MemSclVT = StVT.getScalarType(); 635 636 // Cast floats into integers 637 unsigned ScalarSize = MemSclVT.getSizeInBits(); 638 639 // Round odd types to the next pow of two. 640 if (!isPowerOf2_32(ScalarSize)) 641 ScalarSize = NextPowerOf2(ScalarSize); 642 643 // Store Stride in bytes 644 unsigned Stride = ScalarSize/8; 645 // Extract each of the elements from the original vector 646 // and save them into memory individually. 647 SmallVector<SDValue, 8> Stores; 648 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 649 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 650 RegSclVT, Value, DAG.getConstant(Idx, TLI.getVectorIdxTy())); 651 652 // This scalar TruncStore may be illegal, but we legalize it later. 653 SDValue Store = DAG.getTruncStore(Chain, dl, Ex, BasePTR, 654 ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT, 655 isVolatile, isNonTemporal, Alignment, AAInfo); 656 657 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 658 DAG.getConstant(Stride, BasePTR.getValueType())); 659 660 Stores.push_back(Store); 661 } 662 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 663 AddLegalizedOperand(Op, TF); 664 return TF; 665 } 666 667 SDValue VectorLegalizer::Expand(SDValue Op) { 668 switch (Op->getOpcode()) { 669 case ISD::SIGN_EXTEND_INREG: 670 return ExpandSEXTINREG(Op); 671 case ISD::ANY_EXTEND_VECTOR_INREG: 672 return ExpandANY_EXTEND_VECTOR_INREG(Op); 673 case ISD::SIGN_EXTEND_VECTOR_INREG: 674 return ExpandSIGN_EXTEND_VECTOR_INREG(Op); 675 case ISD::ZERO_EXTEND_VECTOR_INREG: 676 return ExpandZERO_EXTEND_VECTOR_INREG(Op); 677 case ISD::BSWAP: 678 return ExpandBSWAP(Op); 679 case ISD::VSELECT: 680 return ExpandVSELECT(Op); 681 case ISD::SELECT: 682 return ExpandSELECT(Op); 683 case ISD::UINT_TO_FP: 684 return ExpandUINT_TO_FLOAT(Op); 685 case ISD::FNEG: 686 return ExpandFNEG(Op); 687 case ISD::SETCC: 688 return UnrollVSETCC(Op); 689 default: 690 return DAG.UnrollVectorOp(Op.getNode()); 691 } 692 } 693 694 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) { 695 // Lower a select instruction where the condition is a scalar and the 696 // operands are vectors. Lower this select to VSELECT and implement it 697 // using XOR AND OR. The selector bit is broadcasted. 698 EVT VT = Op.getValueType(); 699 SDLoc DL(Op); 700 701 SDValue Mask = Op.getOperand(0); 702 SDValue Op1 = Op.getOperand(1); 703 SDValue Op2 = Op.getOperand(2); 704 705 assert(VT.isVector() && !Mask.getValueType().isVector() 706 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 707 708 unsigned NumElem = VT.getVectorNumElements(); 709 710 // If we can't even use the basic vector operations of 711 // AND,OR,XOR, we will have to scalarize the op. 712 // Notice that the operation may be 'promoted' which means that it is 713 // 'bitcasted' to another type which is handled. 714 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 715 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 716 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 717 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 718 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 719 return DAG.UnrollVectorOp(Op.getNode()); 720 721 // Generate a mask operand. 722 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 723 724 // What is the size of each element in the vector mask. 725 EVT BitTy = MaskTy.getScalarType(); 726 727 Mask = DAG.getSelect(DL, BitTy, Mask, 728 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), BitTy), 729 DAG.getConstant(0, BitTy)); 730 731 // Broadcast the mask so that the entire vector is all-one or all zero. 732 SmallVector<SDValue, 8> Ops(NumElem, Mask); 733 Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, Ops); 734 735 // Bitcast the operands to be the same type as the mask. 736 // This is needed when we select between FP types because 737 // the mask is a vector of integers. 738 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 739 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 740 741 SDValue AllOnes = DAG.getConstant( 742 APInt::getAllOnesValue(BitTy.getSizeInBits()), MaskTy); 743 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 744 745 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 746 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 747 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 748 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 749 } 750 751 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) { 752 EVT VT = Op.getValueType(); 753 754 // Make sure that the SRA and SHL instructions are available. 755 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 756 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 757 return DAG.UnrollVectorOp(Op.getNode()); 758 759 SDLoc DL(Op); 760 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT(); 761 762 unsigned BW = VT.getScalarType().getSizeInBits(); 763 unsigned OrigBW = OrigTy.getScalarType().getSizeInBits(); 764 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, VT); 765 766 Op = Op.getOperand(0); 767 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz); 768 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 769 } 770 771 // Generically expand a vector anyext in register to a shuffle of the relevant 772 // lanes into the appropriate locations, with other lanes left undef. 773 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) { 774 SDLoc DL(Op); 775 EVT VT = Op.getValueType(); 776 int NumElements = VT.getVectorNumElements(); 777 SDValue Src = Op.getOperand(0); 778 EVT SrcVT = Src.getValueType(); 779 int NumSrcElements = SrcVT.getVectorNumElements(); 780 781 // Build a base mask of undef shuffles. 782 SmallVector<int, 16> ShuffleMask; 783 ShuffleMask.resize(NumSrcElements, -1); 784 785 // Place the extended lanes into the correct locations. 786 int ExtLaneScale = NumSrcElements / NumElements; 787 int EndianOffset = TLI.isBigEndian() ? ExtLaneScale - 1 : 0; 788 for (int i = 0; i < NumElements; ++i) 789 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 790 791 return DAG.getNode( 792 ISD::BITCAST, DL, VT, 793 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 794 } 795 796 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) { 797 SDLoc DL(Op); 798 EVT VT = Op.getValueType(); 799 SDValue Src = Op.getOperand(0); 800 EVT SrcVT = Src.getValueType(); 801 802 // First build an any-extend node which can be legalized above when we 803 // recurse through it. 804 Op = DAG.getAnyExtendVectorInReg(Src, DL, VT); 805 806 // Now we need sign extend. Do this by shifting the elements. Even if these 807 // aren't legal operations, they have a better chance of being legalized 808 // without full scalarization than the sign extension does. 809 unsigned EltWidth = VT.getVectorElementType().getSizeInBits(); 810 unsigned SrcEltWidth = SrcVT.getVectorElementType().getSizeInBits(); 811 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, VT); 812 return DAG.getNode(ISD::SRA, DL, VT, 813 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 814 ShiftAmount); 815 } 816 817 // Generically expand a vector zext in register to a shuffle of the relevant 818 // lanes into the appropriate locations, a blend of zero into the high bits, 819 // and a bitcast to the wider element type. 820 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) { 821 SDLoc DL(Op); 822 EVT VT = Op.getValueType(); 823 int NumElements = VT.getVectorNumElements(); 824 SDValue Src = Op.getOperand(0); 825 EVT SrcVT = Src.getValueType(); 826 int NumSrcElements = SrcVT.getVectorNumElements(); 827 828 // Build up a zero vector to blend into this one. 829 EVT SrcScalarVT = SrcVT.getScalarType(); 830 SDValue ScalarZero = DAG.getTargetConstant(0, SrcScalarVT); 831 SmallVector<SDValue, 4> BuildVectorOperands(NumSrcElements, ScalarZero); 832 SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, DL, SrcVT, BuildVectorOperands); 833 834 // Shuffle the incoming lanes into the correct position, and pull all other 835 // lanes from the zero vector. 836 SmallVector<int, 16> ShuffleMask; 837 ShuffleMask.reserve(NumSrcElements); 838 for (int i = 0; i < NumSrcElements; ++i) 839 ShuffleMask.push_back(i); 840 841 int ExtLaneScale = NumSrcElements / NumElements; 842 int EndianOffset = TLI.isBigEndian() ? ExtLaneScale - 1 : 0; 843 for (int i = 0; i < NumElements; ++i) 844 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 845 846 return DAG.getNode(ISD::BITCAST, DL, VT, 847 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 848 } 849 850 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) { 851 EVT VT = Op.getValueType(); 852 853 // Generate a byte wise shuffle mask for the BSWAP. 854 SmallVector<int, 16> ShuffleMask; 855 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 856 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 857 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 858 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 859 860 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 861 862 // Only emit a shuffle if the mask is legal. 863 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) 864 return DAG.UnrollVectorOp(Op.getNode()); 865 866 SDLoc DL(Op); 867 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 868 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 869 ShuffleMask.data()); 870 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 871 } 872 873 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { 874 // Implement VSELECT in terms of XOR, AND, OR 875 // on platforms which do not support blend natively. 876 SDLoc DL(Op); 877 878 SDValue Mask = Op.getOperand(0); 879 SDValue Op1 = Op.getOperand(1); 880 SDValue Op2 = Op.getOperand(2); 881 882 EVT VT = Mask.getValueType(); 883 884 // If we can't even use the basic vector operations of 885 // AND,OR,XOR, we will have to scalarize the op. 886 // Notice that the operation may be 'promoted' which means that it is 887 // 'bitcasted' to another type which is handled. 888 // This operation also isn't safe with AND, OR, XOR when the boolean 889 // type is 0/1 as we need an all ones vector constant to mask with. 890 // FIXME: Sign extend 1 to all ones if thats legal on the target. 891 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 892 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 893 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 894 TLI.getBooleanContents(Op1.getValueType()) != 895 TargetLowering::ZeroOrNegativeOneBooleanContent) 896 return DAG.UnrollVectorOp(Op.getNode()); 897 898 // If the mask and the type are different sizes, unroll the vector op. This 899 // can occur when getSetCCResultType returns something that is different in 900 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 901 if (VT.getSizeInBits() != Op1.getValueType().getSizeInBits()) 902 return DAG.UnrollVectorOp(Op.getNode()); 903 904 // Bitcast the operands to be the same type as the mask. 905 // This is needed when we select between FP types because 906 // the mask is a vector of integers. 907 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 908 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 909 910 SDValue AllOnes = DAG.getConstant( 911 APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), VT); 912 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 913 914 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 915 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 916 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 917 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 918 } 919 920 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { 921 EVT VT = Op.getOperand(0).getValueType(); 922 SDLoc DL(Op); 923 924 // Make sure that the SINT_TO_FP and SRL instructions are available. 925 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand || 926 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) 927 return DAG.UnrollVectorOp(Op.getNode()); 928 929 EVT SVT = VT.getScalarType(); 930 assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) && 931 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 932 933 unsigned BW = SVT.getSizeInBits(); 934 SDValue HalfWord = DAG.getConstant(BW/2, VT); 935 936 // Constants to clear the upper part of the word. 937 // Notice that we can also use SHL+SHR, but using a constant is slightly 938 // faster on x86. 939 uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF; 940 SDValue HalfWordMask = DAG.getConstant(HWMask, VT); 941 942 // Two to the power of half-word-size. 943 SDValue TWOHW = DAG.getConstantFP((1<<(BW/2)), Op.getValueType()); 944 945 // Clear upper part of LO, lower HI 946 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); 947 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); 948 949 // Convert hi and lo to floats 950 // Convert the hi part back to the upper values 951 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); 952 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); 953 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); 954 955 // Add the two halves 956 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); 957 } 958 959 960 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { 961 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { 962 SDValue Zero = DAG.getConstantFP(-0.0, Op.getValueType()); 963 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 964 Zero, Op.getOperand(0)); 965 } 966 return DAG.UnrollVectorOp(Op.getNode()); 967 } 968 969 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { 970 EVT VT = Op.getValueType(); 971 unsigned NumElems = VT.getVectorNumElements(); 972 EVT EltVT = VT.getVectorElementType(); 973 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); 974 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 975 SDLoc dl(Op); 976 SmallVector<SDValue, 8> Ops(NumElems); 977 for (unsigned i = 0; i < NumElems; ++i) { 978 SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 979 DAG.getConstant(i, TLI.getVectorIdxTy())); 980 SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 981 DAG.getConstant(i, TLI.getVectorIdxTy())); 982 Ops[i] = DAG.getNode(ISD::SETCC, dl, 983 TLI.getSetCCResultType(*DAG.getContext(), TmpEltVT), 984 LHSElem, RHSElem, CC); 985 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 986 DAG.getConstant(APInt::getAllOnesValue 987 (EltVT.getSizeInBits()), EltVT), 988 DAG.getConstant(0, EltVT)); 989 } 990 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 991 } 992 993 } 994 995 bool SelectionDAG::LegalizeVectors() { 996 return VectorLegalizer(*this).Run(); 997 } 998