1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::LegalizeVectors method. 10 // 11 // The vector legalizer looks for vector operations which might need to be 12 // scalarized and legalizes them. This is a separate step from Legalize because 13 // scalarizing can introduce illegal types. For example, suppose we have an 14 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 16 // operation, which introduces nodes with the illegal type i64 which must be 17 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 18 // the operation must be unrolled, which introduces nodes with the illegal 19 // type i8 which must be promoted. 20 // 21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 22 // or operations that happen to take a vector which are custom-lowered; 23 // the legalization for such operations never produces nodes 24 // with illegal types, so it's okay to put off legalizing them until 25 // SelectionDAG::Legalize runs. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/SelectionDAGNodes.h" 36 #include "llvm/CodeGen/TargetLowering.h" 37 #include "llvm/CodeGen/ValueTypes.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include <cassert> 46 #include <cstdint> 47 #include <iterator> 48 #include <utility> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "legalizevectorops" 53 54 namespace { 55 56 class VectorLegalizer { 57 SelectionDAG& DAG; 58 const TargetLowering &TLI; 59 bool Changed = false; // Keep track of whether anything changed 60 61 /// For nodes that are of legal width, and that have more than one use, this 62 /// map indicates what regularized operand to use. This allows us to avoid 63 /// legalizing the same thing more than once. 64 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 65 66 /// Adds a node to the translation cache. 67 void AddLegalizedOperand(SDValue From, SDValue To) { 68 LegalizedNodes.insert(std::make_pair(From, To)); 69 // If someone requests legalization of the new node, return itself. 70 if (From != To) 71 LegalizedNodes.insert(std::make_pair(To, To)); 72 } 73 74 /// Legalizes the given node. 75 SDValue LegalizeOp(SDValue Op); 76 77 /// Assuming the node is legal, "legalize" the results. 78 SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result); 79 80 /// Make sure Results are legal and update the translation cache. 81 SDValue RecursivelyLegalizeResults(SDValue Op, 82 MutableArrayRef<SDValue> Results); 83 84 /// Wrapper to interface LowerOperation with a vector of Results. 85 /// Returns false if the target wants to use default expansion. Otherwise 86 /// returns true. If return is true and the Results are empty, then the 87 /// target wants to keep the input node as is. 88 bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results); 89 90 /// Implements unrolling a VSETCC. 91 SDValue UnrollVSETCC(SDNode *Node); 92 93 /// Implement expand-based legalization of vector operations. 94 /// 95 /// This is just a high-level routine to dispatch to specific code paths for 96 /// operations to legalize them. 97 void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results); 98 99 /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if 100 /// FP_TO_SINT isn't legal. 101 void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 102 103 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 104 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 105 void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 106 107 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 108 SDValue ExpandSEXTINREG(SDNode *Node); 109 110 /// Implement expansion for ANY_EXTEND_VECTOR_INREG. 111 /// 112 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 113 /// type. The contents of the bits in the extended part of each element are 114 /// undef. 115 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node); 116 117 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG. 118 /// 119 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 120 /// type, then shifts left and arithmetic shifts right to introduce a sign 121 /// extension. 122 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node); 123 124 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG. 125 /// 126 /// Shuffles the low lanes of the operand into place and blends zeros into 127 /// the remaining lanes, finally bitcasting to the proper type. 128 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node); 129 130 /// Expand bswap of vectors into a shuffle if legal. 131 SDValue ExpandBSWAP(SDNode *Node); 132 133 /// Implement vselect in terms of XOR, AND, OR when blend is not 134 /// supported by the target. 135 SDValue ExpandVSELECT(SDNode *Node); 136 SDValue ExpandSELECT(SDNode *Node); 137 std::pair<SDValue, SDValue> ExpandLoad(SDNode *N); 138 SDValue ExpandStore(SDNode *N); 139 SDValue ExpandFNEG(SDNode *Node); 140 void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results); 141 void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results); 142 void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 143 void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 144 void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 145 void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results); 146 void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results); 147 void ExpandREM(SDNode *Node, SmallVectorImpl<SDValue> &Results); 148 149 void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results); 150 151 /// Implements vector promotion. 152 /// 153 /// This is essentially just bitcasting the operands to a different type and 154 /// bitcasting the result back to the original type. 155 void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results); 156 157 /// Implements [SU]INT_TO_FP vector promotion. 158 /// 159 /// This is a [zs]ext of the input operand to a larger integer type. 160 void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results); 161 162 /// Implements FP_TO_[SU]INT vector promotion of the result type. 163 /// 164 /// It is promoted to a larger integer type. The result is then 165 /// truncated back to the original type. 166 void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 167 168 public: 169 VectorLegalizer(SelectionDAG& dag) : 170 DAG(dag), TLI(dag.getTargetLoweringInfo()) {} 171 172 /// Begin legalizer the vector operations in the DAG. 173 bool Run(); 174 }; 175 176 } // end anonymous namespace 177 178 bool VectorLegalizer::Run() { 179 // Before we start legalizing vector nodes, check if there are any vectors. 180 bool HasVectors = false; 181 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 182 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 183 // Check if the values of the nodes contain vectors. We don't need to check 184 // the operands because we are going to check their values at some point. 185 HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); }); 186 187 // If we found a vector node we can start the legalization. 188 if (HasVectors) 189 break; 190 } 191 192 // If this basic block has no vectors then no need to legalize vectors. 193 if (!HasVectors) 194 return false; 195 196 // The legalize process is inherently a bottom-up recursive process (users 197 // legalize their uses before themselves). Given infinite stack space, we 198 // could just start legalizing on the root and traverse the whole graph. In 199 // practice however, this causes us to run out of stack space on large basic 200 // blocks. To avoid this problem, compute an ordering of the nodes where each 201 // node is only legalized after all of its operands are legalized. 202 DAG.AssignTopologicalOrder(); 203 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 204 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 205 LegalizeOp(SDValue(&*I, 0)); 206 207 // Finally, it's possible the root changed. Get the new root. 208 SDValue OldRoot = DAG.getRoot(); 209 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 210 DAG.setRoot(LegalizedNodes[OldRoot]); 211 212 LegalizedNodes.clear(); 213 214 // Remove dead nodes now. 215 DAG.RemoveDeadNodes(); 216 217 return Changed; 218 } 219 220 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) { 221 assert(Op->getNumValues() == Result->getNumValues() && 222 "Unexpected number of results"); 223 // Generic legalization: just pass the operand through. 224 for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i) 225 AddLegalizedOperand(Op.getValue(i), SDValue(Result, i)); 226 return SDValue(Result, Op.getResNo()); 227 } 228 229 SDValue 230 VectorLegalizer::RecursivelyLegalizeResults(SDValue Op, 231 MutableArrayRef<SDValue> Results) { 232 assert(Results.size() == Op->getNumValues() && 233 "Unexpected number of results"); 234 // Make sure that the generated code is itself legal. 235 for (unsigned i = 0, e = Results.size(); i != e; ++i) { 236 Results[i] = LegalizeOp(Results[i]); 237 AddLegalizedOperand(Op.getValue(i), Results[i]); 238 } 239 240 return Results[Op.getResNo()]; 241 } 242 243 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 244 // Note that LegalizeOp may be reentered even from single-use nodes, which 245 // means that we always must cache transformed nodes. 246 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 247 if (I != LegalizedNodes.end()) return I->second; 248 249 // Legalize the operands 250 SmallVector<SDValue, 8> Ops; 251 for (const SDValue &Oper : Op->op_values()) 252 Ops.push_back(LegalizeOp(Oper)); 253 254 SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops); 255 256 if (Op.getOpcode() == ISD::LOAD) { 257 LoadSDNode *LD = cast<LoadSDNode>(Node); 258 ISD::LoadExtType ExtType = LD->getExtensionType(); 259 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) { 260 LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: "; 261 Node->dump(&DAG)); 262 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), 263 LD->getMemoryVT())) { 264 default: llvm_unreachable("This action is not supported yet!"); 265 case TargetLowering::Legal: 266 return TranslateLegalizeResults(Op, Node); 267 case TargetLowering::Custom: { 268 SmallVector<SDValue, 2> ResultVals; 269 if (LowerOperationWrapper(Node, ResultVals)) { 270 if (ResultVals.empty()) 271 return TranslateLegalizeResults(Op, Node); 272 273 Changed = true; 274 return RecursivelyLegalizeResults(Op, ResultVals); 275 } 276 LLVM_FALLTHROUGH; 277 } 278 case TargetLowering::Expand: { 279 Changed = true; 280 std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node); 281 AddLegalizedOperand(Op.getValue(0), Tmp.first); 282 AddLegalizedOperand(Op.getValue(1), Tmp.second); 283 return Op.getResNo() ? Tmp.first : Tmp.second; 284 } 285 } 286 } 287 } else if (Op.getOpcode() == ISD::STORE) { 288 StoreSDNode *ST = cast<StoreSDNode>(Node); 289 EVT StVT = ST->getMemoryVT(); 290 MVT ValVT = ST->getValue().getSimpleValueType(); 291 if (StVT.isVector() && ST->isTruncatingStore()) { 292 LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: "; 293 Node->dump(&DAG)); 294 switch (TLI.getTruncStoreAction(ValVT, StVT)) { 295 default: llvm_unreachable("This action is not supported yet!"); 296 case TargetLowering::Legal: 297 return TranslateLegalizeResults(Op, Node); 298 case TargetLowering::Custom: { 299 SmallVector<SDValue, 1> ResultVals; 300 if (LowerOperationWrapper(Node, ResultVals)) { 301 if (ResultVals.empty()) 302 return TranslateLegalizeResults(Op, Node); 303 304 Changed = true; 305 return RecursivelyLegalizeResults(Op, ResultVals); 306 } 307 LLVM_FALLTHROUGH; 308 } 309 case TargetLowering::Expand: { 310 Changed = true; 311 SDValue Chain = ExpandStore(Node); 312 AddLegalizedOperand(Op, Chain); 313 return Chain; 314 } 315 } 316 } 317 } 318 319 bool HasVectorValueOrOp = 320 llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) || 321 llvm::any_of(Node->op_values(), 322 [](SDValue O) { return O.getValueType().isVector(); }); 323 if (!HasVectorValueOrOp) 324 return TranslateLegalizeResults(Op, Node); 325 326 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 327 EVT ValVT; 328 switch (Op.getOpcode()) { 329 default: 330 return TranslateLegalizeResults(Op, Node); 331 case ISD::MERGE_VALUES: 332 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 333 // This operation lies about being legal: when it claims to be legal, 334 // it should actually be expanded. 335 if (Action == TargetLowering::Legal) 336 Action = TargetLowering::Expand; 337 break; 338 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 339 case ISD::STRICT_##DAGN: 340 #include "llvm/IR/ConstrainedOps.def" 341 ValVT = Node->getValueType(0); 342 if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP || 343 Op.getOpcode() == ISD::STRICT_UINT_TO_FP) 344 ValVT = Node->getOperand(1).getValueType(); 345 Action = TLI.getOperationAction(Node->getOpcode(), ValVT); 346 // If we're asked to expand a strict vector floating-point operation, 347 // by default we're going to simply unroll it. That is usually the 348 // best approach, except in the case where the resulting strict (scalar) 349 // operations would themselves use the fallback mutation to non-strict. 350 // In that specific case, just do the fallback on the vector op. 351 if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() && 352 TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) == 353 TargetLowering::Legal) { 354 EVT EltVT = ValVT.getVectorElementType(); 355 if (TLI.getOperationAction(Node->getOpcode(), EltVT) 356 == TargetLowering::Expand && 357 TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT) 358 == TargetLowering::Legal) 359 Action = TargetLowering::Legal; 360 } 361 break; 362 case ISD::ADD: 363 case ISD::SUB: 364 case ISD::MUL: 365 case ISD::MULHS: 366 case ISD::MULHU: 367 case ISD::SDIV: 368 case ISD::UDIV: 369 case ISD::SREM: 370 case ISD::UREM: 371 case ISD::SDIVREM: 372 case ISD::UDIVREM: 373 case ISD::FADD: 374 case ISD::FSUB: 375 case ISD::FMUL: 376 case ISD::FDIV: 377 case ISD::FREM: 378 case ISD::AND: 379 case ISD::OR: 380 case ISD::XOR: 381 case ISD::SHL: 382 case ISD::SRA: 383 case ISD::SRL: 384 case ISD::FSHL: 385 case ISD::FSHR: 386 case ISD::ROTL: 387 case ISD::ROTR: 388 case ISD::ABS: 389 case ISD::BSWAP: 390 case ISD::BITREVERSE: 391 case ISD::CTLZ: 392 case ISD::CTTZ: 393 case ISD::CTLZ_ZERO_UNDEF: 394 case ISD::CTTZ_ZERO_UNDEF: 395 case ISD::CTPOP: 396 case ISD::SELECT: 397 case ISD::VSELECT: 398 case ISD::SELECT_CC: 399 case ISD::SETCC: 400 case ISD::ZERO_EXTEND: 401 case ISD::ANY_EXTEND: 402 case ISD::TRUNCATE: 403 case ISD::SIGN_EXTEND: 404 case ISD::FP_TO_SINT: 405 case ISD::FP_TO_UINT: 406 case ISD::FNEG: 407 case ISD::FABS: 408 case ISD::FMINNUM: 409 case ISD::FMAXNUM: 410 case ISD::FMINNUM_IEEE: 411 case ISD::FMAXNUM_IEEE: 412 case ISD::FMINIMUM: 413 case ISD::FMAXIMUM: 414 case ISD::FCOPYSIGN: 415 case ISD::FSQRT: 416 case ISD::FSIN: 417 case ISD::FCOS: 418 case ISD::FPOWI: 419 case ISD::FPOW: 420 case ISD::FLOG: 421 case ISD::FLOG2: 422 case ISD::FLOG10: 423 case ISD::FEXP: 424 case ISD::FEXP2: 425 case ISD::FCEIL: 426 case ISD::FTRUNC: 427 case ISD::FRINT: 428 case ISD::FNEARBYINT: 429 case ISD::FROUND: 430 case ISD::FROUNDEVEN: 431 case ISD::FFLOOR: 432 case ISD::FP_ROUND: 433 case ISD::FP_EXTEND: 434 case ISD::FMA: 435 case ISD::SIGN_EXTEND_INREG: 436 case ISD::ANY_EXTEND_VECTOR_INREG: 437 case ISD::SIGN_EXTEND_VECTOR_INREG: 438 case ISD::ZERO_EXTEND_VECTOR_INREG: 439 case ISD::SMIN: 440 case ISD::SMAX: 441 case ISD::UMIN: 442 case ISD::UMAX: 443 case ISD::SMUL_LOHI: 444 case ISD::UMUL_LOHI: 445 case ISD::SADDO: 446 case ISD::UADDO: 447 case ISD::SSUBO: 448 case ISD::USUBO: 449 case ISD::SMULO: 450 case ISD::UMULO: 451 case ISD::FCANONICALIZE: 452 case ISD::SADDSAT: 453 case ISD::UADDSAT: 454 case ISD::SSUBSAT: 455 case ISD::USUBSAT: 456 case ISD::SSHLSAT: 457 case ISD::USHLSAT: 458 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 459 break; 460 case ISD::SMULFIX: 461 case ISD::SMULFIXSAT: 462 case ISD::UMULFIX: 463 case ISD::UMULFIXSAT: 464 case ISD::SDIVFIX: 465 case ISD::SDIVFIXSAT: 466 case ISD::UDIVFIX: 467 case ISD::UDIVFIXSAT: { 468 unsigned Scale = Node->getConstantOperandVal(2); 469 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 470 Node->getValueType(0), Scale); 471 break; 472 } 473 case ISD::SINT_TO_FP: 474 case ISD::UINT_TO_FP: 475 case ISD::VECREDUCE_ADD: 476 case ISD::VECREDUCE_MUL: 477 case ISD::VECREDUCE_AND: 478 case ISD::VECREDUCE_OR: 479 case ISD::VECREDUCE_XOR: 480 case ISD::VECREDUCE_SMAX: 481 case ISD::VECREDUCE_SMIN: 482 case ISD::VECREDUCE_UMAX: 483 case ISD::VECREDUCE_UMIN: 484 case ISD::VECREDUCE_FADD: 485 case ISD::VECREDUCE_FMUL: 486 case ISD::VECREDUCE_FMAX: 487 case ISD::VECREDUCE_FMIN: 488 Action = TLI.getOperationAction(Node->getOpcode(), 489 Node->getOperand(0).getValueType()); 490 break; 491 case ISD::VECREDUCE_SEQ_FADD: 492 case ISD::VECREDUCE_SEQ_FMUL: 493 Action = TLI.getOperationAction(Node->getOpcode(), 494 Node->getOperand(1).getValueType()); 495 break; 496 } 497 498 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG)); 499 500 SmallVector<SDValue, 8> ResultVals; 501 switch (Action) { 502 default: llvm_unreachable("This action is not supported yet!"); 503 case TargetLowering::Promote: 504 LLVM_DEBUG(dbgs() << "Promoting\n"); 505 Promote(Node, ResultVals); 506 assert(!ResultVals.empty() && "No results for promotion?"); 507 break; 508 case TargetLowering::Legal: 509 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 510 break; 511 case TargetLowering::Custom: 512 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 513 if (LowerOperationWrapper(Node, ResultVals)) 514 break; 515 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 516 LLVM_FALLTHROUGH; 517 case TargetLowering::Expand: 518 LLVM_DEBUG(dbgs() << "Expanding\n"); 519 Expand(Node, ResultVals); 520 break; 521 } 522 523 if (ResultVals.empty()) 524 return TranslateLegalizeResults(Op, Node); 525 526 Changed = true; 527 return RecursivelyLegalizeResults(Op, ResultVals); 528 } 529 530 // FIME: This is very similar to the X86 override of 531 // TargetLowering::LowerOperationWrapper. Can we merge them somehow? 532 bool VectorLegalizer::LowerOperationWrapper(SDNode *Node, 533 SmallVectorImpl<SDValue> &Results) { 534 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 535 536 if (!Res.getNode()) 537 return false; 538 539 if (Res == SDValue(Node, 0)) 540 return true; 541 542 // If the original node has one result, take the return value from 543 // LowerOperation as is. It might not be result number 0. 544 if (Node->getNumValues() == 1) { 545 Results.push_back(Res); 546 return true; 547 } 548 549 // If the original node has multiple results, then the return node should 550 // have the same number of results. 551 assert((Node->getNumValues() == Res->getNumValues()) && 552 "Lowering returned the wrong number of results!"); 553 554 // Places new result values base on N result number. 555 for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I) 556 Results.push_back(Res.getValue(I)); 557 558 return true; 559 } 560 561 void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) { 562 // For a few operations there is a specific concept for promotion based on 563 // the operand's type. 564 switch (Node->getOpcode()) { 565 case ISD::SINT_TO_FP: 566 case ISD::UINT_TO_FP: 567 case ISD::STRICT_SINT_TO_FP: 568 case ISD::STRICT_UINT_TO_FP: 569 // "Promote" the operation by extending the operand. 570 PromoteINT_TO_FP(Node, Results); 571 return; 572 case ISD::FP_TO_UINT: 573 case ISD::FP_TO_SINT: 574 case ISD::STRICT_FP_TO_UINT: 575 case ISD::STRICT_FP_TO_SINT: 576 // Promote the operation by extending the operand. 577 PromoteFP_TO_INT(Node, Results); 578 return; 579 case ISD::FP_ROUND: 580 case ISD::FP_EXTEND: 581 // These operations are used to do promotion so they can't be promoted 582 // themselves. 583 llvm_unreachable("Don't know how to promote this operation!"); 584 } 585 586 // There are currently two cases of vector promotion: 587 // 1) Bitcasting a vector of integers to a different type to a vector of the 588 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 589 // 2) Extending a vector of floats to a vector of the same number of larger 590 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 591 assert(Node->getNumValues() == 1 && 592 "Can't promote a vector with multiple results!"); 593 MVT VT = Node->getSimpleValueType(0); 594 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 595 SDLoc dl(Node); 596 SmallVector<SDValue, 4> Operands(Node->getNumOperands()); 597 598 for (unsigned j = 0; j != Node->getNumOperands(); ++j) { 599 if (Node->getOperand(j).getValueType().isVector()) 600 if (Node->getOperand(j) 601 .getValueType() 602 .getVectorElementType() 603 .isFloatingPoint() && 604 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 605 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j)); 606 else 607 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j)); 608 else 609 Operands[j] = Node->getOperand(j); 610 } 611 612 SDValue Res = 613 DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags()); 614 615 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 616 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 617 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 618 Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res, DAG.getIntPtrConstant(0, dl)); 619 else 620 Res = DAG.getNode(ISD::BITCAST, dl, VT, Res); 621 622 Results.push_back(Res); 623 } 624 625 void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node, 626 SmallVectorImpl<SDValue> &Results) { 627 // INT_TO_FP operations may require the input operand be promoted even 628 // when the type is otherwise legal. 629 bool IsStrict = Node->isStrictFPOpcode(); 630 MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType(); 631 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 632 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 633 "Vectors have different number of elements!"); 634 635 SDLoc dl(Node); 636 SmallVector<SDValue, 4> Operands(Node->getNumOperands()); 637 638 unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP || 639 Node->getOpcode() == ISD::STRICT_UINT_TO_FP) 640 ? ISD::ZERO_EXTEND 641 : ISD::SIGN_EXTEND; 642 for (unsigned j = 0; j != Node->getNumOperands(); ++j) { 643 if (Node->getOperand(j).getValueType().isVector()) 644 Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j)); 645 else 646 Operands[j] = Node->getOperand(j); 647 } 648 649 if (IsStrict) { 650 SDValue Res = DAG.getNode(Node->getOpcode(), dl, 651 {Node->getValueType(0), MVT::Other}, Operands); 652 Results.push_back(Res); 653 Results.push_back(Res.getValue(1)); 654 return; 655 } 656 657 SDValue Res = 658 DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands); 659 Results.push_back(Res); 660 } 661 662 // For FP_TO_INT we promote the result type to a vector type with wider 663 // elements and then truncate the result. This is different from the default 664 // PromoteVector which uses bitcast to promote thus assumning that the 665 // promoted vector type has the same overall size. 666 void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node, 667 SmallVectorImpl<SDValue> &Results) { 668 MVT VT = Node->getSimpleValueType(0); 669 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 670 bool IsStrict = Node->isStrictFPOpcode(); 671 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 672 "Vectors have different number of elements!"); 673 674 unsigned NewOpc = Node->getOpcode(); 675 // Change FP_TO_UINT to FP_TO_SINT if possible. 676 // TODO: Should we only do this if FP_TO_UINT itself isn't legal? 677 if (NewOpc == ISD::FP_TO_UINT && 678 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT)) 679 NewOpc = ISD::FP_TO_SINT; 680 681 if (NewOpc == ISD::STRICT_FP_TO_UINT && 682 TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT)) 683 NewOpc = ISD::STRICT_FP_TO_SINT; 684 685 SDLoc dl(Node); 686 SDValue Promoted, Chain; 687 if (IsStrict) { 688 Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other}, 689 {Node->getOperand(0), Node->getOperand(1)}); 690 Chain = Promoted.getValue(1); 691 } else 692 Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0)); 693 694 // Assert that the converted value fits in the original type. If it doesn't 695 // (eg: because the value being converted is too big), then the result of the 696 // original operation was undefined anyway, so the assert is still correct. 697 if (Node->getOpcode() == ISD::FP_TO_UINT || 698 Node->getOpcode() == ISD::STRICT_FP_TO_UINT) 699 NewOpc = ISD::AssertZext; 700 else 701 NewOpc = ISD::AssertSext; 702 703 Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted, 704 DAG.getValueType(VT.getScalarType())); 705 Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted); 706 Results.push_back(Promoted); 707 if (IsStrict) 708 Results.push_back(Chain); 709 } 710 711 std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) { 712 LoadSDNode *LD = cast<LoadSDNode>(N); 713 return TLI.scalarizeVectorLoad(LD, DAG); 714 } 715 716 SDValue VectorLegalizer::ExpandStore(SDNode *N) { 717 StoreSDNode *ST = cast<StoreSDNode>(N); 718 SDValue TF = TLI.scalarizeVectorStore(ST, DAG); 719 return TF; 720 } 721 722 void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) { 723 SDValue Tmp; 724 switch (Node->getOpcode()) { 725 case ISD::MERGE_VALUES: 726 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 727 Results.push_back(Node->getOperand(i)); 728 return; 729 case ISD::SIGN_EXTEND_INREG: 730 Results.push_back(ExpandSEXTINREG(Node)); 731 return; 732 case ISD::ANY_EXTEND_VECTOR_INREG: 733 Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node)); 734 return; 735 case ISD::SIGN_EXTEND_VECTOR_INREG: 736 Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node)); 737 return; 738 case ISD::ZERO_EXTEND_VECTOR_INREG: 739 Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node)); 740 return; 741 case ISD::BSWAP: 742 Results.push_back(ExpandBSWAP(Node)); 743 return; 744 case ISD::VSELECT: 745 Results.push_back(ExpandVSELECT(Node)); 746 return; 747 case ISD::SELECT: 748 Results.push_back(ExpandSELECT(Node)); 749 return; 750 case ISD::FP_TO_UINT: 751 ExpandFP_TO_UINT(Node, Results); 752 return; 753 case ISD::UINT_TO_FP: 754 ExpandUINT_TO_FLOAT(Node, Results); 755 return; 756 case ISD::FNEG: 757 Results.push_back(ExpandFNEG(Node)); 758 return; 759 case ISD::FSUB: 760 ExpandFSUB(Node, Results); 761 return; 762 case ISD::SETCC: 763 Results.push_back(UnrollVSETCC(Node)); 764 return; 765 case ISD::ABS: 766 if (TLI.expandABS(Node, Tmp, DAG)) { 767 Results.push_back(Tmp); 768 return; 769 } 770 break; 771 case ISD::BITREVERSE: 772 ExpandBITREVERSE(Node, Results); 773 return; 774 case ISD::CTPOP: 775 if (TLI.expandCTPOP(Node, Tmp, DAG)) { 776 Results.push_back(Tmp); 777 return; 778 } 779 break; 780 case ISD::CTLZ: 781 case ISD::CTLZ_ZERO_UNDEF: 782 if (TLI.expandCTLZ(Node, Tmp, DAG)) { 783 Results.push_back(Tmp); 784 return; 785 } 786 break; 787 case ISD::CTTZ: 788 case ISD::CTTZ_ZERO_UNDEF: 789 if (TLI.expandCTTZ(Node, Tmp, DAG)) { 790 Results.push_back(Tmp); 791 return; 792 } 793 break; 794 case ISD::FSHL: 795 case ISD::FSHR: 796 if (TLI.expandFunnelShift(Node, Tmp, DAG)) { 797 Results.push_back(Tmp); 798 return; 799 } 800 break; 801 case ISD::ROTL: 802 case ISD::ROTR: 803 if (TLI.expandROT(Node, false /*AllowVectorOps*/, Tmp, DAG)) { 804 Results.push_back(Tmp); 805 return; 806 } 807 break; 808 case ISD::FMINNUM: 809 case ISD::FMAXNUM: 810 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) { 811 Results.push_back(Expanded); 812 return; 813 } 814 break; 815 case ISD::SMIN: 816 case ISD::SMAX: 817 case ISD::UMIN: 818 case ISD::UMAX: 819 if (SDValue Expanded = TLI.expandIntMINMAX(Node, DAG)) { 820 Results.push_back(Expanded); 821 return; 822 } 823 break; 824 case ISD::UADDO: 825 case ISD::USUBO: 826 ExpandUADDSUBO(Node, Results); 827 return; 828 case ISD::SADDO: 829 case ISD::SSUBO: 830 ExpandSADDSUBO(Node, Results); 831 return; 832 case ISD::UMULO: 833 case ISD::SMULO: 834 ExpandMULO(Node, Results); 835 return; 836 case ISD::USUBSAT: 837 case ISD::SSUBSAT: 838 case ISD::UADDSAT: 839 case ISD::SADDSAT: 840 if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) { 841 Results.push_back(Expanded); 842 return; 843 } 844 break; 845 case ISD::SMULFIX: 846 case ISD::UMULFIX: 847 if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) { 848 Results.push_back(Expanded); 849 return; 850 } 851 break; 852 case ISD::SMULFIXSAT: 853 case ISD::UMULFIXSAT: 854 // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly 855 // why. Maybe it results in worse codegen compared to the unroll for some 856 // targets? This should probably be investigated. And if we still prefer to 857 // unroll an explanation could be helpful. 858 break; 859 case ISD::SDIVFIX: 860 case ISD::UDIVFIX: 861 ExpandFixedPointDiv(Node, Results); 862 return; 863 case ISD::SDIVFIXSAT: 864 case ISD::UDIVFIXSAT: 865 break; 866 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 867 case ISD::STRICT_##DAGN: 868 #include "llvm/IR/ConstrainedOps.def" 869 ExpandStrictFPOp(Node, Results); 870 return; 871 case ISD::VECREDUCE_ADD: 872 case ISD::VECREDUCE_MUL: 873 case ISD::VECREDUCE_AND: 874 case ISD::VECREDUCE_OR: 875 case ISD::VECREDUCE_XOR: 876 case ISD::VECREDUCE_SMAX: 877 case ISD::VECREDUCE_SMIN: 878 case ISD::VECREDUCE_UMAX: 879 case ISD::VECREDUCE_UMIN: 880 case ISD::VECREDUCE_FADD: 881 case ISD::VECREDUCE_FMUL: 882 case ISD::VECREDUCE_FMAX: 883 case ISD::VECREDUCE_FMIN: 884 Results.push_back(TLI.expandVecReduce(Node, DAG)); 885 return; 886 case ISD::VECREDUCE_SEQ_FADD: 887 case ISD::VECREDUCE_SEQ_FMUL: 888 Results.push_back(TLI.expandVecReduceSeq(Node, DAG)); 889 return; 890 case ISD::SREM: 891 case ISD::UREM: 892 ExpandREM(Node, Results); 893 return; 894 } 895 896 Results.push_back(DAG.UnrollVectorOp(Node)); 897 } 898 899 SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) { 900 // Lower a select instruction where the condition is a scalar and the 901 // operands are vectors. Lower this select to VSELECT and implement it 902 // using XOR AND OR. The selector bit is broadcasted. 903 EVT VT = Node->getValueType(0); 904 SDLoc DL(Node); 905 906 SDValue Mask = Node->getOperand(0); 907 SDValue Op1 = Node->getOperand(1); 908 SDValue Op2 = Node->getOperand(2); 909 910 assert(VT.isVector() && !Mask.getValueType().isVector() 911 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 912 913 // If we can't even use the basic vector operations of 914 // AND,OR,XOR, we will have to scalarize the op. 915 // Notice that the operation may be 'promoted' which means that it is 916 // 'bitcasted' to another type which is handled. 917 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 918 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 919 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 920 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 921 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 922 return DAG.UnrollVectorOp(Node); 923 924 // Generate a mask operand. 925 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 926 927 // What is the size of each element in the vector mask. 928 EVT BitTy = MaskTy.getScalarType(); 929 930 Mask = DAG.getSelect(DL, BitTy, Mask, 931 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, 932 BitTy), 933 DAG.getConstant(0, DL, BitTy)); 934 935 // Broadcast the mask so that the entire vector is all-one or all zero. 936 Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask); 937 938 // Bitcast the operands to be the same type as the mask. 939 // This is needed when we select between FP types because 940 // the mask is a vector of integers. 941 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 942 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 943 944 SDValue AllOnes = DAG.getConstant( 945 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy); 946 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 947 948 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 949 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 950 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 951 return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val); 952 } 953 954 SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) { 955 EVT VT = Node->getValueType(0); 956 957 // Make sure that the SRA and SHL instructions are available. 958 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 959 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 960 return DAG.UnrollVectorOp(Node); 961 962 SDLoc DL(Node); 963 EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT(); 964 965 unsigned BW = VT.getScalarSizeInBits(); 966 unsigned OrigBW = OrigTy.getScalarSizeInBits(); 967 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 968 969 SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz); 970 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 971 } 972 973 // Generically expand a vector anyext in register to a shuffle of the relevant 974 // lanes into the appropriate locations, with other lanes left undef. 975 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) { 976 SDLoc DL(Node); 977 EVT VT = Node->getValueType(0); 978 int NumElements = VT.getVectorNumElements(); 979 SDValue Src = Node->getOperand(0); 980 EVT SrcVT = Src.getValueType(); 981 int NumSrcElements = SrcVT.getVectorNumElements(); 982 983 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 984 // into a larger vector type. 985 if (SrcVT.bitsLE(VT)) { 986 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 987 "ANY_EXTEND_VECTOR_INREG vector size mismatch"); 988 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 989 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 990 NumSrcElements); 991 Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), 992 Src, DAG.getVectorIdxConstant(0, DL)); 993 } 994 995 // Build a base mask of undef shuffles. 996 SmallVector<int, 16> ShuffleMask; 997 ShuffleMask.resize(NumSrcElements, -1); 998 999 // Place the extended lanes into the correct locations. 1000 int ExtLaneScale = NumSrcElements / NumElements; 1001 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 1002 for (int i = 0; i < NumElements; ++i) 1003 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 1004 1005 return DAG.getNode( 1006 ISD::BITCAST, DL, VT, 1007 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 1008 } 1009 1010 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) { 1011 SDLoc DL(Node); 1012 EVT VT = Node->getValueType(0); 1013 SDValue Src = Node->getOperand(0); 1014 EVT SrcVT = Src.getValueType(); 1015 1016 // First build an any-extend node which can be legalized above when we 1017 // recurse through it. 1018 SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src); 1019 1020 // Now we need sign extend. Do this by shifting the elements. Even if these 1021 // aren't legal operations, they have a better chance of being legalized 1022 // without full scalarization than the sign extension does. 1023 unsigned EltWidth = VT.getScalarSizeInBits(); 1024 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); 1025 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 1026 return DAG.getNode(ISD::SRA, DL, VT, 1027 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 1028 ShiftAmount); 1029 } 1030 1031 // Generically expand a vector zext in register to a shuffle of the relevant 1032 // lanes into the appropriate locations, a blend of zero into the high bits, 1033 // and a bitcast to the wider element type. 1034 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) { 1035 SDLoc DL(Node); 1036 EVT VT = Node->getValueType(0); 1037 int NumElements = VT.getVectorNumElements(); 1038 SDValue Src = Node->getOperand(0); 1039 EVT SrcVT = Src.getValueType(); 1040 int NumSrcElements = SrcVT.getVectorNumElements(); 1041 1042 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 1043 // into a larger vector type. 1044 if (SrcVT.bitsLE(VT)) { 1045 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 1046 "ZERO_EXTEND_VECTOR_INREG vector size mismatch"); 1047 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 1048 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 1049 NumSrcElements); 1050 Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), 1051 Src, DAG.getVectorIdxConstant(0, DL)); 1052 } 1053 1054 // Build up a zero vector to blend into this one. 1055 SDValue Zero = DAG.getConstant(0, DL, SrcVT); 1056 1057 // Shuffle the incoming lanes into the correct position, and pull all other 1058 // lanes from the zero vector. 1059 SmallVector<int, 16> ShuffleMask; 1060 ShuffleMask.reserve(NumSrcElements); 1061 for (int i = 0; i < NumSrcElements; ++i) 1062 ShuffleMask.push_back(i); 1063 1064 int ExtLaneScale = NumSrcElements / NumElements; 1065 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 1066 for (int i = 0; i < NumElements; ++i) 1067 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 1068 1069 return DAG.getNode(ISD::BITCAST, DL, VT, 1070 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 1071 } 1072 1073 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) { 1074 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 1075 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 1076 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 1077 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 1078 } 1079 1080 SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) { 1081 EVT VT = Node->getValueType(0); 1082 1083 // Generate a byte wise shuffle mask for the BSWAP. 1084 SmallVector<int, 16> ShuffleMask; 1085 createBSWAPShuffleMask(VT, ShuffleMask); 1086 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 1087 1088 // Only emit a shuffle if the mask is legal. 1089 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) 1090 return DAG.UnrollVectorOp(Node); 1091 1092 SDLoc DL(Node); 1093 SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0)); 1094 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); 1095 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 1096 } 1097 1098 void VectorLegalizer::ExpandBITREVERSE(SDNode *Node, 1099 SmallVectorImpl<SDValue> &Results) { 1100 EVT VT = Node->getValueType(0); 1101 1102 // If we have the scalar operation, it's probably cheaper to unroll it. 1103 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) { 1104 SDValue Tmp = DAG.UnrollVectorOp(Node); 1105 Results.push_back(Tmp); 1106 return; 1107 } 1108 1109 // If the vector element width is a whole number of bytes, test if its legal 1110 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte 1111 // vector. This greatly reduces the number of bit shifts necessary. 1112 unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); 1113 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { 1114 SmallVector<int, 16> BSWAPMask; 1115 createBSWAPShuffleMask(VT, BSWAPMask); 1116 1117 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); 1118 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && 1119 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || 1120 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && 1121 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && 1122 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && 1123 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { 1124 SDLoc DL(Node); 1125 SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0)); 1126 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 1127 BSWAPMask); 1128 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); 1129 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 1130 Results.push_back(Op); 1131 return; 1132 } 1133 } 1134 1135 // If we have the appropriate vector bit operations, it is better to use them 1136 // than unrolling and expanding each component. 1137 if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 1138 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 1139 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) && 1140 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) 1141 // Let LegalizeDAG handle this later. 1142 return; 1143 1144 // Otherwise unroll. 1145 SDValue Tmp = DAG.UnrollVectorOp(Node); 1146 Results.push_back(Tmp); 1147 } 1148 1149 SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) { 1150 // Implement VSELECT in terms of XOR, AND, OR 1151 // on platforms which do not support blend natively. 1152 SDLoc DL(Node); 1153 1154 SDValue Mask = Node->getOperand(0); 1155 SDValue Op1 = Node->getOperand(1); 1156 SDValue Op2 = Node->getOperand(2); 1157 1158 EVT VT = Mask.getValueType(); 1159 1160 // If we can't even use the basic vector operations of 1161 // AND,OR,XOR, we will have to scalarize the op. 1162 // Notice that the operation may be 'promoted' which means that it is 1163 // 'bitcasted' to another type which is handled. 1164 // This operation also isn't safe with AND, OR, XOR when the boolean 1165 // type is 0/1 as we need an all ones vector constant to mask with. 1166 // FIXME: Sign extend 1 to all ones if thats legal on the target. 1167 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 1168 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 1169 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 1170 TLI.getBooleanContents(Op1.getValueType()) != 1171 TargetLowering::ZeroOrNegativeOneBooleanContent) 1172 return DAG.UnrollVectorOp(Node); 1173 1174 // If the mask and the type are different sizes, unroll the vector op. This 1175 // can occur when getSetCCResultType returns something that is different in 1176 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 1177 if (VT.getSizeInBits() != Op1.getValueSizeInBits()) 1178 return DAG.UnrollVectorOp(Node); 1179 1180 // Bitcast the operands to be the same type as the mask. 1181 // This is needed when we select between FP types because 1182 // the mask is a vector of integers. 1183 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 1184 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 1185 1186 SDValue AllOnes = DAG.getConstant( 1187 APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT); 1188 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 1189 1190 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 1191 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 1192 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 1193 return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val); 1194 } 1195 1196 void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node, 1197 SmallVectorImpl<SDValue> &Results) { 1198 // Attempt to expand using TargetLowering. 1199 SDValue Result, Chain; 1200 if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) { 1201 Results.push_back(Result); 1202 if (Node->isStrictFPOpcode()) 1203 Results.push_back(Chain); 1204 return; 1205 } 1206 1207 // Otherwise go ahead and unroll. 1208 if (Node->isStrictFPOpcode()) { 1209 UnrollStrictFPOp(Node, Results); 1210 return; 1211 } 1212 1213 Results.push_back(DAG.UnrollVectorOp(Node)); 1214 } 1215 1216 void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node, 1217 SmallVectorImpl<SDValue> &Results) { 1218 bool IsStrict = Node->isStrictFPOpcode(); 1219 unsigned OpNo = IsStrict ? 1 : 0; 1220 SDValue Src = Node->getOperand(OpNo); 1221 EVT VT = Src.getValueType(); 1222 SDLoc DL(Node); 1223 1224 // Attempt to expand using TargetLowering. 1225 SDValue Result; 1226 SDValue Chain; 1227 if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) { 1228 Results.push_back(Result); 1229 if (IsStrict) 1230 Results.push_back(Chain); 1231 return; 1232 } 1233 1234 // Make sure that the SINT_TO_FP and SRL instructions are available. 1235 if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) == 1236 TargetLowering::Expand) || 1237 (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) == 1238 TargetLowering::Expand)) || 1239 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) { 1240 if (IsStrict) { 1241 UnrollStrictFPOp(Node, Results); 1242 return; 1243 } 1244 1245 Results.push_back(DAG.UnrollVectorOp(Node)); 1246 return; 1247 } 1248 1249 unsigned BW = VT.getScalarSizeInBits(); 1250 assert((BW == 64 || BW == 32) && 1251 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 1252 1253 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT); 1254 1255 // Constants to clear the upper part of the word. 1256 // Notice that we can also use SHL+SHR, but using a constant is slightly 1257 // faster on x86. 1258 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; 1259 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 1260 1261 // Two to the power of half-word-size. 1262 SDValue TWOHW = 1263 DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0)); 1264 1265 // Clear upper part of LO, lower HI 1266 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord); 1267 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask); 1268 1269 if (IsStrict) { 1270 // Convert hi and lo to floats 1271 // Convert the hi part back to the upper values 1272 // TODO: Can any fast-math-flags be set on these nodes? 1273 SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, 1274 {Node->getValueType(0), MVT::Other}, 1275 {Node->getOperand(0), HI}); 1276 fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other}, 1277 {fHI.getValue(1), fHI, TWOHW}); 1278 SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, 1279 {Node->getValueType(0), MVT::Other}, 1280 {Node->getOperand(0), LO}); 1281 1282 SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1), 1283 fLO.getValue(1)); 1284 1285 // Add the two halves 1286 SDValue Result = 1287 DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other}, 1288 {TF, fHI, fLO}); 1289 1290 Results.push_back(Result); 1291 Results.push_back(Result.getValue(1)); 1292 return; 1293 } 1294 1295 // Convert hi and lo to floats 1296 // Convert the hi part back to the upper values 1297 // TODO: Can any fast-math-flags be set on these nodes? 1298 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI); 1299 fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW); 1300 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO); 1301 1302 // Add the two halves 1303 Results.push_back( 1304 DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO)); 1305 } 1306 1307 SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) { 1308 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) { 1309 SDLoc DL(Node); 1310 SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0)); 1311 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. 1312 return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero, 1313 Node->getOperand(0)); 1314 } 1315 return DAG.UnrollVectorOp(Node); 1316 } 1317 1318 void VectorLegalizer::ExpandFSUB(SDNode *Node, 1319 SmallVectorImpl<SDValue> &Results) { 1320 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal, 1321 // we can defer this to operation legalization where it will be lowered as 1322 // a+(-b). 1323 EVT VT = Node->getValueType(0); 1324 if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && 1325 TLI.isOperationLegalOrCustom(ISD::FADD, VT)) 1326 return; // Defer to LegalizeDAG 1327 1328 SDValue Tmp = DAG.UnrollVectorOp(Node); 1329 Results.push_back(Tmp); 1330 } 1331 1332 void VectorLegalizer::ExpandUADDSUBO(SDNode *Node, 1333 SmallVectorImpl<SDValue> &Results) { 1334 SDValue Result, Overflow; 1335 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 1336 Results.push_back(Result); 1337 Results.push_back(Overflow); 1338 } 1339 1340 void VectorLegalizer::ExpandSADDSUBO(SDNode *Node, 1341 SmallVectorImpl<SDValue> &Results) { 1342 SDValue Result, Overflow; 1343 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 1344 Results.push_back(Result); 1345 Results.push_back(Overflow); 1346 } 1347 1348 void VectorLegalizer::ExpandMULO(SDNode *Node, 1349 SmallVectorImpl<SDValue> &Results) { 1350 SDValue Result, Overflow; 1351 if (!TLI.expandMULO(Node, Result, Overflow, DAG)) 1352 std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node); 1353 1354 Results.push_back(Result); 1355 Results.push_back(Overflow); 1356 } 1357 1358 void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node, 1359 SmallVectorImpl<SDValue> &Results) { 1360 SDNode *N = Node; 1361 if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N), 1362 N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG)) 1363 Results.push_back(Expanded); 1364 } 1365 1366 void VectorLegalizer::ExpandStrictFPOp(SDNode *Node, 1367 SmallVectorImpl<SDValue> &Results) { 1368 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) { 1369 ExpandUINT_TO_FLOAT(Node, Results); 1370 return; 1371 } 1372 if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) { 1373 ExpandFP_TO_UINT(Node, Results); 1374 return; 1375 } 1376 1377 UnrollStrictFPOp(Node, Results); 1378 } 1379 1380 void VectorLegalizer::ExpandREM(SDNode *Node, 1381 SmallVectorImpl<SDValue> &Results) { 1382 assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) && 1383 "Expected REM node"); 1384 1385 SDValue Result; 1386 if (!TLI.expandREM(Node, Result, DAG)) 1387 Result = DAG.UnrollVectorOp(Node); 1388 Results.push_back(Result); 1389 } 1390 1391 void VectorLegalizer::UnrollStrictFPOp(SDNode *Node, 1392 SmallVectorImpl<SDValue> &Results) { 1393 EVT VT = Node->getValueType(0); 1394 EVT EltVT = VT.getVectorElementType(); 1395 unsigned NumElems = VT.getVectorNumElements(); 1396 unsigned NumOpers = Node->getNumOperands(); 1397 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1398 1399 EVT TmpEltVT = EltVT; 1400 if (Node->getOpcode() == ISD::STRICT_FSETCC || 1401 Node->getOpcode() == ISD::STRICT_FSETCCS) 1402 TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(), 1403 *DAG.getContext(), TmpEltVT); 1404 1405 EVT ValueVTs[] = {TmpEltVT, MVT::Other}; 1406 SDValue Chain = Node->getOperand(0); 1407 SDLoc dl(Node); 1408 1409 SmallVector<SDValue, 32> OpValues; 1410 SmallVector<SDValue, 32> OpChains; 1411 for (unsigned i = 0; i < NumElems; ++i) { 1412 SmallVector<SDValue, 4> Opers; 1413 SDValue Idx = DAG.getVectorIdxConstant(i, dl); 1414 1415 // The Chain is the first operand. 1416 Opers.push_back(Chain); 1417 1418 // Now process the remaining operands. 1419 for (unsigned j = 1; j < NumOpers; ++j) { 1420 SDValue Oper = Node->getOperand(j); 1421 EVT OperVT = Oper.getValueType(); 1422 1423 if (OperVT.isVector()) 1424 Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 1425 OperVT.getVectorElementType(), Oper, Idx); 1426 1427 Opers.push_back(Oper); 1428 } 1429 1430 SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers); 1431 SDValue ScalarResult = ScalarOp.getValue(0); 1432 SDValue ScalarChain = ScalarOp.getValue(1); 1433 1434 if (Node->getOpcode() == ISD::STRICT_FSETCC || 1435 Node->getOpcode() == ISD::STRICT_FSETCCS) 1436 ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult, 1437 DAG.getConstant(APInt::getAllOnesValue 1438 (EltVT.getSizeInBits()), dl, EltVT), 1439 DAG.getConstant(0, dl, EltVT)); 1440 1441 OpValues.push_back(ScalarResult); 1442 OpChains.push_back(ScalarChain); 1443 } 1444 1445 SDValue Result = DAG.getBuildVector(VT, dl, OpValues); 1446 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains); 1447 1448 Results.push_back(Result); 1449 Results.push_back(NewChain); 1450 } 1451 1452 SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) { 1453 EVT VT = Node->getValueType(0); 1454 unsigned NumElems = VT.getVectorNumElements(); 1455 EVT EltVT = VT.getVectorElementType(); 1456 SDValue LHS = Node->getOperand(0); 1457 SDValue RHS = Node->getOperand(1); 1458 SDValue CC = Node->getOperand(2); 1459 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1460 SDLoc dl(Node); 1461 SmallVector<SDValue, 8> Ops(NumElems); 1462 for (unsigned i = 0; i < NumElems; ++i) { 1463 SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1464 DAG.getVectorIdxConstant(i, dl)); 1465 SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1466 DAG.getVectorIdxConstant(i, dl)); 1467 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1468 TLI.getSetCCResultType(DAG.getDataLayout(), 1469 *DAG.getContext(), TmpEltVT), 1470 LHSElem, RHSElem, CC); 1471 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 1472 DAG.getConstant(APInt::getAllOnesValue 1473 (EltVT.getSizeInBits()), dl, EltVT), 1474 DAG.getConstant(0, dl, EltVT)); 1475 } 1476 return DAG.getBuildVector(VT, dl, Ops); 1477 } 1478 1479 bool SelectionDAG::LegalizeVectors() { 1480 return VectorLegalizer(*this).Run(); 1481 } 1482