1 //===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SelectionDAG::LegalizeVectors method. 11 // 12 // The vector legalizer looks for vector operations which might need to be 13 // scalarized and legalizes them. This is a separate step from Legalize because 14 // scalarizing can introduce illegal types. For example, suppose we have an 15 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 17 // operation, which introduces nodes with the illegal type i64 which must be 18 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 19 // the operation must be unrolled, which introduces nodes with the illegal 20 // type i8 which must be promoted. 21 // 22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 23 // or operations that happen to take a vector which are custom-lowered; 24 // the legalization for such operations never produces nodes 25 // with illegal types, so it's okay to put off legalizing them until 26 // SelectionDAG::Legalize runs. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/Target/TargetLowering.h" 32 using namespace llvm; 33 34 namespace { 35 class VectorLegalizer { 36 SelectionDAG& DAG; 37 const TargetLowering &TLI; 38 bool Changed; // Keep track of whether anything changed 39 40 /// For nodes that are of legal width, and that have more than one use, this 41 /// map indicates what regularized operand to use. This allows us to avoid 42 /// legalizing the same thing more than once. 43 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 44 45 /// \brief Adds a node to the translation cache. 46 void AddLegalizedOperand(SDValue From, SDValue To) { 47 LegalizedNodes.insert(std::make_pair(From, To)); 48 // If someone requests legalization of the new node, return itself. 49 if (From != To) 50 LegalizedNodes.insert(std::make_pair(To, To)); 51 } 52 53 /// \brief Legalizes the given node. 54 SDValue LegalizeOp(SDValue Op); 55 56 /// \brief Assuming the node is legal, "legalize" the results. 57 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); 58 59 /// \brief Implements unrolling a VSETCC. 60 SDValue UnrollVSETCC(SDValue Op); 61 62 /// \brief Implement expand-based legalization of vector operations. 63 /// 64 /// This is just a high-level routine to dispatch to specific code paths for 65 /// operations to legalize them. 66 SDValue Expand(SDValue Op); 67 68 /// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if 69 /// FSUB isn't legal. 70 /// 71 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 72 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 73 SDValue ExpandUINT_TO_FLOAT(SDValue Op); 74 75 /// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 76 SDValue ExpandSEXTINREG(SDValue Op); 77 78 /// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG. 79 /// 80 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 81 /// type. The contents of the bits in the extended part of each element are 82 /// undef. 83 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op); 84 85 /// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG. 86 /// 87 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 88 /// type, then shifts left and arithmetic shifts right to introduce a sign 89 /// extension. 90 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op); 91 92 /// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG. 93 /// 94 /// Shuffles the low lanes of the operand into place and blends zeros into 95 /// the remaining lanes, finally bitcasting to the proper type. 96 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op); 97 98 /// \brief Expand bswap of vectors into a shuffle if legal. 99 SDValue ExpandBSWAP(SDValue Op); 100 101 /// \brief Implement vselect in terms of XOR, AND, OR when blend is not 102 /// supported by the target. 103 SDValue ExpandVSELECT(SDValue Op); 104 SDValue ExpandSELECT(SDValue Op); 105 SDValue ExpandLoad(SDValue Op); 106 SDValue ExpandStore(SDValue Op); 107 SDValue ExpandFNEG(SDValue Op); 108 SDValue ExpandBITREVERSE(SDValue Op); 109 SDValue ExpandCTLZ(SDValue Op); 110 SDValue ExpandCTTZ_ZERO_UNDEF(SDValue Op); 111 112 /// \brief Implements vector promotion. 113 /// 114 /// This is essentially just bitcasting the operands to a different type and 115 /// bitcasting the result back to the original type. 116 SDValue Promote(SDValue Op); 117 118 /// \brief Implements [SU]INT_TO_FP vector promotion. 119 /// 120 /// This is a [zs]ext of the input operand to the next size up. 121 SDValue PromoteINT_TO_FP(SDValue Op); 122 123 /// \brief Implements FP_TO_[SU]INT vector promotion of the result type. 124 /// 125 /// It is promoted to the next size up integer type. The result is then 126 /// truncated back to the original type. 127 SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned); 128 129 public: 130 /// \brief Begin legalizer the vector operations in the DAG. 131 bool Run(); 132 VectorLegalizer(SelectionDAG& dag) : 133 DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {} 134 }; 135 136 bool VectorLegalizer::Run() { 137 // Before we start legalizing vector nodes, check if there are any vectors. 138 bool HasVectors = false; 139 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 140 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 141 // Check if the values of the nodes contain vectors. We don't need to check 142 // the operands because we are going to check their values at some point. 143 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); 144 J != E; ++J) 145 HasVectors |= J->isVector(); 146 147 // If we found a vector node we can start the legalization. 148 if (HasVectors) 149 break; 150 } 151 152 // If this basic block has no vectors then no need to legalize vectors. 153 if (!HasVectors) 154 return false; 155 156 // The legalize process is inherently a bottom-up recursive process (users 157 // legalize their uses before themselves). Given infinite stack space, we 158 // could just start legalizing on the root and traverse the whole graph. In 159 // practice however, this causes us to run out of stack space on large basic 160 // blocks. To avoid this problem, compute an ordering of the nodes where each 161 // node is only legalized after all of its operands are legalized. 162 DAG.AssignTopologicalOrder(); 163 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 164 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 165 LegalizeOp(SDValue(&*I, 0)); 166 167 // Finally, it's possible the root changed. Get the new root. 168 SDValue OldRoot = DAG.getRoot(); 169 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 170 DAG.setRoot(LegalizedNodes[OldRoot]); 171 172 LegalizedNodes.clear(); 173 174 // Remove dead nodes now. 175 DAG.RemoveDeadNodes(); 176 177 return Changed; 178 } 179 180 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { 181 // Generic legalization: just pass the operand through. 182 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) 183 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 184 return Result.getValue(Op.getResNo()); 185 } 186 187 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 188 // Note that LegalizeOp may be reentered even from single-use nodes, which 189 // means that we always must cache transformed nodes. 190 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 191 if (I != LegalizedNodes.end()) return I->second; 192 193 SDNode* Node = Op.getNode(); 194 195 // Legalize the operands 196 SmallVector<SDValue, 8> Ops; 197 for (const SDValue &Op : Node->op_values()) 198 Ops.push_back(LegalizeOp(Op)); 199 200 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0); 201 202 bool HasVectorValue = false; 203 if (Op.getOpcode() == ISD::LOAD) { 204 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 205 ISD::LoadExtType ExtType = LD->getExtensionType(); 206 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) 207 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), 208 LD->getMemoryVT())) { 209 default: llvm_unreachable("This action is not supported yet!"); 210 case TargetLowering::Legal: 211 return TranslateLegalizeResults(Op, Result); 212 case TargetLowering::Custom: 213 if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) { 214 if (Lowered == Result) 215 return TranslateLegalizeResults(Op, Lowered); 216 Changed = true; 217 if (Lowered->getNumValues() != Op->getNumValues()) { 218 // This expanded to something other than the load. Assume the 219 // lowering code took care of any chain values, and just handle the 220 // returned value. 221 assert(Result.getValue(1).use_empty() && 222 "There are still live users of the old chain!"); 223 return LegalizeOp(Lowered); 224 } 225 return TranslateLegalizeResults(Op, Lowered); 226 } 227 case TargetLowering::Expand: 228 Changed = true; 229 return LegalizeOp(ExpandLoad(Op)); 230 } 231 } else if (Op.getOpcode() == ISD::STORE) { 232 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 233 EVT StVT = ST->getMemoryVT(); 234 MVT ValVT = ST->getValue().getSimpleValueType(); 235 if (StVT.isVector() && ST->isTruncatingStore()) 236 switch (TLI.getTruncStoreAction(ValVT, StVT)) { 237 default: llvm_unreachable("This action is not supported yet!"); 238 case TargetLowering::Legal: 239 return TranslateLegalizeResults(Op, Result); 240 case TargetLowering::Custom: { 241 SDValue Lowered = TLI.LowerOperation(Result, DAG); 242 Changed = Lowered != Result; 243 return TranslateLegalizeResults(Op, Lowered); 244 } 245 case TargetLowering::Expand: 246 Changed = true; 247 return LegalizeOp(ExpandStore(Op)); 248 } 249 } else if (Op.getOpcode() == ISD::MSCATTER || Op.getOpcode() == ISD::MSTORE) 250 HasVectorValue = true; 251 252 for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end(); 253 J != E; 254 ++J) 255 HasVectorValue |= J->isVector(); 256 if (!HasVectorValue) 257 return TranslateLegalizeResults(Op, Result); 258 259 EVT QueryType; 260 switch (Op.getOpcode()) { 261 default: 262 return TranslateLegalizeResults(Op, Result); 263 case ISD::ADD: 264 case ISD::SUB: 265 case ISD::MUL: 266 case ISD::SDIV: 267 case ISD::UDIV: 268 case ISD::SREM: 269 case ISD::UREM: 270 case ISD::SDIVREM: 271 case ISD::UDIVREM: 272 case ISD::FADD: 273 case ISD::FSUB: 274 case ISD::FMUL: 275 case ISD::FDIV: 276 case ISD::FREM: 277 case ISD::AND: 278 case ISD::OR: 279 case ISD::XOR: 280 case ISD::SHL: 281 case ISD::SRA: 282 case ISD::SRL: 283 case ISD::ROTL: 284 case ISD::ROTR: 285 case ISD::BSWAP: 286 case ISD::BITREVERSE: 287 case ISD::CTLZ: 288 case ISD::CTTZ: 289 case ISD::CTLZ_ZERO_UNDEF: 290 case ISD::CTTZ_ZERO_UNDEF: 291 case ISD::CTPOP: 292 case ISD::SELECT: 293 case ISD::VSELECT: 294 case ISD::SELECT_CC: 295 case ISD::SETCC: 296 case ISD::ZERO_EXTEND: 297 case ISD::ANY_EXTEND: 298 case ISD::TRUNCATE: 299 case ISD::SIGN_EXTEND: 300 case ISD::FP_TO_SINT: 301 case ISD::FP_TO_UINT: 302 case ISD::FNEG: 303 case ISD::FABS: 304 case ISD::FMINNUM: 305 case ISD::FMAXNUM: 306 case ISD::FMINNAN: 307 case ISD::FMAXNAN: 308 case ISD::FCOPYSIGN: 309 case ISD::FSQRT: 310 case ISD::FSIN: 311 case ISD::FCOS: 312 case ISD::FPOWI: 313 case ISD::FPOW: 314 case ISD::FLOG: 315 case ISD::FLOG2: 316 case ISD::FLOG10: 317 case ISD::FEXP: 318 case ISD::FEXP2: 319 case ISD::FCEIL: 320 case ISD::FTRUNC: 321 case ISD::FRINT: 322 case ISD::FNEARBYINT: 323 case ISD::FROUND: 324 case ISD::FFLOOR: 325 case ISD::FP_ROUND: 326 case ISD::FP_EXTEND: 327 case ISD::FMA: 328 case ISD::SIGN_EXTEND_INREG: 329 case ISD::ANY_EXTEND_VECTOR_INREG: 330 case ISD::SIGN_EXTEND_VECTOR_INREG: 331 case ISD::ZERO_EXTEND_VECTOR_INREG: 332 case ISD::SMIN: 333 case ISD::SMAX: 334 case ISD::UMIN: 335 case ISD::UMAX: 336 QueryType = Node->getValueType(0); 337 break; 338 case ISD::FP_ROUND_INREG: 339 QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 340 break; 341 case ISD::SINT_TO_FP: 342 case ISD::UINT_TO_FP: 343 QueryType = Node->getOperand(0).getValueType(); 344 break; 345 case ISD::MSCATTER: 346 QueryType = cast<MaskedScatterSDNode>(Node)->getValue().getValueType(); 347 break; 348 case ISD::MSTORE: 349 QueryType = cast<MaskedStoreSDNode>(Node)->getValue().getValueType(); 350 break; 351 } 352 353 switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) { 354 default: llvm_unreachable("This action is not supported yet!"); 355 case TargetLowering::Promote: 356 Result = Promote(Op); 357 Changed = true; 358 break; 359 case TargetLowering::Legal: 360 break; 361 case TargetLowering::Custom: { 362 if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) { 363 Result = Tmp1; 364 break; 365 } 366 LLVM_FALLTHROUGH; 367 } 368 case TargetLowering::Expand: 369 Result = Expand(Op); 370 } 371 372 // Make sure that the generated code is itself legal. 373 if (Result != Op) { 374 Result = LegalizeOp(Result); 375 Changed = true; 376 } 377 378 // Note that LegalizeOp may be reentered even from single-use nodes, which 379 // means that we always must cache transformed nodes. 380 AddLegalizedOperand(Op, Result); 381 return Result; 382 } 383 384 SDValue VectorLegalizer::Promote(SDValue Op) { 385 // For a few operations there is a specific concept for promotion based on 386 // the operand's type. 387 switch (Op.getOpcode()) { 388 case ISD::SINT_TO_FP: 389 case ISD::UINT_TO_FP: 390 // "Promote" the operation by extending the operand. 391 return PromoteINT_TO_FP(Op); 392 case ISD::FP_TO_UINT: 393 case ISD::FP_TO_SINT: 394 // Promote the operation by extending the operand. 395 return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT); 396 } 397 398 // There are currently two cases of vector promotion: 399 // 1) Bitcasting a vector of integers to a different type to a vector of the 400 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 401 // 2) Extending a vector of floats to a vector of the same number of larger 402 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 403 MVT VT = Op.getSimpleValueType(); 404 assert(Op.getNode()->getNumValues() == 1 && 405 "Can't promote a vector with multiple results!"); 406 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 407 SDLoc dl(Op); 408 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 409 410 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 411 if (Op.getOperand(j).getValueType().isVector()) 412 if (Op.getOperand(j) 413 .getValueType() 414 .getVectorElementType() 415 .isFloatingPoint() && 416 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 417 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j)); 418 else 419 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); 420 else 421 Operands[j] = Op.getOperand(j); 422 } 423 424 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags()); 425 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 426 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 427 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 428 return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl)); 429 else 430 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 431 } 432 433 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) { 434 // INT_TO_FP operations may require the input operand be promoted even 435 // when the type is otherwise legal. 436 EVT VT = Op.getOperand(0).getValueType(); 437 assert(Op.getNode()->getNumValues() == 1 && 438 "Can't promote a vector with multiple results!"); 439 440 // Normal getTypeToPromoteTo() doesn't work here, as that will promote 441 // by widening the vector w/ the same element width and twice the number 442 // of elements. We want the other way around, the same number of elements, 443 // each twice the width. 444 // 445 // Increase the bitwidth of the element to the next pow-of-two 446 // (which is greater than 8 bits). 447 448 EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext()); 449 assert(NVT.isSimple() && "Promoting to a non-simple vector type!"); 450 SDLoc dl(Op); 451 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 452 453 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : 454 ISD::SIGN_EXTEND; 455 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 456 if (Op.getOperand(j).getValueType().isVector()) 457 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j)); 458 else 459 Operands[j] = Op.getOperand(j); 460 } 461 462 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands); 463 } 464 465 // For FP_TO_INT we promote the result type to a vector type with wider 466 // elements and then truncate the result. This is different from the default 467 // PromoteVector which uses bitcast to promote thus assumning that the 468 // promoted vector type has the same overall size. 469 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) { 470 assert(Op.getNode()->getNumValues() == 1 && 471 "Can't promote a vector with multiple results!"); 472 EVT VT = Op.getValueType(); 473 474 EVT NewVT; 475 unsigned NewOpc; 476 while (1) { 477 NewVT = VT.widenIntegerVectorElementType(*DAG.getContext()); 478 assert(NewVT.isSimple() && "Promoting to a non-simple vector type!"); 479 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) { 480 NewOpc = ISD::FP_TO_SINT; 481 break; 482 } 483 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) { 484 NewOpc = ISD::FP_TO_UINT; 485 break; 486 } 487 } 488 489 SDLoc loc(Op); 490 SDValue promoted = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0)); 491 return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted); 492 } 493 494 495 SDValue VectorLegalizer::ExpandLoad(SDValue Op) { 496 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 497 498 EVT SrcVT = LD->getMemoryVT(); 499 EVT SrcEltVT = SrcVT.getScalarType(); 500 unsigned NumElem = SrcVT.getVectorNumElements(); 501 502 503 SDValue NewChain; 504 SDValue Value; 505 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { 506 SDLoc dl(Op); 507 508 SmallVector<SDValue, 8> Vals; 509 SmallVector<SDValue, 8> LoadChains; 510 511 EVT DstEltVT = LD->getValueType(0).getScalarType(); 512 SDValue Chain = LD->getChain(); 513 SDValue BasePTR = LD->getBasePtr(); 514 ISD::LoadExtType ExtType = LD->getExtensionType(); 515 516 // When elements in a vector is not byte-addressable, we cannot directly 517 // load each element by advancing pointer, which could only address bytes. 518 // Instead, we load all significant words, mask bits off, and concatenate 519 // them to form each element. Finally, they are extended to destination 520 // scalar type to build the destination vector. 521 EVT WideVT = TLI.getPointerTy(DAG.getDataLayout()); 522 523 assert(WideVT.isRound() && 524 "Could not handle the sophisticated case when the widest integer is" 525 " not power of 2."); 526 assert(WideVT.bitsGE(SrcEltVT) && 527 "Type is not legalized?"); 528 529 unsigned WideBytes = WideVT.getStoreSize(); 530 unsigned Offset = 0; 531 unsigned RemainingBytes = SrcVT.getStoreSize(); 532 SmallVector<SDValue, 8> LoadVals; 533 534 while (RemainingBytes > 0) { 535 SDValue ScalarLoad; 536 unsigned LoadBytes = WideBytes; 537 538 if (RemainingBytes >= LoadBytes) { 539 ScalarLoad = 540 DAG.getLoad(WideVT, dl, Chain, BasePTR, 541 LD->getPointerInfo().getWithOffset(Offset), 542 MinAlign(LD->getAlignment(), Offset), 543 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 544 } else { 545 EVT LoadVT = WideVT; 546 while (RemainingBytes < LoadBytes) { 547 LoadBytes >>= 1; // Reduce the load size by half. 548 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); 549 } 550 ScalarLoad = 551 DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, 552 LD->getPointerInfo().getWithOffset(Offset), LoadVT, 553 MinAlign(LD->getAlignment(), Offset), 554 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 555 } 556 557 RemainingBytes -= LoadBytes; 558 Offset += LoadBytes; 559 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 560 DAG.getConstant(LoadBytes, dl, 561 BasePTR.getValueType())); 562 563 LoadVals.push_back(ScalarLoad.getValue(0)); 564 LoadChains.push_back(ScalarLoad.getValue(1)); 565 } 566 567 // Extract bits, pack and extend/trunc them into destination type. 568 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 569 SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT); 570 571 unsigned BitOffset = 0; 572 unsigned WideIdx = 0; 573 unsigned WideBits = WideVT.getSizeInBits(); 574 575 for (unsigned Idx = 0; Idx != NumElem; ++Idx) { 576 SDValue Lo, Hi, ShAmt; 577 578 if (BitOffset < WideBits) { 579 ShAmt = DAG.getConstant( 580 BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 581 Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); 582 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); 583 } 584 585 BitOffset += SrcEltBits; 586 if (BitOffset >= WideBits) { 587 WideIdx++; 588 BitOffset -= WideBits; 589 if (BitOffset > 0) { 590 ShAmt = DAG.getConstant( 591 SrcEltBits - BitOffset, dl, 592 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 593 Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); 594 Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask); 595 } 596 } 597 598 if (Hi.getNode()) 599 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); 600 601 switch (ExtType) { 602 default: llvm_unreachable("Unknown extended-load op!"); 603 case ISD::EXTLOAD: 604 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); 605 break; 606 case ISD::ZEXTLOAD: 607 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); 608 break; 609 case ISD::SEXTLOAD: 610 ShAmt = 611 DAG.getConstant(WideBits - SrcEltBits, dl, 612 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 613 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); 614 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); 615 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); 616 break; 617 } 618 Vals.push_back(Lo); 619 } 620 621 NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 622 Value = DAG.getNode(ISD::BUILD_VECTOR, dl, 623 Op.getNode()->getValueType(0), Vals); 624 } else { 625 SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG); 626 627 NewChain = Scalarized.getValue(1); 628 Value = Scalarized.getValue(0); 629 } 630 631 AddLegalizedOperand(Op.getValue(0), Value); 632 AddLegalizedOperand(Op.getValue(1), NewChain); 633 634 return (Op.getResNo() ? NewChain : Value); 635 } 636 637 SDValue VectorLegalizer::ExpandStore(SDValue Op) { 638 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 639 640 EVT StVT = ST->getMemoryVT(); 641 EVT MemSclVT = StVT.getScalarType(); 642 unsigned ScalarSize = MemSclVT.getSizeInBits(); 643 644 // Round odd types to the next pow of two. 645 if (!isPowerOf2_32(ScalarSize)) { 646 // FIXME: This is completely broken and inconsistent with ExpandLoad 647 // handling. 648 649 // For sub-byte element sizes, this ends up with 0 stride between elements, 650 // so the same element just gets re-written to the same location. There seem 651 // to be tests explicitly testing for this broken behavior though. tests 652 // for this broken behavior. 653 654 LLVMContext &Ctx = *DAG.getContext(); 655 656 EVT NewMemVT 657 = EVT::getVectorVT(Ctx, 658 MemSclVT.getIntegerVT(Ctx, NextPowerOf2(ScalarSize)), 659 StVT.getVectorNumElements()); 660 661 SDValue NewVectorStore = DAG.getTruncStore( 662 ST->getChain(), SDLoc(Op), ST->getValue(), ST->getBasePtr(), 663 ST->getPointerInfo(), NewMemVT, ST->getAlignment(), 664 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 665 ST = cast<StoreSDNode>(NewVectorStore.getNode()); 666 } 667 668 SDValue TF = TLI.scalarizeVectorStore(ST, DAG); 669 AddLegalizedOperand(Op, TF); 670 return TF; 671 } 672 673 SDValue VectorLegalizer::Expand(SDValue Op) { 674 switch (Op->getOpcode()) { 675 case ISD::SIGN_EXTEND_INREG: 676 return ExpandSEXTINREG(Op); 677 case ISD::ANY_EXTEND_VECTOR_INREG: 678 return ExpandANY_EXTEND_VECTOR_INREG(Op); 679 case ISD::SIGN_EXTEND_VECTOR_INREG: 680 return ExpandSIGN_EXTEND_VECTOR_INREG(Op); 681 case ISD::ZERO_EXTEND_VECTOR_INREG: 682 return ExpandZERO_EXTEND_VECTOR_INREG(Op); 683 case ISD::BSWAP: 684 return ExpandBSWAP(Op); 685 case ISD::VSELECT: 686 return ExpandVSELECT(Op); 687 case ISD::SELECT: 688 return ExpandSELECT(Op); 689 case ISD::UINT_TO_FP: 690 return ExpandUINT_TO_FLOAT(Op); 691 case ISD::FNEG: 692 return ExpandFNEG(Op); 693 case ISD::SETCC: 694 return UnrollVSETCC(Op); 695 case ISD::BITREVERSE: 696 return ExpandBITREVERSE(Op); 697 case ISD::CTLZ: 698 case ISD::CTLZ_ZERO_UNDEF: 699 return ExpandCTLZ(Op); 700 case ISD::CTTZ_ZERO_UNDEF: 701 return ExpandCTTZ_ZERO_UNDEF(Op); 702 default: 703 return DAG.UnrollVectorOp(Op.getNode()); 704 } 705 } 706 707 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) { 708 // Lower a select instruction where the condition is a scalar and the 709 // operands are vectors. Lower this select to VSELECT and implement it 710 // using XOR AND OR. The selector bit is broadcasted. 711 EVT VT = Op.getValueType(); 712 SDLoc DL(Op); 713 714 SDValue Mask = Op.getOperand(0); 715 SDValue Op1 = Op.getOperand(1); 716 SDValue Op2 = Op.getOperand(2); 717 718 assert(VT.isVector() && !Mask.getValueType().isVector() 719 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 720 721 unsigned NumElem = VT.getVectorNumElements(); 722 723 // If we can't even use the basic vector operations of 724 // AND,OR,XOR, we will have to scalarize the op. 725 // Notice that the operation may be 'promoted' which means that it is 726 // 'bitcasted' to another type which is handled. 727 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 728 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 729 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 730 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 731 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 732 return DAG.UnrollVectorOp(Op.getNode()); 733 734 // Generate a mask operand. 735 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 736 737 // What is the size of each element in the vector mask. 738 EVT BitTy = MaskTy.getScalarType(); 739 740 Mask = DAG.getSelect(DL, BitTy, Mask, 741 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, 742 BitTy), 743 DAG.getConstant(0, DL, BitTy)); 744 745 // Broadcast the mask so that the entire vector is all-one or all zero. 746 SmallVector<SDValue, 8> Ops(NumElem, Mask); 747 Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, Ops); 748 749 // Bitcast the operands to be the same type as the mask. 750 // This is needed when we select between FP types because 751 // the mask is a vector of integers. 752 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 753 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 754 755 SDValue AllOnes = DAG.getConstant( 756 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy); 757 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 758 759 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 760 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 761 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 762 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 763 } 764 765 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) { 766 EVT VT = Op.getValueType(); 767 768 // Make sure that the SRA and SHL instructions are available. 769 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 770 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 771 return DAG.UnrollVectorOp(Op.getNode()); 772 773 SDLoc DL(Op); 774 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT(); 775 776 unsigned BW = VT.getScalarSizeInBits(); 777 unsigned OrigBW = OrigTy.getScalarSizeInBits(); 778 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 779 780 Op = Op.getOperand(0); 781 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz); 782 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 783 } 784 785 // Generically expand a vector anyext in register to a shuffle of the relevant 786 // lanes into the appropriate locations, with other lanes left undef. 787 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) { 788 SDLoc DL(Op); 789 EVT VT = Op.getValueType(); 790 int NumElements = VT.getVectorNumElements(); 791 SDValue Src = Op.getOperand(0); 792 EVT SrcVT = Src.getValueType(); 793 int NumSrcElements = SrcVT.getVectorNumElements(); 794 795 // Build a base mask of undef shuffles. 796 SmallVector<int, 16> ShuffleMask; 797 ShuffleMask.resize(NumSrcElements, -1); 798 799 // Place the extended lanes into the correct locations. 800 int ExtLaneScale = NumSrcElements / NumElements; 801 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 802 for (int i = 0; i < NumElements; ++i) 803 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 804 805 return DAG.getNode( 806 ISD::BITCAST, DL, VT, 807 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 808 } 809 810 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) { 811 SDLoc DL(Op); 812 EVT VT = Op.getValueType(); 813 SDValue Src = Op.getOperand(0); 814 EVT SrcVT = Src.getValueType(); 815 816 // First build an any-extend node which can be legalized above when we 817 // recurse through it. 818 Op = DAG.getAnyExtendVectorInReg(Src, DL, VT); 819 820 // Now we need sign extend. Do this by shifting the elements. Even if these 821 // aren't legal operations, they have a better chance of being legalized 822 // without full scalarization than the sign extension does. 823 unsigned EltWidth = VT.getScalarSizeInBits(); 824 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); 825 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 826 return DAG.getNode(ISD::SRA, DL, VT, 827 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 828 ShiftAmount); 829 } 830 831 // Generically expand a vector zext in register to a shuffle of the relevant 832 // lanes into the appropriate locations, a blend of zero into the high bits, 833 // and a bitcast to the wider element type. 834 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) { 835 SDLoc DL(Op); 836 EVT VT = Op.getValueType(); 837 int NumElements = VT.getVectorNumElements(); 838 SDValue Src = Op.getOperand(0); 839 EVT SrcVT = Src.getValueType(); 840 int NumSrcElements = SrcVT.getVectorNumElements(); 841 842 // Build up a zero vector to blend into this one. 843 SDValue Zero = DAG.getConstant(0, DL, SrcVT); 844 845 // Shuffle the incoming lanes into the correct position, and pull all other 846 // lanes from the zero vector. 847 SmallVector<int, 16> ShuffleMask; 848 ShuffleMask.reserve(NumSrcElements); 849 for (int i = 0; i < NumSrcElements; ++i) 850 ShuffleMask.push_back(i); 851 852 int ExtLaneScale = NumSrcElements / NumElements; 853 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 854 for (int i = 0; i < NumElements; ++i) 855 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 856 857 return DAG.getNode(ISD::BITCAST, DL, VT, 858 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 859 } 860 861 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) { 862 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 863 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 864 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 865 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 866 } 867 868 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) { 869 EVT VT = Op.getValueType(); 870 871 // Generate a byte wise shuffle mask for the BSWAP. 872 SmallVector<int, 16> ShuffleMask; 873 createBSWAPShuffleMask(VT, ShuffleMask); 874 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 875 876 // Only emit a shuffle if the mask is legal. 877 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) 878 return DAG.UnrollVectorOp(Op.getNode()); 879 880 SDLoc DL(Op); 881 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 882 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); 883 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 884 } 885 886 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) { 887 EVT VT = Op.getValueType(); 888 889 // If we have the scalar operation, it's probably cheaper to unroll it. 890 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) 891 return DAG.UnrollVectorOp(Op.getNode()); 892 893 // If the vector element width is a whole number of bytes, test if its legal 894 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte 895 // vector. This greatly reduces the number of bit shifts necessary. 896 unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); 897 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { 898 SmallVector<int, 16> BSWAPMask; 899 createBSWAPShuffleMask(VT, BSWAPMask); 900 901 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); 902 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && 903 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || 904 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && 905 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && 906 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && 907 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { 908 SDLoc DL(Op); 909 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 910 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 911 BSWAPMask); 912 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); 913 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 914 } 915 } 916 917 // If we have the appropriate vector bit operations, it is better to use them 918 // than unrolling and expanding each component. 919 if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) || 920 !TLI.isOperationLegalOrCustom(ISD::SRL, VT) || 921 !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 922 !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) 923 return DAG.UnrollVectorOp(Op.getNode()); 924 925 // Let LegalizeDAG handle this later. 926 return Op; 927 } 928 929 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { 930 // Implement VSELECT in terms of XOR, AND, OR 931 // on platforms which do not support blend natively. 932 SDLoc DL(Op); 933 934 SDValue Mask = Op.getOperand(0); 935 SDValue Op1 = Op.getOperand(1); 936 SDValue Op2 = Op.getOperand(2); 937 938 EVT VT = Mask.getValueType(); 939 940 // If we can't even use the basic vector operations of 941 // AND,OR,XOR, we will have to scalarize the op. 942 // Notice that the operation may be 'promoted' which means that it is 943 // 'bitcasted' to another type which is handled. 944 // This operation also isn't safe with AND, OR, XOR when the boolean 945 // type is 0/1 as we need an all ones vector constant to mask with. 946 // FIXME: Sign extend 1 to all ones if thats legal on the target. 947 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 948 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 949 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 950 TLI.getBooleanContents(Op1.getValueType()) != 951 TargetLowering::ZeroOrNegativeOneBooleanContent) 952 return DAG.UnrollVectorOp(Op.getNode()); 953 954 // If the mask and the type are different sizes, unroll the vector op. This 955 // can occur when getSetCCResultType returns something that is different in 956 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 957 if (VT.getSizeInBits() != Op1.getValueSizeInBits()) 958 return DAG.UnrollVectorOp(Op.getNode()); 959 960 // Bitcast the operands to be the same type as the mask. 961 // This is needed when we select between FP types because 962 // the mask is a vector of integers. 963 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 964 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 965 966 SDValue AllOnes = DAG.getConstant( 967 APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT); 968 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 969 970 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 971 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 972 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 973 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 974 } 975 976 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { 977 EVT VT = Op.getOperand(0).getValueType(); 978 SDLoc DL(Op); 979 980 // Make sure that the SINT_TO_FP and SRL instructions are available. 981 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand || 982 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) 983 return DAG.UnrollVectorOp(Op.getNode()); 984 985 unsigned BW = VT.getScalarSizeInBits(); 986 assert((BW == 64 || BW == 32) && 987 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 988 989 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT); 990 991 // Constants to clear the upper part of the word. 992 // Notice that we can also use SHL+SHR, but using a constant is slightly 993 // faster on x86. 994 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; 995 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 996 997 // Two to the power of half-word-size. 998 SDValue TWOHW = DAG.getConstantFP(1 << (BW / 2), DL, Op.getValueType()); 999 1000 // Clear upper part of LO, lower HI 1001 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); 1002 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); 1003 1004 // Convert hi and lo to floats 1005 // Convert the hi part back to the upper values 1006 // TODO: Can any fast-math-flags be set on these nodes? 1007 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); 1008 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); 1009 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); 1010 1011 // Add the two halves 1012 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); 1013 } 1014 1015 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { 1016 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { 1017 SDLoc DL(Op); 1018 SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType()); 1019 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. 1020 return DAG.getNode(ISD::FSUB, DL, Op.getValueType(), 1021 Zero, Op.getOperand(0)); 1022 } 1023 return DAG.UnrollVectorOp(Op.getNode()); 1024 } 1025 1026 SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) { 1027 EVT VT = Op.getValueType(); 1028 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 1029 1030 // If the non-ZERO_UNDEF version is supported we can use that instead. 1031 if (Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF && 1032 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) { 1033 SDLoc DL(Op); 1034 return DAG.getNode(ISD::CTLZ, DL, Op.getValueType(), Op.getOperand(0)); 1035 } 1036 1037 // If CTPOP is available we can lower with a CTPOP based method: 1038 // u16 ctlz(u16 x) { 1039 // x |= (x >> 1); 1040 // x |= (x >> 2); 1041 // x |= (x >> 4); 1042 // x |= (x >> 8); 1043 // return ctpop(~x); 1044 // } 1045 // Ref: "Hacker's Delight" by Henry Warren 1046 if (isPowerOf2_32(NumBitsPerElt) && 1047 TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && 1048 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 1049 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT) && 1050 TLI.isOperationLegalOrCustomOrPromote(ISD::XOR, VT)) { 1051 SDLoc DL(Op); 1052 SDValue Res = Op.getOperand(0); 1053 EVT ShiftTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 1054 1055 for (unsigned i = 1; i != NumBitsPerElt; i *= 2) 1056 Res = DAG.getNode( 1057 ISD::OR, DL, VT, Res, 1058 DAG.getNode(ISD::SRL, DL, VT, Res, DAG.getConstant(i, DL, ShiftTy))); 1059 1060 Res = DAG.getNOT(DL, Res, VT); 1061 return DAG.getNode(ISD::CTPOP, DL, VT, Res); 1062 } 1063 1064 // Otherwise go ahead and unroll. 1065 return DAG.UnrollVectorOp(Op.getNode()); 1066 } 1067 1068 SDValue VectorLegalizer::ExpandCTTZ_ZERO_UNDEF(SDValue Op) { 1069 // If the non-ZERO_UNDEF version is supported we can use that instead. 1070 if (TLI.isOperationLegalOrCustom(ISD::CTTZ, Op.getValueType())) { 1071 SDLoc DL(Op); 1072 return DAG.getNode(ISD::CTTZ, DL, Op.getValueType(), Op.getOperand(0)); 1073 } 1074 1075 // Otherwise go ahead and unroll. 1076 return DAG.UnrollVectorOp(Op.getNode()); 1077 } 1078 1079 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { 1080 EVT VT = Op.getValueType(); 1081 unsigned NumElems = VT.getVectorNumElements(); 1082 EVT EltVT = VT.getVectorElementType(); 1083 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); 1084 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1085 SDLoc dl(Op); 1086 SmallVector<SDValue, 8> Ops(NumElems); 1087 for (unsigned i = 0; i < NumElems; ++i) { 1088 SDValue LHSElem = DAG.getNode( 1089 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1090 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1091 SDValue RHSElem = DAG.getNode( 1092 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1093 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1094 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1095 TLI.getSetCCResultType(DAG.getDataLayout(), 1096 *DAG.getContext(), TmpEltVT), 1097 LHSElem, RHSElem, CC); 1098 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 1099 DAG.getConstant(APInt::getAllOnesValue 1100 (EltVT.getSizeInBits()), dl, EltVT), 1101 DAG.getConstant(0, dl, EltVT)); 1102 } 1103 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 1104 } 1105 1106 } 1107 1108 bool SelectionDAG::LegalizeVectors() { 1109 return VectorLegalizer(*this).Run(); 1110 } 1111