1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SelectionDAG::LegalizeVectors method.
11 //
12 // The vector legalizer looks for vector operations which might need to be
13 // scalarized and legalizes them. This is a separate step from Legalize because
14 // scalarizing can introduce illegal types.  For example, suppose we have an
15 // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
17 // operation, which introduces nodes with the illegal type i64 which must be
18 // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
19 // the operation must be unrolled, which introduces nodes with the illegal
20 // type i8 which must be promoted.
21 //
22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
23 // or operations that happen to take a vector which are custom-lowered;
24 // the legalization for such operations never produces nodes
25 // with illegal types, so it's okay to put off legalizing them until
26 // SelectionDAG::Legalize runs.
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #include "llvm/ADT/APInt.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/SelectionDAG.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/ValueTypes.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MachineValueType.h"
44 #include "llvm/Support/MathExtras.h"
45 #include <cassert>
46 #include <cstdint>
47 #include <iterator>
48 #include <utility>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "legalizevectorops"
53 
54 namespace {
55 
56 class VectorLegalizer {
57   SelectionDAG& DAG;
58   const TargetLowering &TLI;
59   bool Changed = false; // Keep track of whether anything changed
60 
61   /// For nodes that are of legal width, and that have more than one use, this
62   /// map indicates what regularized operand to use.  This allows us to avoid
63   /// legalizing the same thing more than once.
64   SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
65 
66   /// Adds a node to the translation cache.
67   void AddLegalizedOperand(SDValue From, SDValue To) {
68     LegalizedNodes.insert(std::make_pair(From, To));
69     // If someone requests legalization of the new node, return itself.
70     if (From != To)
71       LegalizedNodes.insert(std::make_pair(To, To));
72   }
73 
74   /// Legalizes the given node.
75   SDValue LegalizeOp(SDValue Op);
76 
77   /// Assuming the node is legal, "legalize" the results.
78   SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
79 
80   /// Implements unrolling a VSETCC.
81   SDValue UnrollVSETCC(SDValue Op);
82 
83   /// Implement expand-based legalization of vector operations.
84   ///
85   /// This is just a high-level routine to dispatch to specific code paths for
86   /// operations to legalize them.
87   SDValue Expand(SDValue Op);
88 
89   /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
90   /// FP_TO_SINT isn't legal.
91   SDValue ExpandFP_TO_UINT(SDValue Op);
92 
93   /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
94   /// SINT_TO_FLOAT and SHR on vectors isn't legal.
95   SDValue ExpandUINT_TO_FLOAT(SDValue Op);
96 
97   /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
98   SDValue ExpandSEXTINREG(SDValue Op);
99 
100   /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
101   ///
102   /// Shuffles the low lanes of the operand into place and bitcasts to the proper
103   /// type. The contents of the bits in the extended part of each element are
104   /// undef.
105   SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op);
106 
107   /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
108   ///
109   /// Shuffles the low lanes of the operand into place, bitcasts to the proper
110   /// type, then shifts left and arithmetic shifts right to introduce a sign
111   /// extension.
112   SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op);
113 
114   /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
115   ///
116   /// Shuffles the low lanes of the operand into place and blends zeros into
117   /// the remaining lanes, finally bitcasting to the proper type.
118   SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op);
119 
120   /// Expand bswap of vectors into a shuffle if legal.
121   SDValue ExpandBSWAP(SDValue Op);
122 
123   /// Implement vselect in terms of XOR, AND, OR when blend is not
124   /// supported by the target.
125   SDValue ExpandVSELECT(SDValue Op);
126   SDValue ExpandSELECT(SDValue Op);
127   SDValue ExpandLoad(SDValue Op);
128   SDValue ExpandStore(SDValue Op);
129   SDValue ExpandFNEG(SDValue Op);
130   SDValue ExpandFSUB(SDValue Op);
131   SDValue ExpandBITREVERSE(SDValue Op);
132   SDValue ExpandCTPOP(SDValue Op);
133   SDValue ExpandCTLZ(SDValue Op);
134   SDValue ExpandCTTZ(SDValue Op);
135   SDValue ExpandFunnelShift(SDValue Op);
136   SDValue ExpandROT(SDValue Op);
137   SDValue ExpandFMINNUM_FMAXNUM(SDValue Op);
138   SDValue ExpandStrictFPOp(SDValue Op);
139 
140   /// Implements vector promotion.
141   ///
142   /// This is essentially just bitcasting the operands to a different type and
143   /// bitcasting the result back to the original type.
144   SDValue Promote(SDValue Op);
145 
146   /// Implements [SU]INT_TO_FP vector promotion.
147   ///
148   /// This is a [zs]ext of the input operand to a larger integer type.
149   SDValue PromoteINT_TO_FP(SDValue Op);
150 
151   /// Implements FP_TO_[SU]INT vector promotion of the result type.
152   ///
153   /// It is promoted to a larger integer type.  The result is then
154   /// truncated back to the original type.
155   SDValue PromoteFP_TO_INT(SDValue Op);
156 
157 public:
158   VectorLegalizer(SelectionDAG& dag) :
159       DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
160 
161   /// Begin legalizer the vector operations in the DAG.
162   bool Run();
163 };
164 
165 } // end anonymous namespace
166 
167 bool VectorLegalizer::Run() {
168   // Before we start legalizing vector nodes, check if there are any vectors.
169   bool HasVectors = false;
170   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
171        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
172     // Check if the values of the nodes contain vectors. We don't need to check
173     // the operands because we are going to check their values at some point.
174     for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
175          J != E; ++J)
176       HasVectors |= J->isVector();
177 
178     // If we found a vector node we can start the legalization.
179     if (HasVectors)
180       break;
181   }
182 
183   // If this basic block has no vectors then no need to legalize vectors.
184   if (!HasVectors)
185     return false;
186 
187   // The legalize process is inherently a bottom-up recursive process (users
188   // legalize their uses before themselves).  Given infinite stack space, we
189   // could just start legalizing on the root and traverse the whole graph.  In
190   // practice however, this causes us to run out of stack space on large basic
191   // blocks.  To avoid this problem, compute an ordering of the nodes where each
192   // node is only legalized after all of its operands are legalized.
193   DAG.AssignTopologicalOrder();
194   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
195        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
196     LegalizeOp(SDValue(&*I, 0));
197 
198   // Finally, it's possible the root changed.  Get the new root.
199   SDValue OldRoot = DAG.getRoot();
200   assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
201   DAG.setRoot(LegalizedNodes[OldRoot]);
202 
203   LegalizedNodes.clear();
204 
205   // Remove dead nodes now.
206   DAG.RemoveDeadNodes();
207 
208   return Changed;
209 }
210 
211 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
212   // Generic legalization: just pass the operand through.
213   for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
214     AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
215   return Result.getValue(Op.getResNo());
216 }
217 
218 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
219   // Note that LegalizeOp may be reentered even from single-use nodes, which
220   // means that we always must cache transformed nodes.
221   DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
222   if (I != LegalizedNodes.end()) return I->second;
223 
224   SDNode* Node = Op.getNode();
225 
226   // Legalize the operands
227   SmallVector<SDValue, 8> Ops;
228   for (const SDValue &Op : Node->op_values())
229     Ops.push_back(LegalizeOp(Op));
230 
231   SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops),
232                            Op.getResNo());
233 
234   if (Op.getOpcode() == ISD::LOAD) {
235     LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
236     ISD::LoadExtType ExtType = LD->getExtensionType();
237     if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) {
238       LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: ";
239                  Node->dump(&DAG));
240       switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
241                                    LD->getMemoryVT())) {
242       default: llvm_unreachable("This action is not supported yet!");
243       case TargetLowering::Legal:
244         return TranslateLegalizeResults(Op, Result);
245       case TargetLowering::Custom:
246         if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) {
247           assert(Lowered->getNumValues() == Op->getNumValues() &&
248                  "Unexpected number of results");
249           if (Lowered != Result) {
250             // Make sure the new code is also legal.
251             Lowered = LegalizeOp(Lowered);
252             Changed = true;
253           }
254           return TranslateLegalizeResults(Op, Lowered);
255         }
256         LLVM_FALLTHROUGH;
257       case TargetLowering::Expand:
258         Changed = true;
259         return LegalizeOp(ExpandLoad(Op));
260       }
261     }
262   } else if (Op.getOpcode() == ISD::STORE) {
263     StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
264     EVT StVT = ST->getMemoryVT();
265     MVT ValVT = ST->getValue().getSimpleValueType();
266     if (StVT.isVector() && ST->isTruncatingStore()) {
267       LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: ";
268                  Node->dump(&DAG));
269       switch (TLI.getTruncStoreAction(ValVT, StVT)) {
270       default: llvm_unreachable("This action is not supported yet!");
271       case TargetLowering::Legal:
272         return TranslateLegalizeResults(Op, Result);
273       case TargetLowering::Custom: {
274         SDValue Lowered = TLI.LowerOperation(Result, DAG);
275         if (Lowered != Result) {
276           // Make sure the new code is also legal.
277           Lowered = LegalizeOp(Lowered);
278           Changed = true;
279         }
280         return TranslateLegalizeResults(Op, Lowered);
281       }
282       case TargetLowering::Expand:
283         Changed = true;
284         return LegalizeOp(ExpandStore(Op));
285       }
286     }
287   }
288 
289   bool HasVectorValue = false;
290   for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end();
291        J != E;
292        ++J)
293     HasVectorValue |= J->isVector();
294   if (!HasVectorValue)
295     return TranslateLegalizeResults(Op, Result);
296 
297   TargetLowering::LegalizeAction Action = TargetLowering::Legal;
298   switch (Op.getOpcode()) {
299   default:
300     return TranslateLegalizeResults(Op, Result);
301   case ISD::STRICT_FADD:
302   case ISD::STRICT_FSUB:
303   case ISD::STRICT_FMUL:
304   case ISD::STRICT_FDIV:
305   case ISD::STRICT_FREM:
306   case ISD::STRICT_FSQRT:
307   case ISD::STRICT_FMA:
308   case ISD::STRICT_FPOW:
309   case ISD::STRICT_FPOWI:
310   case ISD::STRICT_FSIN:
311   case ISD::STRICT_FCOS:
312   case ISD::STRICT_FEXP:
313   case ISD::STRICT_FEXP2:
314   case ISD::STRICT_FLOG:
315   case ISD::STRICT_FLOG10:
316   case ISD::STRICT_FLOG2:
317   case ISD::STRICT_FRINT:
318   case ISD::STRICT_FNEARBYINT:
319   case ISD::STRICT_FMAXNUM:
320   case ISD::STRICT_FMINNUM:
321   case ISD::STRICT_FCEIL:
322   case ISD::STRICT_FFLOOR:
323   case ISD::STRICT_FROUND:
324   case ISD::STRICT_FTRUNC:
325     // These pseudo-ops get legalized as if they were their non-strict
326     // equivalent.  For instance, if ISD::FSQRT is legal then ISD::STRICT_FSQRT
327     // is also legal, but if ISD::FSQRT requires expansion then so does
328     // ISD::STRICT_FSQRT.
329     Action = TLI.getStrictFPOperationAction(Node->getOpcode(),
330                                             Node->getValueType(0));
331     break;
332   case ISD::ADD:
333   case ISD::SUB:
334   case ISD::MUL:
335   case ISD::MULHS:
336   case ISD::MULHU:
337   case ISD::SDIV:
338   case ISD::UDIV:
339   case ISD::SREM:
340   case ISD::UREM:
341   case ISD::SDIVREM:
342   case ISD::UDIVREM:
343   case ISD::FADD:
344   case ISD::FSUB:
345   case ISD::FMUL:
346   case ISD::FDIV:
347   case ISD::FREM:
348   case ISD::AND:
349   case ISD::OR:
350   case ISD::XOR:
351   case ISD::SHL:
352   case ISD::SRA:
353   case ISD::SRL:
354   case ISD::ROTL:
355   case ISD::ROTR:
356   case ISD::BSWAP:
357   case ISD::BITREVERSE:
358   case ISD::CTLZ:
359   case ISD::CTTZ:
360   case ISD::CTLZ_ZERO_UNDEF:
361   case ISD::CTTZ_ZERO_UNDEF:
362   case ISD::CTPOP:
363   case ISD::SELECT:
364   case ISD::VSELECT:
365   case ISD::SELECT_CC:
366   case ISD::SETCC:
367   case ISD::ZERO_EXTEND:
368   case ISD::ANY_EXTEND:
369   case ISD::TRUNCATE:
370   case ISD::SIGN_EXTEND:
371   case ISD::FP_TO_SINT:
372   case ISD::FP_TO_UINT:
373   case ISD::FNEG:
374   case ISD::FABS:
375   case ISD::FMINNUM:
376   case ISD::FMAXNUM:
377   case ISD::FMINNUM_IEEE:
378   case ISD::FMAXNUM_IEEE:
379   case ISD::FMINIMUM:
380   case ISD::FMAXIMUM:
381   case ISD::FCOPYSIGN:
382   case ISD::FSQRT:
383   case ISD::FSIN:
384   case ISD::FCOS:
385   case ISD::FPOWI:
386   case ISD::FPOW:
387   case ISD::FLOG:
388   case ISD::FLOG2:
389   case ISD::FLOG10:
390   case ISD::FEXP:
391   case ISD::FEXP2:
392   case ISD::FCEIL:
393   case ISD::FTRUNC:
394   case ISD::FRINT:
395   case ISD::FNEARBYINT:
396   case ISD::FROUND:
397   case ISD::FFLOOR:
398   case ISD::FP_ROUND:
399   case ISD::FP_EXTEND:
400   case ISD::FMA:
401   case ISD::SIGN_EXTEND_INREG:
402   case ISD::ANY_EXTEND_VECTOR_INREG:
403   case ISD::SIGN_EXTEND_VECTOR_INREG:
404   case ISD::ZERO_EXTEND_VECTOR_INREG:
405   case ISD::SMIN:
406   case ISD::SMAX:
407   case ISD::UMIN:
408   case ISD::UMAX:
409   case ISD::SMUL_LOHI:
410   case ISD::UMUL_LOHI:
411   case ISD::FCANONICALIZE:
412   case ISD::SADDSAT:
413   case ISD::UADDSAT:
414   case ISD::SSUBSAT:
415   case ISD::USUBSAT:
416     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
417     break;
418   case ISD::SMULFIX: {
419     unsigned Scale = Node->getConstantOperandVal(2);
420     Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
421                                               Node->getValueType(0), Scale);
422     break;
423   }
424   case ISD::FP_ROUND_INREG:
425     Action = TLI.getOperationAction(Node->getOpcode(),
426                cast<VTSDNode>(Node->getOperand(1))->getVT());
427     break;
428   case ISD::SINT_TO_FP:
429   case ISD::UINT_TO_FP:
430     Action = TLI.getOperationAction(Node->getOpcode(),
431                                     Node->getOperand(0).getValueType());
432     break;
433   }
434 
435   LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
436 
437   switch (Action) {
438   default: llvm_unreachable("This action is not supported yet!");
439   case TargetLowering::Promote:
440     Result = Promote(Op);
441     Changed = true;
442     break;
443   case TargetLowering::Legal:
444     LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
445     break;
446   case TargetLowering::Custom: {
447     LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
448     if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) {
449       LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
450       Result = Tmp1;
451       break;
452     }
453     LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
454     LLVM_FALLTHROUGH;
455   }
456   case TargetLowering::Expand:
457     Result = Expand(Op);
458   }
459 
460   // Make sure that the generated code is itself legal.
461   if (Result != Op) {
462     Result = LegalizeOp(Result);
463     Changed = true;
464   }
465 
466   // Note that LegalizeOp may be reentered even from single-use nodes, which
467   // means that we always must cache transformed nodes.
468   AddLegalizedOperand(Op, Result);
469   return Result;
470 }
471 
472 SDValue VectorLegalizer::Promote(SDValue Op) {
473   // For a few operations there is a specific concept for promotion based on
474   // the operand's type.
475   switch (Op.getOpcode()) {
476   case ISD::SINT_TO_FP:
477   case ISD::UINT_TO_FP:
478     // "Promote" the operation by extending the operand.
479     return PromoteINT_TO_FP(Op);
480   case ISD::FP_TO_UINT:
481   case ISD::FP_TO_SINT:
482     // Promote the operation by extending the operand.
483     return PromoteFP_TO_INT(Op);
484   }
485 
486   // There are currently two cases of vector promotion:
487   // 1) Bitcasting a vector of integers to a different type to a vector of the
488   //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
489   // 2) Extending a vector of floats to a vector of the same number of larger
490   //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
491   MVT VT = Op.getSimpleValueType();
492   assert(Op.getNode()->getNumValues() == 1 &&
493          "Can't promote a vector with multiple results!");
494   MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
495   SDLoc dl(Op);
496   SmallVector<SDValue, 4> Operands(Op.getNumOperands());
497 
498   for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
499     if (Op.getOperand(j).getValueType().isVector())
500       if (Op.getOperand(j)
501               .getValueType()
502               .getVectorElementType()
503               .isFloatingPoint() &&
504           NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
505         Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j));
506       else
507         Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
508     else
509       Operands[j] = Op.getOperand(j);
510   }
511 
512   Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags());
513   if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
514       (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
515        NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
516     return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl));
517   else
518     return DAG.getNode(ISD::BITCAST, dl, VT, Op);
519 }
520 
521 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) {
522   // INT_TO_FP operations may require the input operand be promoted even
523   // when the type is otherwise legal.
524   MVT VT = Op.getOperand(0).getSimpleValueType();
525   MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
526   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
527          "Vectors have different number of elements!");
528 
529   SDLoc dl(Op);
530   SmallVector<SDValue, 4> Operands(Op.getNumOperands());
531 
532   unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND :
533     ISD::SIGN_EXTEND;
534   for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
535     if (Op.getOperand(j).getValueType().isVector())
536       Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
537     else
538       Operands[j] = Op.getOperand(j);
539   }
540 
541   return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands);
542 }
543 
544 // For FP_TO_INT we promote the result type to a vector type with wider
545 // elements and then truncate the result.  This is different from the default
546 // PromoteVector which uses bitcast to promote thus assumning that the
547 // promoted vector type has the same overall size.
548 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op) {
549   MVT VT = Op.getSimpleValueType();
550   MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
551   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
552          "Vectors have different number of elements!");
553 
554   unsigned NewOpc = Op->getOpcode();
555   // Change FP_TO_UINT to FP_TO_SINT if possible.
556   // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
557   if (NewOpc == ISD::FP_TO_UINT &&
558       TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
559     NewOpc = ISD::FP_TO_SINT;
560 
561   SDLoc dl(Op);
562   SDValue Promoted  = DAG.getNode(NewOpc, dl, NVT, Op.getOperand(0));
563 
564   // Assert that the converted value fits in the original type.  If it doesn't
565   // (eg: because the value being converted is too big), then the result of the
566   // original operation was undefined anyway, so the assert is still correct.
567   Promoted = DAG.getNode(Op->getOpcode() == ISD::FP_TO_UINT ? ISD::AssertZext
568                                                             : ISD::AssertSext,
569                          dl, NVT, Promoted,
570                          DAG.getValueType(VT.getScalarType()));
571   return DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
572 }
573 
574 SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
575   LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
576 
577   EVT SrcVT = LD->getMemoryVT();
578   EVT SrcEltVT = SrcVT.getScalarType();
579   unsigned NumElem = SrcVT.getVectorNumElements();
580 
581   SDValue NewChain;
582   SDValue Value;
583   if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
584     SDLoc dl(Op);
585 
586     SmallVector<SDValue, 8> Vals;
587     SmallVector<SDValue, 8> LoadChains;
588 
589     EVT DstEltVT = LD->getValueType(0).getScalarType();
590     SDValue Chain = LD->getChain();
591     SDValue BasePTR = LD->getBasePtr();
592     ISD::LoadExtType ExtType = LD->getExtensionType();
593 
594     // When elements in a vector is not byte-addressable, we cannot directly
595     // load each element by advancing pointer, which could only address bytes.
596     // Instead, we load all significant words, mask bits off, and concatenate
597     // them to form each element. Finally, they are extended to destination
598     // scalar type to build the destination vector.
599     EVT WideVT = TLI.getPointerTy(DAG.getDataLayout());
600 
601     assert(WideVT.isRound() &&
602            "Could not handle the sophisticated case when the widest integer is"
603            " not power of 2.");
604     assert(WideVT.bitsGE(SrcEltVT) &&
605            "Type is not legalized?");
606 
607     unsigned WideBytes = WideVT.getStoreSize();
608     unsigned Offset = 0;
609     unsigned RemainingBytes = SrcVT.getStoreSize();
610     SmallVector<SDValue, 8> LoadVals;
611     while (RemainingBytes > 0) {
612       SDValue ScalarLoad;
613       unsigned LoadBytes = WideBytes;
614 
615       if (RemainingBytes >= LoadBytes) {
616         ScalarLoad =
617             DAG.getLoad(WideVT, dl, Chain, BasePTR,
618                         LD->getPointerInfo().getWithOffset(Offset),
619                         MinAlign(LD->getAlignment(), Offset),
620                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
621       } else {
622         EVT LoadVT = WideVT;
623         while (RemainingBytes < LoadBytes) {
624           LoadBytes >>= 1; // Reduce the load size by half.
625           LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
626         }
627         ScalarLoad =
628             DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
629                            LD->getPointerInfo().getWithOffset(Offset), LoadVT,
630                            MinAlign(LD->getAlignment(), Offset),
631                            LD->getMemOperand()->getFlags(), LD->getAAInfo());
632       }
633 
634       RemainingBytes -= LoadBytes;
635       Offset += LoadBytes;
636 
637       BasePTR = DAG.getObjectPtrOffset(dl, BasePTR, LoadBytes);
638 
639       LoadVals.push_back(ScalarLoad.getValue(0));
640       LoadChains.push_back(ScalarLoad.getValue(1));
641     }
642 
643     // Extract bits, pack and extend/trunc them into destination type.
644     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
645     SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT);
646 
647     unsigned BitOffset = 0;
648     unsigned WideIdx = 0;
649     unsigned WideBits = WideVT.getSizeInBits();
650 
651     for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
652       SDValue Lo, Hi, ShAmt;
653 
654       if (BitOffset < WideBits) {
655         ShAmt = DAG.getConstant(
656             BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
657         Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
658         Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
659       }
660 
661       BitOffset += SrcEltBits;
662       if (BitOffset >= WideBits) {
663         WideIdx++;
664         BitOffset -= WideBits;
665         if (BitOffset > 0) {
666           ShAmt = DAG.getConstant(
667               SrcEltBits - BitOffset, dl,
668               TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
669           Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
670           Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask);
671         }
672       }
673 
674       if (Hi.getNode())
675         Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
676 
677       switch (ExtType) {
678       default: llvm_unreachable("Unknown extended-load op!");
679       case ISD::EXTLOAD:
680         Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
681         break;
682       case ISD::ZEXTLOAD:
683         Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
684         break;
685       case ISD::SEXTLOAD:
686         ShAmt =
687             DAG.getConstant(WideBits - SrcEltBits, dl,
688                             TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
689         Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
690         Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
691         Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
692         break;
693       }
694       Vals.push_back(Lo);
695     }
696 
697     NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
698     Value = DAG.getBuildVector(Op.getNode()->getValueType(0), dl, Vals);
699   } else {
700     SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG);
701     // Skip past MERGE_VALUE node if known.
702     if (Scalarized->getOpcode() == ISD::MERGE_VALUES) {
703       NewChain = Scalarized.getOperand(1);
704       Value = Scalarized.getOperand(0);
705     } else {
706       NewChain = Scalarized.getValue(1);
707       Value = Scalarized.getValue(0);
708     }
709   }
710 
711   AddLegalizedOperand(Op.getValue(0), Value);
712   AddLegalizedOperand(Op.getValue(1), NewChain);
713 
714   return (Op.getResNo() ? NewChain : Value);
715 }
716 
717 SDValue VectorLegalizer::ExpandStore(SDValue Op) {
718   StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
719   SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
720   AddLegalizedOperand(Op, TF);
721   return TF;
722 }
723 
724 SDValue VectorLegalizer::Expand(SDValue Op) {
725   switch (Op->getOpcode()) {
726   case ISD::SIGN_EXTEND_INREG:
727     return ExpandSEXTINREG(Op);
728   case ISD::ANY_EXTEND_VECTOR_INREG:
729     return ExpandANY_EXTEND_VECTOR_INREG(Op);
730   case ISD::SIGN_EXTEND_VECTOR_INREG:
731     return ExpandSIGN_EXTEND_VECTOR_INREG(Op);
732   case ISD::ZERO_EXTEND_VECTOR_INREG:
733     return ExpandZERO_EXTEND_VECTOR_INREG(Op);
734   case ISD::BSWAP:
735     return ExpandBSWAP(Op);
736   case ISD::VSELECT:
737     return ExpandVSELECT(Op);
738   case ISD::SELECT:
739     return ExpandSELECT(Op);
740   case ISD::FP_TO_UINT:
741     return ExpandFP_TO_UINT(Op);
742   case ISD::UINT_TO_FP:
743     return ExpandUINT_TO_FLOAT(Op);
744   case ISD::FNEG:
745     return ExpandFNEG(Op);
746   case ISD::FSUB:
747     return ExpandFSUB(Op);
748   case ISD::SETCC:
749     return UnrollVSETCC(Op);
750   case ISD::BITREVERSE:
751     return ExpandBITREVERSE(Op);
752   case ISD::CTPOP:
753     return ExpandCTPOP(Op);
754   case ISD::CTLZ:
755   case ISD::CTLZ_ZERO_UNDEF:
756     return ExpandCTLZ(Op);
757   case ISD::CTTZ:
758   case ISD::CTTZ_ZERO_UNDEF:
759     return ExpandCTTZ(Op);
760   case ISD::FSHL:
761   case ISD::FSHR:
762     return ExpandFunnelShift(Op);
763   case ISD::ROTL:
764   case ISD::ROTR:
765     return ExpandROT(Op);
766   case ISD::FMINNUM:
767   case ISD::FMAXNUM:
768     return ExpandFMINNUM_FMAXNUM(Op);
769   case ISD::STRICT_FADD:
770   case ISD::STRICT_FSUB:
771   case ISD::STRICT_FMUL:
772   case ISD::STRICT_FDIV:
773   case ISD::STRICT_FREM:
774   case ISD::STRICT_FSQRT:
775   case ISD::STRICT_FMA:
776   case ISD::STRICT_FPOW:
777   case ISD::STRICT_FPOWI:
778   case ISD::STRICT_FSIN:
779   case ISD::STRICT_FCOS:
780   case ISD::STRICT_FEXP:
781   case ISD::STRICT_FEXP2:
782   case ISD::STRICT_FLOG:
783   case ISD::STRICT_FLOG10:
784   case ISD::STRICT_FLOG2:
785   case ISD::STRICT_FRINT:
786   case ISD::STRICT_FNEARBYINT:
787   case ISD::STRICT_FMAXNUM:
788   case ISD::STRICT_FMINNUM:
789   case ISD::STRICT_FCEIL:
790   case ISD::STRICT_FFLOOR:
791   case ISD::STRICT_FROUND:
792   case ISD::STRICT_FTRUNC:
793     return ExpandStrictFPOp(Op);
794   default:
795     return DAG.UnrollVectorOp(Op.getNode());
796   }
797 }
798 
799 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
800   // Lower a select instruction where the condition is a scalar and the
801   // operands are vectors. Lower this select to VSELECT and implement it
802   // using XOR AND OR. The selector bit is broadcasted.
803   EVT VT = Op.getValueType();
804   SDLoc DL(Op);
805 
806   SDValue Mask = Op.getOperand(0);
807   SDValue Op1 = Op.getOperand(1);
808   SDValue Op2 = Op.getOperand(2);
809 
810   assert(VT.isVector() && !Mask.getValueType().isVector()
811          && Op1.getValueType() == Op2.getValueType() && "Invalid type");
812 
813   // If we can't even use the basic vector operations of
814   // AND,OR,XOR, we will have to scalarize the op.
815   // Notice that the operation may be 'promoted' which means that it is
816   // 'bitcasted' to another type which is handled.
817   // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
818   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
819       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
820       TLI.getOperationAction(ISD::OR,  VT) == TargetLowering::Expand ||
821       TLI.getOperationAction(ISD::BUILD_VECTOR,  VT) == TargetLowering::Expand)
822     return DAG.UnrollVectorOp(Op.getNode());
823 
824   // Generate a mask operand.
825   EVT MaskTy = VT.changeVectorElementTypeToInteger();
826 
827   // What is the size of each element in the vector mask.
828   EVT BitTy = MaskTy.getScalarType();
829 
830   Mask = DAG.getSelect(DL, BitTy, Mask,
831           DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
832                           BitTy),
833           DAG.getConstant(0, DL, BitTy));
834 
835   // Broadcast the mask so that the entire vector is all-one or all zero.
836   Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask);
837 
838   // Bitcast the operands to be the same type as the mask.
839   // This is needed when we select between FP types because
840   // the mask is a vector of integers.
841   Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
842   Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
843 
844   SDValue AllOnes = DAG.getConstant(
845             APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
846   SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
847 
848   Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
849   Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
850   SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
851   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
852 }
853 
854 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
855   EVT VT = Op.getValueType();
856 
857   // Make sure that the SRA and SHL instructions are available.
858   if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
859       TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
860     return DAG.UnrollVectorOp(Op.getNode());
861 
862   SDLoc DL(Op);
863   EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
864 
865   unsigned BW = VT.getScalarSizeInBits();
866   unsigned OrigBW = OrigTy.getScalarSizeInBits();
867   SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
868 
869   Op = Op.getOperand(0);
870   Op =   DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
871   return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
872 }
873 
874 // Generically expand a vector anyext in register to a shuffle of the relevant
875 // lanes into the appropriate locations, with other lanes left undef.
876 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) {
877   SDLoc DL(Op);
878   EVT VT = Op.getValueType();
879   int NumElements = VT.getVectorNumElements();
880   SDValue Src = Op.getOperand(0);
881   EVT SrcVT = Src.getValueType();
882   int NumSrcElements = SrcVT.getVectorNumElements();
883 
884   // Build a base mask of undef shuffles.
885   SmallVector<int, 16> ShuffleMask;
886   ShuffleMask.resize(NumSrcElements, -1);
887 
888   // Place the extended lanes into the correct locations.
889   int ExtLaneScale = NumSrcElements / NumElements;
890   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
891   for (int i = 0; i < NumElements; ++i)
892     ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
893 
894   return DAG.getNode(
895       ISD::BITCAST, DL, VT,
896       DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
897 }
898 
899 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) {
900   SDLoc DL(Op);
901   EVT VT = Op.getValueType();
902   SDValue Src = Op.getOperand(0);
903   EVT SrcVT = Src.getValueType();
904 
905   // First build an any-extend node which can be legalized above when we
906   // recurse through it.
907   Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src);
908 
909   // Now we need sign extend. Do this by shifting the elements. Even if these
910   // aren't legal operations, they have a better chance of being legalized
911   // without full scalarization than the sign extension does.
912   unsigned EltWidth = VT.getScalarSizeInBits();
913   unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
914   SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
915   return DAG.getNode(ISD::SRA, DL, VT,
916                      DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
917                      ShiftAmount);
918 }
919 
920 // Generically expand a vector zext in register to a shuffle of the relevant
921 // lanes into the appropriate locations, a blend of zero into the high bits,
922 // and a bitcast to the wider element type.
923 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) {
924   SDLoc DL(Op);
925   EVT VT = Op.getValueType();
926   int NumElements = VT.getVectorNumElements();
927   SDValue Src = Op.getOperand(0);
928   EVT SrcVT = Src.getValueType();
929   int NumSrcElements = SrcVT.getVectorNumElements();
930 
931   // Build up a zero vector to blend into this one.
932   SDValue Zero = DAG.getConstant(0, DL, SrcVT);
933 
934   // Shuffle the incoming lanes into the correct position, and pull all other
935   // lanes from the zero vector.
936   SmallVector<int, 16> ShuffleMask;
937   ShuffleMask.reserve(NumSrcElements);
938   for (int i = 0; i < NumSrcElements; ++i)
939     ShuffleMask.push_back(i);
940 
941   int ExtLaneScale = NumSrcElements / NumElements;
942   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
943   for (int i = 0; i < NumElements; ++i)
944     ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
945 
946   return DAG.getNode(ISD::BITCAST, DL, VT,
947                      DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
948 }
949 
950 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
951   int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
952   for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
953     for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
954       ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
955 }
956 
957 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) {
958   EVT VT = Op.getValueType();
959 
960   // Generate a byte wise shuffle mask for the BSWAP.
961   SmallVector<int, 16> ShuffleMask;
962   createBSWAPShuffleMask(VT, ShuffleMask);
963   EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
964 
965   // Only emit a shuffle if the mask is legal.
966   if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
967     return DAG.UnrollVectorOp(Op.getNode());
968 
969   SDLoc DL(Op);
970   Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
971   Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
972   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
973 }
974 
975 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) {
976   EVT VT = Op.getValueType();
977 
978   // If we have the scalar operation, it's probably cheaper to unroll it.
979   if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType()))
980     return DAG.UnrollVectorOp(Op.getNode());
981 
982   // If the vector element width is a whole number of bytes, test if its legal
983   // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
984   // vector. This greatly reduces the number of bit shifts necessary.
985   unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
986   if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
987     SmallVector<int, 16> BSWAPMask;
988     createBSWAPShuffleMask(VT, BSWAPMask);
989 
990     EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
991     if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
992         (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
993          (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
994           TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
995           TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
996           TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
997       SDLoc DL(Op);
998       Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
999       Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
1000                                 BSWAPMask);
1001       Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
1002       return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1003     }
1004   }
1005 
1006   // If we have the appropriate vector bit operations, it is better to use them
1007   // than unrolling and expanding each component.
1008   if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) ||
1009       !TLI.isOperationLegalOrCustom(ISD::SRL, VT) ||
1010       !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
1011       !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
1012     return DAG.UnrollVectorOp(Op.getNode());
1013 
1014   // Let LegalizeDAG handle this later.
1015   return Op;
1016 }
1017 
1018 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
1019   // Implement VSELECT in terms of XOR, AND, OR
1020   // on platforms which do not support blend natively.
1021   SDLoc DL(Op);
1022 
1023   SDValue Mask = Op.getOperand(0);
1024   SDValue Op1 = Op.getOperand(1);
1025   SDValue Op2 = Op.getOperand(2);
1026 
1027   EVT VT = Mask.getValueType();
1028 
1029   // If we can't even use the basic vector operations of
1030   // AND,OR,XOR, we will have to scalarize the op.
1031   // Notice that the operation may be 'promoted' which means that it is
1032   // 'bitcasted' to another type which is handled.
1033   // This operation also isn't safe with AND, OR, XOR when the boolean
1034   // type is 0/1 as we need an all ones vector constant to mask with.
1035   // FIXME: Sign extend 1 to all ones if thats legal on the target.
1036   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1037       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1038       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
1039       TLI.getBooleanContents(Op1.getValueType()) !=
1040           TargetLowering::ZeroOrNegativeOneBooleanContent)
1041     return DAG.UnrollVectorOp(Op.getNode());
1042 
1043   // If the mask and the type are different sizes, unroll the vector op. This
1044   // can occur when getSetCCResultType returns something that is different in
1045   // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1046   if (VT.getSizeInBits() != Op1.getValueSizeInBits())
1047     return DAG.UnrollVectorOp(Op.getNode());
1048 
1049   // Bitcast the operands to be the same type as the mask.
1050   // This is needed when we select between FP types because
1051   // the mask is a vector of integers.
1052   Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
1053   Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
1054 
1055   SDValue AllOnes = DAG.getConstant(
1056     APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT);
1057   SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
1058 
1059   Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
1060   Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
1061   SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
1062   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
1063 }
1064 
1065 SDValue VectorLegalizer::ExpandFP_TO_UINT(SDValue Op) {
1066   // Attempt to expand using TargetLowering.
1067   SDValue Result;
1068   if (TLI.expandFP_TO_UINT(Op.getNode(), Result, DAG))
1069     return Result;
1070 
1071   // Otherwise go ahead and unroll.
1072   return DAG.UnrollVectorOp(Op.getNode());
1073 }
1074 
1075 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
1076   EVT VT = Op.getOperand(0).getValueType();
1077   SDLoc DL(Op);
1078 
1079   // Attempt to expand using TargetLowering.
1080   SDValue Result;
1081   if (TLI.expandUINT_TO_FP(Op.getNode(), Result, DAG))
1082     return Result;
1083 
1084   // Make sure that the SINT_TO_FP and SRL instructions are available.
1085   if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand ||
1086       TLI.getOperationAction(ISD::SRL,        VT) == TargetLowering::Expand)
1087     return DAG.UnrollVectorOp(Op.getNode());
1088 
1089   unsigned BW = VT.getScalarSizeInBits();
1090   assert((BW == 64 || BW == 32) &&
1091          "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1092 
1093   SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
1094 
1095   // Constants to clear the upper part of the word.
1096   // Notice that we can also use SHL+SHR, but using a constant is slightly
1097   // faster on x86.
1098   uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1099   SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
1100 
1101   // Two to the power of half-word-size.
1102   SDValue TWOHW = DAG.getConstantFP(1ULL << (BW / 2), DL, Op.getValueType());
1103 
1104   // Clear upper part of LO, lower HI
1105   SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
1106   SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask);
1107 
1108   // Convert hi and lo to floats
1109   // Convert the hi part back to the upper values
1110   // TODO: Can any fast-math-flags be set on these nodes?
1111   SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
1112           fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
1113   SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);
1114 
1115   // Add the two halves
1116   return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
1117 }
1118 
1119 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
1120   if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
1121     SDLoc DL(Op);
1122     SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType());
1123     // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1124     return DAG.getNode(ISD::FSUB, DL, Op.getValueType(),
1125                        Zero, Op.getOperand(0));
1126   }
1127   return DAG.UnrollVectorOp(Op.getNode());
1128 }
1129 
1130 SDValue VectorLegalizer::ExpandFSUB(SDValue Op) {
1131   // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1132   // we can defer this to operation legalization where it will be lowered as
1133   // a+(-b).
1134   EVT VT = Op.getValueType();
1135   if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
1136       TLI.isOperationLegalOrCustom(ISD::FADD, VT))
1137     return Op; // Defer to LegalizeDAG
1138 
1139   return DAG.UnrollVectorOp(Op.getNode());
1140 }
1141 
1142 SDValue VectorLegalizer::ExpandCTPOP(SDValue Op) {
1143   SDValue Result;
1144   if (TLI.expandCTPOP(Op.getNode(), Result, DAG))
1145     return Result;
1146 
1147   return DAG.UnrollVectorOp(Op.getNode());
1148 }
1149 
1150 SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) {
1151   SDValue Result;
1152   if (TLI.expandCTLZ(Op.getNode(), Result, DAG))
1153     return Result;
1154 
1155   return DAG.UnrollVectorOp(Op.getNode());
1156 }
1157 
1158 SDValue VectorLegalizer::ExpandCTTZ(SDValue Op) {
1159   SDValue Result;
1160   if (TLI.expandCTTZ(Op.getNode(), Result, DAG))
1161     return Result;
1162 
1163   return DAG.UnrollVectorOp(Op.getNode());
1164 }
1165 
1166 SDValue VectorLegalizer::ExpandFunnelShift(SDValue Op) {
1167   SDValue Result;
1168   if (TLI.expandFunnelShift(Op.getNode(), Result, DAG))
1169     return Result;
1170 
1171   return DAG.UnrollVectorOp(Op.getNode());
1172 }
1173 
1174 SDValue VectorLegalizer::ExpandROT(SDValue Op) {
1175   SDValue Result;
1176   if (TLI.expandROT(Op.getNode(), Result, DAG))
1177     return Result;
1178 
1179   return DAG.UnrollVectorOp(Op.getNode());
1180 }
1181 
1182 SDValue VectorLegalizer::ExpandFMINNUM_FMAXNUM(SDValue Op) {
1183   if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Op.getNode(), DAG))
1184     return Expanded;
1185   return DAG.UnrollVectorOp(Op.getNode());
1186 }
1187 
1188 SDValue VectorLegalizer::ExpandStrictFPOp(SDValue Op) {
1189   EVT VT = Op.getValueType();
1190   EVT EltVT = VT.getVectorElementType();
1191   unsigned NumElems = VT.getVectorNumElements();
1192   unsigned NumOpers = Op.getNumOperands();
1193   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1194   EVT ValueVTs[] = {EltVT, MVT::Other};
1195   SDValue Chain = Op.getOperand(0);
1196   SDLoc dl(Op);
1197 
1198   SmallVector<SDValue, 32> OpValues;
1199   SmallVector<SDValue, 32> OpChains;
1200   for (unsigned i = 0; i < NumElems; ++i) {
1201     SmallVector<SDValue, 4> Opers;
1202     SDValue Idx = DAG.getConstant(i, dl,
1203                                   TLI.getVectorIdxTy(DAG.getDataLayout()));
1204 
1205     // The Chain is the first operand.
1206     Opers.push_back(Chain);
1207 
1208     // Now process the remaining operands.
1209     for (unsigned j = 1; j < NumOpers; ++j) {
1210       SDValue Oper = Op.getOperand(j);
1211       EVT OperVT = Oper.getValueType();
1212 
1213       if (OperVT.isVector())
1214         Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1215                            EltVT, Oper, Idx);
1216 
1217       Opers.push_back(Oper);
1218     }
1219 
1220     SDValue ScalarOp = DAG.getNode(Op->getOpcode(), dl, ValueVTs, Opers);
1221 
1222     OpValues.push_back(ScalarOp.getValue(0));
1223     OpChains.push_back(ScalarOp.getValue(1));
1224   }
1225 
1226   SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
1227   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
1228 
1229   AddLegalizedOperand(Op.getValue(0), Result);
1230   AddLegalizedOperand(Op.getValue(1), NewChain);
1231 
1232   return Op.getResNo() ? NewChain : Result;
1233 }
1234 
1235 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
1236   EVT VT = Op.getValueType();
1237   unsigned NumElems = VT.getVectorNumElements();
1238   EVT EltVT = VT.getVectorElementType();
1239   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
1240   EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1241   SDLoc dl(Op);
1242   SmallVector<SDValue, 8> Ops(NumElems);
1243   for (unsigned i = 0; i < NumElems; ++i) {
1244     SDValue LHSElem = DAG.getNode(
1245         ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1246         DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1247     SDValue RHSElem = DAG.getNode(
1248         ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1249         DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1250     Ops[i] = DAG.getNode(ISD::SETCC, dl,
1251                          TLI.getSetCCResultType(DAG.getDataLayout(),
1252                                                 *DAG.getContext(), TmpEltVT),
1253                          LHSElem, RHSElem, CC);
1254     Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
1255                            DAG.getConstant(APInt::getAllOnesValue
1256                                            (EltVT.getSizeInBits()), dl, EltVT),
1257                            DAG.getConstant(0, dl, EltVT));
1258   }
1259   return DAG.getBuildVector(VT, dl, Ops);
1260 }
1261 
1262 bool SelectionDAG::LegalizeVectors() {
1263   return VectorLegalizer(*this).Run();
1264 }
1265