1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::LegalizeVectors method. 10 // 11 // The vector legalizer looks for vector operations which might need to be 12 // scalarized and legalizes them. This is a separate step from Legalize because 13 // scalarizing can introduce illegal types. For example, suppose we have an 14 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 16 // operation, which introduces nodes with the illegal type i64 which must be 17 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 18 // the operation must be unrolled, which introduces nodes with the illegal 19 // type i8 which must be promoted. 20 // 21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 22 // or operations that happen to take a vector which are custom-lowered; 23 // the legalization for such operations never produces nodes 24 // with illegal types, so it's okay to put off legalizing them until 25 // SelectionDAG::Legalize runs. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/CodeGen/ISDOpcodes.h" 32 #include "llvm/CodeGen/SelectionDAG.h" 33 #include "llvm/CodeGen/SelectionDAGNodes.h" 34 #include "llvm/CodeGen/TargetLowering.h" 35 #include "llvm/CodeGen/ValueTypes.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/Compiler.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/MachineValueType.h" 42 #include "llvm/Support/MathExtras.h" 43 #include <cassert> 44 #include <cstdint> 45 #include <iterator> 46 #include <utility> 47 48 using namespace llvm; 49 50 #define DEBUG_TYPE "legalizevectorops" 51 52 namespace { 53 54 class VectorLegalizer { 55 SelectionDAG& DAG; 56 const TargetLowering &TLI; 57 bool Changed = false; // Keep track of whether anything changed 58 59 /// For nodes that are of legal width, and that have more than one use, this 60 /// map indicates what regularized operand to use. This allows us to avoid 61 /// legalizing the same thing more than once. 62 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 63 64 /// Adds a node to the translation cache. 65 void AddLegalizedOperand(SDValue From, SDValue To) { 66 LegalizedNodes.insert(std::make_pair(From, To)); 67 // If someone requests legalization of the new node, return itself. 68 if (From != To) 69 LegalizedNodes.insert(std::make_pair(To, To)); 70 } 71 72 /// Legalizes the given node. 73 SDValue LegalizeOp(SDValue Op); 74 75 /// Assuming the node is legal, "legalize" the results. 76 SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result); 77 78 /// Make sure Results are legal and update the translation cache. 79 SDValue RecursivelyLegalizeResults(SDValue Op, 80 MutableArrayRef<SDValue> Results); 81 82 /// Wrapper to interface LowerOperation with a vector of Results. 83 /// Returns false if the target wants to use default expansion. Otherwise 84 /// returns true. If return is true and the Results are empty, then the 85 /// target wants to keep the input node as is. 86 bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results); 87 88 /// Implements unrolling a VSETCC. 89 SDValue UnrollVSETCC(SDNode *Node); 90 91 /// Implement expand-based legalization of vector operations. 92 /// 93 /// This is just a high-level routine to dispatch to specific code paths for 94 /// operations to legalize them. 95 void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results); 96 97 /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if 98 /// FP_TO_SINT isn't legal. 99 void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 100 101 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 102 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 103 void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 104 105 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 106 SDValue ExpandSEXTINREG(SDNode *Node); 107 108 /// Implement expansion for ANY_EXTEND_VECTOR_INREG. 109 /// 110 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 111 /// type. The contents of the bits in the extended part of each element are 112 /// undef. 113 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node); 114 115 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG. 116 /// 117 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 118 /// type, then shifts left and arithmetic shifts right to introduce a sign 119 /// extension. 120 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node); 121 122 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG. 123 /// 124 /// Shuffles the low lanes of the operand into place and blends zeros into 125 /// the remaining lanes, finally bitcasting to the proper type. 126 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node); 127 128 /// Expand bswap of vectors into a shuffle if legal. 129 SDValue ExpandBSWAP(SDNode *Node); 130 131 /// Implement vselect in terms of XOR, AND, OR when blend is not 132 /// supported by the target. 133 SDValue ExpandVSELECT(SDNode *Node); 134 SDValue ExpandVP_SELECT(SDNode *Node); 135 SDValue ExpandVP_MERGE(SDNode *Node); 136 SDValue ExpandSELECT(SDNode *Node); 137 std::pair<SDValue, SDValue> ExpandLoad(SDNode *N); 138 SDValue ExpandStore(SDNode *N); 139 SDValue ExpandFNEG(SDNode *Node); 140 void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results); 141 void ExpandSETCC(SDNode *Node, SmallVectorImpl<SDValue> &Results); 142 void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results); 143 void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 144 void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 145 void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 146 void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results); 147 void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results); 148 void ExpandREM(SDNode *Node, SmallVectorImpl<SDValue> &Results); 149 150 void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results); 151 152 /// Implements vector promotion. 153 /// 154 /// This is essentially just bitcasting the operands to a different type and 155 /// bitcasting the result back to the original type. 156 void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results); 157 158 /// Implements [SU]INT_TO_FP vector promotion. 159 /// 160 /// This is a [zs]ext of the input operand to a larger integer type. 161 void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results); 162 163 /// Implements FP_TO_[SU]INT vector promotion of the result type. 164 /// 165 /// It is promoted to a larger integer type. The result is then 166 /// truncated back to the original type. 167 void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 168 169 public: 170 VectorLegalizer(SelectionDAG& dag) : 171 DAG(dag), TLI(dag.getTargetLoweringInfo()) {} 172 173 /// Begin legalizer the vector operations in the DAG. 174 bool Run(); 175 }; 176 177 } // end anonymous namespace 178 179 bool VectorLegalizer::Run() { 180 // Before we start legalizing vector nodes, check if there are any vectors. 181 bool HasVectors = false; 182 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 183 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 184 // Check if the values of the nodes contain vectors. We don't need to check 185 // the operands because we are going to check their values at some point. 186 HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); }); 187 188 // If we found a vector node we can start the legalization. 189 if (HasVectors) 190 break; 191 } 192 193 // If this basic block has no vectors then no need to legalize vectors. 194 if (!HasVectors) 195 return false; 196 197 // The legalize process is inherently a bottom-up recursive process (users 198 // legalize their uses before themselves). Given infinite stack space, we 199 // could just start legalizing on the root and traverse the whole graph. In 200 // practice however, this causes us to run out of stack space on large basic 201 // blocks. To avoid this problem, compute an ordering of the nodes where each 202 // node is only legalized after all of its operands are legalized. 203 DAG.AssignTopologicalOrder(); 204 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 205 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 206 LegalizeOp(SDValue(&*I, 0)); 207 208 // Finally, it's possible the root changed. Get the new root. 209 SDValue OldRoot = DAG.getRoot(); 210 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 211 DAG.setRoot(LegalizedNodes[OldRoot]); 212 213 LegalizedNodes.clear(); 214 215 // Remove dead nodes now. 216 DAG.RemoveDeadNodes(); 217 218 return Changed; 219 } 220 221 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) { 222 assert(Op->getNumValues() == Result->getNumValues() && 223 "Unexpected number of results"); 224 // Generic legalization: just pass the operand through. 225 for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i) 226 AddLegalizedOperand(Op.getValue(i), SDValue(Result, i)); 227 return SDValue(Result, Op.getResNo()); 228 } 229 230 SDValue 231 VectorLegalizer::RecursivelyLegalizeResults(SDValue Op, 232 MutableArrayRef<SDValue> Results) { 233 assert(Results.size() == Op->getNumValues() && 234 "Unexpected number of results"); 235 // Make sure that the generated code is itself legal. 236 for (unsigned i = 0, e = Results.size(); i != e; ++i) { 237 Results[i] = LegalizeOp(Results[i]); 238 AddLegalizedOperand(Op.getValue(i), Results[i]); 239 } 240 241 return Results[Op.getResNo()]; 242 } 243 244 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 245 // Note that LegalizeOp may be reentered even from single-use nodes, which 246 // means that we always must cache transformed nodes. 247 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 248 if (I != LegalizedNodes.end()) return I->second; 249 250 // Legalize the operands 251 SmallVector<SDValue, 8> Ops; 252 for (const SDValue &Oper : Op->op_values()) 253 Ops.push_back(LegalizeOp(Oper)); 254 255 SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops); 256 257 bool HasVectorValueOrOp = 258 llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) || 259 llvm::any_of(Node->op_values(), 260 [](SDValue O) { return O.getValueType().isVector(); }); 261 if (!HasVectorValueOrOp) 262 return TranslateLegalizeResults(Op, Node); 263 264 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 265 EVT ValVT; 266 switch (Op.getOpcode()) { 267 default: 268 return TranslateLegalizeResults(Op, Node); 269 case ISD::LOAD: { 270 LoadSDNode *LD = cast<LoadSDNode>(Node); 271 ISD::LoadExtType ExtType = LD->getExtensionType(); 272 EVT LoadedVT = LD->getMemoryVT(); 273 if (LoadedVT.isVector() && ExtType != ISD::NON_EXTLOAD) 274 Action = TLI.getLoadExtAction(ExtType, LD->getValueType(0), LoadedVT); 275 break; 276 } 277 case ISD::STORE: { 278 StoreSDNode *ST = cast<StoreSDNode>(Node); 279 EVT StVT = ST->getMemoryVT(); 280 MVT ValVT = ST->getValue().getSimpleValueType(); 281 if (StVT.isVector() && ST->isTruncatingStore()) 282 Action = TLI.getTruncStoreAction(ValVT, StVT); 283 break; 284 } 285 case ISD::MERGE_VALUES: 286 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 287 // This operation lies about being legal: when it claims to be legal, 288 // it should actually be expanded. 289 if (Action == TargetLowering::Legal) 290 Action = TargetLowering::Expand; 291 break; 292 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 293 case ISD::STRICT_##DAGN: 294 #include "llvm/IR/ConstrainedOps.def" 295 ValVT = Node->getValueType(0); 296 if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP || 297 Op.getOpcode() == ISD::STRICT_UINT_TO_FP) 298 ValVT = Node->getOperand(1).getValueType(); 299 Action = TLI.getOperationAction(Node->getOpcode(), ValVT); 300 // If we're asked to expand a strict vector floating-point operation, 301 // by default we're going to simply unroll it. That is usually the 302 // best approach, except in the case where the resulting strict (scalar) 303 // operations would themselves use the fallback mutation to non-strict. 304 // In that specific case, just do the fallback on the vector op. 305 if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() && 306 TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) == 307 TargetLowering::Legal) { 308 EVT EltVT = ValVT.getVectorElementType(); 309 if (TLI.getOperationAction(Node->getOpcode(), EltVT) 310 == TargetLowering::Expand && 311 TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT) 312 == TargetLowering::Legal) 313 Action = TargetLowering::Legal; 314 } 315 break; 316 case ISD::ADD: 317 case ISD::SUB: 318 case ISD::MUL: 319 case ISD::MULHS: 320 case ISD::MULHU: 321 case ISD::SDIV: 322 case ISD::UDIV: 323 case ISD::SREM: 324 case ISD::UREM: 325 case ISD::SDIVREM: 326 case ISD::UDIVREM: 327 case ISD::FADD: 328 case ISD::FSUB: 329 case ISD::FMUL: 330 case ISD::FDIV: 331 case ISD::FREM: 332 case ISD::AND: 333 case ISD::OR: 334 case ISD::XOR: 335 case ISD::SHL: 336 case ISD::SRA: 337 case ISD::SRL: 338 case ISD::FSHL: 339 case ISD::FSHR: 340 case ISD::ROTL: 341 case ISD::ROTR: 342 case ISD::ABS: 343 case ISD::BSWAP: 344 case ISD::BITREVERSE: 345 case ISD::CTLZ: 346 case ISD::CTTZ: 347 case ISD::CTLZ_ZERO_UNDEF: 348 case ISD::CTTZ_ZERO_UNDEF: 349 case ISD::CTPOP: 350 case ISD::SELECT: 351 case ISD::VSELECT: 352 case ISD::SELECT_CC: 353 case ISD::ZERO_EXTEND: 354 case ISD::ANY_EXTEND: 355 case ISD::TRUNCATE: 356 case ISD::SIGN_EXTEND: 357 case ISD::FP_TO_SINT: 358 case ISD::FP_TO_UINT: 359 case ISD::FNEG: 360 case ISD::FABS: 361 case ISD::FMINNUM: 362 case ISD::FMAXNUM: 363 case ISD::FMINNUM_IEEE: 364 case ISD::FMAXNUM_IEEE: 365 case ISD::FMINIMUM: 366 case ISD::FMAXIMUM: 367 case ISD::FCOPYSIGN: 368 case ISD::FSQRT: 369 case ISD::FSIN: 370 case ISD::FCOS: 371 case ISD::FPOWI: 372 case ISD::FPOW: 373 case ISD::FLOG: 374 case ISD::FLOG2: 375 case ISD::FLOG10: 376 case ISD::FEXP: 377 case ISD::FEXP2: 378 case ISD::FCEIL: 379 case ISD::FTRUNC: 380 case ISD::FRINT: 381 case ISD::FNEARBYINT: 382 case ISD::FROUND: 383 case ISD::FROUNDEVEN: 384 case ISD::FFLOOR: 385 case ISD::FP_ROUND: 386 case ISD::FP_EXTEND: 387 case ISD::FMA: 388 case ISD::SIGN_EXTEND_INREG: 389 case ISD::ANY_EXTEND_VECTOR_INREG: 390 case ISD::SIGN_EXTEND_VECTOR_INREG: 391 case ISD::ZERO_EXTEND_VECTOR_INREG: 392 case ISD::SMIN: 393 case ISD::SMAX: 394 case ISD::UMIN: 395 case ISD::UMAX: 396 case ISD::SMUL_LOHI: 397 case ISD::UMUL_LOHI: 398 case ISD::SADDO: 399 case ISD::UADDO: 400 case ISD::SSUBO: 401 case ISD::USUBO: 402 case ISD::SMULO: 403 case ISD::UMULO: 404 case ISD::FCANONICALIZE: 405 case ISD::SADDSAT: 406 case ISD::UADDSAT: 407 case ISD::SSUBSAT: 408 case ISD::USUBSAT: 409 case ISD::SSHLSAT: 410 case ISD::USHLSAT: 411 case ISD::FP_TO_SINT_SAT: 412 case ISD::FP_TO_UINT_SAT: 413 case ISD::MGATHER: 414 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 415 break; 416 case ISD::SMULFIX: 417 case ISD::SMULFIXSAT: 418 case ISD::UMULFIX: 419 case ISD::UMULFIXSAT: 420 case ISD::SDIVFIX: 421 case ISD::SDIVFIXSAT: 422 case ISD::UDIVFIX: 423 case ISD::UDIVFIXSAT: { 424 unsigned Scale = Node->getConstantOperandVal(2); 425 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 426 Node->getValueType(0), Scale); 427 break; 428 } 429 case ISD::SINT_TO_FP: 430 case ISD::UINT_TO_FP: 431 case ISD::VECREDUCE_ADD: 432 case ISD::VECREDUCE_MUL: 433 case ISD::VECREDUCE_AND: 434 case ISD::VECREDUCE_OR: 435 case ISD::VECREDUCE_XOR: 436 case ISD::VECREDUCE_SMAX: 437 case ISD::VECREDUCE_SMIN: 438 case ISD::VECREDUCE_UMAX: 439 case ISD::VECREDUCE_UMIN: 440 case ISD::VECREDUCE_FADD: 441 case ISD::VECREDUCE_FMUL: 442 case ISD::VECREDUCE_FMAX: 443 case ISD::VECREDUCE_FMIN: 444 Action = TLI.getOperationAction(Node->getOpcode(), 445 Node->getOperand(0).getValueType()); 446 break; 447 case ISD::VECREDUCE_SEQ_FADD: 448 case ISD::VECREDUCE_SEQ_FMUL: 449 Action = TLI.getOperationAction(Node->getOpcode(), 450 Node->getOperand(1).getValueType()); 451 break; 452 case ISD::SETCC: { 453 MVT OpVT = Node->getOperand(0).getSimpleValueType(); 454 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); 455 Action = TLI.getCondCodeAction(CCCode, OpVT); 456 if (Action == TargetLowering::Legal) 457 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 458 break; 459 } 460 461 #define BEGIN_REGISTER_VP_SDNODE(VPID, LEGALPOS, ...) \ 462 case ISD::VPID: { \ 463 EVT LegalizeVT = LEGALPOS < 0 ? Node->getValueType(-(1 + LEGALPOS)) \ 464 : Node->getOperand(LEGALPOS).getValueType(); \ 465 Action = TLI.getOperationAction(Node->getOpcode(), LegalizeVT); \ 466 } break; 467 #include "llvm/IR/VPIntrinsics.def" 468 } 469 470 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG)); 471 472 SmallVector<SDValue, 8> ResultVals; 473 switch (Action) { 474 default: llvm_unreachable("This action is not supported yet!"); 475 case TargetLowering::Promote: 476 assert((Op.getOpcode() != ISD::LOAD && Op.getOpcode() != ISD::STORE) && 477 "This action is not supported yet!"); 478 LLVM_DEBUG(dbgs() << "Promoting\n"); 479 Promote(Node, ResultVals); 480 assert(!ResultVals.empty() && "No results for promotion?"); 481 break; 482 case TargetLowering::Legal: 483 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 484 break; 485 case TargetLowering::Custom: 486 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 487 if (LowerOperationWrapper(Node, ResultVals)) 488 break; 489 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 490 LLVM_FALLTHROUGH; 491 case TargetLowering::Expand: 492 LLVM_DEBUG(dbgs() << "Expanding\n"); 493 Expand(Node, ResultVals); 494 break; 495 } 496 497 if (ResultVals.empty()) 498 return TranslateLegalizeResults(Op, Node); 499 500 Changed = true; 501 return RecursivelyLegalizeResults(Op, ResultVals); 502 } 503 504 // FIXME: This is very similar to TargetLowering::LowerOperationWrapper. Can we 505 // merge them somehow? 506 bool VectorLegalizer::LowerOperationWrapper(SDNode *Node, 507 SmallVectorImpl<SDValue> &Results) { 508 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 509 510 if (!Res.getNode()) 511 return false; 512 513 if (Res == SDValue(Node, 0)) 514 return true; 515 516 // If the original node has one result, take the return value from 517 // LowerOperation as is. It might not be result number 0. 518 if (Node->getNumValues() == 1) { 519 Results.push_back(Res); 520 return true; 521 } 522 523 // If the original node has multiple results, then the return node should 524 // have the same number of results. 525 assert((Node->getNumValues() == Res->getNumValues()) && 526 "Lowering returned the wrong number of results!"); 527 528 // Places new result values base on N result number. 529 for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I) 530 Results.push_back(Res.getValue(I)); 531 532 return true; 533 } 534 535 void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) { 536 // For a few operations there is a specific concept for promotion based on 537 // the operand's type. 538 switch (Node->getOpcode()) { 539 case ISD::SINT_TO_FP: 540 case ISD::UINT_TO_FP: 541 case ISD::STRICT_SINT_TO_FP: 542 case ISD::STRICT_UINT_TO_FP: 543 // "Promote" the operation by extending the operand. 544 PromoteINT_TO_FP(Node, Results); 545 return; 546 case ISD::FP_TO_UINT: 547 case ISD::FP_TO_SINT: 548 case ISD::STRICT_FP_TO_UINT: 549 case ISD::STRICT_FP_TO_SINT: 550 // Promote the operation by extending the operand. 551 PromoteFP_TO_INT(Node, Results); 552 return; 553 case ISD::FP_ROUND: 554 case ISD::FP_EXTEND: 555 // These operations are used to do promotion so they can't be promoted 556 // themselves. 557 llvm_unreachable("Don't know how to promote this operation!"); 558 } 559 560 // There are currently two cases of vector promotion: 561 // 1) Bitcasting a vector of integers to a different type to a vector of the 562 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 563 // 2) Extending a vector of floats to a vector of the same number of larger 564 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 565 assert(Node->getNumValues() == 1 && 566 "Can't promote a vector with multiple results!"); 567 MVT VT = Node->getSimpleValueType(0); 568 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 569 SDLoc dl(Node); 570 SmallVector<SDValue, 4> Operands(Node->getNumOperands()); 571 572 for (unsigned j = 0; j != Node->getNumOperands(); ++j) { 573 if (Node->getOperand(j).getValueType().isVector()) 574 if (Node->getOperand(j) 575 .getValueType() 576 .getVectorElementType() 577 .isFloatingPoint() && 578 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 579 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j)); 580 else 581 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j)); 582 else 583 Operands[j] = Node->getOperand(j); 584 } 585 586 SDValue Res = 587 DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags()); 588 589 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 590 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 591 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 592 Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res, DAG.getIntPtrConstant(0, dl)); 593 else 594 Res = DAG.getNode(ISD::BITCAST, dl, VT, Res); 595 596 Results.push_back(Res); 597 } 598 599 void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node, 600 SmallVectorImpl<SDValue> &Results) { 601 // INT_TO_FP operations may require the input operand be promoted even 602 // when the type is otherwise legal. 603 bool IsStrict = Node->isStrictFPOpcode(); 604 MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType(); 605 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 606 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 607 "Vectors have different number of elements!"); 608 609 SDLoc dl(Node); 610 SmallVector<SDValue, 4> Operands(Node->getNumOperands()); 611 612 unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP || 613 Node->getOpcode() == ISD::STRICT_UINT_TO_FP) 614 ? ISD::ZERO_EXTEND 615 : ISD::SIGN_EXTEND; 616 for (unsigned j = 0; j != Node->getNumOperands(); ++j) { 617 if (Node->getOperand(j).getValueType().isVector()) 618 Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j)); 619 else 620 Operands[j] = Node->getOperand(j); 621 } 622 623 if (IsStrict) { 624 SDValue Res = DAG.getNode(Node->getOpcode(), dl, 625 {Node->getValueType(0), MVT::Other}, Operands); 626 Results.push_back(Res); 627 Results.push_back(Res.getValue(1)); 628 return; 629 } 630 631 SDValue Res = 632 DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands); 633 Results.push_back(Res); 634 } 635 636 // For FP_TO_INT we promote the result type to a vector type with wider 637 // elements and then truncate the result. This is different from the default 638 // PromoteVector which uses bitcast to promote thus assumning that the 639 // promoted vector type has the same overall size. 640 void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node, 641 SmallVectorImpl<SDValue> &Results) { 642 MVT VT = Node->getSimpleValueType(0); 643 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 644 bool IsStrict = Node->isStrictFPOpcode(); 645 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 646 "Vectors have different number of elements!"); 647 648 unsigned NewOpc = Node->getOpcode(); 649 // Change FP_TO_UINT to FP_TO_SINT if possible. 650 // TODO: Should we only do this if FP_TO_UINT itself isn't legal? 651 if (NewOpc == ISD::FP_TO_UINT && 652 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT)) 653 NewOpc = ISD::FP_TO_SINT; 654 655 if (NewOpc == ISD::STRICT_FP_TO_UINT && 656 TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT)) 657 NewOpc = ISD::STRICT_FP_TO_SINT; 658 659 SDLoc dl(Node); 660 SDValue Promoted, Chain; 661 if (IsStrict) { 662 Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other}, 663 {Node->getOperand(0), Node->getOperand(1)}); 664 Chain = Promoted.getValue(1); 665 } else 666 Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0)); 667 668 // Assert that the converted value fits in the original type. If it doesn't 669 // (eg: because the value being converted is too big), then the result of the 670 // original operation was undefined anyway, so the assert is still correct. 671 if (Node->getOpcode() == ISD::FP_TO_UINT || 672 Node->getOpcode() == ISD::STRICT_FP_TO_UINT) 673 NewOpc = ISD::AssertZext; 674 else 675 NewOpc = ISD::AssertSext; 676 677 Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted, 678 DAG.getValueType(VT.getScalarType())); 679 Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted); 680 Results.push_back(Promoted); 681 if (IsStrict) 682 Results.push_back(Chain); 683 } 684 685 std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) { 686 LoadSDNode *LD = cast<LoadSDNode>(N); 687 return TLI.scalarizeVectorLoad(LD, DAG); 688 } 689 690 SDValue VectorLegalizer::ExpandStore(SDNode *N) { 691 StoreSDNode *ST = cast<StoreSDNode>(N); 692 SDValue TF = TLI.scalarizeVectorStore(ST, DAG); 693 return TF; 694 } 695 696 void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) { 697 switch (Node->getOpcode()) { 698 case ISD::LOAD: { 699 std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node); 700 Results.push_back(Tmp.first); 701 Results.push_back(Tmp.second); 702 return; 703 } 704 case ISD::STORE: 705 Results.push_back(ExpandStore(Node)); 706 return; 707 case ISD::MERGE_VALUES: 708 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 709 Results.push_back(Node->getOperand(i)); 710 return; 711 case ISD::SIGN_EXTEND_INREG: 712 Results.push_back(ExpandSEXTINREG(Node)); 713 return; 714 case ISD::ANY_EXTEND_VECTOR_INREG: 715 Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node)); 716 return; 717 case ISD::SIGN_EXTEND_VECTOR_INREG: 718 Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node)); 719 return; 720 case ISD::ZERO_EXTEND_VECTOR_INREG: 721 Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node)); 722 return; 723 case ISD::BSWAP: 724 Results.push_back(ExpandBSWAP(Node)); 725 return; 726 case ISD::VSELECT: 727 Results.push_back(ExpandVSELECT(Node)); 728 return; 729 case ISD::VP_SELECT: 730 Results.push_back(ExpandVP_SELECT(Node)); 731 return; 732 case ISD::SELECT: 733 Results.push_back(ExpandSELECT(Node)); 734 return; 735 case ISD::FP_TO_UINT: 736 ExpandFP_TO_UINT(Node, Results); 737 return; 738 case ISD::UINT_TO_FP: 739 ExpandUINT_TO_FLOAT(Node, Results); 740 return; 741 case ISD::FNEG: 742 Results.push_back(ExpandFNEG(Node)); 743 return; 744 case ISD::FSUB: 745 ExpandFSUB(Node, Results); 746 return; 747 case ISD::SETCC: 748 ExpandSETCC(Node, Results); 749 return; 750 case ISD::ABS: 751 if (SDValue Expanded = TLI.expandABS(Node, DAG)) { 752 Results.push_back(Expanded); 753 return; 754 } 755 break; 756 case ISD::BITREVERSE: 757 ExpandBITREVERSE(Node, Results); 758 return; 759 case ISD::CTPOP: 760 if (SDValue Expanded = TLI.expandCTPOP(Node, DAG)) { 761 Results.push_back(Expanded); 762 return; 763 } 764 break; 765 case ISD::CTLZ: 766 case ISD::CTLZ_ZERO_UNDEF: 767 if (SDValue Expanded = TLI.expandCTLZ(Node, DAG)) { 768 Results.push_back(Expanded); 769 return; 770 } 771 break; 772 case ISD::CTTZ: 773 case ISD::CTTZ_ZERO_UNDEF: 774 if (SDValue Expanded = TLI.expandCTTZ(Node, DAG)) { 775 Results.push_back(Expanded); 776 return; 777 } 778 break; 779 case ISD::FSHL: 780 case ISD::FSHR: 781 if (SDValue Expanded = TLI.expandFunnelShift(Node, DAG)) { 782 Results.push_back(Expanded); 783 return; 784 } 785 break; 786 case ISD::ROTL: 787 case ISD::ROTR: 788 if (SDValue Expanded = TLI.expandROT(Node, false /*AllowVectorOps*/, DAG)) { 789 Results.push_back(Expanded); 790 return; 791 } 792 break; 793 case ISD::FMINNUM: 794 case ISD::FMAXNUM: 795 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) { 796 Results.push_back(Expanded); 797 return; 798 } 799 break; 800 case ISD::SMIN: 801 case ISD::SMAX: 802 case ISD::UMIN: 803 case ISD::UMAX: 804 if (SDValue Expanded = TLI.expandIntMINMAX(Node, DAG)) { 805 Results.push_back(Expanded); 806 return; 807 } 808 break; 809 case ISD::UADDO: 810 case ISD::USUBO: 811 ExpandUADDSUBO(Node, Results); 812 return; 813 case ISD::SADDO: 814 case ISD::SSUBO: 815 ExpandSADDSUBO(Node, Results); 816 return; 817 case ISD::UMULO: 818 case ISD::SMULO: 819 ExpandMULO(Node, Results); 820 return; 821 case ISD::USUBSAT: 822 case ISD::SSUBSAT: 823 case ISD::UADDSAT: 824 case ISD::SADDSAT: 825 if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) { 826 Results.push_back(Expanded); 827 return; 828 } 829 break; 830 case ISD::SMULFIX: 831 case ISD::UMULFIX: 832 if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) { 833 Results.push_back(Expanded); 834 return; 835 } 836 break; 837 case ISD::SMULFIXSAT: 838 case ISD::UMULFIXSAT: 839 // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly 840 // why. Maybe it results in worse codegen compared to the unroll for some 841 // targets? This should probably be investigated. And if we still prefer to 842 // unroll an explanation could be helpful. 843 break; 844 case ISD::SDIVFIX: 845 case ISD::UDIVFIX: 846 ExpandFixedPointDiv(Node, Results); 847 return; 848 case ISD::SDIVFIXSAT: 849 case ISD::UDIVFIXSAT: 850 break; 851 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 852 case ISD::STRICT_##DAGN: 853 #include "llvm/IR/ConstrainedOps.def" 854 ExpandStrictFPOp(Node, Results); 855 return; 856 case ISD::VECREDUCE_ADD: 857 case ISD::VECREDUCE_MUL: 858 case ISD::VECREDUCE_AND: 859 case ISD::VECREDUCE_OR: 860 case ISD::VECREDUCE_XOR: 861 case ISD::VECREDUCE_SMAX: 862 case ISD::VECREDUCE_SMIN: 863 case ISD::VECREDUCE_UMAX: 864 case ISD::VECREDUCE_UMIN: 865 case ISD::VECREDUCE_FADD: 866 case ISD::VECREDUCE_FMUL: 867 case ISD::VECREDUCE_FMAX: 868 case ISD::VECREDUCE_FMIN: 869 Results.push_back(TLI.expandVecReduce(Node, DAG)); 870 return; 871 case ISD::VECREDUCE_SEQ_FADD: 872 case ISD::VECREDUCE_SEQ_FMUL: 873 Results.push_back(TLI.expandVecReduceSeq(Node, DAG)); 874 return; 875 case ISD::SREM: 876 case ISD::UREM: 877 ExpandREM(Node, Results); 878 return; 879 case ISD::VP_MERGE: 880 Results.push_back(ExpandVP_MERGE(Node)); 881 return; 882 } 883 884 Results.push_back(DAG.UnrollVectorOp(Node)); 885 } 886 887 SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) { 888 // Lower a select instruction where the condition is a scalar and the 889 // operands are vectors. Lower this select to VSELECT and implement it 890 // using XOR AND OR. The selector bit is broadcasted. 891 EVT VT = Node->getValueType(0); 892 SDLoc DL(Node); 893 894 SDValue Mask = Node->getOperand(0); 895 SDValue Op1 = Node->getOperand(1); 896 SDValue Op2 = Node->getOperand(2); 897 898 assert(VT.isVector() && !Mask.getValueType().isVector() 899 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 900 901 // If we can't even use the basic vector operations of 902 // AND,OR,XOR, we will have to scalarize the op. 903 // Notice that the operation may be 'promoted' which means that it is 904 // 'bitcasted' to another type which is handled. 905 // Also, we need to be able to construct a splat vector using either 906 // BUILD_VECTOR or SPLAT_VECTOR. 907 // FIXME: Should we also permit fixed-length SPLAT_VECTOR as a fallback to 908 // BUILD_VECTOR? 909 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 910 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 911 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 912 TLI.getOperationAction(VT.isFixedLengthVector() ? ISD::BUILD_VECTOR 913 : ISD::SPLAT_VECTOR, 914 VT) == TargetLowering::Expand) 915 return DAG.UnrollVectorOp(Node); 916 917 // Generate a mask operand. 918 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 919 920 // What is the size of each element in the vector mask. 921 EVT BitTy = MaskTy.getScalarType(); 922 923 Mask = DAG.getSelect(DL, BitTy, Mask, DAG.getAllOnesConstant(DL, BitTy), 924 DAG.getConstant(0, DL, BitTy)); 925 926 // Broadcast the mask so that the entire vector is all one or all zero. 927 if (VT.isFixedLengthVector()) 928 Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask); 929 else 930 Mask = DAG.getSplatVector(MaskTy, DL, Mask); 931 932 // Bitcast the operands to be the same type as the mask. 933 // This is needed when we select between FP types because 934 // the mask is a vector of integers. 935 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 936 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 937 938 SDValue NotMask = DAG.getNOT(DL, Mask, MaskTy); 939 940 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 941 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 942 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 943 return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val); 944 } 945 946 SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) { 947 EVT VT = Node->getValueType(0); 948 949 // Make sure that the SRA and SHL instructions are available. 950 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 951 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 952 return DAG.UnrollVectorOp(Node); 953 954 SDLoc DL(Node); 955 EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT(); 956 957 unsigned BW = VT.getScalarSizeInBits(); 958 unsigned OrigBW = OrigTy.getScalarSizeInBits(); 959 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 960 961 SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz); 962 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 963 } 964 965 // Generically expand a vector anyext in register to a shuffle of the relevant 966 // lanes into the appropriate locations, with other lanes left undef. 967 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) { 968 SDLoc DL(Node); 969 EVT VT = Node->getValueType(0); 970 int NumElements = VT.getVectorNumElements(); 971 SDValue Src = Node->getOperand(0); 972 EVT SrcVT = Src.getValueType(); 973 int NumSrcElements = SrcVT.getVectorNumElements(); 974 975 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 976 // into a larger vector type. 977 if (SrcVT.bitsLE(VT)) { 978 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 979 "ANY_EXTEND_VECTOR_INREG vector size mismatch"); 980 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 981 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 982 NumSrcElements); 983 Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), 984 Src, DAG.getVectorIdxConstant(0, DL)); 985 } 986 987 // Build a base mask of undef shuffles. 988 SmallVector<int, 16> ShuffleMask; 989 ShuffleMask.resize(NumSrcElements, -1); 990 991 // Place the extended lanes into the correct locations. 992 int ExtLaneScale = NumSrcElements / NumElements; 993 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 994 for (int i = 0; i < NumElements; ++i) 995 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 996 997 return DAG.getNode( 998 ISD::BITCAST, DL, VT, 999 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 1000 } 1001 1002 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) { 1003 SDLoc DL(Node); 1004 EVT VT = Node->getValueType(0); 1005 SDValue Src = Node->getOperand(0); 1006 EVT SrcVT = Src.getValueType(); 1007 1008 // First build an any-extend node which can be legalized above when we 1009 // recurse through it. 1010 SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src); 1011 1012 // Now we need sign extend. Do this by shifting the elements. Even if these 1013 // aren't legal operations, they have a better chance of being legalized 1014 // without full scalarization than the sign extension does. 1015 unsigned EltWidth = VT.getScalarSizeInBits(); 1016 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); 1017 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 1018 return DAG.getNode(ISD::SRA, DL, VT, 1019 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 1020 ShiftAmount); 1021 } 1022 1023 // Generically expand a vector zext in register to a shuffle of the relevant 1024 // lanes into the appropriate locations, a blend of zero into the high bits, 1025 // and a bitcast to the wider element type. 1026 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) { 1027 SDLoc DL(Node); 1028 EVT VT = Node->getValueType(0); 1029 int NumElements = VT.getVectorNumElements(); 1030 SDValue Src = Node->getOperand(0); 1031 EVT SrcVT = Src.getValueType(); 1032 int NumSrcElements = SrcVT.getVectorNumElements(); 1033 1034 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 1035 // into a larger vector type. 1036 if (SrcVT.bitsLE(VT)) { 1037 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 1038 "ZERO_EXTEND_VECTOR_INREG vector size mismatch"); 1039 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 1040 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 1041 NumSrcElements); 1042 Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), 1043 Src, DAG.getVectorIdxConstant(0, DL)); 1044 } 1045 1046 // Build up a zero vector to blend into this one. 1047 SDValue Zero = DAG.getConstant(0, DL, SrcVT); 1048 1049 // Shuffle the incoming lanes into the correct position, and pull all other 1050 // lanes from the zero vector. 1051 auto ShuffleMask = llvm::to_vector<16>(llvm::seq<int>(0, NumSrcElements)); 1052 1053 int ExtLaneScale = NumSrcElements / NumElements; 1054 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 1055 for (int i = 0; i < NumElements; ++i) 1056 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 1057 1058 return DAG.getNode(ISD::BITCAST, DL, VT, 1059 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 1060 } 1061 1062 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) { 1063 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 1064 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 1065 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 1066 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 1067 } 1068 1069 SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) { 1070 EVT VT = Node->getValueType(0); 1071 1072 // Scalable vectors can't use shuffle expansion. 1073 if (VT.isScalableVector()) 1074 return TLI.expandBSWAP(Node, DAG); 1075 1076 // Generate a byte wise shuffle mask for the BSWAP. 1077 SmallVector<int, 16> ShuffleMask; 1078 createBSWAPShuffleMask(VT, ShuffleMask); 1079 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 1080 1081 // Only emit a shuffle if the mask is legal. 1082 if (TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) { 1083 SDLoc DL(Node); 1084 SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0)); 1085 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); 1086 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 1087 } 1088 1089 // If we have the appropriate vector bit operations, it is better to use them 1090 // than unrolling and expanding each component. 1091 if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 1092 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 1093 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) && 1094 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) 1095 return TLI.expandBSWAP(Node, DAG); 1096 1097 // Otherwise unroll. 1098 return DAG.UnrollVectorOp(Node); 1099 } 1100 1101 void VectorLegalizer::ExpandBITREVERSE(SDNode *Node, 1102 SmallVectorImpl<SDValue> &Results) { 1103 EVT VT = Node->getValueType(0); 1104 1105 // We can't unroll or use shuffles for scalable vectors. 1106 if (VT.isScalableVector()) { 1107 Results.push_back(TLI.expandBITREVERSE(Node, DAG)); 1108 return; 1109 } 1110 1111 // If we have the scalar operation, it's probably cheaper to unroll it. 1112 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) { 1113 SDValue Tmp = DAG.UnrollVectorOp(Node); 1114 Results.push_back(Tmp); 1115 return; 1116 } 1117 1118 // If the vector element width is a whole number of bytes, test if its legal 1119 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte 1120 // vector. This greatly reduces the number of bit shifts necessary. 1121 unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); 1122 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { 1123 SmallVector<int, 16> BSWAPMask; 1124 createBSWAPShuffleMask(VT, BSWAPMask); 1125 1126 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); 1127 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && 1128 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || 1129 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && 1130 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && 1131 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && 1132 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { 1133 SDLoc DL(Node); 1134 SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0)); 1135 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 1136 BSWAPMask); 1137 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); 1138 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 1139 Results.push_back(Op); 1140 return; 1141 } 1142 } 1143 1144 // If we have the appropriate vector bit operations, it is better to use them 1145 // than unrolling and expanding each component. 1146 if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 1147 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 1148 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) && 1149 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) { 1150 Results.push_back(TLI.expandBITREVERSE(Node, DAG)); 1151 return; 1152 } 1153 1154 // Otherwise unroll. 1155 SDValue Tmp = DAG.UnrollVectorOp(Node); 1156 Results.push_back(Tmp); 1157 } 1158 1159 SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) { 1160 // Implement VSELECT in terms of XOR, AND, OR 1161 // on platforms which do not support blend natively. 1162 SDLoc DL(Node); 1163 1164 SDValue Mask = Node->getOperand(0); 1165 SDValue Op1 = Node->getOperand(1); 1166 SDValue Op2 = Node->getOperand(2); 1167 1168 EVT VT = Mask.getValueType(); 1169 1170 // If we can't even use the basic vector operations of 1171 // AND,OR,XOR, we will have to scalarize the op. 1172 // Notice that the operation may be 'promoted' which means that it is 1173 // 'bitcasted' to another type which is handled. 1174 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 1175 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 1176 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand) 1177 return DAG.UnrollVectorOp(Node); 1178 1179 // This operation also isn't safe with AND, OR, XOR when the boolean type is 1180 // 0/1 and the select operands aren't also booleans, as we need an all-ones 1181 // vector constant to mask with. 1182 // FIXME: Sign extend 1 to all ones if that's legal on the target. 1183 auto BoolContents = TLI.getBooleanContents(Op1.getValueType()); 1184 if (BoolContents != TargetLowering::ZeroOrNegativeOneBooleanContent && 1185 !(BoolContents == TargetLowering::ZeroOrOneBooleanContent && 1186 Op1.getValueType().getVectorElementType() == MVT::i1)) 1187 return DAG.UnrollVectorOp(Node); 1188 1189 // If the mask and the type are different sizes, unroll the vector op. This 1190 // can occur when getSetCCResultType returns something that is different in 1191 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 1192 if (VT.getSizeInBits() != Op1.getValueSizeInBits()) 1193 return DAG.UnrollVectorOp(Node); 1194 1195 // Bitcast the operands to be the same type as the mask. 1196 // This is needed when we select between FP types because 1197 // the mask is a vector of integers. 1198 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 1199 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 1200 1201 SDValue NotMask = DAG.getNOT(DL, Mask, VT); 1202 1203 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 1204 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 1205 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 1206 return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val); 1207 } 1208 1209 SDValue VectorLegalizer::ExpandVP_SELECT(SDNode *Node) { 1210 // Implement VP_SELECT in terms of VP_XOR, VP_AND and VP_OR on platforms which 1211 // do not support it natively. 1212 SDLoc DL(Node); 1213 1214 SDValue Mask = Node->getOperand(0); 1215 SDValue Op1 = Node->getOperand(1); 1216 SDValue Op2 = Node->getOperand(2); 1217 SDValue EVL = Node->getOperand(3); 1218 1219 EVT VT = Mask.getValueType(); 1220 1221 // If we can't even use the basic vector operations of 1222 // VP_AND,VP_OR,VP_XOR, we will have to scalarize the op. 1223 if (TLI.getOperationAction(ISD::VP_AND, VT) == TargetLowering::Expand || 1224 TLI.getOperationAction(ISD::VP_XOR, VT) == TargetLowering::Expand || 1225 TLI.getOperationAction(ISD::VP_OR, VT) == TargetLowering::Expand) 1226 return DAG.UnrollVectorOp(Node); 1227 1228 // This operation also isn't safe when the operands aren't also booleans. 1229 if (Op1.getValueType().getVectorElementType() != MVT::i1) 1230 return DAG.UnrollVectorOp(Node); 1231 1232 SDValue Ones = DAG.getAllOnesConstant(DL, VT); 1233 SDValue NotMask = DAG.getNode(ISD::VP_XOR, DL, VT, Mask, Ones, Mask, EVL); 1234 1235 Op1 = DAG.getNode(ISD::VP_AND, DL, VT, Op1, Mask, Mask, EVL); 1236 Op2 = DAG.getNode(ISD::VP_AND, DL, VT, Op2, NotMask, Mask, EVL); 1237 return DAG.getNode(ISD::VP_OR, DL, VT, Op1, Op2, Mask, EVL); 1238 } 1239 1240 SDValue VectorLegalizer::ExpandVP_MERGE(SDNode *Node) { 1241 // Implement VP_MERGE in terms of VSELECT. Construct a mask where vector 1242 // indices less than the EVL/pivot are true. Combine that with the original 1243 // mask for a full-length mask. Use a full-length VSELECT to select between 1244 // the true and false values. 1245 SDLoc DL(Node); 1246 1247 SDValue Mask = Node->getOperand(0); 1248 SDValue Op1 = Node->getOperand(1); 1249 SDValue Op2 = Node->getOperand(2); 1250 SDValue EVL = Node->getOperand(3); 1251 1252 EVT MaskVT = Mask.getValueType(); 1253 bool IsFixedLen = MaskVT.isFixedLengthVector(); 1254 1255 EVT EVLVecVT = EVT::getVectorVT(*DAG.getContext(), EVL.getValueType(), 1256 MaskVT.getVectorElementCount()); 1257 1258 // If we can't construct the EVL mask efficiently, it's better to unroll. 1259 if ((IsFixedLen && 1260 !TLI.isOperationLegalOrCustom(ISD::BUILD_VECTOR, EVLVecVT)) || 1261 (!IsFixedLen && 1262 (!TLI.isOperationLegalOrCustom(ISD::STEP_VECTOR, EVLVecVT) || 1263 !TLI.isOperationLegalOrCustom(ISD::SPLAT_VECTOR, EVLVecVT)))) 1264 return DAG.UnrollVectorOp(Node); 1265 1266 // If using a SETCC would result in a different type than the mask type, 1267 // unroll. 1268 if (TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1269 EVLVecVT) != MaskVT) 1270 return DAG.UnrollVectorOp(Node); 1271 1272 SDValue StepVec = DAG.getStepVector(DL, EVLVecVT); 1273 SDValue SplatEVL = IsFixedLen ? DAG.getSplatBuildVector(EVLVecVT, DL, EVL) 1274 : DAG.getSplatVector(EVLVecVT, DL, EVL); 1275 SDValue EVLMask = 1276 DAG.getSetCC(DL, MaskVT, StepVec, SplatEVL, ISD::CondCode::SETULT); 1277 1278 SDValue FullMask = DAG.getNode(ISD::AND, DL, MaskVT, Mask, EVLMask); 1279 return DAG.getSelect(DL, Node->getValueType(0), FullMask, Op1, Op2); 1280 } 1281 1282 void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node, 1283 SmallVectorImpl<SDValue> &Results) { 1284 // Attempt to expand using TargetLowering. 1285 SDValue Result, Chain; 1286 if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) { 1287 Results.push_back(Result); 1288 if (Node->isStrictFPOpcode()) 1289 Results.push_back(Chain); 1290 return; 1291 } 1292 1293 // Otherwise go ahead and unroll. 1294 if (Node->isStrictFPOpcode()) { 1295 UnrollStrictFPOp(Node, Results); 1296 return; 1297 } 1298 1299 Results.push_back(DAG.UnrollVectorOp(Node)); 1300 } 1301 1302 void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node, 1303 SmallVectorImpl<SDValue> &Results) { 1304 bool IsStrict = Node->isStrictFPOpcode(); 1305 unsigned OpNo = IsStrict ? 1 : 0; 1306 SDValue Src = Node->getOperand(OpNo); 1307 EVT VT = Src.getValueType(); 1308 SDLoc DL(Node); 1309 1310 // Attempt to expand using TargetLowering. 1311 SDValue Result; 1312 SDValue Chain; 1313 if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) { 1314 Results.push_back(Result); 1315 if (IsStrict) 1316 Results.push_back(Chain); 1317 return; 1318 } 1319 1320 // Make sure that the SINT_TO_FP and SRL instructions are available. 1321 if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) == 1322 TargetLowering::Expand) || 1323 (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) == 1324 TargetLowering::Expand)) || 1325 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) { 1326 if (IsStrict) { 1327 UnrollStrictFPOp(Node, Results); 1328 return; 1329 } 1330 1331 Results.push_back(DAG.UnrollVectorOp(Node)); 1332 return; 1333 } 1334 1335 unsigned BW = VT.getScalarSizeInBits(); 1336 assert((BW == 64 || BW == 32) && 1337 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 1338 1339 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT); 1340 1341 // Constants to clear the upper part of the word. 1342 // Notice that we can also use SHL+SHR, but using a constant is slightly 1343 // faster on x86. 1344 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; 1345 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 1346 1347 // Two to the power of half-word-size. 1348 SDValue TWOHW = 1349 DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0)); 1350 1351 // Clear upper part of LO, lower HI 1352 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord); 1353 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask); 1354 1355 if (IsStrict) { 1356 // Convert hi and lo to floats 1357 // Convert the hi part back to the upper values 1358 // TODO: Can any fast-math-flags be set on these nodes? 1359 SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, 1360 {Node->getValueType(0), MVT::Other}, 1361 {Node->getOperand(0), HI}); 1362 fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other}, 1363 {fHI.getValue(1), fHI, TWOHW}); 1364 SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, 1365 {Node->getValueType(0), MVT::Other}, 1366 {Node->getOperand(0), LO}); 1367 1368 SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1), 1369 fLO.getValue(1)); 1370 1371 // Add the two halves 1372 SDValue Result = 1373 DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other}, 1374 {TF, fHI, fLO}); 1375 1376 Results.push_back(Result); 1377 Results.push_back(Result.getValue(1)); 1378 return; 1379 } 1380 1381 // Convert hi and lo to floats 1382 // Convert the hi part back to the upper values 1383 // TODO: Can any fast-math-flags be set on these nodes? 1384 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI); 1385 fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW); 1386 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO); 1387 1388 // Add the two halves 1389 Results.push_back( 1390 DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO)); 1391 } 1392 1393 SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) { 1394 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) { 1395 SDLoc DL(Node); 1396 SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0)); 1397 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. 1398 return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero, 1399 Node->getOperand(0)); 1400 } 1401 return DAG.UnrollVectorOp(Node); 1402 } 1403 1404 void VectorLegalizer::ExpandFSUB(SDNode *Node, 1405 SmallVectorImpl<SDValue> &Results) { 1406 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal, 1407 // we can defer this to operation legalization where it will be lowered as 1408 // a+(-b). 1409 EVT VT = Node->getValueType(0); 1410 if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && 1411 TLI.isOperationLegalOrCustom(ISD::FADD, VT)) 1412 return; // Defer to LegalizeDAG 1413 1414 SDValue Tmp = DAG.UnrollVectorOp(Node); 1415 Results.push_back(Tmp); 1416 } 1417 1418 void VectorLegalizer::ExpandSETCC(SDNode *Node, 1419 SmallVectorImpl<SDValue> &Results) { 1420 bool NeedInvert = false; 1421 SDLoc dl(Node); 1422 MVT OpVT = Node->getOperand(0).getSimpleValueType(); 1423 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); 1424 1425 if (TLI.getCondCodeAction(CCCode, OpVT) != TargetLowering::Expand) { 1426 Results.push_back(UnrollVSETCC(Node)); 1427 return; 1428 } 1429 1430 SDValue Chain; 1431 SDValue LHS = Node->getOperand(0); 1432 SDValue RHS = Node->getOperand(1); 1433 SDValue CC = Node->getOperand(2); 1434 bool Legalized = TLI.LegalizeSetCCCondCode(DAG, Node->getValueType(0), LHS, 1435 RHS, CC, NeedInvert, dl, Chain); 1436 1437 if (Legalized) { 1438 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 1439 // condition code, create a new SETCC node. 1440 if (CC.getNode()) 1441 LHS = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), LHS, RHS, CC, 1442 Node->getFlags()); 1443 1444 // If we expanded the SETCC by inverting the condition code, then wrap 1445 // the existing SETCC in a NOT to restore the intended condition. 1446 if (NeedInvert) 1447 LHS = DAG.getLogicalNOT(dl, LHS, LHS->getValueType(0)); 1448 } else { 1449 // Otherwise, SETCC for the given comparison type must be completely 1450 // illegal; expand it into a SELECT_CC. 1451 EVT VT = Node->getValueType(0); 1452 LHS = 1453 DAG.getNode(ISD::SELECT_CC, dl, VT, LHS, RHS, 1454 DAG.getBoolConstant(true, dl, VT, LHS.getValueType()), 1455 DAG.getBoolConstant(false, dl, VT, LHS.getValueType()), CC); 1456 LHS->setFlags(Node->getFlags()); 1457 } 1458 1459 Results.push_back(LHS); 1460 } 1461 1462 void VectorLegalizer::ExpandUADDSUBO(SDNode *Node, 1463 SmallVectorImpl<SDValue> &Results) { 1464 SDValue Result, Overflow; 1465 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 1466 Results.push_back(Result); 1467 Results.push_back(Overflow); 1468 } 1469 1470 void VectorLegalizer::ExpandSADDSUBO(SDNode *Node, 1471 SmallVectorImpl<SDValue> &Results) { 1472 SDValue Result, Overflow; 1473 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 1474 Results.push_back(Result); 1475 Results.push_back(Overflow); 1476 } 1477 1478 void VectorLegalizer::ExpandMULO(SDNode *Node, 1479 SmallVectorImpl<SDValue> &Results) { 1480 SDValue Result, Overflow; 1481 if (!TLI.expandMULO(Node, Result, Overflow, DAG)) 1482 std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node); 1483 1484 Results.push_back(Result); 1485 Results.push_back(Overflow); 1486 } 1487 1488 void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node, 1489 SmallVectorImpl<SDValue> &Results) { 1490 SDNode *N = Node; 1491 if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N), 1492 N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG)) 1493 Results.push_back(Expanded); 1494 } 1495 1496 void VectorLegalizer::ExpandStrictFPOp(SDNode *Node, 1497 SmallVectorImpl<SDValue> &Results) { 1498 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) { 1499 ExpandUINT_TO_FLOAT(Node, Results); 1500 return; 1501 } 1502 if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) { 1503 ExpandFP_TO_UINT(Node, Results); 1504 return; 1505 } 1506 1507 UnrollStrictFPOp(Node, Results); 1508 } 1509 1510 void VectorLegalizer::ExpandREM(SDNode *Node, 1511 SmallVectorImpl<SDValue> &Results) { 1512 assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) && 1513 "Expected REM node"); 1514 1515 SDValue Result; 1516 if (!TLI.expandREM(Node, Result, DAG)) 1517 Result = DAG.UnrollVectorOp(Node); 1518 Results.push_back(Result); 1519 } 1520 1521 void VectorLegalizer::UnrollStrictFPOp(SDNode *Node, 1522 SmallVectorImpl<SDValue> &Results) { 1523 EVT VT = Node->getValueType(0); 1524 EVT EltVT = VT.getVectorElementType(); 1525 unsigned NumElems = VT.getVectorNumElements(); 1526 unsigned NumOpers = Node->getNumOperands(); 1527 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1528 1529 EVT TmpEltVT = EltVT; 1530 if (Node->getOpcode() == ISD::STRICT_FSETCC || 1531 Node->getOpcode() == ISD::STRICT_FSETCCS) 1532 TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(), 1533 *DAG.getContext(), TmpEltVT); 1534 1535 EVT ValueVTs[] = {TmpEltVT, MVT::Other}; 1536 SDValue Chain = Node->getOperand(0); 1537 SDLoc dl(Node); 1538 1539 SmallVector<SDValue, 32> OpValues; 1540 SmallVector<SDValue, 32> OpChains; 1541 for (unsigned i = 0; i < NumElems; ++i) { 1542 SmallVector<SDValue, 4> Opers; 1543 SDValue Idx = DAG.getVectorIdxConstant(i, dl); 1544 1545 // The Chain is the first operand. 1546 Opers.push_back(Chain); 1547 1548 // Now process the remaining operands. 1549 for (unsigned j = 1; j < NumOpers; ++j) { 1550 SDValue Oper = Node->getOperand(j); 1551 EVT OperVT = Oper.getValueType(); 1552 1553 if (OperVT.isVector()) 1554 Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 1555 OperVT.getVectorElementType(), Oper, Idx); 1556 1557 Opers.push_back(Oper); 1558 } 1559 1560 SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers); 1561 SDValue ScalarResult = ScalarOp.getValue(0); 1562 SDValue ScalarChain = ScalarOp.getValue(1); 1563 1564 if (Node->getOpcode() == ISD::STRICT_FSETCC || 1565 Node->getOpcode() == ISD::STRICT_FSETCCS) 1566 ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult, 1567 DAG.getAllOnesConstant(dl, EltVT), 1568 DAG.getConstant(0, dl, EltVT)); 1569 1570 OpValues.push_back(ScalarResult); 1571 OpChains.push_back(ScalarChain); 1572 } 1573 1574 SDValue Result = DAG.getBuildVector(VT, dl, OpValues); 1575 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains); 1576 1577 Results.push_back(Result); 1578 Results.push_back(NewChain); 1579 } 1580 1581 SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) { 1582 EVT VT = Node->getValueType(0); 1583 unsigned NumElems = VT.getVectorNumElements(); 1584 EVT EltVT = VT.getVectorElementType(); 1585 SDValue LHS = Node->getOperand(0); 1586 SDValue RHS = Node->getOperand(1); 1587 SDValue CC = Node->getOperand(2); 1588 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1589 SDLoc dl(Node); 1590 SmallVector<SDValue, 8> Ops(NumElems); 1591 for (unsigned i = 0; i < NumElems; ++i) { 1592 SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1593 DAG.getVectorIdxConstant(i, dl)); 1594 SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1595 DAG.getVectorIdxConstant(i, dl)); 1596 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1597 TLI.getSetCCResultType(DAG.getDataLayout(), 1598 *DAG.getContext(), TmpEltVT), 1599 LHSElem, RHSElem, CC); 1600 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], DAG.getAllOnesConstant(dl, EltVT), 1601 DAG.getConstant(0, dl, EltVT)); 1602 } 1603 return DAG.getBuildVector(VT, dl, Ops); 1604 } 1605 1606 bool SelectionDAG::LegalizeVectors() { 1607 return VectorLegalizer(*this).Run(); 1608 } 1609