1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::LegalizeVectors method. 10 // 11 // The vector legalizer looks for vector operations which might need to be 12 // scalarized and legalizes them. This is a separate step from Legalize because 13 // scalarizing can introduce illegal types. For example, suppose we have an 14 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 16 // operation, which introduces nodes with the illegal type i64 which must be 17 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 18 // the operation must be unrolled, which introduces nodes with the illegal 19 // type i8 which must be promoted. 20 // 21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 22 // or operations that happen to take a vector which are custom-lowered; 23 // the legalization for such operations never produces nodes 24 // with illegal types, so it's okay to put off legalizing them until 25 // SelectionDAG::Legalize runs. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/SelectionDAGNodes.h" 36 #include "llvm/CodeGen/TargetLowering.h" 37 #include "llvm/CodeGen/ValueTypes.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Support/MachineValueType.h" 43 #include "llvm/Support/MathExtras.h" 44 #include <cassert> 45 #include <cstdint> 46 #include <iterator> 47 #include <utility> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "legalizevectorops" 52 53 namespace { 54 55 class VectorLegalizer { 56 SelectionDAG& DAG; 57 const TargetLowering &TLI; 58 bool Changed = false; // Keep track of whether anything changed 59 60 /// For nodes that are of legal width, and that have more than one use, this 61 /// map indicates what regularized operand to use. This allows us to avoid 62 /// legalizing the same thing more than once. 63 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 64 65 /// Adds a node to the translation cache. 66 void AddLegalizedOperand(SDValue From, SDValue To) { 67 LegalizedNodes.insert(std::make_pair(From, To)); 68 // If someone requests legalization of the new node, return itself. 69 if (From != To) 70 LegalizedNodes.insert(std::make_pair(To, To)); 71 } 72 73 /// Legalizes the given node. 74 SDValue LegalizeOp(SDValue Op); 75 76 /// Assuming the node is legal, "legalize" the results. 77 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); 78 79 /// Implements unrolling a VSETCC. 80 SDValue UnrollVSETCC(SDValue Op); 81 82 /// Implement expand-based legalization of vector operations. 83 /// 84 /// This is just a high-level routine to dispatch to specific code paths for 85 /// operations to legalize them. 86 SDValue Expand(SDValue Op); 87 88 /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if 89 /// FP_TO_SINT isn't legal. 90 SDValue ExpandFP_TO_UINT(SDValue Op); 91 92 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 93 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 94 SDValue ExpandUINT_TO_FLOAT(SDValue Op); 95 96 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 97 SDValue ExpandSEXTINREG(SDValue Op); 98 99 /// Implement expansion for ANY_EXTEND_VECTOR_INREG. 100 /// 101 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 102 /// type. The contents of the bits in the extended part of each element are 103 /// undef. 104 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op); 105 106 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG. 107 /// 108 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 109 /// type, then shifts left and arithmetic shifts right to introduce a sign 110 /// extension. 111 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op); 112 113 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG. 114 /// 115 /// Shuffles the low lanes of the operand into place and blends zeros into 116 /// the remaining lanes, finally bitcasting to the proper type. 117 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op); 118 119 /// Implement expand-based legalization of ABS vector operations. 120 /// If following expanding is legal/custom then do it: 121 /// (ABS x) --> (XOR (ADD x, (SRA x, sizeof(x)-1)), (SRA x, sizeof(x)-1)) 122 /// else unroll the operation. 123 SDValue ExpandABS(SDValue Op); 124 125 /// Expand bswap of vectors into a shuffle if legal. 126 SDValue ExpandBSWAP(SDValue Op); 127 128 /// Implement vselect in terms of XOR, AND, OR when blend is not 129 /// supported by the target. 130 SDValue ExpandVSELECT(SDValue Op); 131 SDValue ExpandSELECT(SDValue Op); 132 SDValue ExpandLoad(SDValue Op); 133 SDValue ExpandStore(SDValue Op); 134 SDValue ExpandFNEG(SDValue Op); 135 SDValue ExpandFSUB(SDValue Op); 136 SDValue ExpandBITREVERSE(SDValue Op); 137 SDValue ExpandCTPOP(SDValue Op); 138 SDValue ExpandCTLZ(SDValue Op); 139 SDValue ExpandCTTZ(SDValue Op); 140 SDValue ExpandFunnelShift(SDValue Op); 141 SDValue ExpandROT(SDValue Op); 142 SDValue ExpandFMINNUM_FMAXNUM(SDValue Op); 143 SDValue ExpandUADDSUBO(SDValue Op); 144 SDValue ExpandSADDSUBO(SDValue Op); 145 SDValue ExpandMULO(SDValue Op); 146 SDValue ExpandAddSubSat(SDValue Op); 147 SDValue ExpandFixedPointMul(SDValue Op); 148 SDValue ExpandStrictFPOp(SDValue Op); 149 150 /// Implements vector promotion. 151 /// 152 /// This is essentially just bitcasting the operands to a different type and 153 /// bitcasting the result back to the original type. 154 SDValue Promote(SDValue Op); 155 156 /// Implements [SU]INT_TO_FP vector promotion. 157 /// 158 /// This is a [zs]ext of the input operand to a larger integer type. 159 SDValue PromoteINT_TO_FP(SDValue Op); 160 161 /// Implements FP_TO_[SU]INT vector promotion of the result type. 162 /// 163 /// It is promoted to a larger integer type. The result is then 164 /// truncated back to the original type. 165 SDValue PromoteFP_TO_INT(SDValue Op); 166 167 public: 168 VectorLegalizer(SelectionDAG& dag) : 169 DAG(dag), TLI(dag.getTargetLoweringInfo()) {} 170 171 /// Begin legalizer the vector operations in the DAG. 172 bool Run(); 173 }; 174 175 } // end anonymous namespace 176 177 bool VectorLegalizer::Run() { 178 // Before we start legalizing vector nodes, check if there are any vectors. 179 bool HasVectors = false; 180 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 181 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 182 // Check if the values of the nodes contain vectors. We don't need to check 183 // the operands because we are going to check their values at some point. 184 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); 185 J != E; ++J) 186 HasVectors |= J->isVector(); 187 188 // If we found a vector node we can start the legalization. 189 if (HasVectors) 190 break; 191 } 192 193 // If this basic block has no vectors then no need to legalize vectors. 194 if (!HasVectors) 195 return false; 196 197 // The legalize process is inherently a bottom-up recursive process (users 198 // legalize their uses before themselves). Given infinite stack space, we 199 // could just start legalizing on the root and traverse the whole graph. In 200 // practice however, this causes us to run out of stack space on large basic 201 // blocks. To avoid this problem, compute an ordering of the nodes where each 202 // node is only legalized after all of its operands are legalized. 203 DAG.AssignTopologicalOrder(); 204 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 205 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 206 LegalizeOp(SDValue(&*I, 0)); 207 208 // Finally, it's possible the root changed. Get the new root. 209 SDValue OldRoot = DAG.getRoot(); 210 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 211 DAG.setRoot(LegalizedNodes[OldRoot]); 212 213 LegalizedNodes.clear(); 214 215 // Remove dead nodes now. 216 DAG.RemoveDeadNodes(); 217 218 return Changed; 219 } 220 221 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { 222 // Generic legalization: just pass the operand through. 223 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) 224 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 225 return Result.getValue(Op.getResNo()); 226 } 227 228 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 229 // Note that LegalizeOp may be reentered even from single-use nodes, which 230 // means that we always must cache transformed nodes. 231 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 232 if (I != LegalizedNodes.end()) return I->second; 233 234 SDNode* Node = Op.getNode(); 235 236 // Legalize the operands 237 SmallVector<SDValue, 8> Ops; 238 for (const SDValue &Op : Node->op_values()) 239 Ops.push_back(LegalizeOp(Op)); 240 241 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 242 Op.getResNo()); 243 244 if (Op.getOpcode() == ISD::LOAD) { 245 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 246 ISD::LoadExtType ExtType = LD->getExtensionType(); 247 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) { 248 LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: "; 249 Node->dump(&DAG)); 250 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), 251 LD->getMemoryVT())) { 252 default: llvm_unreachable("This action is not supported yet!"); 253 case TargetLowering::Legal: 254 return TranslateLegalizeResults(Op, Result); 255 case TargetLowering::Custom: 256 if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) { 257 assert(Lowered->getNumValues() == Op->getNumValues() && 258 "Unexpected number of results"); 259 if (Lowered != Result) { 260 // Make sure the new code is also legal. 261 Lowered = LegalizeOp(Lowered); 262 Changed = true; 263 } 264 return TranslateLegalizeResults(Op, Lowered); 265 } 266 LLVM_FALLTHROUGH; 267 case TargetLowering::Expand: 268 Changed = true; 269 return ExpandLoad(Op); 270 } 271 } 272 } else if (Op.getOpcode() == ISD::STORE) { 273 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 274 EVT StVT = ST->getMemoryVT(); 275 MVT ValVT = ST->getValue().getSimpleValueType(); 276 if (StVT.isVector() && ST->isTruncatingStore()) { 277 LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: "; 278 Node->dump(&DAG)); 279 switch (TLI.getTruncStoreAction(ValVT, StVT)) { 280 default: llvm_unreachable("This action is not supported yet!"); 281 case TargetLowering::Legal: 282 return TranslateLegalizeResults(Op, Result); 283 case TargetLowering::Custom: { 284 SDValue Lowered = TLI.LowerOperation(Result, DAG); 285 if (Lowered != Result) { 286 // Make sure the new code is also legal. 287 Lowered = LegalizeOp(Lowered); 288 Changed = true; 289 } 290 return TranslateLegalizeResults(Op, Lowered); 291 } 292 case TargetLowering::Expand: 293 Changed = true; 294 return ExpandStore(Op); 295 } 296 } 297 } 298 299 bool HasVectorValueOrOp = false; 300 for (auto J = Node->value_begin(), E = Node->value_end(); J != E; ++J) 301 HasVectorValueOrOp |= J->isVector(); 302 for (const SDValue &Op : Node->op_values()) 303 HasVectorValueOrOp |= Op.getValueType().isVector(); 304 305 if (!HasVectorValueOrOp) 306 return TranslateLegalizeResults(Op, Result); 307 308 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 309 switch (Op.getOpcode()) { 310 default: 311 return TranslateLegalizeResults(Op, Result); 312 case ISD::STRICT_FADD: 313 case ISD::STRICT_FSUB: 314 case ISD::STRICT_FMUL: 315 case ISD::STRICT_FDIV: 316 case ISD::STRICT_FREM: 317 case ISD::STRICT_FSQRT: 318 case ISD::STRICT_FMA: 319 case ISD::STRICT_FPOW: 320 case ISD::STRICT_FPOWI: 321 case ISD::STRICT_FSIN: 322 case ISD::STRICT_FCOS: 323 case ISD::STRICT_FEXP: 324 case ISD::STRICT_FEXP2: 325 case ISD::STRICT_FLOG: 326 case ISD::STRICT_FLOG10: 327 case ISD::STRICT_FLOG2: 328 case ISD::STRICT_FRINT: 329 case ISD::STRICT_FNEARBYINT: 330 case ISD::STRICT_FMAXNUM: 331 case ISD::STRICT_FMINNUM: 332 case ISD::STRICT_FCEIL: 333 case ISD::STRICT_FFLOOR: 334 case ISD::STRICT_FROUND: 335 case ISD::STRICT_FTRUNC: 336 case ISD::STRICT_FP_ROUND: 337 case ISD::STRICT_FP_EXTEND: 338 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 339 // If we're asked to expand a strict vector floating-point operation, 340 // by default we're going to simply unroll it. That is usually the 341 // best approach, except in the case where the resulting strict (scalar) 342 // operations would themselves use the fallback mutation to non-strict. 343 // In that specific case, just do the fallback on the vector op. 344 if (Action == TargetLowering::Expand && 345 TLI.getStrictFPOperationAction(Node->getOpcode(), 346 Node->getValueType(0)) 347 == TargetLowering::Legal) { 348 EVT EltVT = Node->getValueType(0).getVectorElementType(); 349 if (TLI.getOperationAction(Node->getOpcode(), EltVT) 350 == TargetLowering::Expand && 351 TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT) 352 == TargetLowering::Legal) 353 Action = TargetLowering::Legal; 354 } 355 break; 356 case ISD::ADD: 357 case ISD::SUB: 358 case ISD::MUL: 359 case ISD::MULHS: 360 case ISD::MULHU: 361 case ISD::SDIV: 362 case ISD::UDIV: 363 case ISD::SREM: 364 case ISD::UREM: 365 case ISD::SDIVREM: 366 case ISD::UDIVREM: 367 case ISD::FADD: 368 case ISD::FSUB: 369 case ISD::FMUL: 370 case ISD::FDIV: 371 case ISD::FREM: 372 case ISD::AND: 373 case ISD::OR: 374 case ISD::XOR: 375 case ISD::SHL: 376 case ISD::SRA: 377 case ISD::SRL: 378 case ISD::FSHL: 379 case ISD::FSHR: 380 case ISD::ROTL: 381 case ISD::ROTR: 382 case ISD::ABS: 383 case ISD::BSWAP: 384 case ISD::BITREVERSE: 385 case ISD::CTLZ: 386 case ISD::CTTZ: 387 case ISD::CTLZ_ZERO_UNDEF: 388 case ISD::CTTZ_ZERO_UNDEF: 389 case ISD::CTPOP: 390 case ISD::SELECT: 391 case ISD::VSELECT: 392 case ISD::SELECT_CC: 393 case ISD::SETCC: 394 case ISD::ZERO_EXTEND: 395 case ISD::ANY_EXTEND: 396 case ISD::TRUNCATE: 397 case ISD::SIGN_EXTEND: 398 case ISD::FP_TO_SINT: 399 case ISD::FP_TO_UINT: 400 case ISD::FNEG: 401 case ISD::FABS: 402 case ISD::FMINNUM: 403 case ISD::FMAXNUM: 404 case ISD::FMINNUM_IEEE: 405 case ISD::FMAXNUM_IEEE: 406 case ISD::FMINIMUM: 407 case ISD::FMAXIMUM: 408 case ISD::FCOPYSIGN: 409 case ISD::FSQRT: 410 case ISD::FSIN: 411 case ISD::FCOS: 412 case ISD::FPOWI: 413 case ISD::FPOW: 414 case ISD::FLOG: 415 case ISD::FLOG2: 416 case ISD::FLOG10: 417 case ISD::FEXP: 418 case ISD::FEXP2: 419 case ISD::FCEIL: 420 case ISD::FTRUNC: 421 case ISD::FRINT: 422 case ISD::FNEARBYINT: 423 case ISD::FROUND: 424 case ISD::FFLOOR: 425 case ISD::FP_ROUND: 426 case ISD::FP_EXTEND: 427 case ISD::FMA: 428 case ISD::SIGN_EXTEND_INREG: 429 case ISD::ANY_EXTEND_VECTOR_INREG: 430 case ISD::SIGN_EXTEND_VECTOR_INREG: 431 case ISD::ZERO_EXTEND_VECTOR_INREG: 432 case ISD::SMIN: 433 case ISD::SMAX: 434 case ISD::UMIN: 435 case ISD::UMAX: 436 case ISD::SMUL_LOHI: 437 case ISD::UMUL_LOHI: 438 case ISD::SADDO: 439 case ISD::UADDO: 440 case ISD::SSUBO: 441 case ISD::USUBO: 442 case ISD::SMULO: 443 case ISD::UMULO: 444 case ISD::FCANONICALIZE: 445 case ISD::SADDSAT: 446 case ISD::UADDSAT: 447 case ISD::SSUBSAT: 448 case ISD::USUBSAT: 449 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 450 break; 451 case ISD::SMULFIX: 452 case ISD::SMULFIXSAT: 453 case ISD::UMULFIX: { 454 unsigned Scale = Node->getConstantOperandVal(2); 455 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 456 Node->getValueType(0), Scale); 457 break; 458 } 459 case ISD::FP_ROUND_INREG: 460 Action = TLI.getOperationAction(Node->getOpcode(), 461 cast<VTSDNode>(Node->getOperand(1))->getVT()); 462 break; 463 case ISD::SINT_TO_FP: 464 case ISD::UINT_TO_FP: 465 case ISD::VECREDUCE_ADD: 466 case ISD::VECREDUCE_MUL: 467 case ISD::VECREDUCE_AND: 468 case ISD::VECREDUCE_OR: 469 case ISD::VECREDUCE_XOR: 470 case ISD::VECREDUCE_SMAX: 471 case ISD::VECREDUCE_SMIN: 472 case ISD::VECREDUCE_UMAX: 473 case ISD::VECREDUCE_UMIN: 474 case ISD::VECREDUCE_FADD: 475 case ISD::VECREDUCE_FMUL: 476 case ISD::VECREDUCE_FMAX: 477 case ISD::VECREDUCE_FMIN: 478 Action = TLI.getOperationAction(Node->getOpcode(), 479 Node->getOperand(0).getValueType()); 480 break; 481 } 482 483 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG)); 484 485 switch (Action) { 486 default: llvm_unreachable("This action is not supported yet!"); 487 case TargetLowering::Promote: 488 Result = Promote(Op); 489 Changed = true; 490 break; 491 case TargetLowering::Legal: 492 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 493 break; 494 case TargetLowering::Custom: { 495 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 496 if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) { 497 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 498 Result = Tmp1; 499 break; 500 } 501 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 502 LLVM_FALLTHROUGH; 503 } 504 case TargetLowering::Expand: 505 Result = Expand(Op); 506 } 507 508 // Make sure that the generated code is itself legal. 509 if (Result != Op) { 510 Result = LegalizeOp(Result); 511 Changed = true; 512 } 513 514 // Note that LegalizeOp may be reentered even from single-use nodes, which 515 // means that we always must cache transformed nodes. 516 AddLegalizedOperand(Op, Result); 517 return Result; 518 } 519 520 SDValue VectorLegalizer::Promote(SDValue Op) { 521 // For a few operations there is a specific concept for promotion based on 522 // the operand's type. 523 switch (Op.getOpcode()) { 524 case ISD::SINT_TO_FP: 525 case ISD::UINT_TO_FP: 526 // "Promote" the operation by extending the operand. 527 return PromoteINT_TO_FP(Op); 528 case ISD::FP_TO_UINT: 529 case ISD::FP_TO_SINT: 530 // Promote the operation by extending the operand. 531 return PromoteFP_TO_INT(Op); 532 } 533 534 // There are currently two cases of vector promotion: 535 // 1) Bitcasting a vector of integers to a different type to a vector of the 536 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 537 // 2) Extending a vector of floats to a vector of the same number of larger 538 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 539 MVT VT = Op.getSimpleValueType(); 540 assert(Op.getNode()->getNumValues() == 1 && 541 "Can't promote a vector with multiple results!"); 542 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 543 SDLoc dl(Op); 544 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 545 546 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 547 if (Op.getOperand(j).getValueType().isVector()) 548 if (Op.getOperand(j) 549 .getValueType() 550 .getVectorElementType() 551 .isFloatingPoint() && 552 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 553 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j)); 554 else 555 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); 556 else 557 Operands[j] = Op.getOperand(j); 558 } 559 560 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags()); 561 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 562 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 563 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 564 return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl)); 565 else 566 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 567 } 568 569 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) { 570 // INT_TO_FP operations may require the input operand be promoted even 571 // when the type is otherwise legal. 572 MVT VT = Op.getOperand(0).getSimpleValueType(); 573 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 574 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 575 "Vectors have different number of elements!"); 576 577 SDLoc dl(Op); 578 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 579 580 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : 581 ISD::SIGN_EXTEND; 582 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 583 if (Op.getOperand(j).getValueType().isVector()) 584 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j)); 585 else 586 Operands[j] = Op.getOperand(j); 587 } 588 589 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands); 590 } 591 592 // For FP_TO_INT we promote the result type to a vector type with wider 593 // elements and then truncate the result. This is different from the default 594 // PromoteVector which uses bitcast to promote thus assumning that the 595 // promoted vector type has the same overall size. 596 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op) { 597 MVT VT = Op.getSimpleValueType(); 598 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 599 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 600 "Vectors have different number of elements!"); 601 602 unsigned NewOpc = Op->getOpcode(); 603 // Change FP_TO_UINT to FP_TO_SINT if possible. 604 // TODO: Should we only do this if FP_TO_UINT itself isn't legal? 605 if (NewOpc == ISD::FP_TO_UINT && 606 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT)) 607 NewOpc = ISD::FP_TO_SINT; 608 609 SDLoc dl(Op); 610 SDValue Promoted = DAG.getNode(NewOpc, dl, NVT, Op.getOperand(0)); 611 612 // Assert that the converted value fits in the original type. If it doesn't 613 // (eg: because the value being converted is too big), then the result of the 614 // original operation was undefined anyway, so the assert is still correct. 615 Promoted = DAG.getNode(Op->getOpcode() == ISD::FP_TO_UINT ? ISD::AssertZext 616 : ISD::AssertSext, 617 dl, NVT, Promoted, 618 DAG.getValueType(VT.getScalarType())); 619 return DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted); 620 } 621 622 SDValue VectorLegalizer::ExpandLoad(SDValue Op) { 623 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 624 625 EVT SrcVT = LD->getMemoryVT(); 626 EVT SrcEltVT = SrcVT.getScalarType(); 627 unsigned NumElem = SrcVT.getVectorNumElements(); 628 629 SDValue NewChain; 630 SDValue Value; 631 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { 632 SDLoc dl(Op); 633 634 SmallVector<SDValue, 8> Vals; 635 SmallVector<SDValue, 8> LoadChains; 636 637 EVT DstEltVT = LD->getValueType(0).getScalarType(); 638 SDValue Chain = LD->getChain(); 639 SDValue BasePTR = LD->getBasePtr(); 640 ISD::LoadExtType ExtType = LD->getExtensionType(); 641 642 // When elements in a vector is not byte-addressable, we cannot directly 643 // load each element by advancing pointer, which could only address bytes. 644 // Instead, we load all significant words, mask bits off, and concatenate 645 // them to form each element. Finally, they are extended to destination 646 // scalar type to build the destination vector. 647 EVT WideVT = TLI.getPointerTy(DAG.getDataLayout()); 648 649 assert(WideVT.isRound() && 650 "Could not handle the sophisticated case when the widest integer is" 651 " not power of 2."); 652 assert(WideVT.bitsGE(SrcEltVT) && 653 "Type is not legalized?"); 654 655 unsigned WideBytes = WideVT.getStoreSize(); 656 unsigned Offset = 0; 657 unsigned RemainingBytes = SrcVT.getStoreSize(); 658 SmallVector<SDValue, 8> LoadVals; 659 while (RemainingBytes > 0) { 660 SDValue ScalarLoad; 661 unsigned LoadBytes = WideBytes; 662 663 if (RemainingBytes >= LoadBytes) { 664 ScalarLoad = 665 DAG.getLoad(WideVT, dl, Chain, BasePTR, 666 LD->getPointerInfo().getWithOffset(Offset), 667 MinAlign(LD->getAlignment(), Offset), 668 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 669 } else { 670 EVT LoadVT = WideVT; 671 while (RemainingBytes < LoadBytes) { 672 LoadBytes >>= 1; // Reduce the load size by half. 673 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); 674 } 675 ScalarLoad = 676 DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, 677 LD->getPointerInfo().getWithOffset(Offset), LoadVT, 678 MinAlign(LD->getAlignment(), Offset), 679 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 680 } 681 682 RemainingBytes -= LoadBytes; 683 Offset += LoadBytes; 684 685 BasePTR = DAG.getObjectPtrOffset(dl, BasePTR, LoadBytes); 686 687 LoadVals.push_back(ScalarLoad.getValue(0)); 688 LoadChains.push_back(ScalarLoad.getValue(1)); 689 } 690 691 unsigned BitOffset = 0; 692 unsigned WideIdx = 0; 693 unsigned WideBits = WideVT.getSizeInBits(); 694 695 // Extract bits, pack and extend/trunc them into destination type. 696 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 697 SDValue SrcEltBitMask = DAG.getConstant( 698 APInt::getLowBitsSet(WideBits, SrcEltBits), dl, WideVT); 699 700 for (unsigned Idx = 0; Idx != NumElem; ++Idx) { 701 assert(BitOffset < WideBits && "Unexpected offset!"); 702 703 SDValue ShAmt = DAG.getConstant( 704 BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 705 SDValue Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); 706 707 BitOffset += SrcEltBits; 708 if (BitOffset >= WideBits) { 709 WideIdx++; 710 BitOffset -= WideBits; 711 if (BitOffset > 0) { 712 ShAmt = DAG.getConstant( 713 SrcEltBits - BitOffset, dl, 714 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 715 SDValue Hi = 716 DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); 717 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); 718 } 719 } 720 721 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); 722 723 switch (ExtType) { 724 default: llvm_unreachable("Unknown extended-load op!"); 725 case ISD::EXTLOAD: 726 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); 727 break; 728 case ISD::ZEXTLOAD: 729 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); 730 break; 731 case ISD::SEXTLOAD: 732 ShAmt = 733 DAG.getConstant(WideBits - SrcEltBits, dl, 734 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 735 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); 736 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); 737 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); 738 break; 739 } 740 Vals.push_back(Lo); 741 } 742 743 NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 744 Value = DAG.getBuildVector(Op.getNode()->getValueType(0), dl, Vals); 745 } else { 746 SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG); 747 // Skip past MERGE_VALUE node if known. 748 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) { 749 NewChain = Scalarized.getOperand(1); 750 Value = Scalarized.getOperand(0); 751 } else { 752 NewChain = Scalarized.getValue(1); 753 Value = Scalarized.getValue(0); 754 } 755 } 756 757 AddLegalizedOperand(Op.getValue(0), Value); 758 AddLegalizedOperand(Op.getValue(1), NewChain); 759 760 return (Op.getResNo() ? NewChain : Value); 761 } 762 763 SDValue VectorLegalizer::ExpandStore(SDValue Op) { 764 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 765 SDValue TF = TLI.scalarizeVectorStore(ST, DAG); 766 AddLegalizedOperand(Op, TF); 767 return TF; 768 } 769 770 SDValue VectorLegalizer::Expand(SDValue Op) { 771 switch (Op->getOpcode()) { 772 case ISD::SIGN_EXTEND_INREG: 773 return ExpandSEXTINREG(Op); 774 case ISD::ANY_EXTEND_VECTOR_INREG: 775 return ExpandANY_EXTEND_VECTOR_INREG(Op); 776 case ISD::SIGN_EXTEND_VECTOR_INREG: 777 return ExpandSIGN_EXTEND_VECTOR_INREG(Op); 778 case ISD::ZERO_EXTEND_VECTOR_INREG: 779 return ExpandZERO_EXTEND_VECTOR_INREG(Op); 780 case ISD::BSWAP: 781 return ExpandBSWAP(Op); 782 case ISD::VSELECT: 783 return ExpandVSELECT(Op); 784 case ISD::SELECT: 785 return ExpandSELECT(Op); 786 case ISD::FP_TO_UINT: 787 return ExpandFP_TO_UINT(Op); 788 case ISD::UINT_TO_FP: 789 return ExpandUINT_TO_FLOAT(Op); 790 case ISD::FNEG: 791 return ExpandFNEG(Op); 792 case ISD::FSUB: 793 return ExpandFSUB(Op); 794 case ISD::SETCC: 795 return UnrollVSETCC(Op); 796 case ISD::ABS: 797 return ExpandABS(Op); 798 case ISD::BITREVERSE: 799 return ExpandBITREVERSE(Op); 800 case ISD::CTPOP: 801 return ExpandCTPOP(Op); 802 case ISD::CTLZ: 803 case ISD::CTLZ_ZERO_UNDEF: 804 return ExpandCTLZ(Op); 805 case ISD::CTTZ: 806 case ISD::CTTZ_ZERO_UNDEF: 807 return ExpandCTTZ(Op); 808 case ISD::FSHL: 809 case ISD::FSHR: 810 return ExpandFunnelShift(Op); 811 case ISD::ROTL: 812 case ISD::ROTR: 813 return ExpandROT(Op); 814 case ISD::FMINNUM: 815 case ISD::FMAXNUM: 816 return ExpandFMINNUM_FMAXNUM(Op); 817 case ISD::UADDO: 818 case ISD::USUBO: 819 return ExpandUADDSUBO(Op); 820 case ISD::SADDO: 821 case ISD::SSUBO: 822 return ExpandSADDSUBO(Op); 823 case ISD::UMULO: 824 case ISD::SMULO: 825 return ExpandMULO(Op); 826 case ISD::USUBSAT: 827 case ISD::SSUBSAT: 828 case ISD::UADDSAT: 829 case ISD::SADDSAT: 830 return ExpandAddSubSat(Op); 831 case ISD::SMULFIX: 832 case ISD::UMULFIX: 833 return ExpandFixedPointMul(Op); 834 case ISD::SMULFIXSAT: 835 // FIXME: We do not expand SMULFIXSAT here yet, not sure why. Maybe it 836 // results in worse codegen compared to the default unroll? This should 837 // probably be investigated. And if we still prefer to unroll an explanation 838 // could be helpful, otherwise it just looks like something that hasn't been 839 // "implemented" yet. 840 return DAG.UnrollVectorOp(Op.getNode()); 841 case ISD::STRICT_FADD: 842 case ISD::STRICT_FSUB: 843 case ISD::STRICT_FMUL: 844 case ISD::STRICT_FDIV: 845 case ISD::STRICT_FREM: 846 case ISD::STRICT_FSQRT: 847 case ISD::STRICT_FMA: 848 case ISD::STRICT_FPOW: 849 case ISD::STRICT_FPOWI: 850 case ISD::STRICT_FSIN: 851 case ISD::STRICT_FCOS: 852 case ISD::STRICT_FEXP: 853 case ISD::STRICT_FEXP2: 854 case ISD::STRICT_FLOG: 855 case ISD::STRICT_FLOG10: 856 case ISD::STRICT_FLOG2: 857 case ISD::STRICT_FRINT: 858 case ISD::STRICT_FNEARBYINT: 859 case ISD::STRICT_FMAXNUM: 860 case ISD::STRICT_FMINNUM: 861 case ISD::STRICT_FCEIL: 862 case ISD::STRICT_FFLOOR: 863 case ISD::STRICT_FROUND: 864 case ISD::STRICT_FTRUNC: 865 return ExpandStrictFPOp(Op); 866 case ISD::VECREDUCE_ADD: 867 case ISD::VECREDUCE_MUL: 868 case ISD::VECREDUCE_AND: 869 case ISD::VECREDUCE_OR: 870 case ISD::VECREDUCE_XOR: 871 case ISD::VECREDUCE_SMAX: 872 case ISD::VECREDUCE_SMIN: 873 case ISD::VECREDUCE_UMAX: 874 case ISD::VECREDUCE_UMIN: 875 case ISD::VECREDUCE_FADD: 876 case ISD::VECREDUCE_FMUL: 877 case ISD::VECREDUCE_FMAX: 878 case ISD::VECREDUCE_FMIN: 879 return TLI.expandVecReduce(Op.getNode(), DAG); 880 default: 881 return DAG.UnrollVectorOp(Op.getNode()); 882 } 883 } 884 885 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) { 886 // Lower a select instruction where the condition is a scalar and the 887 // operands are vectors. Lower this select to VSELECT and implement it 888 // using XOR AND OR. The selector bit is broadcasted. 889 EVT VT = Op.getValueType(); 890 SDLoc DL(Op); 891 892 SDValue Mask = Op.getOperand(0); 893 SDValue Op1 = Op.getOperand(1); 894 SDValue Op2 = Op.getOperand(2); 895 896 assert(VT.isVector() && !Mask.getValueType().isVector() 897 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 898 899 // If we can't even use the basic vector operations of 900 // AND,OR,XOR, we will have to scalarize the op. 901 // Notice that the operation may be 'promoted' which means that it is 902 // 'bitcasted' to another type which is handled. 903 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 904 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 905 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 906 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 907 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 908 return DAG.UnrollVectorOp(Op.getNode()); 909 910 // Generate a mask operand. 911 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 912 913 // What is the size of each element in the vector mask. 914 EVT BitTy = MaskTy.getScalarType(); 915 916 Mask = DAG.getSelect(DL, BitTy, Mask, 917 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, 918 BitTy), 919 DAG.getConstant(0, DL, BitTy)); 920 921 // Broadcast the mask so that the entire vector is all-one or all zero. 922 Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask); 923 924 // Bitcast the operands to be the same type as the mask. 925 // This is needed when we select between FP types because 926 // the mask is a vector of integers. 927 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 928 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 929 930 SDValue AllOnes = DAG.getConstant( 931 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy); 932 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 933 934 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 935 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 936 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 937 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 938 } 939 940 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) { 941 EVT VT = Op.getValueType(); 942 943 // Make sure that the SRA and SHL instructions are available. 944 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 945 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 946 return DAG.UnrollVectorOp(Op.getNode()); 947 948 SDLoc DL(Op); 949 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT(); 950 951 unsigned BW = VT.getScalarSizeInBits(); 952 unsigned OrigBW = OrigTy.getScalarSizeInBits(); 953 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 954 955 Op = Op.getOperand(0); 956 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz); 957 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 958 } 959 960 // Generically expand a vector anyext in register to a shuffle of the relevant 961 // lanes into the appropriate locations, with other lanes left undef. 962 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) { 963 SDLoc DL(Op); 964 EVT VT = Op.getValueType(); 965 int NumElements = VT.getVectorNumElements(); 966 SDValue Src = Op.getOperand(0); 967 EVT SrcVT = Src.getValueType(); 968 int NumSrcElements = SrcVT.getVectorNumElements(); 969 970 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 971 // into a larger vector type. 972 if (SrcVT.bitsLE(VT)) { 973 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 974 "ANY_EXTEND_VECTOR_INREG vector size mismatch"); 975 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 976 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 977 NumSrcElements); 978 Src = DAG.getNode( 979 ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), Src, 980 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 981 } 982 983 // Build a base mask of undef shuffles. 984 SmallVector<int, 16> ShuffleMask; 985 ShuffleMask.resize(NumSrcElements, -1); 986 987 // Place the extended lanes into the correct locations. 988 int ExtLaneScale = NumSrcElements / NumElements; 989 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 990 for (int i = 0; i < NumElements; ++i) 991 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 992 993 return DAG.getNode( 994 ISD::BITCAST, DL, VT, 995 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 996 } 997 998 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) { 999 SDLoc DL(Op); 1000 EVT VT = Op.getValueType(); 1001 SDValue Src = Op.getOperand(0); 1002 EVT SrcVT = Src.getValueType(); 1003 1004 // First build an any-extend node which can be legalized above when we 1005 // recurse through it. 1006 Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src); 1007 1008 // Now we need sign extend. Do this by shifting the elements. Even if these 1009 // aren't legal operations, they have a better chance of being legalized 1010 // without full scalarization than the sign extension does. 1011 unsigned EltWidth = VT.getScalarSizeInBits(); 1012 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); 1013 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 1014 return DAG.getNode(ISD::SRA, DL, VT, 1015 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 1016 ShiftAmount); 1017 } 1018 1019 // Generically expand a vector zext in register to a shuffle of the relevant 1020 // lanes into the appropriate locations, a blend of zero into the high bits, 1021 // and a bitcast to the wider element type. 1022 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) { 1023 SDLoc DL(Op); 1024 EVT VT = Op.getValueType(); 1025 int NumElements = VT.getVectorNumElements(); 1026 SDValue Src = Op.getOperand(0); 1027 EVT SrcVT = Src.getValueType(); 1028 int NumSrcElements = SrcVT.getVectorNumElements(); 1029 1030 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 1031 // into a larger vector type. 1032 if (SrcVT.bitsLE(VT)) { 1033 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 1034 "ZERO_EXTEND_VECTOR_INREG vector size mismatch"); 1035 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 1036 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 1037 NumSrcElements); 1038 Src = DAG.getNode( 1039 ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), Src, 1040 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1041 } 1042 1043 // Build up a zero vector to blend into this one. 1044 SDValue Zero = DAG.getConstant(0, DL, SrcVT); 1045 1046 // Shuffle the incoming lanes into the correct position, and pull all other 1047 // lanes from the zero vector. 1048 SmallVector<int, 16> ShuffleMask; 1049 ShuffleMask.reserve(NumSrcElements); 1050 for (int i = 0; i < NumSrcElements; ++i) 1051 ShuffleMask.push_back(i); 1052 1053 int ExtLaneScale = NumSrcElements / NumElements; 1054 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 1055 for (int i = 0; i < NumElements; ++i) 1056 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 1057 1058 return DAG.getNode(ISD::BITCAST, DL, VT, 1059 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 1060 } 1061 1062 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) { 1063 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 1064 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 1065 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 1066 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 1067 } 1068 1069 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) { 1070 EVT VT = Op.getValueType(); 1071 1072 // Generate a byte wise shuffle mask for the BSWAP. 1073 SmallVector<int, 16> ShuffleMask; 1074 createBSWAPShuffleMask(VT, ShuffleMask); 1075 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 1076 1077 // Only emit a shuffle if the mask is legal. 1078 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) 1079 return DAG.UnrollVectorOp(Op.getNode()); 1080 1081 SDLoc DL(Op); 1082 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 1083 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); 1084 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 1085 } 1086 1087 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) { 1088 EVT VT = Op.getValueType(); 1089 1090 // If we have the scalar operation, it's probably cheaper to unroll it. 1091 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) 1092 return DAG.UnrollVectorOp(Op.getNode()); 1093 1094 // If the vector element width is a whole number of bytes, test if its legal 1095 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte 1096 // vector. This greatly reduces the number of bit shifts necessary. 1097 unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); 1098 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { 1099 SmallVector<int, 16> BSWAPMask; 1100 createBSWAPShuffleMask(VT, BSWAPMask); 1101 1102 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); 1103 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && 1104 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || 1105 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && 1106 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && 1107 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && 1108 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { 1109 SDLoc DL(Op); 1110 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 1111 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 1112 BSWAPMask); 1113 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); 1114 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 1115 } 1116 } 1117 1118 // If we have the appropriate vector bit operations, it is better to use them 1119 // than unrolling and expanding each component. 1120 if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) || 1121 !TLI.isOperationLegalOrCustom(ISD::SRL, VT) || 1122 !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 1123 !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) 1124 return DAG.UnrollVectorOp(Op.getNode()); 1125 1126 // Let LegalizeDAG handle this later. 1127 return Op; 1128 } 1129 1130 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { 1131 // Implement VSELECT in terms of XOR, AND, OR 1132 // on platforms which do not support blend natively. 1133 SDLoc DL(Op); 1134 1135 SDValue Mask = Op.getOperand(0); 1136 SDValue Op1 = Op.getOperand(1); 1137 SDValue Op2 = Op.getOperand(2); 1138 1139 EVT VT = Mask.getValueType(); 1140 1141 // If we can't even use the basic vector operations of 1142 // AND,OR,XOR, we will have to scalarize the op. 1143 // Notice that the operation may be 'promoted' which means that it is 1144 // 'bitcasted' to another type which is handled. 1145 // This operation also isn't safe with AND, OR, XOR when the boolean 1146 // type is 0/1 as we need an all ones vector constant to mask with. 1147 // FIXME: Sign extend 1 to all ones if thats legal on the target. 1148 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 1149 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 1150 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 1151 TLI.getBooleanContents(Op1.getValueType()) != 1152 TargetLowering::ZeroOrNegativeOneBooleanContent) 1153 return DAG.UnrollVectorOp(Op.getNode()); 1154 1155 // If the mask and the type are different sizes, unroll the vector op. This 1156 // can occur when getSetCCResultType returns something that is different in 1157 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 1158 if (VT.getSizeInBits() != Op1.getValueSizeInBits()) 1159 return DAG.UnrollVectorOp(Op.getNode()); 1160 1161 // Bitcast the operands to be the same type as the mask. 1162 // This is needed when we select between FP types because 1163 // the mask is a vector of integers. 1164 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 1165 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 1166 1167 SDValue AllOnes = DAG.getConstant( 1168 APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT); 1169 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 1170 1171 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 1172 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 1173 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 1174 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 1175 } 1176 1177 SDValue VectorLegalizer::ExpandABS(SDValue Op) { 1178 // Attempt to expand using TargetLowering. 1179 SDValue Result; 1180 if (TLI.expandABS(Op.getNode(), Result, DAG)) 1181 return Result; 1182 1183 // Otherwise go ahead and unroll. 1184 return DAG.UnrollVectorOp(Op.getNode()); 1185 } 1186 1187 SDValue VectorLegalizer::ExpandFP_TO_UINT(SDValue Op) { 1188 // Attempt to expand using TargetLowering. 1189 SDValue Result; 1190 if (TLI.expandFP_TO_UINT(Op.getNode(), Result, DAG)) 1191 return Result; 1192 1193 // Otherwise go ahead and unroll. 1194 return DAG.UnrollVectorOp(Op.getNode()); 1195 } 1196 1197 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { 1198 EVT VT = Op.getOperand(0).getValueType(); 1199 SDLoc DL(Op); 1200 1201 // Attempt to expand using TargetLowering. 1202 SDValue Result; 1203 if (TLI.expandUINT_TO_FP(Op.getNode(), Result, DAG)) 1204 return Result; 1205 1206 // Make sure that the SINT_TO_FP and SRL instructions are available. 1207 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand || 1208 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) 1209 return DAG.UnrollVectorOp(Op.getNode()); 1210 1211 unsigned BW = VT.getScalarSizeInBits(); 1212 assert((BW == 64 || BW == 32) && 1213 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 1214 1215 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT); 1216 1217 // Constants to clear the upper part of the word. 1218 // Notice that we can also use SHL+SHR, but using a constant is slightly 1219 // faster on x86. 1220 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; 1221 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 1222 1223 // Two to the power of half-word-size. 1224 SDValue TWOHW = DAG.getConstantFP(1ULL << (BW / 2), DL, Op.getValueType()); 1225 1226 // Clear upper part of LO, lower HI 1227 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); 1228 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); 1229 1230 // Convert hi and lo to floats 1231 // Convert the hi part back to the upper values 1232 // TODO: Can any fast-math-flags be set on these nodes? 1233 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); 1234 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); 1235 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); 1236 1237 // Add the two halves 1238 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); 1239 } 1240 1241 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { 1242 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { 1243 SDLoc DL(Op); 1244 SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType()); 1245 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. 1246 return DAG.getNode(ISD::FSUB, DL, Op.getValueType(), 1247 Zero, Op.getOperand(0)); 1248 } 1249 return DAG.UnrollVectorOp(Op.getNode()); 1250 } 1251 1252 SDValue VectorLegalizer::ExpandFSUB(SDValue Op) { 1253 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal, 1254 // we can defer this to operation legalization where it will be lowered as 1255 // a+(-b). 1256 EVT VT = Op.getValueType(); 1257 if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && 1258 TLI.isOperationLegalOrCustom(ISD::FADD, VT)) 1259 return Op; // Defer to LegalizeDAG 1260 1261 return DAG.UnrollVectorOp(Op.getNode()); 1262 } 1263 1264 SDValue VectorLegalizer::ExpandCTPOP(SDValue Op) { 1265 SDValue Result; 1266 if (TLI.expandCTPOP(Op.getNode(), Result, DAG)) 1267 return Result; 1268 1269 return DAG.UnrollVectorOp(Op.getNode()); 1270 } 1271 1272 SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) { 1273 SDValue Result; 1274 if (TLI.expandCTLZ(Op.getNode(), Result, DAG)) 1275 return Result; 1276 1277 return DAG.UnrollVectorOp(Op.getNode()); 1278 } 1279 1280 SDValue VectorLegalizer::ExpandCTTZ(SDValue Op) { 1281 SDValue Result; 1282 if (TLI.expandCTTZ(Op.getNode(), Result, DAG)) 1283 return Result; 1284 1285 return DAG.UnrollVectorOp(Op.getNode()); 1286 } 1287 1288 SDValue VectorLegalizer::ExpandFunnelShift(SDValue Op) { 1289 SDValue Result; 1290 if (TLI.expandFunnelShift(Op.getNode(), Result, DAG)) 1291 return Result; 1292 1293 return DAG.UnrollVectorOp(Op.getNode()); 1294 } 1295 1296 SDValue VectorLegalizer::ExpandROT(SDValue Op) { 1297 SDValue Result; 1298 if (TLI.expandROT(Op.getNode(), Result, DAG)) 1299 return Result; 1300 1301 return DAG.UnrollVectorOp(Op.getNode()); 1302 } 1303 1304 SDValue VectorLegalizer::ExpandFMINNUM_FMAXNUM(SDValue Op) { 1305 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Op.getNode(), DAG)) 1306 return Expanded; 1307 return DAG.UnrollVectorOp(Op.getNode()); 1308 } 1309 1310 SDValue VectorLegalizer::ExpandUADDSUBO(SDValue Op) { 1311 SDValue Result, Overflow; 1312 TLI.expandUADDSUBO(Op.getNode(), Result, Overflow, DAG); 1313 1314 if (Op.getResNo() == 0) { 1315 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow)); 1316 return Result; 1317 } else { 1318 AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result)); 1319 return Overflow; 1320 } 1321 } 1322 1323 SDValue VectorLegalizer::ExpandSADDSUBO(SDValue Op) { 1324 SDValue Result, Overflow; 1325 TLI.expandSADDSUBO(Op.getNode(), Result, Overflow, DAG); 1326 1327 if (Op.getResNo() == 0) { 1328 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow)); 1329 return Result; 1330 } else { 1331 AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result)); 1332 return Overflow; 1333 } 1334 } 1335 1336 SDValue VectorLegalizer::ExpandMULO(SDValue Op) { 1337 SDValue Result, Overflow; 1338 if (!TLI.expandMULO(Op.getNode(), Result, Overflow, DAG)) 1339 std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Op.getNode()); 1340 1341 if (Op.getResNo() == 0) { 1342 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow)); 1343 return Result; 1344 } else { 1345 AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result)); 1346 return Overflow; 1347 } 1348 } 1349 1350 SDValue VectorLegalizer::ExpandAddSubSat(SDValue Op) { 1351 if (SDValue Expanded = TLI.expandAddSubSat(Op.getNode(), DAG)) 1352 return Expanded; 1353 return DAG.UnrollVectorOp(Op.getNode()); 1354 } 1355 1356 SDValue VectorLegalizer::ExpandFixedPointMul(SDValue Op) { 1357 if (SDValue Expanded = TLI.expandFixedPointMul(Op.getNode(), DAG)) 1358 return Expanded; 1359 return DAG.UnrollVectorOp(Op.getNode()); 1360 } 1361 1362 SDValue VectorLegalizer::ExpandStrictFPOp(SDValue Op) { 1363 EVT VT = Op.getValueType(); 1364 EVT EltVT = VT.getVectorElementType(); 1365 unsigned NumElems = VT.getVectorNumElements(); 1366 unsigned NumOpers = Op.getNumOperands(); 1367 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1368 EVT ValueVTs[] = {EltVT, MVT::Other}; 1369 SDValue Chain = Op.getOperand(0); 1370 SDLoc dl(Op); 1371 1372 SmallVector<SDValue, 32> OpValues; 1373 SmallVector<SDValue, 32> OpChains; 1374 for (unsigned i = 0; i < NumElems; ++i) { 1375 SmallVector<SDValue, 4> Opers; 1376 SDValue Idx = DAG.getConstant(i, dl, 1377 TLI.getVectorIdxTy(DAG.getDataLayout())); 1378 1379 // The Chain is the first operand. 1380 Opers.push_back(Chain); 1381 1382 // Now process the remaining operands. 1383 for (unsigned j = 1; j < NumOpers; ++j) { 1384 SDValue Oper = Op.getOperand(j); 1385 EVT OperVT = Oper.getValueType(); 1386 1387 if (OperVT.isVector()) 1388 Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 1389 OperVT.getVectorElementType(), Oper, Idx); 1390 1391 Opers.push_back(Oper); 1392 } 1393 1394 SDValue ScalarOp = DAG.getNode(Op->getOpcode(), dl, ValueVTs, Opers); 1395 1396 OpValues.push_back(ScalarOp.getValue(0)); 1397 OpChains.push_back(ScalarOp.getValue(1)); 1398 } 1399 1400 SDValue Result = DAG.getBuildVector(VT, dl, OpValues); 1401 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains); 1402 1403 AddLegalizedOperand(Op.getValue(0), Result); 1404 AddLegalizedOperand(Op.getValue(1), NewChain); 1405 1406 return Op.getResNo() ? NewChain : Result; 1407 } 1408 1409 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { 1410 EVT VT = Op.getValueType(); 1411 unsigned NumElems = VT.getVectorNumElements(); 1412 EVT EltVT = VT.getVectorElementType(); 1413 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); 1414 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1415 SDLoc dl(Op); 1416 SmallVector<SDValue, 8> Ops(NumElems); 1417 for (unsigned i = 0; i < NumElems; ++i) { 1418 SDValue LHSElem = DAG.getNode( 1419 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1420 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1421 SDValue RHSElem = DAG.getNode( 1422 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1423 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1424 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1425 TLI.getSetCCResultType(DAG.getDataLayout(), 1426 *DAG.getContext(), TmpEltVT), 1427 LHSElem, RHSElem, CC); 1428 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 1429 DAG.getConstant(APInt::getAllOnesValue 1430 (EltVT.getSizeInBits()), dl, EltVT), 1431 DAG.getConstant(0, dl, EltVT)); 1432 } 1433 return DAG.getBuildVector(VT, dl, Ops); 1434 } 1435 1436 bool SelectionDAG::LegalizeVectors() { 1437 return VectorLegalizer(*this).Run(); 1438 } 1439