1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::LegalizeVectors method.
10 //
11 // The vector legalizer looks for vector operations which might need to be
12 // scalarized and legalizes them. This is a separate step from Legalize because
13 // scalarizing can introduce illegal types.  For example, suppose we have an
14 // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
16 // operation, which introduces nodes with the illegal type i64 which must be
17 // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
18 // the operation must be unrolled, which introduces nodes with the illegal
19 // type i8 which must be promoted.
20 //
21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
22 // or operations that happen to take a vector which are custom-lowered;
23 // the legalization for such operations never produces nodes
24 // with illegal types, so it's okay to put off legalizing them until
25 // SelectionDAG::Legalize runs.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/SelectionDAGNodes.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/MachineValueType.h"
43 #include "llvm/Support/MathExtras.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <iterator>
47 #include <utility>
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "legalizevectorops"
52 
53 namespace {
54 
55 class VectorLegalizer {
56   SelectionDAG& DAG;
57   const TargetLowering &TLI;
58   bool Changed = false; // Keep track of whether anything changed
59 
60   /// For nodes that are of legal width, and that have more than one use, this
61   /// map indicates what regularized operand to use.  This allows us to avoid
62   /// legalizing the same thing more than once.
63   SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
64 
65   /// Adds a node to the translation cache.
66   void AddLegalizedOperand(SDValue From, SDValue To) {
67     LegalizedNodes.insert(std::make_pair(From, To));
68     // If someone requests legalization of the new node, return itself.
69     if (From != To)
70       LegalizedNodes.insert(std::make_pair(To, To));
71   }
72 
73   /// Legalizes the given node.
74   SDValue LegalizeOp(SDValue Op);
75 
76   /// Assuming the node is legal, "legalize" the results.
77   SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
78 
79   /// Implements unrolling a VSETCC.
80   SDValue UnrollVSETCC(SDValue Op);
81 
82   /// Implement expand-based legalization of vector operations.
83   ///
84   /// This is just a high-level routine to dispatch to specific code paths for
85   /// operations to legalize them.
86   SDValue Expand(SDValue Op);
87 
88   /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
89   /// FP_TO_SINT isn't legal.
90   SDValue ExpandFP_TO_UINT(SDValue Op);
91 
92   /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
93   /// SINT_TO_FLOAT and SHR on vectors isn't legal.
94   SDValue ExpandUINT_TO_FLOAT(SDValue Op);
95 
96   /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
97   SDValue ExpandSEXTINREG(SDValue Op);
98 
99   /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
100   ///
101   /// Shuffles the low lanes of the operand into place and bitcasts to the proper
102   /// type. The contents of the bits in the extended part of each element are
103   /// undef.
104   SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op);
105 
106   /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
107   ///
108   /// Shuffles the low lanes of the operand into place, bitcasts to the proper
109   /// type, then shifts left and arithmetic shifts right to introduce a sign
110   /// extension.
111   SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op);
112 
113   /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
114   ///
115   /// Shuffles the low lanes of the operand into place and blends zeros into
116   /// the remaining lanes, finally bitcasting to the proper type.
117   SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op);
118 
119   /// Implement expand-based legalization of ABS vector operations.
120   /// If following expanding is legal/custom then do it:
121   /// (ABS x) --> (XOR (ADD x, (SRA x, sizeof(x)-1)), (SRA x, sizeof(x)-1))
122   /// else unroll the operation.
123   SDValue ExpandABS(SDValue Op);
124 
125   /// Expand bswap of vectors into a shuffle if legal.
126   SDValue ExpandBSWAP(SDValue Op);
127 
128   /// Implement vselect in terms of XOR, AND, OR when blend is not
129   /// supported by the target.
130   SDValue ExpandVSELECT(SDValue Op);
131   SDValue ExpandSELECT(SDValue Op);
132   SDValue ExpandLoad(SDValue Op);
133   SDValue ExpandStore(SDValue Op);
134   SDValue ExpandFNEG(SDValue Op);
135   SDValue ExpandFSUB(SDValue Op);
136   SDValue ExpandBITREVERSE(SDValue Op);
137   SDValue ExpandCTPOP(SDValue Op);
138   SDValue ExpandCTLZ(SDValue Op);
139   SDValue ExpandCTTZ(SDValue Op);
140   SDValue ExpandFunnelShift(SDValue Op);
141   SDValue ExpandROT(SDValue Op);
142   SDValue ExpandFMINNUM_FMAXNUM(SDValue Op);
143   SDValue ExpandUADDSUBO(SDValue Op);
144   SDValue ExpandSADDSUBO(SDValue Op);
145   SDValue ExpandMULO(SDValue Op);
146   SDValue ExpandAddSubSat(SDValue Op);
147   SDValue ExpandFixedPointMul(SDValue Op);
148   SDValue ExpandStrictFPOp(SDValue Op);
149 
150   /// Implements vector promotion.
151   ///
152   /// This is essentially just bitcasting the operands to a different type and
153   /// bitcasting the result back to the original type.
154   SDValue Promote(SDValue Op);
155 
156   /// Implements [SU]INT_TO_FP vector promotion.
157   ///
158   /// This is a [zs]ext of the input operand to a larger integer type.
159   SDValue PromoteINT_TO_FP(SDValue Op);
160 
161   /// Implements FP_TO_[SU]INT vector promotion of the result type.
162   ///
163   /// It is promoted to a larger integer type.  The result is then
164   /// truncated back to the original type.
165   SDValue PromoteFP_TO_INT(SDValue Op);
166 
167 public:
168   VectorLegalizer(SelectionDAG& dag) :
169       DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
170 
171   /// Begin legalizer the vector operations in the DAG.
172   bool Run();
173 };
174 
175 } // end anonymous namespace
176 
177 bool VectorLegalizer::Run() {
178   // Before we start legalizing vector nodes, check if there are any vectors.
179   bool HasVectors = false;
180   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
181        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
182     // Check if the values of the nodes contain vectors. We don't need to check
183     // the operands because we are going to check their values at some point.
184     for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
185          J != E; ++J)
186       HasVectors |= J->isVector();
187 
188     // If we found a vector node we can start the legalization.
189     if (HasVectors)
190       break;
191   }
192 
193   // If this basic block has no vectors then no need to legalize vectors.
194   if (!HasVectors)
195     return false;
196 
197   // The legalize process is inherently a bottom-up recursive process (users
198   // legalize their uses before themselves).  Given infinite stack space, we
199   // could just start legalizing on the root and traverse the whole graph.  In
200   // practice however, this causes us to run out of stack space on large basic
201   // blocks.  To avoid this problem, compute an ordering of the nodes where each
202   // node is only legalized after all of its operands are legalized.
203   DAG.AssignTopologicalOrder();
204   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
205        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
206     LegalizeOp(SDValue(&*I, 0));
207 
208   // Finally, it's possible the root changed.  Get the new root.
209   SDValue OldRoot = DAG.getRoot();
210   assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
211   DAG.setRoot(LegalizedNodes[OldRoot]);
212 
213   LegalizedNodes.clear();
214 
215   // Remove dead nodes now.
216   DAG.RemoveDeadNodes();
217 
218   return Changed;
219 }
220 
221 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
222   // Generic legalization: just pass the operand through.
223   for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
224     AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
225   return Result.getValue(Op.getResNo());
226 }
227 
228 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
229   // Note that LegalizeOp may be reentered even from single-use nodes, which
230   // means that we always must cache transformed nodes.
231   DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
232   if (I != LegalizedNodes.end()) return I->second;
233 
234   SDNode* Node = Op.getNode();
235 
236   // Legalize the operands
237   SmallVector<SDValue, 8> Ops;
238   for (const SDValue &Op : Node->op_values())
239     Ops.push_back(LegalizeOp(Op));
240 
241   SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops),
242                            Op.getResNo());
243 
244   if (Op.getOpcode() == ISD::LOAD) {
245     LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
246     ISD::LoadExtType ExtType = LD->getExtensionType();
247     if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) {
248       LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: ";
249                  Node->dump(&DAG));
250       switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
251                                    LD->getMemoryVT())) {
252       default: llvm_unreachable("This action is not supported yet!");
253       case TargetLowering::Legal:
254         return TranslateLegalizeResults(Op, Result);
255       case TargetLowering::Custom:
256         if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) {
257           assert(Lowered->getNumValues() == Op->getNumValues() &&
258                  "Unexpected number of results");
259           if (Lowered != Result) {
260             // Make sure the new code is also legal.
261             Lowered = LegalizeOp(Lowered);
262             Changed = true;
263           }
264           return TranslateLegalizeResults(Op, Lowered);
265         }
266         LLVM_FALLTHROUGH;
267       case TargetLowering::Expand:
268         Changed = true;
269         return ExpandLoad(Op);
270       }
271     }
272   } else if (Op.getOpcode() == ISD::STORE) {
273     StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
274     EVT StVT = ST->getMemoryVT();
275     MVT ValVT = ST->getValue().getSimpleValueType();
276     if (StVT.isVector() && ST->isTruncatingStore()) {
277       LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: ";
278                  Node->dump(&DAG));
279       switch (TLI.getTruncStoreAction(ValVT, StVT)) {
280       default: llvm_unreachable("This action is not supported yet!");
281       case TargetLowering::Legal:
282         return TranslateLegalizeResults(Op, Result);
283       case TargetLowering::Custom: {
284         SDValue Lowered = TLI.LowerOperation(Result, DAG);
285         if (Lowered != Result) {
286           // Make sure the new code is also legal.
287           Lowered = LegalizeOp(Lowered);
288           Changed = true;
289         }
290         return TranslateLegalizeResults(Op, Lowered);
291       }
292       case TargetLowering::Expand:
293         Changed = true;
294         return ExpandStore(Op);
295       }
296     }
297   }
298 
299   bool HasVectorValueOrOp = false;
300   for (auto J = Node->value_begin(), E = Node->value_end(); J != E; ++J)
301     HasVectorValueOrOp |= J->isVector();
302   for (const SDValue &Op : Node->op_values())
303     HasVectorValueOrOp |= Op.getValueType().isVector();
304 
305   if (!HasVectorValueOrOp)
306     return TranslateLegalizeResults(Op, Result);
307 
308   TargetLowering::LegalizeAction Action = TargetLowering::Legal;
309   switch (Op.getOpcode()) {
310   default:
311     return TranslateLegalizeResults(Op, Result);
312   case ISD::STRICT_FADD:
313   case ISD::STRICT_FSUB:
314   case ISD::STRICT_FMUL:
315   case ISD::STRICT_FDIV:
316   case ISD::STRICT_FREM:
317   case ISD::STRICT_FSQRT:
318   case ISD::STRICT_FMA:
319   case ISD::STRICT_FPOW:
320   case ISD::STRICT_FPOWI:
321   case ISD::STRICT_FSIN:
322   case ISD::STRICT_FCOS:
323   case ISD::STRICT_FEXP:
324   case ISD::STRICT_FEXP2:
325   case ISD::STRICT_FLOG:
326   case ISD::STRICT_FLOG10:
327   case ISD::STRICT_FLOG2:
328   case ISD::STRICT_FRINT:
329   case ISD::STRICT_FNEARBYINT:
330   case ISD::STRICT_FMAXNUM:
331   case ISD::STRICT_FMINNUM:
332   case ISD::STRICT_FCEIL:
333   case ISD::STRICT_FFLOOR:
334   case ISD::STRICT_FROUND:
335   case ISD::STRICT_FTRUNC:
336   case ISD::STRICT_FP_ROUND:
337   case ISD::STRICT_FP_EXTEND:
338     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
339     // If we're asked to expand a strict vector floating-point operation,
340     // by default we're going to simply unroll it.  That is usually the
341     // best approach, except in the case where the resulting strict (scalar)
342     // operations would themselves use the fallback mutation to non-strict.
343     // In that specific case, just do the fallback on the vector op.
344     if (Action == TargetLowering::Expand &&
345         TLI.getStrictFPOperationAction(Node->getOpcode(),
346                                        Node->getValueType(0))
347         == TargetLowering::Legal) {
348       EVT EltVT = Node->getValueType(0).getVectorElementType();
349       if (TLI.getOperationAction(Node->getOpcode(), EltVT)
350           == TargetLowering::Expand &&
351           TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT)
352           == TargetLowering::Legal)
353         Action = TargetLowering::Legal;
354     }
355     break;
356   case ISD::ADD:
357   case ISD::SUB:
358   case ISD::MUL:
359   case ISD::MULHS:
360   case ISD::MULHU:
361   case ISD::SDIV:
362   case ISD::UDIV:
363   case ISD::SREM:
364   case ISD::UREM:
365   case ISD::SDIVREM:
366   case ISD::UDIVREM:
367   case ISD::FADD:
368   case ISD::FSUB:
369   case ISD::FMUL:
370   case ISD::FDIV:
371   case ISD::FREM:
372   case ISD::AND:
373   case ISD::OR:
374   case ISD::XOR:
375   case ISD::SHL:
376   case ISD::SRA:
377   case ISD::SRL:
378   case ISD::FSHL:
379   case ISD::FSHR:
380   case ISD::ROTL:
381   case ISD::ROTR:
382   case ISD::ABS:
383   case ISD::BSWAP:
384   case ISD::BITREVERSE:
385   case ISD::CTLZ:
386   case ISD::CTTZ:
387   case ISD::CTLZ_ZERO_UNDEF:
388   case ISD::CTTZ_ZERO_UNDEF:
389   case ISD::CTPOP:
390   case ISD::SELECT:
391   case ISD::VSELECT:
392   case ISD::SELECT_CC:
393   case ISD::SETCC:
394   case ISD::ZERO_EXTEND:
395   case ISD::ANY_EXTEND:
396   case ISD::TRUNCATE:
397   case ISD::SIGN_EXTEND:
398   case ISD::FP_TO_SINT:
399   case ISD::FP_TO_UINT:
400   case ISD::FNEG:
401   case ISD::FABS:
402   case ISD::FMINNUM:
403   case ISD::FMAXNUM:
404   case ISD::FMINNUM_IEEE:
405   case ISD::FMAXNUM_IEEE:
406   case ISD::FMINIMUM:
407   case ISD::FMAXIMUM:
408   case ISD::FCOPYSIGN:
409   case ISD::FSQRT:
410   case ISD::FSIN:
411   case ISD::FCOS:
412   case ISD::FPOWI:
413   case ISD::FPOW:
414   case ISD::FLOG:
415   case ISD::FLOG2:
416   case ISD::FLOG10:
417   case ISD::FEXP:
418   case ISD::FEXP2:
419   case ISD::FCEIL:
420   case ISD::FTRUNC:
421   case ISD::FRINT:
422   case ISD::FNEARBYINT:
423   case ISD::FROUND:
424   case ISD::FFLOOR:
425   case ISD::FP_ROUND:
426   case ISD::FP_EXTEND:
427   case ISD::FMA:
428   case ISD::SIGN_EXTEND_INREG:
429   case ISD::ANY_EXTEND_VECTOR_INREG:
430   case ISD::SIGN_EXTEND_VECTOR_INREG:
431   case ISD::ZERO_EXTEND_VECTOR_INREG:
432   case ISD::SMIN:
433   case ISD::SMAX:
434   case ISD::UMIN:
435   case ISD::UMAX:
436   case ISD::SMUL_LOHI:
437   case ISD::UMUL_LOHI:
438   case ISD::SADDO:
439   case ISD::UADDO:
440   case ISD::SSUBO:
441   case ISD::USUBO:
442   case ISD::SMULO:
443   case ISD::UMULO:
444   case ISD::FCANONICALIZE:
445   case ISD::SADDSAT:
446   case ISD::UADDSAT:
447   case ISD::SSUBSAT:
448   case ISD::USUBSAT:
449     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
450     break;
451   case ISD::SMULFIX:
452   case ISD::SMULFIXSAT:
453   case ISD::UMULFIX: {
454     unsigned Scale = Node->getConstantOperandVal(2);
455     Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
456                                               Node->getValueType(0), Scale);
457     break;
458   }
459   case ISD::FP_ROUND_INREG:
460     Action = TLI.getOperationAction(Node->getOpcode(),
461                cast<VTSDNode>(Node->getOperand(1))->getVT());
462     break;
463   case ISD::SINT_TO_FP:
464   case ISD::UINT_TO_FP:
465   case ISD::VECREDUCE_ADD:
466   case ISD::VECREDUCE_MUL:
467   case ISD::VECREDUCE_AND:
468   case ISD::VECREDUCE_OR:
469   case ISD::VECREDUCE_XOR:
470   case ISD::VECREDUCE_SMAX:
471   case ISD::VECREDUCE_SMIN:
472   case ISD::VECREDUCE_UMAX:
473   case ISD::VECREDUCE_UMIN:
474   case ISD::VECREDUCE_FADD:
475   case ISD::VECREDUCE_FMUL:
476   case ISD::VECREDUCE_FMAX:
477   case ISD::VECREDUCE_FMIN:
478     Action = TLI.getOperationAction(Node->getOpcode(),
479                                     Node->getOperand(0).getValueType());
480     break;
481   }
482 
483   LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
484 
485   switch (Action) {
486   default: llvm_unreachable("This action is not supported yet!");
487   case TargetLowering::Promote:
488     Result = Promote(Op);
489     Changed = true;
490     break;
491   case TargetLowering::Legal:
492     LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
493     break;
494   case TargetLowering::Custom: {
495     LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
496     if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) {
497       LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
498       Result = Tmp1;
499       break;
500     }
501     LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
502     LLVM_FALLTHROUGH;
503   }
504   case TargetLowering::Expand:
505     Result = Expand(Op);
506   }
507 
508   // Make sure that the generated code is itself legal.
509   if (Result != Op) {
510     Result = LegalizeOp(Result);
511     Changed = true;
512   }
513 
514   // Note that LegalizeOp may be reentered even from single-use nodes, which
515   // means that we always must cache transformed nodes.
516   AddLegalizedOperand(Op, Result);
517   return Result;
518 }
519 
520 SDValue VectorLegalizer::Promote(SDValue Op) {
521   // For a few operations there is a specific concept for promotion based on
522   // the operand's type.
523   switch (Op.getOpcode()) {
524   case ISD::SINT_TO_FP:
525   case ISD::UINT_TO_FP:
526     // "Promote" the operation by extending the operand.
527     return PromoteINT_TO_FP(Op);
528   case ISD::FP_TO_UINT:
529   case ISD::FP_TO_SINT:
530     // Promote the operation by extending the operand.
531     return PromoteFP_TO_INT(Op);
532   }
533 
534   // There are currently two cases of vector promotion:
535   // 1) Bitcasting a vector of integers to a different type to a vector of the
536   //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
537   // 2) Extending a vector of floats to a vector of the same number of larger
538   //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
539   MVT VT = Op.getSimpleValueType();
540   assert(Op.getNode()->getNumValues() == 1 &&
541          "Can't promote a vector with multiple results!");
542   MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
543   SDLoc dl(Op);
544   SmallVector<SDValue, 4> Operands(Op.getNumOperands());
545 
546   for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
547     if (Op.getOperand(j).getValueType().isVector())
548       if (Op.getOperand(j)
549               .getValueType()
550               .getVectorElementType()
551               .isFloatingPoint() &&
552           NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
553         Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j));
554       else
555         Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
556     else
557       Operands[j] = Op.getOperand(j);
558   }
559 
560   Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags());
561   if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
562       (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
563        NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
564     return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl));
565   else
566     return DAG.getNode(ISD::BITCAST, dl, VT, Op);
567 }
568 
569 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) {
570   // INT_TO_FP operations may require the input operand be promoted even
571   // when the type is otherwise legal.
572   MVT VT = Op.getOperand(0).getSimpleValueType();
573   MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
574   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
575          "Vectors have different number of elements!");
576 
577   SDLoc dl(Op);
578   SmallVector<SDValue, 4> Operands(Op.getNumOperands());
579 
580   unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND :
581     ISD::SIGN_EXTEND;
582   for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
583     if (Op.getOperand(j).getValueType().isVector())
584       Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
585     else
586       Operands[j] = Op.getOperand(j);
587   }
588 
589   return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands);
590 }
591 
592 // For FP_TO_INT we promote the result type to a vector type with wider
593 // elements and then truncate the result.  This is different from the default
594 // PromoteVector which uses bitcast to promote thus assumning that the
595 // promoted vector type has the same overall size.
596 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op) {
597   MVT VT = Op.getSimpleValueType();
598   MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
599   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
600          "Vectors have different number of elements!");
601 
602   unsigned NewOpc = Op->getOpcode();
603   // Change FP_TO_UINT to FP_TO_SINT if possible.
604   // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
605   if (NewOpc == ISD::FP_TO_UINT &&
606       TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
607     NewOpc = ISD::FP_TO_SINT;
608 
609   SDLoc dl(Op);
610   SDValue Promoted  = DAG.getNode(NewOpc, dl, NVT, Op.getOperand(0));
611 
612   // Assert that the converted value fits in the original type.  If it doesn't
613   // (eg: because the value being converted is too big), then the result of the
614   // original operation was undefined anyway, so the assert is still correct.
615   Promoted = DAG.getNode(Op->getOpcode() == ISD::FP_TO_UINT ? ISD::AssertZext
616                                                             : ISD::AssertSext,
617                          dl, NVT, Promoted,
618                          DAG.getValueType(VT.getScalarType()));
619   return DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
620 }
621 
622 SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
623   LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
624 
625   EVT SrcVT = LD->getMemoryVT();
626   EVT SrcEltVT = SrcVT.getScalarType();
627   unsigned NumElem = SrcVT.getVectorNumElements();
628 
629   SDValue NewChain;
630   SDValue Value;
631   if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
632     SDLoc dl(Op);
633 
634     SmallVector<SDValue, 8> Vals;
635     SmallVector<SDValue, 8> LoadChains;
636 
637     EVT DstEltVT = LD->getValueType(0).getScalarType();
638     SDValue Chain = LD->getChain();
639     SDValue BasePTR = LD->getBasePtr();
640     ISD::LoadExtType ExtType = LD->getExtensionType();
641 
642     // When elements in a vector is not byte-addressable, we cannot directly
643     // load each element by advancing pointer, which could only address bytes.
644     // Instead, we load all significant words, mask bits off, and concatenate
645     // them to form each element. Finally, they are extended to destination
646     // scalar type to build the destination vector.
647     EVT WideVT = TLI.getPointerTy(DAG.getDataLayout());
648 
649     assert(WideVT.isRound() &&
650            "Could not handle the sophisticated case when the widest integer is"
651            " not power of 2.");
652     assert(WideVT.bitsGE(SrcEltVT) &&
653            "Type is not legalized?");
654 
655     unsigned WideBytes = WideVT.getStoreSize();
656     unsigned Offset = 0;
657     unsigned RemainingBytes = SrcVT.getStoreSize();
658     SmallVector<SDValue, 8> LoadVals;
659     while (RemainingBytes > 0) {
660       SDValue ScalarLoad;
661       unsigned LoadBytes = WideBytes;
662 
663       if (RemainingBytes >= LoadBytes) {
664         ScalarLoad =
665             DAG.getLoad(WideVT, dl, Chain, BasePTR,
666                         LD->getPointerInfo().getWithOffset(Offset),
667                         MinAlign(LD->getAlignment(), Offset),
668                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
669       } else {
670         EVT LoadVT = WideVT;
671         while (RemainingBytes < LoadBytes) {
672           LoadBytes >>= 1; // Reduce the load size by half.
673           LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
674         }
675         ScalarLoad =
676             DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
677                            LD->getPointerInfo().getWithOffset(Offset), LoadVT,
678                            MinAlign(LD->getAlignment(), Offset),
679                            LD->getMemOperand()->getFlags(), LD->getAAInfo());
680       }
681 
682       RemainingBytes -= LoadBytes;
683       Offset += LoadBytes;
684 
685       BasePTR = DAG.getObjectPtrOffset(dl, BasePTR, LoadBytes);
686 
687       LoadVals.push_back(ScalarLoad.getValue(0));
688       LoadChains.push_back(ScalarLoad.getValue(1));
689     }
690 
691     unsigned BitOffset = 0;
692     unsigned WideIdx = 0;
693     unsigned WideBits = WideVT.getSizeInBits();
694 
695     // Extract bits, pack and extend/trunc them into destination type.
696     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
697     SDValue SrcEltBitMask = DAG.getConstant(
698         APInt::getLowBitsSet(WideBits, SrcEltBits), dl, WideVT);
699 
700     for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
701       assert(BitOffset < WideBits && "Unexpected offset!");
702 
703       SDValue ShAmt = DAG.getConstant(
704           BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
705       SDValue Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
706 
707       BitOffset += SrcEltBits;
708       if (BitOffset >= WideBits) {
709         WideIdx++;
710         BitOffset -= WideBits;
711         if (BitOffset > 0) {
712           ShAmt = DAG.getConstant(
713               SrcEltBits - BitOffset, dl,
714               TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
715           SDValue Hi =
716               DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
717           Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
718         }
719       }
720 
721       Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
722 
723       switch (ExtType) {
724       default: llvm_unreachable("Unknown extended-load op!");
725       case ISD::EXTLOAD:
726         Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
727         break;
728       case ISD::ZEXTLOAD:
729         Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
730         break;
731       case ISD::SEXTLOAD:
732         ShAmt =
733             DAG.getConstant(WideBits - SrcEltBits, dl,
734                             TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
735         Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
736         Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
737         Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
738         break;
739       }
740       Vals.push_back(Lo);
741     }
742 
743     NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
744     Value = DAG.getBuildVector(Op.getNode()->getValueType(0), dl, Vals);
745   } else {
746     SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG);
747     // Skip past MERGE_VALUE node if known.
748     if (Scalarized->getOpcode() == ISD::MERGE_VALUES) {
749       NewChain = Scalarized.getOperand(1);
750       Value = Scalarized.getOperand(0);
751     } else {
752       NewChain = Scalarized.getValue(1);
753       Value = Scalarized.getValue(0);
754     }
755   }
756 
757   AddLegalizedOperand(Op.getValue(0), Value);
758   AddLegalizedOperand(Op.getValue(1), NewChain);
759 
760   return (Op.getResNo() ? NewChain : Value);
761 }
762 
763 SDValue VectorLegalizer::ExpandStore(SDValue Op) {
764   StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
765   SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
766   AddLegalizedOperand(Op, TF);
767   return TF;
768 }
769 
770 SDValue VectorLegalizer::Expand(SDValue Op) {
771   switch (Op->getOpcode()) {
772   case ISD::SIGN_EXTEND_INREG:
773     return ExpandSEXTINREG(Op);
774   case ISD::ANY_EXTEND_VECTOR_INREG:
775     return ExpandANY_EXTEND_VECTOR_INREG(Op);
776   case ISD::SIGN_EXTEND_VECTOR_INREG:
777     return ExpandSIGN_EXTEND_VECTOR_INREG(Op);
778   case ISD::ZERO_EXTEND_VECTOR_INREG:
779     return ExpandZERO_EXTEND_VECTOR_INREG(Op);
780   case ISD::BSWAP:
781     return ExpandBSWAP(Op);
782   case ISD::VSELECT:
783     return ExpandVSELECT(Op);
784   case ISD::SELECT:
785     return ExpandSELECT(Op);
786   case ISD::FP_TO_UINT:
787     return ExpandFP_TO_UINT(Op);
788   case ISD::UINT_TO_FP:
789     return ExpandUINT_TO_FLOAT(Op);
790   case ISD::FNEG:
791     return ExpandFNEG(Op);
792   case ISD::FSUB:
793     return ExpandFSUB(Op);
794   case ISD::SETCC:
795     return UnrollVSETCC(Op);
796   case ISD::ABS:
797     return ExpandABS(Op);
798   case ISD::BITREVERSE:
799     return ExpandBITREVERSE(Op);
800   case ISD::CTPOP:
801     return ExpandCTPOP(Op);
802   case ISD::CTLZ:
803   case ISD::CTLZ_ZERO_UNDEF:
804     return ExpandCTLZ(Op);
805   case ISD::CTTZ:
806   case ISD::CTTZ_ZERO_UNDEF:
807     return ExpandCTTZ(Op);
808   case ISD::FSHL:
809   case ISD::FSHR:
810     return ExpandFunnelShift(Op);
811   case ISD::ROTL:
812   case ISD::ROTR:
813     return ExpandROT(Op);
814   case ISD::FMINNUM:
815   case ISD::FMAXNUM:
816     return ExpandFMINNUM_FMAXNUM(Op);
817   case ISD::UADDO:
818   case ISD::USUBO:
819     return ExpandUADDSUBO(Op);
820   case ISD::SADDO:
821   case ISD::SSUBO:
822     return ExpandSADDSUBO(Op);
823   case ISD::UMULO:
824   case ISD::SMULO:
825     return ExpandMULO(Op);
826   case ISD::USUBSAT:
827   case ISD::SSUBSAT:
828   case ISD::UADDSAT:
829   case ISD::SADDSAT:
830     return ExpandAddSubSat(Op);
831   case ISD::SMULFIX:
832   case ISD::UMULFIX:
833     return ExpandFixedPointMul(Op);
834   case ISD::SMULFIXSAT:
835     // FIXME: We do not expand SMULFIXSAT here yet, not sure why. Maybe it
836     // results in worse codegen compared to the default unroll? This should
837     // probably be investigated. And if we still prefer to unroll an explanation
838     // could be helpful, otherwise it just looks like something that hasn't been
839     // "implemented" yet.
840     return DAG.UnrollVectorOp(Op.getNode());
841   case ISD::STRICT_FADD:
842   case ISD::STRICT_FSUB:
843   case ISD::STRICT_FMUL:
844   case ISD::STRICT_FDIV:
845   case ISD::STRICT_FREM:
846   case ISD::STRICT_FSQRT:
847   case ISD::STRICT_FMA:
848   case ISD::STRICT_FPOW:
849   case ISD::STRICT_FPOWI:
850   case ISD::STRICT_FSIN:
851   case ISD::STRICT_FCOS:
852   case ISD::STRICT_FEXP:
853   case ISD::STRICT_FEXP2:
854   case ISD::STRICT_FLOG:
855   case ISD::STRICT_FLOG10:
856   case ISD::STRICT_FLOG2:
857   case ISD::STRICT_FRINT:
858   case ISD::STRICT_FNEARBYINT:
859   case ISD::STRICT_FMAXNUM:
860   case ISD::STRICT_FMINNUM:
861   case ISD::STRICT_FCEIL:
862   case ISD::STRICT_FFLOOR:
863   case ISD::STRICT_FROUND:
864   case ISD::STRICT_FTRUNC:
865     return ExpandStrictFPOp(Op);
866   case ISD::VECREDUCE_ADD:
867   case ISD::VECREDUCE_MUL:
868   case ISD::VECREDUCE_AND:
869   case ISD::VECREDUCE_OR:
870   case ISD::VECREDUCE_XOR:
871   case ISD::VECREDUCE_SMAX:
872   case ISD::VECREDUCE_SMIN:
873   case ISD::VECREDUCE_UMAX:
874   case ISD::VECREDUCE_UMIN:
875   case ISD::VECREDUCE_FADD:
876   case ISD::VECREDUCE_FMUL:
877   case ISD::VECREDUCE_FMAX:
878   case ISD::VECREDUCE_FMIN:
879     return TLI.expandVecReduce(Op.getNode(), DAG);
880   default:
881     return DAG.UnrollVectorOp(Op.getNode());
882   }
883 }
884 
885 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
886   // Lower a select instruction where the condition is a scalar and the
887   // operands are vectors. Lower this select to VSELECT and implement it
888   // using XOR AND OR. The selector bit is broadcasted.
889   EVT VT = Op.getValueType();
890   SDLoc DL(Op);
891 
892   SDValue Mask = Op.getOperand(0);
893   SDValue Op1 = Op.getOperand(1);
894   SDValue Op2 = Op.getOperand(2);
895 
896   assert(VT.isVector() && !Mask.getValueType().isVector()
897          && Op1.getValueType() == Op2.getValueType() && "Invalid type");
898 
899   // If we can't even use the basic vector operations of
900   // AND,OR,XOR, we will have to scalarize the op.
901   // Notice that the operation may be 'promoted' which means that it is
902   // 'bitcasted' to another type which is handled.
903   // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
904   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
905       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
906       TLI.getOperationAction(ISD::OR,  VT) == TargetLowering::Expand ||
907       TLI.getOperationAction(ISD::BUILD_VECTOR,  VT) == TargetLowering::Expand)
908     return DAG.UnrollVectorOp(Op.getNode());
909 
910   // Generate a mask operand.
911   EVT MaskTy = VT.changeVectorElementTypeToInteger();
912 
913   // What is the size of each element in the vector mask.
914   EVT BitTy = MaskTy.getScalarType();
915 
916   Mask = DAG.getSelect(DL, BitTy, Mask,
917           DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
918                           BitTy),
919           DAG.getConstant(0, DL, BitTy));
920 
921   // Broadcast the mask so that the entire vector is all-one or all zero.
922   Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask);
923 
924   // Bitcast the operands to be the same type as the mask.
925   // This is needed when we select between FP types because
926   // the mask is a vector of integers.
927   Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
928   Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
929 
930   SDValue AllOnes = DAG.getConstant(
931             APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
932   SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
933 
934   Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
935   Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
936   SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
937   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
938 }
939 
940 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
941   EVT VT = Op.getValueType();
942 
943   // Make sure that the SRA and SHL instructions are available.
944   if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
945       TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
946     return DAG.UnrollVectorOp(Op.getNode());
947 
948   SDLoc DL(Op);
949   EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
950 
951   unsigned BW = VT.getScalarSizeInBits();
952   unsigned OrigBW = OrigTy.getScalarSizeInBits();
953   SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
954 
955   Op = Op.getOperand(0);
956   Op =   DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
957   return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
958 }
959 
960 // Generically expand a vector anyext in register to a shuffle of the relevant
961 // lanes into the appropriate locations, with other lanes left undef.
962 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) {
963   SDLoc DL(Op);
964   EVT VT = Op.getValueType();
965   int NumElements = VT.getVectorNumElements();
966   SDValue Src = Op.getOperand(0);
967   EVT SrcVT = Src.getValueType();
968   int NumSrcElements = SrcVT.getVectorNumElements();
969 
970   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
971   // into a larger vector type.
972   if (SrcVT.bitsLE(VT)) {
973     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
974            "ANY_EXTEND_VECTOR_INREG vector size mismatch");
975     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
976     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
977                              NumSrcElements);
978     Src = DAG.getNode(
979         ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), Src,
980         DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
981   }
982 
983   // Build a base mask of undef shuffles.
984   SmallVector<int, 16> ShuffleMask;
985   ShuffleMask.resize(NumSrcElements, -1);
986 
987   // Place the extended lanes into the correct locations.
988   int ExtLaneScale = NumSrcElements / NumElements;
989   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
990   for (int i = 0; i < NumElements; ++i)
991     ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
992 
993   return DAG.getNode(
994       ISD::BITCAST, DL, VT,
995       DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
996 }
997 
998 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) {
999   SDLoc DL(Op);
1000   EVT VT = Op.getValueType();
1001   SDValue Src = Op.getOperand(0);
1002   EVT SrcVT = Src.getValueType();
1003 
1004   // First build an any-extend node which can be legalized above when we
1005   // recurse through it.
1006   Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src);
1007 
1008   // Now we need sign extend. Do this by shifting the elements. Even if these
1009   // aren't legal operations, they have a better chance of being legalized
1010   // without full scalarization than the sign extension does.
1011   unsigned EltWidth = VT.getScalarSizeInBits();
1012   unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
1013   SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
1014   return DAG.getNode(ISD::SRA, DL, VT,
1015                      DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
1016                      ShiftAmount);
1017 }
1018 
1019 // Generically expand a vector zext in register to a shuffle of the relevant
1020 // lanes into the appropriate locations, a blend of zero into the high bits,
1021 // and a bitcast to the wider element type.
1022 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) {
1023   SDLoc DL(Op);
1024   EVT VT = Op.getValueType();
1025   int NumElements = VT.getVectorNumElements();
1026   SDValue Src = Op.getOperand(0);
1027   EVT SrcVT = Src.getValueType();
1028   int NumSrcElements = SrcVT.getVectorNumElements();
1029 
1030   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1031   // into a larger vector type.
1032   if (SrcVT.bitsLE(VT)) {
1033     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
1034            "ZERO_EXTEND_VECTOR_INREG vector size mismatch");
1035     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
1036     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
1037                              NumSrcElements);
1038     Src = DAG.getNode(
1039         ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), Src,
1040         DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
1041   }
1042 
1043   // Build up a zero vector to blend into this one.
1044   SDValue Zero = DAG.getConstant(0, DL, SrcVT);
1045 
1046   // Shuffle the incoming lanes into the correct position, and pull all other
1047   // lanes from the zero vector.
1048   SmallVector<int, 16> ShuffleMask;
1049   ShuffleMask.reserve(NumSrcElements);
1050   for (int i = 0; i < NumSrcElements; ++i)
1051     ShuffleMask.push_back(i);
1052 
1053   int ExtLaneScale = NumSrcElements / NumElements;
1054   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
1055   for (int i = 0; i < NumElements; ++i)
1056     ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
1057 
1058   return DAG.getNode(ISD::BITCAST, DL, VT,
1059                      DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
1060 }
1061 
1062 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
1063   int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
1064   for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
1065     for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
1066       ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
1067 }
1068 
1069 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) {
1070   EVT VT = Op.getValueType();
1071 
1072   // Generate a byte wise shuffle mask for the BSWAP.
1073   SmallVector<int, 16> ShuffleMask;
1074   createBSWAPShuffleMask(VT, ShuffleMask);
1075   EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
1076 
1077   // Only emit a shuffle if the mask is legal.
1078   if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
1079     return DAG.UnrollVectorOp(Op.getNode());
1080 
1081   SDLoc DL(Op);
1082   Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
1083   Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
1084   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1085 }
1086 
1087 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) {
1088   EVT VT = Op.getValueType();
1089 
1090   // If we have the scalar operation, it's probably cheaper to unroll it.
1091   if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType()))
1092     return DAG.UnrollVectorOp(Op.getNode());
1093 
1094   // If the vector element width is a whole number of bytes, test if its legal
1095   // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
1096   // vector. This greatly reduces the number of bit shifts necessary.
1097   unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
1098   if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
1099     SmallVector<int, 16> BSWAPMask;
1100     createBSWAPShuffleMask(VT, BSWAPMask);
1101 
1102     EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
1103     if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
1104         (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
1105          (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
1106           TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
1107           TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
1108           TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
1109       SDLoc DL(Op);
1110       Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
1111       Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
1112                                 BSWAPMask);
1113       Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
1114       return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1115     }
1116   }
1117 
1118   // If we have the appropriate vector bit operations, it is better to use them
1119   // than unrolling and expanding each component.
1120   if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) ||
1121       !TLI.isOperationLegalOrCustom(ISD::SRL, VT) ||
1122       !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
1123       !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
1124     return DAG.UnrollVectorOp(Op.getNode());
1125 
1126   // Let LegalizeDAG handle this later.
1127   return Op;
1128 }
1129 
1130 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
1131   // Implement VSELECT in terms of XOR, AND, OR
1132   // on platforms which do not support blend natively.
1133   SDLoc DL(Op);
1134 
1135   SDValue Mask = Op.getOperand(0);
1136   SDValue Op1 = Op.getOperand(1);
1137   SDValue Op2 = Op.getOperand(2);
1138 
1139   EVT VT = Mask.getValueType();
1140 
1141   // If we can't even use the basic vector operations of
1142   // AND,OR,XOR, we will have to scalarize the op.
1143   // Notice that the operation may be 'promoted' which means that it is
1144   // 'bitcasted' to another type which is handled.
1145   // This operation also isn't safe with AND, OR, XOR when the boolean
1146   // type is 0/1 as we need an all ones vector constant to mask with.
1147   // FIXME: Sign extend 1 to all ones if thats legal on the target.
1148   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1149       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1150       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
1151       TLI.getBooleanContents(Op1.getValueType()) !=
1152           TargetLowering::ZeroOrNegativeOneBooleanContent)
1153     return DAG.UnrollVectorOp(Op.getNode());
1154 
1155   // If the mask and the type are different sizes, unroll the vector op. This
1156   // can occur when getSetCCResultType returns something that is different in
1157   // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1158   if (VT.getSizeInBits() != Op1.getValueSizeInBits())
1159     return DAG.UnrollVectorOp(Op.getNode());
1160 
1161   // Bitcast the operands to be the same type as the mask.
1162   // This is needed when we select between FP types because
1163   // the mask is a vector of integers.
1164   Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
1165   Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
1166 
1167   SDValue AllOnes = DAG.getConstant(
1168     APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT);
1169   SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
1170 
1171   Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
1172   Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
1173   SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
1174   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
1175 }
1176 
1177 SDValue VectorLegalizer::ExpandABS(SDValue Op) {
1178   // Attempt to expand using TargetLowering.
1179   SDValue Result;
1180   if (TLI.expandABS(Op.getNode(), Result, DAG))
1181     return Result;
1182 
1183   // Otherwise go ahead and unroll.
1184   return DAG.UnrollVectorOp(Op.getNode());
1185 }
1186 
1187 SDValue VectorLegalizer::ExpandFP_TO_UINT(SDValue Op) {
1188   // Attempt to expand using TargetLowering.
1189   SDValue Result;
1190   if (TLI.expandFP_TO_UINT(Op.getNode(), Result, DAG))
1191     return Result;
1192 
1193   // Otherwise go ahead and unroll.
1194   return DAG.UnrollVectorOp(Op.getNode());
1195 }
1196 
1197 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
1198   EVT VT = Op.getOperand(0).getValueType();
1199   SDLoc DL(Op);
1200 
1201   // Attempt to expand using TargetLowering.
1202   SDValue Result;
1203   if (TLI.expandUINT_TO_FP(Op.getNode(), Result, DAG))
1204     return Result;
1205 
1206   // Make sure that the SINT_TO_FP and SRL instructions are available.
1207   if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand ||
1208       TLI.getOperationAction(ISD::SRL,        VT) == TargetLowering::Expand)
1209     return DAG.UnrollVectorOp(Op.getNode());
1210 
1211   unsigned BW = VT.getScalarSizeInBits();
1212   assert((BW == 64 || BW == 32) &&
1213          "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1214 
1215   SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
1216 
1217   // Constants to clear the upper part of the word.
1218   // Notice that we can also use SHL+SHR, but using a constant is slightly
1219   // faster on x86.
1220   uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1221   SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
1222 
1223   // Two to the power of half-word-size.
1224   SDValue TWOHW = DAG.getConstantFP(1ULL << (BW / 2), DL, Op.getValueType());
1225 
1226   // Clear upper part of LO, lower HI
1227   SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
1228   SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask);
1229 
1230   // Convert hi and lo to floats
1231   // Convert the hi part back to the upper values
1232   // TODO: Can any fast-math-flags be set on these nodes?
1233   SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
1234           fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
1235   SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);
1236 
1237   // Add the two halves
1238   return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
1239 }
1240 
1241 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
1242   if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
1243     SDLoc DL(Op);
1244     SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType());
1245     // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1246     return DAG.getNode(ISD::FSUB, DL, Op.getValueType(),
1247                        Zero, Op.getOperand(0));
1248   }
1249   return DAG.UnrollVectorOp(Op.getNode());
1250 }
1251 
1252 SDValue VectorLegalizer::ExpandFSUB(SDValue Op) {
1253   // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1254   // we can defer this to operation legalization where it will be lowered as
1255   // a+(-b).
1256   EVT VT = Op.getValueType();
1257   if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
1258       TLI.isOperationLegalOrCustom(ISD::FADD, VT))
1259     return Op; // Defer to LegalizeDAG
1260 
1261   return DAG.UnrollVectorOp(Op.getNode());
1262 }
1263 
1264 SDValue VectorLegalizer::ExpandCTPOP(SDValue Op) {
1265   SDValue Result;
1266   if (TLI.expandCTPOP(Op.getNode(), Result, DAG))
1267     return Result;
1268 
1269   return DAG.UnrollVectorOp(Op.getNode());
1270 }
1271 
1272 SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) {
1273   SDValue Result;
1274   if (TLI.expandCTLZ(Op.getNode(), Result, DAG))
1275     return Result;
1276 
1277   return DAG.UnrollVectorOp(Op.getNode());
1278 }
1279 
1280 SDValue VectorLegalizer::ExpandCTTZ(SDValue Op) {
1281   SDValue Result;
1282   if (TLI.expandCTTZ(Op.getNode(), Result, DAG))
1283     return Result;
1284 
1285   return DAG.UnrollVectorOp(Op.getNode());
1286 }
1287 
1288 SDValue VectorLegalizer::ExpandFunnelShift(SDValue Op) {
1289   SDValue Result;
1290   if (TLI.expandFunnelShift(Op.getNode(), Result, DAG))
1291     return Result;
1292 
1293   return DAG.UnrollVectorOp(Op.getNode());
1294 }
1295 
1296 SDValue VectorLegalizer::ExpandROT(SDValue Op) {
1297   SDValue Result;
1298   if (TLI.expandROT(Op.getNode(), Result, DAG))
1299     return Result;
1300 
1301   return DAG.UnrollVectorOp(Op.getNode());
1302 }
1303 
1304 SDValue VectorLegalizer::ExpandFMINNUM_FMAXNUM(SDValue Op) {
1305   if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Op.getNode(), DAG))
1306     return Expanded;
1307   return DAG.UnrollVectorOp(Op.getNode());
1308 }
1309 
1310 SDValue VectorLegalizer::ExpandUADDSUBO(SDValue Op) {
1311   SDValue Result, Overflow;
1312   TLI.expandUADDSUBO(Op.getNode(), Result, Overflow, DAG);
1313 
1314   if (Op.getResNo() == 0) {
1315     AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow));
1316     return Result;
1317   } else {
1318     AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result));
1319     return Overflow;
1320   }
1321 }
1322 
1323 SDValue VectorLegalizer::ExpandSADDSUBO(SDValue Op) {
1324   SDValue Result, Overflow;
1325   TLI.expandSADDSUBO(Op.getNode(), Result, Overflow, DAG);
1326 
1327   if (Op.getResNo() == 0) {
1328     AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow));
1329     return Result;
1330   } else {
1331     AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result));
1332     return Overflow;
1333   }
1334 }
1335 
1336 SDValue VectorLegalizer::ExpandMULO(SDValue Op) {
1337   SDValue Result, Overflow;
1338   if (!TLI.expandMULO(Op.getNode(), Result, Overflow, DAG))
1339     std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Op.getNode());
1340 
1341   if (Op.getResNo() == 0) {
1342     AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow));
1343     return Result;
1344   } else {
1345     AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result));
1346     return Overflow;
1347   }
1348 }
1349 
1350 SDValue VectorLegalizer::ExpandAddSubSat(SDValue Op) {
1351   if (SDValue Expanded = TLI.expandAddSubSat(Op.getNode(), DAG))
1352     return Expanded;
1353   return DAG.UnrollVectorOp(Op.getNode());
1354 }
1355 
1356 SDValue VectorLegalizer::ExpandFixedPointMul(SDValue Op) {
1357   if (SDValue Expanded = TLI.expandFixedPointMul(Op.getNode(), DAG))
1358     return Expanded;
1359   return DAG.UnrollVectorOp(Op.getNode());
1360 }
1361 
1362 SDValue VectorLegalizer::ExpandStrictFPOp(SDValue Op) {
1363   EVT VT = Op.getValueType();
1364   EVT EltVT = VT.getVectorElementType();
1365   unsigned NumElems = VT.getVectorNumElements();
1366   unsigned NumOpers = Op.getNumOperands();
1367   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1368   EVT ValueVTs[] = {EltVT, MVT::Other};
1369   SDValue Chain = Op.getOperand(0);
1370   SDLoc dl(Op);
1371 
1372   SmallVector<SDValue, 32> OpValues;
1373   SmallVector<SDValue, 32> OpChains;
1374   for (unsigned i = 0; i < NumElems; ++i) {
1375     SmallVector<SDValue, 4> Opers;
1376     SDValue Idx = DAG.getConstant(i, dl,
1377                                   TLI.getVectorIdxTy(DAG.getDataLayout()));
1378 
1379     // The Chain is the first operand.
1380     Opers.push_back(Chain);
1381 
1382     // Now process the remaining operands.
1383     for (unsigned j = 1; j < NumOpers; ++j) {
1384       SDValue Oper = Op.getOperand(j);
1385       EVT OperVT = Oper.getValueType();
1386 
1387       if (OperVT.isVector())
1388         Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1389                            OperVT.getVectorElementType(), Oper, Idx);
1390 
1391       Opers.push_back(Oper);
1392     }
1393 
1394     SDValue ScalarOp = DAG.getNode(Op->getOpcode(), dl, ValueVTs, Opers);
1395 
1396     OpValues.push_back(ScalarOp.getValue(0));
1397     OpChains.push_back(ScalarOp.getValue(1));
1398   }
1399 
1400   SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
1401   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
1402 
1403   AddLegalizedOperand(Op.getValue(0), Result);
1404   AddLegalizedOperand(Op.getValue(1), NewChain);
1405 
1406   return Op.getResNo() ? NewChain : Result;
1407 }
1408 
1409 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
1410   EVT VT = Op.getValueType();
1411   unsigned NumElems = VT.getVectorNumElements();
1412   EVT EltVT = VT.getVectorElementType();
1413   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
1414   EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1415   SDLoc dl(Op);
1416   SmallVector<SDValue, 8> Ops(NumElems);
1417   for (unsigned i = 0; i < NumElems; ++i) {
1418     SDValue LHSElem = DAG.getNode(
1419         ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1420         DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1421     SDValue RHSElem = DAG.getNode(
1422         ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1423         DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1424     Ops[i] = DAG.getNode(ISD::SETCC, dl,
1425                          TLI.getSetCCResultType(DAG.getDataLayout(),
1426                                                 *DAG.getContext(), TmpEltVT),
1427                          LHSElem, RHSElem, CC);
1428     Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
1429                            DAG.getConstant(APInt::getAllOnesValue
1430                                            (EltVT.getSizeInBits()), dl, EltVT),
1431                            DAG.getConstant(0, dl, EltVT));
1432   }
1433   return DAG.getBuildVector(VT, dl, Ops);
1434 }
1435 
1436 bool SelectionDAG::LegalizeVectors() {
1437   return VectorLegalizer(*this).Run();
1438 }
1439