1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::LegalizeVectors method. 10 // 11 // The vector legalizer looks for vector operations which might need to be 12 // scalarized and legalizes them. This is a separate step from Legalize because 13 // scalarizing can introduce illegal types. For example, suppose we have an 14 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 16 // operation, which introduces nodes with the illegal type i64 which must be 17 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 18 // the operation must be unrolled, which introduces nodes with the illegal 19 // type i8 which must be promoted. 20 // 21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 22 // or operations that happen to take a vector which are custom-lowered; 23 // the legalization for such operations never produces nodes 24 // with illegal types, so it's okay to put off legalizing them until 25 // SelectionDAG::Legalize runs. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/SelectionDAGNodes.h" 36 #include "llvm/CodeGen/TargetLowering.h" 37 #include "llvm/CodeGen/ValueTypes.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include <cassert> 46 #include <cstdint> 47 #include <iterator> 48 #include <utility> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "legalizevectorops" 53 54 namespace { 55 56 class VectorLegalizer { 57 SelectionDAG& DAG; 58 const TargetLowering &TLI; 59 bool Changed = false; // Keep track of whether anything changed 60 61 /// For nodes that are of legal width, and that have more than one use, this 62 /// map indicates what regularized operand to use. This allows us to avoid 63 /// legalizing the same thing more than once. 64 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 65 66 /// Adds a node to the translation cache. 67 void AddLegalizedOperand(SDValue From, SDValue To) { 68 LegalizedNodes.insert(std::make_pair(From, To)); 69 // If someone requests legalization of the new node, return itself. 70 if (From != To) 71 LegalizedNodes.insert(std::make_pair(To, To)); 72 } 73 74 /// Legalizes the given node. 75 SDValue LegalizeOp(SDValue Op); 76 77 /// Assuming the node is legal, "legalize" the results. 78 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); 79 80 /// Implements unrolling a VSETCC. 81 SDValue UnrollVSETCC(SDValue Op); 82 83 /// Implement expand-based legalization of vector operations. 84 /// 85 /// This is just a high-level routine to dispatch to specific code paths for 86 /// operations to legalize them. 87 SDValue Expand(SDValue Op); 88 89 /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if 90 /// FP_TO_SINT isn't legal. 91 SDValue ExpandFP_TO_UINT(SDValue Op); 92 93 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 94 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 95 SDValue ExpandUINT_TO_FLOAT(SDValue Op); 96 97 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 98 SDValue ExpandSEXTINREG(SDValue Op); 99 100 /// Implement expansion for ANY_EXTEND_VECTOR_INREG. 101 /// 102 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 103 /// type. The contents of the bits in the extended part of each element are 104 /// undef. 105 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op); 106 107 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG. 108 /// 109 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 110 /// type, then shifts left and arithmetic shifts right to introduce a sign 111 /// extension. 112 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op); 113 114 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG. 115 /// 116 /// Shuffles the low lanes of the operand into place and blends zeros into 117 /// the remaining lanes, finally bitcasting to the proper type. 118 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op); 119 120 /// Implement expand-based legalization of ABS vector operations. 121 /// If following expanding is legal/custom then do it: 122 /// (ABS x) --> (XOR (ADD x, (SRA x, sizeof(x)-1)), (SRA x, sizeof(x)-1)) 123 /// else unroll the operation. 124 SDValue ExpandABS(SDValue Op); 125 126 /// Expand bswap of vectors into a shuffle if legal. 127 SDValue ExpandBSWAP(SDValue Op); 128 129 /// Implement vselect in terms of XOR, AND, OR when blend is not 130 /// supported by the target. 131 SDValue ExpandVSELECT(SDValue Op); 132 SDValue ExpandSELECT(SDValue Op); 133 SDValue ExpandLoad(SDValue Op); 134 SDValue ExpandStore(SDValue Op); 135 SDValue ExpandFNEG(SDValue Op); 136 SDValue ExpandFSUB(SDValue Op); 137 SDValue ExpandBITREVERSE(SDValue Op); 138 SDValue ExpandCTPOP(SDValue Op); 139 SDValue ExpandCTLZ(SDValue Op); 140 SDValue ExpandCTTZ(SDValue Op); 141 SDValue ExpandFunnelShift(SDValue Op); 142 SDValue ExpandROT(SDValue Op); 143 SDValue ExpandFMINNUM_FMAXNUM(SDValue Op); 144 SDValue ExpandUADDSUBO(SDValue Op); 145 SDValue ExpandSADDSUBO(SDValue Op); 146 SDValue ExpandMULO(SDValue Op); 147 SDValue ExpandAddSubSat(SDValue Op); 148 SDValue ExpandFixedPointMul(SDValue Op); 149 SDValue ExpandStrictFPOp(SDValue Op); 150 151 /// Implements vector promotion. 152 /// 153 /// This is essentially just bitcasting the operands to a different type and 154 /// bitcasting the result back to the original type. 155 SDValue Promote(SDValue Op); 156 157 /// Implements [SU]INT_TO_FP vector promotion. 158 /// 159 /// This is a [zs]ext of the input operand to a larger integer type. 160 SDValue PromoteINT_TO_FP(SDValue Op); 161 162 /// Implements FP_TO_[SU]INT vector promotion of the result type. 163 /// 164 /// It is promoted to a larger integer type. The result is then 165 /// truncated back to the original type. 166 SDValue PromoteFP_TO_INT(SDValue Op); 167 168 public: 169 VectorLegalizer(SelectionDAG& dag) : 170 DAG(dag), TLI(dag.getTargetLoweringInfo()) {} 171 172 /// Begin legalizer the vector operations in the DAG. 173 bool Run(); 174 }; 175 176 } // end anonymous namespace 177 178 bool VectorLegalizer::Run() { 179 // Before we start legalizing vector nodes, check if there are any vectors. 180 bool HasVectors = false; 181 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 182 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 183 // Check if the values of the nodes contain vectors. We don't need to check 184 // the operands because we are going to check their values at some point. 185 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); 186 J != E; ++J) 187 HasVectors |= J->isVector(); 188 189 // If we found a vector node we can start the legalization. 190 if (HasVectors) 191 break; 192 } 193 194 // If this basic block has no vectors then no need to legalize vectors. 195 if (!HasVectors) 196 return false; 197 198 // The legalize process is inherently a bottom-up recursive process (users 199 // legalize their uses before themselves). Given infinite stack space, we 200 // could just start legalizing on the root and traverse the whole graph. In 201 // practice however, this causes us to run out of stack space on large basic 202 // blocks. To avoid this problem, compute an ordering of the nodes where each 203 // node is only legalized after all of its operands are legalized. 204 DAG.AssignTopologicalOrder(); 205 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 206 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 207 LegalizeOp(SDValue(&*I, 0)); 208 209 // Finally, it's possible the root changed. Get the new root. 210 SDValue OldRoot = DAG.getRoot(); 211 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 212 DAG.setRoot(LegalizedNodes[OldRoot]); 213 214 LegalizedNodes.clear(); 215 216 // Remove dead nodes now. 217 DAG.RemoveDeadNodes(); 218 219 return Changed; 220 } 221 222 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { 223 // Generic legalization: just pass the operand through. 224 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) 225 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 226 return Result.getValue(Op.getResNo()); 227 } 228 229 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 230 // Note that LegalizeOp may be reentered even from single-use nodes, which 231 // means that we always must cache transformed nodes. 232 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 233 if (I != LegalizedNodes.end()) return I->second; 234 235 SDNode* Node = Op.getNode(); 236 237 // Legalize the operands 238 SmallVector<SDValue, 8> Ops; 239 for (const SDValue &Op : Node->op_values()) 240 Ops.push_back(LegalizeOp(Op)); 241 242 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 243 Op.getResNo()); 244 245 if (Op.getOpcode() == ISD::LOAD) { 246 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 247 ISD::LoadExtType ExtType = LD->getExtensionType(); 248 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) { 249 LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: "; 250 Node->dump(&DAG)); 251 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), 252 LD->getMemoryVT())) { 253 default: llvm_unreachable("This action is not supported yet!"); 254 case TargetLowering::Legal: 255 return TranslateLegalizeResults(Op, Result); 256 case TargetLowering::Custom: 257 if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) { 258 assert(Lowered->getNumValues() == Op->getNumValues() && 259 "Unexpected number of results"); 260 if (Lowered != Result) { 261 // Make sure the new code is also legal. 262 Lowered = LegalizeOp(Lowered); 263 Changed = true; 264 } 265 return TranslateLegalizeResults(Op, Lowered); 266 } 267 LLVM_FALLTHROUGH; 268 case TargetLowering::Expand: 269 Changed = true; 270 return ExpandLoad(Op); 271 } 272 } 273 } else if (Op.getOpcode() == ISD::STORE) { 274 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 275 EVT StVT = ST->getMemoryVT(); 276 MVT ValVT = ST->getValue().getSimpleValueType(); 277 if (StVT.isVector() && ST->isTruncatingStore()) { 278 LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: "; 279 Node->dump(&DAG)); 280 switch (TLI.getTruncStoreAction(ValVT, StVT)) { 281 default: llvm_unreachable("This action is not supported yet!"); 282 case TargetLowering::Legal: 283 return TranslateLegalizeResults(Op, Result); 284 case TargetLowering::Custom: { 285 SDValue Lowered = TLI.LowerOperation(Result, DAG); 286 if (Lowered != Result) { 287 // Make sure the new code is also legal. 288 Lowered = LegalizeOp(Lowered); 289 Changed = true; 290 } 291 return TranslateLegalizeResults(Op, Lowered); 292 } 293 case TargetLowering::Expand: 294 Changed = true; 295 return ExpandStore(Op); 296 } 297 } 298 } 299 300 bool HasVectorValueOrOp = false; 301 for (auto J = Node->value_begin(), E = Node->value_end(); J != E; ++J) 302 HasVectorValueOrOp |= J->isVector(); 303 for (const SDValue &Op : Node->op_values()) 304 HasVectorValueOrOp |= Op.getValueType().isVector(); 305 306 if (!HasVectorValueOrOp) 307 return TranslateLegalizeResults(Op, Result); 308 309 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 310 switch (Op.getOpcode()) { 311 default: 312 return TranslateLegalizeResults(Op, Result); 313 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 314 case ISD::STRICT_##DAGN: 315 #include "llvm/IR/ConstrainedOps.def" 316 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 317 // If we're asked to expand a strict vector floating-point operation, 318 // by default we're going to simply unroll it. That is usually the 319 // best approach, except in the case where the resulting strict (scalar) 320 // operations would themselves use the fallback mutation to non-strict. 321 // In that specific case, just do the fallback on the vector op. 322 if (Action == TargetLowering::Expand && 323 TLI.getStrictFPOperationAction(Node->getOpcode(), 324 Node->getValueType(0)) 325 == TargetLowering::Legal) { 326 EVT EltVT = Node->getValueType(0).getVectorElementType(); 327 if (TLI.getOperationAction(Node->getOpcode(), EltVT) 328 == TargetLowering::Expand && 329 TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT) 330 == TargetLowering::Legal) 331 Action = TargetLowering::Legal; 332 } 333 break; 334 case ISD::ADD: 335 case ISD::SUB: 336 case ISD::MUL: 337 case ISD::MULHS: 338 case ISD::MULHU: 339 case ISD::SDIV: 340 case ISD::UDIV: 341 case ISD::SREM: 342 case ISD::UREM: 343 case ISD::SDIVREM: 344 case ISD::UDIVREM: 345 case ISD::FADD: 346 case ISD::FSUB: 347 case ISD::FMUL: 348 case ISD::FDIV: 349 case ISD::FREM: 350 case ISD::AND: 351 case ISD::OR: 352 case ISD::XOR: 353 case ISD::SHL: 354 case ISD::SRA: 355 case ISD::SRL: 356 case ISD::FSHL: 357 case ISD::FSHR: 358 case ISD::ROTL: 359 case ISD::ROTR: 360 case ISD::ABS: 361 case ISD::BSWAP: 362 case ISD::BITREVERSE: 363 case ISD::CTLZ: 364 case ISD::CTTZ: 365 case ISD::CTLZ_ZERO_UNDEF: 366 case ISD::CTTZ_ZERO_UNDEF: 367 case ISD::CTPOP: 368 case ISD::SELECT: 369 case ISD::VSELECT: 370 case ISD::SELECT_CC: 371 case ISD::SETCC: 372 case ISD::ZERO_EXTEND: 373 case ISD::ANY_EXTEND: 374 case ISD::TRUNCATE: 375 case ISD::SIGN_EXTEND: 376 case ISD::FP_TO_SINT: 377 case ISD::FP_TO_UINT: 378 case ISD::FNEG: 379 case ISD::FABS: 380 case ISD::FMINNUM: 381 case ISD::FMAXNUM: 382 case ISD::FMINNUM_IEEE: 383 case ISD::FMAXNUM_IEEE: 384 case ISD::FMINIMUM: 385 case ISD::FMAXIMUM: 386 case ISD::FCOPYSIGN: 387 case ISD::FSQRT: 388 case ISD::FSIN: 389 case ISD::FCOS: 390 case ISD::FPOWI: 391 case ISD::FPOW: 392 case ISD::FLOG: 393 case ISD::FLOG2: 394 case ISD::FLOG10: 395 case ISD::FEXP: 396 case ISD::FEXP2: 397 case ISD::FCEIL: 398 case ISD::FTRUNC: 399 case ISD::FRINT: 400 case ISD::FNEARBYINT: 401 case ISD::FROUND: 402 case ISD::FFLOOR: 403 case ISD::FP_ROUND: 404 case ISD::FP_EXTEND: 405 case ISD::FMA: 406 case ISD::SIGN_EXTEND_INREG: 407 case ISD::ANY_EXTEND_VECTOR_INREG: 408 case ISD::SIGN_EXTEND_VECTOR_INREG: 409 case ISD::ZERO_EXTEND_VECTOR_INREG: 410 case ISD::SMIN: 411 case ISD::SMAX: 412 case ISD::UMIN: 413 case ISD::UMAX: 414 case ISD::SMUL_LOHI: 415 case ISD::UMUL_LOHI: 416 case ISD::SADDO: 417 case ISD::UADDO: 418 case ISD::SSUBO: 419 case ISD::USUBO: 420 case ISD::SMULO: 421 case ISD::UMULO: 422 case ISD::FCANONICALIZE: 423 case ISD::SADDSAT: 424 case ISD::UADDSAT: 425 case ISD::SSUBSAT: 426 case ISD::USUBSAT: 427 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 428 break; 429 case ISD::SMULFIX: 430 case ISD::SMULFIXSAT: 431 case ISD::UMULFIX: 432 case ISD::UMULFIXSAT: { 433 unsigned Scale = Node->getConstantOperandVal(2); 434 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 435 Node->getValueType(0), Scale); 436 break; 437 } 438 case ISD::SINT_TO_FP: 439 case ISD::UINT_TO_FP: 440 case ISD::VECREDUCE_ADD: 441 case ISD::VECREDUCE_MUL: 442 case ISD::VECREDUCE_AND: 443 case ISD::VECREDUCE_OR: 444 case ISD::VECREDUCE_XOR: 445 case ISD::VECREDUCE_SMAX: 446 case ISD::VECREDUCE_SMIN: 447 case ISD::VECREDUCE_UMAX: 448 case ISD::VECREDUCE_UMIN: 449 case ISD::VECREDUCE_FADD: 450 case ISD::VECREDUCE_FMUL: 451 case ISD::VECREDUCE_FMAX: 452 case ISD::VECREDUCE_FMIN: 453 Action = TLI.getOperationAction(Node->getOpcode(), 454 Node->getOperand(0).getValueType()); 455 break; 456 } 457 458 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG)); 459 460 switch (Action) { 461 default: llvm_unreachable("This action is not supported yet!"); 462 case TargetLowering::Promote: 463 Result = Promote(Op); 464 Changed = true; 465 break; 466 case TargetLowering::Legal: 467 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 468 break; 469 case TargetLowering::Custom: { 470 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 471 if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) { 472 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 473 Result = Tmp1; 474 break; 475 } 476 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 477 LLVM_FALLTHROUGH; 478 } 479 case TargetLowering::Expand: 480 Result = Expand(Op); 481 } 482 483 // Make sure that the generated code is itself legal. 484 if (Result != Op) { 485 Result = LegalizeOp(Result); 486 Changed = true; 487 } 488 489 // Note that LegalizeOp may be reentered even from single-use nodes, which 490 // means that we always must cache transformed nodes. 491 AddLegalizedOperand(Op, Result); 492 return Result; 493 } 494 495 SDValue VectorLegalizer::Promote(SDValue Op) { 496 // For a few operations there is a specific concept for promotion based on 497 // the operand's type. 498 switch (Op.getOpcode()) { 499 case ISD::SINT_TO_FP: 500 case ISD::UINT_TO_FP: 501 // "Promote" the operation by extending the operand. 502 return PromoteINT_TO_FP(Op); 503 case ISD::FP_TO_UINT: 504 case ISD::FP_TO_SINT: 505 // Promote the operation by extending the operand. 506 return PromoteFP_TO_INT(Op); 507 } 508 509 // There are currently two cases of vector promotion: 510 // 1) Bitcasting a vector of integers to a different type to a vector of the 511 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 512 // 2) Extending a vector of floats to a vector of the same number of larger 513 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 514 MVT VT = Op.getSimpleValueType(); 515 assert(Op.getNode()->getNumValues() == 1 && 516 "Can't promote a vector with multiple results!"); 517 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 518 SDLoc dl(Op); 519 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 520 521 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 522 if (Op.getOperand(j).getValueType().isVector()) 523 if (Op.getOperand(j) 524 .getValueType() 525 .getVectorElementType() 526 .isFloatingPoint() && 527 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 528 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j)); 529 else 530 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); 531 else 532 Operands[j] = Op.getOperand(j); 533 } 534 535 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags()); 536 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 537 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 538 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 539 return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl)); 540 else 541 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 542 } 543 544 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) { 545 // INT_TO_FP operations may require the input operand be promoted even 546 // when the type is otherwise legal. 547 MVT VT = Op.getOperand(0).getSimpleValueType(); 548 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 549 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 550 "Vectors have different number of elements!"); 551 552 SDLoc dl(Op); 553 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 554 555 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : 556 ISD::SIGN_EXTEND; 557 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 558 if (Op.getOperand(j).getValueType().isVector()) 559 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j)); 560 else 561 Operands[j] = Op.getOperand(j); 562 } 563 564 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands); 565 } 566 567 // For FP_TO_INT we promote the result type to a vector type with wider 568 // elements and then truncate the result. This is different from the default 569 // PromoteVector which uses bitcast to promote thus assumning that the 570 // promoted vector type has the same overall size. 571 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op) { 572 MVT VT = Op.getSimpleValueType(); 573 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 574 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 575 "Vectors have different number of elements!"); 576 577 unsigned NewOpc = Op->getOpcode(); 578 // Change FP_TO_UINT to FP_TO_SINT if possible. 579 // TODO: Should we only do this if FP_TO_UINT itself isn't legal? 580 if (NewOpc == ISD::FP_TO_UINT && 581 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT)) 582 NewOpc = ISD::FP_TO_SINT; 583 584 SDLoc dl(Op); 585 SDValue Promoted = DAG.getNode(NewOpc, dl, NVT, Op.getOperand(0)); 586 587 // Assert that the converted value fits in the original type. If it doesn't 588 // (eg: because the value being converted is too big), then the result of the 589 // original operation was undefined anyway, so the assert is still correct. 590 Promoted = DAG.getNode(Op->getOpcode() == ISD::FP_TO_UINT ? ISD::AssertZext 591 : ISD::AssertSext, 592 dl, NVT, Promoted, 593 DAG.getValueType(VT.getScalarType())); 594 return DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted); 595 } 596 597 SDValue VectorLegalizer::ExpandLoad(SDValue Op) { 598 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 599 600 EVT SrcVT = LD->getMemoryVT(); 601 EVT SrcEltVT = SrcVT.getScalarType(); 602 unsigned NumElem = SrcVT.getVectorNumElements(); 603 604 SDValue NewChain; 605 SDValue Value; 606 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { 607 SDLoc dl(Op); 608 609 SmallVector<SDValue, 8> Vals; 610 SmallVector<SDValue, 8> LoadChains; 611 612 EVT DstEltVT = LD->getValueType(0).getScalarType(); 613 SDValue Chain = LD->getChain(); 614 SDValue BasePTR = LD->getBasePtr(); 615 ISD::LoadExtType ExtType = LD->getExtensionType(); 616 617 // When elements in a vector is not byte-addressable, we cannot directly 618 // load each element by advancing pointer, which could only address bytes. 619 // Instead, we load all significant words, mask bits off, and concatenate 620 // them to form each element. Finally, they are extended to destination 621 // scalar type to build the destination vector. 622 EVT WideVT = TLI.getPointerTy(DAG.getDataLayout()); 623 624 assert(WideVT.isRound() && 625 "Could not handle the sophisticated case when the widest integer is" 626 " not power of 2."); 627 assert(WideVT.bitsGE(SrcEltVT) && 628 "Type is not legalized?"); 629 630 unsigned WideBytes = WideVT.getStoreSize(); 631 unsigned Offset = 0; 632 unsigned RemainingBytes = SrcVT.getStoreSize(); 633 SmallVector<SDValue, 8> LoadVals; 634 while (RemainingBytes > 0) { 635 SDValue ScalarLoad; 636 unsigned LoadBytes = WideBytes; 637 638 if (RemainingBytes >= LoadBytes) { 639 ScalarLoad = 640 DAG.getLoad(WideVT, dl, Chain, BasePTR, 641 LD->getPointerInfo().getWithOffset(Offset), 642 MinAlign(LD->getAlignment(), Offset), 643 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 644 } else { 645 EVT LoadVT = WideVT; 646 while (RemainingBytes < LoadBytes) { 647 LoadBytes >>= 1; // Reduce the load size by half. 648 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); 649 } 650 ScalarLoad = 651 DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, 652 LD->getPointerInfo().getWithOffset(Offset), LoadVT, 653 MinAlign(LD->getAlignment(), Offset), 654 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 655 } 656 657 RemainingBytes -= LoadBytes; 658 Offset += LoadBytes; 659 660 BasePTR = DAG.getObjectPtrOffset(dl, BasePTR, LoadBytes); 661 662 LoadVals.push_back(ScalarLoad.getValue(0)); 663 LoadChains.push_back(ScalarLoad.getValue(1)); 664 } 665 666 unsigned BitOffset = 0; 667 unsigned WideIdx = 0; 668 unsigned WideBits = WideVT.getSizeInBits(); 669 670 // Extract bits, pack and extend/trunc them into destination type. 671 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 672 SDValue SrcEltBitMask = DAG.getConstant( 673 APInt::getLowBitsSet(WideBits, SrcEltBits), dl, WideVT); 674 675 for (unsigned Idx = 0; Idx != NumElem; ++Idx) { 676 assert(BitOffset < WideBits && "Unexpected offset!"); 677 678 SDValue ShAmt = DAG.getConstant( 679 BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 680 SDValue Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); 681 682 BitOffset += SrcEltBits; 683 if (BitOffset >= WideBits) { 684 WideIdx++; 685 BitOffset -= WideBits; 686 if (BitOffset > 0) { 687 ShAmt = DAG.getConstant( 688 SrcEltBits - BitOffset, dl, 689 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 690 SDValue Hi = 691 DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); 692 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); 693 } 694 } 695 696 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); 697 698 switch (ExtType) { 699 default: llvm_unreachable("Unknown extended-load op!"); 700 case ISD::EXTLOAD: 701 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); 702 break; 703 case ISD::ZEXTLOAD: 704 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); 705 break; 706 case ISD::SEXTLOAD: 707 ShAmt = 708 DAG.getConstant(WideBits - SrcEltBits, dl, 709 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 710 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); 711 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); 712 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); 713 break; 714 } 715 Vals.push_back(Lo); 716 } 717 718 NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 719 Value = DAG.getBuildVector(Op.getNode()->getValueType(0), dl, Vals); 720 } else { 721 SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG); 722 // Skip past MERGE_VALUE node if known. 723 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) { 724 NewChain = Scalarized.getOperand(1); 725 Value = Scalarized.getOperand(0); 726 } else { 727 NewChain = Scalarized.getValue(1); 728 Value = Scalarized.getValue(0); 729 } 730 } 731 732 AddLegalizedOperand(Op.getValue(0), Value); 733 AddLegalizedOperand(Op.getValue(1), NewChain); 734 735 return (Op.getResNo() ? NewChain : Value); 736 } 737 738 SDValue VectorLegalizer::ExpandStore(SDValue Op) { 739 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 740 SDValue TF = TLI.scalarizeVectorStore(ST, DAG); 741 AddLegalizedOperand(Op, TF); 742 return TF; 743 } 744 745 SDValue VectorLegalizer::Expand(SDValue Op) { 746 switch (Op->getOpcode()) { 747 case ISD::SIGN_EXTEND_INREG: 748 return ExpandSEXTINREG(Op); 749 case ISD::ANY_EXTEND_VECTOR_INREG: 750 return ExpandANY_EXTEND_VECTOR_INREG(Op); 751 case ISD::SIGN_EXTEND_VECTOR_INREG: 752 return ExpandSIGN_EXTEND_VECTOR_INREG(Op); 753 case ISD::ZERO_EXTEND_VECTOR_INREG: 754 return ExpandZERO_EXTEND_VECTOR_INREG(Op); 755 case ISD::BSWAP: 756 return ExpandBSWAP(Op); 757 case ISD::VSELECT: 758 return ExpandVSELECT(Op); 759 case ISD::SELECT: 760 return ExpandSELECT(Op); 761 case ISD::FP_TO_UINT: 762 return ExpandFP_TO_UINT(Op); 763 case ISD::UINT_TO_FP: 764 return ExpandUINT_TO_FLOAT(Op); 765 case ISD::FNEG: 766 return ExpandFNEG(Op); 767 case ISD::FSUB: 768 return ExpandFSUB(Op); 769 case ISD::SETCC: 770 return UnrollVSETCC(Op); 771 case ISD::ABS: 772 return ExpandABS(Op); 773 case ISD::BITREVERSE: 774 return ExpandBITREVERSE(Op); 775 case ISD::CTPOP: 776 return ExpandCTPOP(Op); 777 case ISD::CTLZ: 778 case ISD::CTLZ_ZERO_UNDEF: 779 return ExpandCTLZ(Op); 780 case ISD::CTTZ: 781 case ISD::CTTZ_ZERO_UNDEF: 782 return ExpandCTTZ(Op); 783 case ISD::FSHL: 784 case ISD::FSHR: 785 return ExpandFunnelShift(Op); 786 case ISD::ROTL: 787 case ISD::ROTR: 788 return ExpandROT(Op); 789 case ISD::FMINNUM: 790 case ISD::FMAXNUM: 791 return ExpandFMINNUM_FMAXNUM(Op); 792 case ISD::UADDO: 793 case ISD::USUBO: 794 return ExpandUADDSUBO(Op); 795 case ISD::SADDO: 796 case ISD::SSUBO: 797 return ExpandSADDSUBO(Op); 798 case ISD::UMULO: 799 case ISD::SMULO: 800 return ExpandMULO(Op); 801 case ISD::USUBSAT: 802 case ISD::SSUBSAT: 803 case ISD::UADDSAT: 804 case ISD::SADDSAT: 805 return ExpandAddSubSat(Op); 806 case ISD::SMULFIX: 807 case ISD::UMULFIX: 808 return ExpandFixedPointMul(Op); 809 case ISD::SMULFIXSAT: 810 case ISD::UMULFIXSAT: 811 // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly 812 // why. Maybe it results in worse codegen compared to the unroll for some 813 // targets? This should probably be investigated. And if we still prefer to 814 // unroll an explanation could be helpful. 815 return DAG.UnrollVectorOp(Op.getNode()); 816 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 817 case ISD::STRICT_##DAGN: 818 #include "llvm/IR/ConstrainedOps.def" 819 return ExpandStrictFPOp(Op); 820 case ISD::VECREDUCE_ADD: 821 case ISD::VECREDUCE_MUL: 822 case ISD::VECREDUCE_AND: 823 case ISD::VECREDUCE_OR: 824 case ISD::VECREDUCE_XOR: 825 case ISD::VECREDUCE_SMAX: 826 case ISD::VECREDUCE_SMIN: 827 case ISD::VECREDUCE_UMAX: 828 case ISD::VECREDUCE_UMIN: 829 case ISD::VECREDUCE_FADD: 830 case ISD::VECREDUCE_FMUL: 831 case ISD::VECREDUCE_FMAX: 832 case ISD::VECREDUCE_FMIN: 833 return TLI.expandVecReduce(Op.getNode(), DAG); 834 default: 835 return DAG.UnrollVectorOp(Op.getNode()); 836 } 837 } 838 839 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) { 840 // Lower a select instruction where the condition is a scalar and the 841 // operands are vectors. Lower this select to VSELECT and implement it 842 // using XOR AND OR. The selector bit is broadcasted. 843 EVT VT = Op.getValueType(); 844 SDLoc DL(Op); 845 846 SDValue Mask = Op.getOperand(0); 847 SDValue Op1 = Op.getOperand(1); 848 SDValue Op2 = Op.getOperand(2); 849 850 assert(VT.isVector() && !Mask.getValueType().isVector() 851 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 852 853 // If we can't even use the basic vector operations of 854 // AND,OR,XOR, we will have to scalarize the op. 855 // Notice that the operation may be 'promoted' which means that it is 856 // 'bitcasted' to another type which is handled. 857 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 858 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 859 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 860 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 861 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 862 return DAG.UnrollVectorOp(Op.getNode()); 863 864 // Generate a mask operand. 865 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 866 867 // What is the size of each element in the vector mask. 868 EVT BitTy = MaskTy.getScalarType(); 869 870 Mask = DAG.getSelect(DL, BitTy, Mask, 871 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, 872 BitTy), 873 DAG.getConstant(0, DL, BitTy)); 874 875 // Broadcast the mask so that the entire vector is all-one or all zero. 876 Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask); 877 878 // Bitcast the operands to be the same type as the mask. 879 // This is needed when we select between FP types because 880 // the mask is a vector of integers. 881 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 882 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 883 884 SDValue AllOnes = DAG.getConstant( 885 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy); 886 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 887 888 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 889 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 890 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 891 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 892 } 893 894 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) { 895 EVT VT = Op.getValueType(); 896 897 // Make sure that the SRA and SHL instructions are available. 898 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 899 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 900 return DAG.UnrollVectorOp(Op.getNode()); 901 902 SDLoc DL(Op); 903 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT(); 904 905 unsigned BW = VT.getScalarSizeInBits(); 906 unsigned OrigBW = OrigTy.getScalarSizeInBits(); 907 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 908 909 Op = Op.getOperand(0); 910 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz); 911 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 912 } 913 914 // Generically expand a vector anyext in register to a shuffle of the relevant 915 // lanes into the appropriate locations, with other lanes left undef. 916 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) { 917 SDLoc DL(Op); 918 EVT VT = Op.getValueType(); 919 int NumElements = VT.getVectorNumElements(); 920 SDValue Src = Op.getOperand(0); 921 EVT SrcVT = Src.getValueType(); 922 int NumSrcElements = SrcVT.getVectorNumElements(); 923 924 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 925 // into a larger vector type. 926 if (SrcVT.bitsLE(VT)) { 927 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 928 "ANY_EXTEND_VECTOR_INREG vector size mismatch"); 929 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 930 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 931 NumSrcElements); 932 Src = DAG.getNode( 933 ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), Src, 934 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 935 } 936 937 // Build a base mask of undef shuffles. 938 SmallVector<int, 16> ShuffleMask; 939 ShuffleMask.resize(NumSrcElements, -1); 940 941 // Place the extended lanes into the correct locations. 942 int ExtLaneScale = NumSrcElements / NumElements; 943 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 944 for (int i = 0; i < NumElements; ++i) 945 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 946 947 return DAG.getNode( 948 ISD::BITCAST, DL, VT, 949 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 950 } 951 952 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) { 953 SDLoc DL(Op); 954 EVT VT = Op.getValueType(); 955 SDValue Src = Op.getOperand(0); 956 EVT SrcVT = Src.getValueType(); 957 958 // First build an any-extend node which can be legalized above when we 959 // recurse through it. 960 Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src); 961 962 // Now we need sign extend. Do this by shifting the elements. Even if these 963 // aren't legal operations, they have a better chance of being legalized 964 // without full scalarization than the sign extension does. 965 unsigned EltWidth = VT.getScalarSizeInBits(); 966 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); 967 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 968 return DAG.getNode(ISD::SRA, DL, VT, 969 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 970 ShiftAmount); 971 } 972 973 // Generically expand a vector zext in register to a shuffle of the relevant 974 // lanes into the appropriate locations, a blend of zero into the high bits, 975 // and a bitcast to the wider element type. 976 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) { 977 SDLoc DL(Op); 978 EVT VT = Op.getValueType(); 979 int NumElements = VT.getVectorNumElements(); 980 SDValue Src = Op.getOperand(0); 981 EVT SrcVT = Src.getValueType(); 982 int NumSrcElements = SrcVT.getVectorNumElements(); 983 984 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 985 // into a larger vector type. 986 if (SrcVT.bitsLE(VT)) { 987 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 988 "ZERO_EXTEND_VECTOR_INREG vector size mismatch"); 989 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 990 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 991 NumSrcElements); 992 Src = DAG.getNode( 993 ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), Src, 994 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 995 } 996 997 // Build up a zero vector to blend into this one. 998 SDValue Zero = DAG.getConstant(0, DL, SrcVT); 999 1000 // Shuffle the incoming lanes into the correct position, and pull all other 1001 // lanes from the zero vector. 1002 SmallVector<int, 16> ShuffleMask; 1003 ShuffleMask.reserve(NumSrcElements); 1004 for (int i = 0; i < NumSrcElements; ++i) 1005 ShuffleMask.push_back(i); 1006 1007 int ExtLaneScale = NumSrcElements / NumElements; 1008 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 1009 for (int i = 0; i < NumElements; ++i) 1010 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 1011 1012 return DAG.getNode(ISD::BITCAST, DL, VT, 1013 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 1014 } 1015 1016 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) { 1017 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 1018 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 1019 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 1020 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 1021 } 1022 1023 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) { 1024 EVT VT = Op.getValueType(); 1025 1026 // Generate a byte wise shuffle mask for the BSWAP. 1027 SmallVector<int, 16> ShuffleMask; 1028 createBSWAPShuffleMask(VT, ShuffleMask); 1029 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 1030 1031 // Only emit a shuffle if the mask is legal. 1032 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) 1033 return DAG.UnrollVectorOp(Op.getNode()); 1034 1035 SDLoc DL(Op); 1036 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 1037 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); 1038 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 1039 } 1040 1041 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) { 1042 EVT VT = Op.getValueType(); 1043 1044 // If we have the scalar operation, it's probably cheaper to unroll it. 1045 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) 1046 return DAG.UnrollVectorOp(Op.getNode()); 1047 1048 // If the vector element width is a whole number of bytes, test if its legal 1049 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte 1050 // vector. This greatly reduces the number of bit shifts necessary. 1051 unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); 1052 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { 1053 SmallVector<int, 16> BSWAPMask; 1054 createBSWAPShuffleMask(VT, BSWAPMask); 1055 1056 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); 1057 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && 1058 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || 1059 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && 1060 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && 1061 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && 1062 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { 1063 SDLoc DL(Op); 1064 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 1065 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 1066 BSWAPMask); 1067 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); 1068 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 1069 } 1070 } 1071 1072 // If we have the appropriate vector bit operations, it is better to use them 1073 // than unrolling and expanding each component. 1074 if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) || 1075 !TLI.isOperationLegalOrCustom(ISD::SRL, VT) || 1076 !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 1077 !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) 1078 return DAG.UnrollVectorOp(Op.getNode()); 1079 1080 // Let LegalizeDAG handle this later. 1081 return Op; 1082 } 1083 1084 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { 1085 // Implement VSELECT in terms of XOR, AND, OR 1086 // on platforms which do not support blend natively. 1087 SDLoc DL(Op); 1088 1089 SDValue Mask = Op.getOperand(0); 1090 SDValue Op1 = Op.getOperand(1); 1091 SDValue Op2 = Op.getOperand(2); 1092 1093 EVT VT = Mask.getValueType(); 1094 1095 // If we can't even use the basic vector operations of 1096 // AND,OR,XOR, we will have to scalarize the op. 1097 // Notice that the operation may be 'promoted' which means that it is 1098 // 'bitcasted' to another type which is handled. 1099 // This operation also isn't safe with AND, OR, XOR when the boolean 1100 // type is 0/1 as we need an all ones vector constant to mask with. 1101 // FIXME: Sign extend 1 to all ones if thats legal on the target. 1102 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 1103 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 1104 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 1105 TLI.getBooleanContents(Op1.getValueType()) != 1106 TargetLowering::ZeroOrNegativeOneBooleanContent) 1107 return DAG.UnrollVectorOp(Op.getNode()); 1108 1109 // If the mask and the type are different sizes, unroll the vector op. This 1110 // can occur when getSetCCResultType returns something that is different in 1111 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 1112 if (VT.getSizeInBits() != Op1.getValueSizeInBits()) 1113 return DAG.UnrollVectorOp(Op.getNode()); 1114 1115 // Bitcast the operands to be the same type as the mask. 1116 // This is needed when we select between FP types because 1117 // the mask is a vector of integers. 1118 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 1119 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 1120 1121 SDValue AllOnes = DAG.getConstant( 1122 APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT); 1123 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 1124 1125 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 1126 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 1127 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 1128 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 1129 } 1130 1131 SDValue VectorLegalizer::ExpandABS(SDValue Op) { 1132 // Attempt to expand using TargetLowering. 1133 SDValue Result; 1134 if (TLI.expandABS(Op.getNode(), Result, DAG)) 1135 return Result; 1136 1137 // Otherwise go ahead and unroll. 1138 return DAG.UnrollVectorOp(Op.getNode()); 1139 } 1140 1141 SDValue VectorLegalizer::ExpandFP_TO_UINT(SDValue Op) { 1142 // Attempt to expand using TargetLowering. 1143 SDValue Result, Chain; 1144 if (TLI.expandFP_TO_UINT(Op.getNode(), Result, Chain, DAG)) { 1145 if (Op.getNode()->isStrictFPOpcode()) 1146 // Relink the chain 1147 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Chain); 1148 return Result; 1149 } 1150 1151 // Otherwise go ahead and unroll. 1152 return DAG.UnrollVectorOp(Op.getNode()); 1153 } 1154 1155 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { 1156 EVT VT = Op.getOperand(0).getValueType(); 1157 SDLoc DL(Op); 1158 1159 // Attempt to expand using TargetLowering. 1160 SDValue Result; 1161 if (TLI.expandUINT_TO_FP(Op.getNode(), Result, DAG)) 1162 return Result; 1163 1164 // Make sure that the SINT_TO_FP and SRL instructions are available. 1165 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand || 1166 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) 1167 return DAG.UnrollVectorOp(Op.getNode()); 1168 1169 unsigned BW = VT.getScalarSizeInBits(); 1170 assert((BW == 64 || BW == 32) && 1171 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 1172 1173 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT); 1174 1175 // Constants to clear the upper part of the word. 1176 // Notice that we can also use SHL+SHR, but using a constant is slightly 1177 // faster on x86. 1178 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; 1179 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 1180 1181 // Two to the power of half-word-size. 1182 SDValue TWOHW = DAG.getConstantFP(1ULL << (BW / 2), DL, Op.getValueType()); 1183 1184 // Clear upper part of LO, lower HI 1185 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); 1186 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); 1187 1188 // Convert hi and lo to floats 1189 // Convert the hi part back to the upper values 1190 // TODO: Can any fast-math-flags be set on these nodes? 1191 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); 1192 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); 1193 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); 1194 1195 // Add the two halves 1196 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); 1197 } 1198 1199 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { 1200 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { 1201 SDLoc DL(Op); 1202 SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType()); 1203 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. 1204 return DAG.getNode(ISD::FSUB, DL, Op.getValueType(), 1205 Zero, Op.getOperand(0)); 1206 } 1207 return DAG.UnrollVectorOp(Op.getNode()); 1208 } 1209 1210 SDValue VectorLegalizer::ExpandFSUB(SDValue Op) { 1211 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal, 1212 // we can defer this to operation legalization where it will be lowered as 1213 // a+(-b). 1214 EVT VT = Op.getValueType(); 1215 if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && 1216 TLI.isOperationLegalOrCustom(ISD::FADD, VT)) 1217 return Op; // Defer to LegalizeDAG 1218 1219 return DAG.UnrollVectorOp(Op.getNode()); 1220 } 1221 1222 SDValue VectorLegalizer::ExpandCTPOP(SDValue Op) { 1223 SDValue Result; 1224 if (TLI.expandCTPOP(Op.getNode(), Result, DAG)) 1225 return Result; 1226 1227 return DAG.UnrollVectorOp(Op.getNode()); 1228 } 1229 1230 SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) { 1231 SDValue Result; 1232 if (TLI.expandCTLZ(Op.getNode(), Result, DAG)) 1233 return Result; 1234 1235 return DAG.UnrollVectorOp(Op.getNode()); 1236 } 1237 1238 SDValue VectorLegalizer::ExpandCTTZ(SDValue Op) { 1239 SDValue Result; 1240 if (TLI.expandCTTZ(Op.getNode(), Result, DAG)) 1241 return Result; 1242 1243 return DAG.UnrollVectorOp(Op.getNode()); 1244 } 1245 1246 SDValue VectorLegalizer::ExpandFunnelShift(SDValue Op) { 1247 SDValue Result; 1248 if (TLI.expandFunnelShift(Op.getNode(), Result, DAG)) 1249 return Result; 1250 1251 return DAG.UnrollVectorOp(Op.getNode()); 1252 } 1253 1254 SDValue VectorLegalizer::ExpandROT(SDValue Op) { 1255 SDValue Result; 1256 if (TLI.expandROT(Op.getNode(), Result, DAG)) 1257 return Result; 1258 1259 return DAG.UnrollVectorOp(Op.getNode()); 1260 } 1261 1262 SDValue VectorLegalizer::ExpandFMINNUM_FMAXNUM(SDValue Op) { 1263 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Op.getNode(), DAG)) 1264 return Expanded; 1265 return DAG.UnrollVectorOp(Op.getNode()); 1266 } 1267 1268 SDValue VectorLegalizer::ExpandUADDSUBO(SDValue Op) { 1269 SDValue Result, Overflow; 1270 TLI.expandUADDSUBO(Op.getNode(), Result, Overflow, DAG); 1271 1272 if (Op.getResNo() == 0) { 1273 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow)); 1274 return Result; 1275 } else { 1276 AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result)); 1277 return Overflow; 1278 } 1279 } 1280 1281 SDValue VectorLegalizer::ExpandSADDSUBO(SDValue Op) { 1282 SDValue Result, Overflow; 1283 TLI.expandSADDSUBO(Op.getNode(), Result, Overflow, DAG); 1284 1285 if (Op.getResNo() == 0) { 1286 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow)); 1287 return Result; 1288 } else { 1289 AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result)); 1290 return Overflow; 1291 } 1292 } 1293 1294 SDValue VectorLegalizer::ExpandMULO(SDValue Op) { 1295 SDValue Result, Overflow; 1296 if (!TLI.expandMULO(Op.getNode(), Result, Overflow, DAG)) 1297 std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Op.getNode()); 1298 1299 if (Op.getResNo() == 0) { 1300 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow)); 1301 return Result; 1302 } else { 1303 AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result)); 1304 return Overflow; 1305 } 1306 } 1307 1308 SDValue VectorLegalizer::ExpandAddSubSat(SDValue Op) { 1309 if (SDValue Expanded = TLI.expandAddSubSat(Op.getNode(), DAG)) 1310 return Expanded; 1311 return DAG.UnrollVectorOp(Op.getNode()); 1312 } 1313 1314 SDValue VectorLegalizer::ExpandFixedPointMul(SDValue Op) { 1315 if (SDValue Expanded = TLI.expandFixedPointMul(Op.getNode(), DAG)) 1316 return Expanded; 1317 return DAG.UnrollVectorOp(Op.getNode()); 1318 } 1319 1320 SDValue VectorLegalizer::ExpandStrictFPOp(SDValue Op) { 1321 EVT VT = Op.getValueType(); 1322 EVT EltVT = VT.getVectorElementType(); 1323 unsigned NumElems = VT.getVectorNumElements(); 1324 unsigned NumOpers = Op.getNumOperands(); 1325 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1326 EVT ValueVTs[] = {EltVT, MVT::Other}; 1327 SDValue Chain = Op.getOperand(0); 1328 SDLoc dl(Op); 1329 1330 SmallVector<SDValue, 32> OpValues; 1331 SmallVector<SDValue, 32> OpChains; 1332 for (unsigned i = 0; i < NumElems; ++i) { 1333 SmallVector<SDValue, 4> Opers; 1334 SDValue Idx = DAG.getConstant(i, dl, 1335 TLI.getVectorIdxTy(DAG.getDataLayout())); 1336 1337 // The Chain is the first operand. 1338 Opers.push_back(Chain); 1339 1340 // Now process the remaining operands. 1341 for (unsigned j = 1; j < NumOpers; ++j) { 1342 SDValue Oper = Op.getOperand(j); 1343 EVT OperVT = Oper.getValueType(); 1344 1345 if (OperVT.isVector()) 1346 Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 1347 OperVT.getVectorElementType(), Oper, Idx); 1348 1349 Opers.push_back(Oper); 1350 } 1351 1352 SDValue ScalarOp = DAG.getNode(Op->getOpcode(), dl, ValueVTs, Opers); 1353 1354 OpValues.push_back(ScalarOp.getValue(0)); 1355 OpChains.push_back(ScalarOp.getValue(1)); 1356 } 1357 1358 SDValue Result = DAG.getBuildVector(VT, dl, OpValues); 1359 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains); 1360 1361 AddLegalizedOperand(Op.getValue(0), Result); 1362 AddLegalizedOperand(Op.getValue(1), NewChain); 1363 1364 return Op.getResNo() ? NewChain : Result; 1365 } 1366 1367 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { 1368 EVT VT = Op.getValueType(); 1369 unsigned NumElems = VT.getVectorNumElements(); 1370 EVT EltVT = VT.getVectorElementType(); 1371 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); 1372 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1373 SDLoc dl(Op); 1374 SmallVector<SDValue, 8> Ops(NumElems); 1375 for (unsigned i = 0; i < NumElems; ++i) { 1376 SDValue LHSElem = DAG.getNode( 1377 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1378 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1379 SDValue RHSElem = DAG.getNode( 1380 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1381 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1382 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1383 TLI.getSetCCResultType(DAG.getDataLayout(), 1384 *DAG.getContext(), TmpEltVT), 1385 LHSElem, RHSElem, CC); 1386 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 1387 DAG.getConstant(APInt::getAllOnesValue 1388 (EltVT.getSizeInBits()), dl, EltVT), 1389 DAG.getConstant(0, dl, EltVT)); 1390 } 1391 return DAG.getBuildVector(VT, dl, Ops); 1392 } 1393 1394 bool SelectionDAG::LegalizeVectors() { 1395 return VectorLegalizer(*this).Run(); 1396 } 1397