1 //===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SelectionDAG::LegalizeVectors method. 11 // 12 // The vector legalizer looks for vector operations which might need to be 13 // scalarized and legalizes them. This is a separate step from Legalize because 14 // scalarizing can introduce illegal types. For example, suppose we have an 15 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 17 // operation, which introduces nodes with the illegal type i64 which must be 18 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 19 // the operation must be unrolled, which introduces nodes with the illegal 20 // type i8 which must be promoted. 21 // 22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 23 // or operations that happen to take a vector which are custom-lowered; 24 // the legalization for such operations never produces nodes 25 // with illegal types, so it's okay to put off legalizing them until 26 // SelectionDAG::Legalize runs. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/Target/TargetLowering.h" 32 using namespace llvm; 33 34 namespace { 35 class VectorLegalizer { 36 SelectionDAG& DAG; 37 const TargetLowering &TLI; 38 bool Changed; // Keep track of whether anything changed 39 40 /// For nodes that are of legal width, and that have more than one use, this 41 /// map indicates what regularized operand to use. This allows us to avoid 42 /// legalizing the same thing more than once. 43 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 44 45 /// \brief Adds a node to the translation cache. 46 void AddLegalizedOperand(SDValue From, SDValue To) { 47 LegalizedNodes.insert(std::make_pair(From, To)); 48 // If someone requests legalization of the new node, return itself. 49 if (From != To) 50 LegalizedNodes.insert(std::make_pair(To, To)); 51 } 52 53 /// \brief Legalizes the given node. 54 SDValue LegalizeOp(SDValue Op); 55 56 /// \brief Assuming the node is legal, "legalize" the results. 57 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); 58 59 /// \brief Implements unrolling a VSETCC. 60 SDValue UnrollVSETCC(SDValue Op); 61 62 /// \brief Implement expand-based legalization of vector operations. 63 /// 64 /// This is just a high-level routine to dispatch to specific code paths for 65 /// operations to legalize them. 66 SDValue Expand(SDValue Op); 67 68 /// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if 69 /// FSUB isn't legal. 70 /// 71 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 72 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 73 SDValue ExpandUINT_TO_FLOAT(SDValue Op); 74 75 /// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 76 SDValue ExpandSEXTINREG(SDValue Op); 77 78 /// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG. 79 /// 80 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 81 /// type. The contents of the bits in the extended part of each element are 82 /// undef. 83 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op); 84 85 /// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG. 86 /// 87 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 88 /// type, then shifts left and arithmetic shifts right to introduce a sign 89 /// extension. 90 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op); 91 92 /// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG. 93 /// 94 /// Shuffles the low lanes of the operand into place and blends zeros into 95 /// the remaining lanes, finally bitcasting to the proper type. 96 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op); 97 98 /// \brief Expand bswap of vectors into a shuffle if legal. 99 SDValue ExpandBSWAP(SDValue Op); 100 101 /// \brief Implement vselect in terms of XOR, AND, OR when blend is not 102 /// supported by the target. 103 SDValue ExpandVSELECT(SDValue Op); 104 SDValue ExpandSELECT(SDValue Op); 105 SDValue ExpandLoad(SDValue Op); 106 SDValue ExpandStore(SDValue Op); 107 SDValue ExpandFNEG(SDValue Op); 108 109 /// \brief Implements vector promotion. 110 /// 111 /// This is essentially just bitcasting the operands to a different type and 112 /// bitcasting the result back to the original type. 113 SDValue Promote(SDValue Op); 114 115 /// \brief Implements [SU]INT_TO_FP vector promotion. 116 /// 117 /// This is a [zs]ext of the input operand to the next size up. 118 SDValue PromoteINT_TO_FP(SDValue Op); 119 120 /// \brief Implements FP_TO_[SU]INT vector promotion of the result type. 121 /// 122 /// It is promoted to the next size up integer type. The result is then 123 /// truncated back to the original type. 124 SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned); 125 126 public: 127 /// \brief Begin legalizer the vector operations in the DAG. 128 bool Run(); 129 VectorLegalizer(SelectionDAG& dag) : 130 DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {} 131 }; 132 133 bool VectorLegalizer::Run() { 134 // Before we start legalizing vector nodes, check if there are any vectors. 135 bool HasVectors = false; 136 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 137 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 138 // Check if the values of the nodes contain vectors. We don't need to check 139 // the operands because we are going to check their values at some point. 140 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); 141 J != E; ++J) 142 HasVectors |= J->isVector(); 143 144 // If we found a vector node we can start the legalization. 145 if (HasVectors) 146 break; 147 } 148 149 // If this basic block has no vectors then no need to legalize vectors. 150 if (!HasVectors) 151 return false; 152 153 // The legalize process is inherently a bottom-up recursive process (users 154 // legalize their uses before themselves). Given infinite stack space, we 155 // could just start legalizing on the root and traverse the whole graph. In 156 // practice however, this causes us to run out of stack space on large basic 157 // blocks. To avoid this problem, compute an ordering of the nodes where each 158 // node is only legalized after all of its operands are legalized. 159 DAG.AssignTopologicalOrder(); 160 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 161 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 162 LegalizeOp(SDValue(I, 0)); 163 164 // Finally, it's possible the root changed. Get the new root. 165 SDValue OldRoot = DAG.getRoot(); 166 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 167 DAG.setRoot(LegalizedNodes[OldRoot]); 168 169 LegalizedNodes.clear(); 170 171 // Remove dead nodes now. 172 DAG.RemoveDeadNodes(); 173 174 return Changed; 175 } 176 177 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { 178 // Generic legalization: just pass the operand through. 179 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) 180 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 181 return Result.getValue(Op.getResNo()); 182 } 183 184 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 185 // Note that LegalizeOp may be reentered even from single-use nodes, which 186 // means that we always must cache transformed nodes. 187 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 188 if (I != LegalizedNodes.end()) return I->second; 189 190 SDNode* Node = Op.getNode(); 191 192 // Legalize the operands 193 SmallVector<SDValue, 8> Ops; 194 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 195 Ops.push_back(LegalizeOp(Node->getOperand(i))); 196 197 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0); 198 199 bool HasVectorValue = false; 200 if (Op.getOpcode() == ISD::LOAD) { 201 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 202 ISD::LoadExtType ExtType = LD->getExtensionType(); 203 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) 204 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), 205 LD->getMemoryVT())) { 206 default: llvm_unreachable("This action is not supported yet!"); 207 case TargetLowering::Legal: 208 return TranslateLegalizeResults(Op, Result); 209 case TargetLowering::Custom: 210 if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) { 211 if (Lowered == Result) 212 return TranslateLegalizeResults(Op, Lowered); 213 Changed = true; 214 if (Lowered->getNumValues() != Op->getNumValues()) { 215 // This expanded to something other than the load. Assume the 216 // lowering code took care of any chain values, and just handle the 217 // returned value. 218 assert(Result.getValue(1).use_empty() && 219 "There are still live users of the old chain!"); 220 return LegalizeOp(Lowered); 221 } else { 222 return TranslateLegalizeResults(Op, Lowered); 223 } 224 } 225 case TargetLowering::Expand: 226 Changed = true; 227 return LegalizeOp(ExpandLoad(Op)); 228 } 229 } else if (Op.getOpcode() == ISD::STORE) { 230 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 231 EVT StVT = ST->getMemoryVT(); 232 MVT ValVT = ST->getValue().getSimpleValueType(); 233 if (StVT.isVector() && ST->isTruncatingStore()) 234 switch (TLI.getTruncStoreAction(ValVT, StVT.getSimpleVT())) { 235 default: llvm_unreachable("This action is not supported yet!"); 236 case TargetLowering::Legal: 237 return TranslateLegalizeResults(Op, Result); 238 case TargetLowering::Custom: { 239 SDValue Lowered = TLI.LowerOperation(Result, DAG); 240 Changed = Lowered != Result; 241 return TranslateLegalizeResults(Op, Lowered); 242 } 243 case TargetLowering::Expand: 244 Changed = true; 245 return LegalizeOp(ExpandStore(Op)); 246 } 247 } else if (Op.getOpcode() == ISD::MSCATTER) 248 HasVectorValue = true; 249 250 for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end(); 251 J != E; 252 ++J) 253 HasVectorValue |= J->isVector(); 254 if (!HasVectorValue) 255 return TranslateLegalizeResults(Op, Result); 256 257 EVT QueryType; 258 switch (Op.getOpcode()) { 259 default: 260 return TranslateLegalizeResults(Op, Result); 261 case ISD::ADD: 262 case ISD::SUB: 263 case ISD::MUL: 264 case ISD::SDIV: 265 case ISD::UDIV: 266 case ISD::SREM: 267 case ISD::UREM: 268 case ISD::FADD: 269 case ISD::FSUB: 270 case ISD::FMUL: 271 case ISD::FDIV: 272 case ISD::FREM: 273 case ISD::AND: 274 case ISD::OR: 275 case ISD::XOR: 276 case ISD::SHL: 277 case ISD::SRA: 278 case ISD::SRL: 279 case ISD::ROTL: 280 case ISD::ROTR: 281 case ISD::BSWAP: 282 case ISD::CTLZ: 283 case ISD::CTTZ: 284 case ISD::CTLZ_ZERO_UNDEF: 285 case ISD::CTTZ_ZERO_UNDEF: 286 case ISD::CTPOP: 287 case ISD::SELECT: 288 case ISD::VSELECT: 289 case ISD::SELECT_CC: 290 case ISD::SETCC: 291 case ISD::ZERO_EXTEND: 292 case ISD::ANY_EXTEND: 293 case ISD::TRUNCATE: 294 case ISD::SIGN_EXTEND: 295 case ISD::FP_TO_SINT: 296 case ISD::FP_TO_UINT: 297 case ISD::FNEG: 298 case ISD::FABS: 299 case ISD::FMINNUM: 300 case ISD::FMAXNUM: 301 case ISD::FCOPYSIGN: 302 case ISD::FSQRT: 303 case ISD::FSIN: 304 case ISD::FCOS: 305 case ISD::FPOWI: 306 case ISD::FPOW: 307 case ISD::FLOG: 308 case ISD::FLOG2: 309 case ISD::FLOG10: 310 case ISD::FEXP: 311 case ISD::FEXP2: 312 case ISD::FCEIL: 313 case ISD::FTRUNC: 314 case ISD::FRINT: 315 case ISD::FNEARBYINT: 316 case ISD::FROUND: 317 case ISD::FFLOOR: 318 case ISD::FP_ROUND: 319 case ISD::FP_EXTEND: 320 case ISD::FMA: 321 case ISD::SIGN_EXTEND_INREG: 322 case ISD::ANY_EXTEND_VECTOR_INREG: 323 case ISD::SIGN_EXTEND_VECTOR_INREG: 324 case ISD::ZERO_EXTEND_VECTOR_INREG: 325 case ISD::SMIN: 326 case ISD::SMAX: 327 case ISD::UMIN: 328 case ISD::UMAX: 329 QueryType = Node->getValueType(0); 330 break; 331 case ISD::FP_ROUND_INREG: 332 QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 333 break; 334 case ISD::SINT_TO_FP: 335 case ISD::UINT_TO_FP: 336 QueryType = Node->getOperand(0).getValueType(); 337 break; 338 case ISD::MSCATTER: 339 QueryType = cast<MaskedScatterSDNode>(Node)->getValue().getValueType(); 340 break; 341 } 342 343 switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) { 344 case TargetLowering::Promote: 345 Result = Promote(Op); 346 Changed = true; 347 break; 348 case TargetLowering::Legal: 349 break; 350 case TargetLowering::Custom: { 351 SDValue Tmp1 = TLI.LowerOperation(Op, DAG); 352 if (Tmp1.getNode()) { 353 Result = Tmp1; 354 break; 355 } 356 // FALL THROUGH 357 } 358 case TargetLowering::Expand: 359 Result = Expand(Op); 360 } 361 362 // Make sure that the generated code is itself legal. 363 if (Result != Op) { 364 Result = LegalizeOp(Result); 365 Changed = true; 366 } 367 368 // Note that LegalizeOp may be reentered even from single-use nodes, which 369 // means that we always must cache transformed nodes. 370 AddLegalizedOperand(Op, Result); 371 return Result; 372 } 373 374 SDValue VectorLegalizer::Promote(SDValue Op) { 375 // For a few operations there is a specific concept for promotion based on 376 // the operand's type. 377 switch (Op.getOpcode()) { 378 case ISD::SINT_TO_FP: 379 case ISD::UINT_TO_FP: 380 // "Promote" the operation by extending the operand. 381 return PromoteINT_TO_FP(Op); 382 case ISD::FP_TO_UINT: 383 case ISD::FP_TO_SINT: 384 // Promote the operation by extending the operand. 385 return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT); 386 } 387 388 // There are currently two cases of vector promotion: 389 // 1) Bitcasting a vector of integers to a different type to a vector of the 390 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 391 // 2) Extending a vector of floats to a vector of the same number of larger 392 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 393 MVT VT = Op.getSimpleValueType(); 394 assert(Op.getNode()->getNumValues() == 1 && 395 "Can't promote a vector with multiple results!"); 396 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 397 SDLoc dl(Op); 398 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 399 400 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 401 if (Op.getOperand(j).getValueType().isVector()) 402 if (Op.getOperand(j) 403 .getValueType() 404 .getVectorElementType() 405 .isFloatingPoint() && 406 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 407 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j)); 408 else 409 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); 410 else 411 Operands[j] = Op.getOperand(j); 412 } 413 414 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands); 415 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 416 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 417 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 418 return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl)); 419 else 420 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 421 } 422 423 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) { 424 // INT_TO_FP operations may require the input operand be promoted even 425 // when the type is otherwise legal. 426 EVT VT = Op.getOperand(0).getValueType(); 427 assert(Op.getNode()->getNumValues() == 1 && 428 "Can't promote a vector with multiple results!"); 429 430 // Normal getTypeToPromoteTo() doesn't work here, as that will promote 431 // by widening the vector w/ the same element width and twice the number 432 // of elements. We want the other way around, the same number of elements, 433 // each twice the width. 434 // 435 // Increase the bitwidth of the element to the next pow-of-two 436 // (which is greater than 8 bits). 437 438 EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext()); 439 assert(NVT.isSimple() && "Promoting to a non-simple vector type!"); 440 SDLoc dl(Op); 441 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 442 443 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : 444 ISD::SIGN_EXTEND; 445 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 446 if (Op.getOperand(j).getValueType().isVector()) 447 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j)); 448 else 449 Operands[j] = Op.getOperand(j); 450 } 451 452 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands); 453 } 454 455 // For FP_TO_INT we promote the result type to a vector type with wider 456 // elements and then truncate the result. This is different from the default 457 // PromoteVector which uses bitcast to promote thus assumning that the 458 // promoted vector type has the same overall size. 459 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) { 460 assert(Op.getNode()->getNumValues() == 1 && 461 "Can't promote a vector with multiple results!"); 462 EVT VT = Op.getValueType(); 463 464 EVT NewVT; 465 unsigned NewOpc; 466 while (1) { 467 NewVT = VT.widenIntegerVectorElementType(*DAG.getContext()); 468 assert(NewVT.isSimple() && "Promoting to a non-simple vector type!"); 469 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) { 470 NewOpc = ISD::FP_TO_SINT; 471 break; 472 } 473 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) { 474 NewOpc = ISD::FP_TO_UINT; 475 break; 476 } 477 } 478 479 SDLoc loc(Op); 480 SDValue promoted = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0)); 481 return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted); 482 } 483 484 485 SDValue VectorLegalizer::ExpandLoad(SDValue Op) { 486 SDLoc dl(Op); 487 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 488 SDValue Chain = LD->getChain(); 489 SDValue BasePTR = LD->getBasePtr(); 490 EVT SrcVT = LD->getMemoryVT(); 491 ISD::LoadExtType ExtType = LD->getExtensionType(); 492 493 SmallVector<SDValue, 8> Vals; 494 SmallVector<SDValue, 8> LoadChains; 495 unsigned NumElem = SrcVT.getVectorNumElements(); 496 497 EVT SrcEltVT = SrcVT.getScalarType(); 498 EVT DstEltVT = Op.getNode()->getValueType(0).getScalarType(); 499 500 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { 501 // When elements in a vector is not byte-addressable, we cannot directly 502 // load each element by advancing pointer, which could only address bytes. 503 // Instead, we load all significant words, mask bits off, and concatenate 504 // them to form each element. Finally, they are extended to destination 505 // scalar type to build the destination vector. 506 EVT WideVT = TLI.getPointerTy(); 507 508 assert(WideVT.isRound() && 509 "Could not handle the sophisticated case when the widest integer is" 510 " not power of 2."); 511 assert(WideVT.bitsGE(SrcEltVT) && 512 "Type is not legalized?"); 513 514 unsigned WideBytes = WideVT.getStoreSize(); 515 unsigned Offset = 0; 516 unsigned RemainingBytes = SrcVT.getStoreSize(); 517 SmallVector<SDValue, 8> LoadVals; 518 519 while (RemainingBytes > 0) { 520 SDValue ScalarLoad; 521 unsigned LoadBytes = WideBytes; 522 523 if (RemainingBytes >= LoadBytes) { 524 ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR, 525 LD->getPointerInfo().getWithOffset(Offset), 526 LD->isVolatile(), LD->isNonTemporal(), 527 LD->isInvariant(), 528 MinAlign(LD->getAlignment(), Offset), 529 LD->getAAInfo()); 530 } else { 531 EVT LoadVT = WideVT; 532 while (RemainingBytes < LoadBytes) { 533 LoadBytes >>= 1; // Reduce the load size by half. 534 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); 535 } 536 ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, 537 LD->getPointerInfo().getWithOffset(Offset), 538 LoadVT, LD->isVolatile(), 539 LD->isNonTemporal(), LD->isInvariant(), 540 MinAlign(LD->getAlignment(), Offset), 541 LD->getAAInfo()); 542 } 543 544 RemainingBytes -= LoadBytes; 545 Offset += LoadBytes; 546 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 547 DAG.getConstant(LoadBytes, dl, 548 BasePTR.getValueType())); 549 550 LoadVals.push_back(ScalarLoad.getValue(0)); 551 LoadChains.push_back(ScalarLoad.getValue(1)); 552 } 553 554 // Extract bits, pack and extend/trunc them into destination type. 555 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 556 SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT); 557 558 unsigned BitOffset = 0; 559 unsigned WideIdx = 0; 560 unsigned WideBits = WideVT.getSizeInBits(); 561 562 for (unsigned Idx = 0; Idx != NumElem; ++Idx) { 563 SDValue Lo, Hi, ShAmt; 564 565 if (BitOffset < WideBits) { 566 ShAmt = DAG.getConstant(BitOffset, dl, TLI.getShiftAmountTy(WideVT)); 567 Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); 568 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); 569 } 570 571 BitOffset += SrcEltBits; 572 if (BitOffset >= WideBits) { 573 WideIdx++; 574 BitOffset -= WideBits; 575 if (BitOffset > 0) { 576 ShAmt = DAG.getConstant(SrcEltBits - BitOffset, dl, 577 TLI.getShiftAmountTy(WideVT)); 578 Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); 579 Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask); 580 } 581 } 582 583 if (Hi.getNode()) 584 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); 585 586 switch (ExtType) { 587 default: llvm_unreachable("Unknown extended-load op!"); 588 case ISD::EXTLOAD: 589 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); 590 break; 591 case ISD::ZEXTLOAD: 592 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); 593 break; 594 case ISD::SEXTLOAD: 595 ShAmt = DAG.getConstant(WideBits - SrcEltBits, dl, 596 TLI.getShiftAmountTy(WideVT)); 597 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); 598 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); 599 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); 600 break; 601 } 602 Vals.push_back(Lo); 603 } 604 } else { 605 unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8; 606 607 for (unsigned Idx=0; Idx<NumElem; Idx++) { 608 SDValue ScalarLoad = DAG.getExtLoad(ExtType, dl, 609 Op.getNode()->getValueType(0).getScalarType(), 610 Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride), 611 SrcVT.getScalarType(), 612 LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), 613 MinAlign(LD->getAlignment(), Idx * Stride), LD->getAAInfo()); 614 615 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 616 DAG.getConstant(Stride, dl, BasePTR.getValueType())); 617 618 Vals.push_back(ScalarLoad.getValue(0)); 619 LoadChains.push_back(ScalarLoad.getValue(1)); 620 } 621 } 622 623 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 624 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, 625 Op.getNode()->getValueType(0), Vals); 626 627 AddLegalizedOperand(Op.getValue(0), Value); 628 AddLegalizedOperand(Op.getValue(1), NewChain); 629 630 return (Op.getResNo() ? NewChain : Value); 631 } 632 633 SDValue VectorLegalizer::ExpandStore(SDValue Op) { 634 SDLoc dl(Op); 635 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 636 SDValue Chain = ST->getChain(); 637 SDValue BasePTR = ST->getBasePtr(); 638 SDValue Value = ST->getValue(); 639 EVT StVT = ST->getMemoryVT(); 640 641 unsigned Alignment = ST->getAlignment(); 642 bool isVolatile = ST->isVolatile(); 643 bool isNonTemporal = ST->isNonTemporal(); 644 AAMDNodes AAInfo = ST->getAAInfo(); 645 646 unsigned NumElem = StVT.getVectorNumElements(); 647 // The type of the data we want to save 648 EVT RegVT = Value.getValueType(); 649 EVT RegSclVT = RegVT.getScalarType(); 650 // The type of data as saved in memory. 651 EVT MemSclVT = StVT.getScalarType(); 652 653 // Cast floats into integers 654 unsigned ScalarSize = MemSclVT.getSizeInBits(); 655 656 // Round odd types to the next pow of two. 657 if (!isPowerOf2_32(ScalarSize)) 658 ScalarSize = NextPowerOf2(ScalarSize); 659 660 // Store Stride in bytes 661 unsigned Stride = ScalarSize/8; 662 // Extract each of the elements from the original vector 663 // and save them into memory individually. 664 SmallVector<SDValue, 8> Stores; 665 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 666 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 667 RegSclVT, Value, DAG.getConstant(Idx, dl, TLI.getVectorIdxTy())); 668 669 // This scalar TruncStore may be illegal, but we legalize it later. 670 SDValue Store = DAG.getTruncStore(Chain, dl, Ex, BasePTR, 671 ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT, 672 isVolatile, isNonTemporal, MinAlign(Alignment, Idx*Stride), 673 AAInfo); 674 675 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 676 DAG.getConstant(Stride, dl, BasePTR.getValueType())); 677 678 Stores.push_back(Store); 679 } 680 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 681 AddLegalizedOperand(Op, TF); 682 return TF; 683 } 684 685 SDValue VectorLegalizer::Expand(SDValue Op) { 686 switch (Op->getOpcode()) { 687 case ISD::SIGN_EXTEND_INREG: 688 return ExpandSEXTINREG(Op); 689 case ISD::ANY_EXTEND_VECTOR_INREG: 690 return ExpandANY_EXTEND_VECTOR_INREG(Op); 691 case ISD::SIGN_EXTEND_VECTOR_INREG: 692 return ExpandSIGN_EXTEND_VECTOR_INREG(Op); 693 case ISD::ZERO_EXTEND_VECTOR_INREG: 694 return ExpandZERO_EXTEND_VECTOR_INREG(Op); 695 case ISD::BSWAP: 696 return ExpandBSWAP(Op); 697 case ISD::VSELECT: 698 return ExpandVSELECT(Op); 699 case ISD::SELECT: 700 return ExpandSELECT(Op); 701 case ISD::UINT_TO_FP: 702 return ExpandUINT_TO_FLOAT(Op); 703 case ISD::FNEG: 704 return ExpandFNEG(Op); 705 case ISD::SETCC: 706 return UnrollVSETCC(Op); 707 default: 708 return DAG.UnrollVectorOp(Op.getNode()); 709 } 710 } 711 712 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) { 713 // Lower a select instruction where the condition is a scalar and the 714 // operands are vectors. Lower this select to VSELECT and implement it 715 // using XOR AND OR. The selector bit is broadcasted. 716 EVT VT = Op.getValueType(); 717 SDLoc DL(Op); 718 719 SDValue Mask = Op.getOperand(0); 720 SDValue Op1 = Op.getOperand(1); 721 SDValue Op2 = Op.getOperand(2); 722 723 assert(VT.isVector() && !Mask.getValueType().isVector() 724 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 725 726 unsigned NumElem = VT.getVectorNumElements(); 727 728 // If we can't even use the basic vector operations of 729 // AND,OR,XOR, we will have to scalarize the op. 730 // Notice that the operation may be 'promoted' which means that it is 731 // 'bitcasted' to another type which is handled. 732 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 733 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 734 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 735 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 736 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 737 return DAG.UnrollVectorOp(Op.getNode()); 738 739 // Generate a mask operand. 740 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 741 742 // What is the size of each element in the vector mask. 743 EVT BitTy = MaskTy.getScalarType(); 744 745 Mask = DAG.getSelect(DL, BitTy, Mask, 746 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, 747 BitTy), 748 DAG.getConstant(0, DL, BitTy)); 749 750 // Broadcast the mask so that the entire vector is all-one or all zero. 751 SmallVector<SDValue, 8> Ops(NumElem, Mask); 752 Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, Ops); 753 754 // Bitcast the operands to be the same type as the mask. 755 // This is needed when we select between FP types because 756 // the mask is a vector of integers. 757 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 758 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 759 760 SDValue AllOnes = DAG.getConstant( 761 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy); 762 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 763 764 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 765 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 766 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 767 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 768 } 769 770 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) { 771 EVT VT = Op.getValueType(); 772 773 // Make sure that the SRA and SHL instructions are available. 774 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 775 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 776 return DAG.UnrollVectorOp(Op.getNode()); 777 778 SDLoc DL(Op); 779 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT(); 780 781 unsigned BW = VT.getScalarType().getSizeInBits(); 782 unsigned OrigBW = OrigTy.getScalarType().getSizeInBits(); 783 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 784 785 Op = Op.getOperand(0); 786 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz); 787 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 788 } 789 790 // Generically expand a vector anyext in register to a shuffle of the relevant 791 // lanes into the appropriate locations, with other lanes left undef. 792 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) { 793 SDLoc DL(Op); 794 EVT VT = Op.getValueType(); 795 int NumElements = VT.getVectorNumElements(); 796 SDValue Src = Op.getOperand(0); 797 EVT SrcVT = Src.getValueType(); 798 int NumSrcElements = SrcVT.getVectorNumElements(); 799 800 // Build a base mask of undef shuffles. 801 SmallVector<int, 16> ShuffleMask; 802 ShuffleMask.resize(NumSrcElements, -1); 803 804 // Place the extended lanes into the correct locations. 805 int ExtLaneScale = NumSrcElements / NumElements; 806 int EndianOffset = TLI.isBigEndian() ? ExtLaneScale - 1 : 0; 807 for (int i = 0; i < NumElements; ++i) 808 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 809 810 return DAG.getNode( 811 ISD::BITCAST, DL, VT, 812 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 813 } 814 815 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) { 816 SDLoc DL(Op); 817 EVT VT = Op.getValueType(); 818 SDValue Src = Op.getOperand(0); 819 EVT SrcVT = Src.getValueType(); 820 821 // First build an any-extend node which can be legalized above when we 822 // recurse through it. 823 Op = DAG.getAnyExtendVectorInReg(Src, DL, VT); 824 825 // Now we need sign extend. Do this by shifting the elements. Even if these 826 // aren't legal operations, they have a better chance of being legalized 827 // without full scalarization than the sign extension does. 828 unsigned EltWidth = VT.getVectorElementType().getSizeInBits(); 829 unsigned SrcEltWidth = SrcVT.getVectorElementType().getSizeInBits(); 830 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 831 return DAG.getNode(ISD::SRA, DL, VT, 832 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 833 ShiftAmount); 834 } 835 836 // Generically expand a vector zext in register to a shuffle of the relevant 837 // lanes into the appropriate locations, a blend of zero into the high bits, 838 // and a bitcast to the wider element type. 839 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) { 840 SDLoc DL(Op); 841 EVT VT = Op.getValueType(); 842 int NumElements = VT.getVectorNumElements(); 843 SDValue Src = Op.getOperand(0); 844 EVT SrcVT = Src.getValueType(); 845 int NumSrcElements = SrcVT.getVectorNumElements(); 846 847 // Build up a zero vector to blend into this one. 848 EVT SrcScalarVT = SrcVT.getScalarType(); 849 SDValue ScalarZero = DAG.getTargetConstant(0, DL, SrcScalarVT); 850 SmallVector<SDValue, 4> BuildVectorOperands(NumSrcElements, ScalarZero); 851 SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, DL, SrcVT, BuildVectorOperands); 852 853 // Shuffle the incoming lanes into the correct position, and pull all other 854 // lanes from the zero vector. 855 SmallVector<int, 16> ShuffleMask; 856 ShuffleMask.reserve(NumSrcElements); 857 for (int i = 0; i < NumSrcElements; ++i) 858 ShuffleMask.push_back(i); 859 860 int ExtLaneScale = NumSrcElements / NumElements; 861 int EndianOffset = TLI.isBigEndian() ? ExtLaneScale - 1 : 0; 862 for (int i = 0; i < NumElements; ++i) 863 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 864 865 return DAG.getNode(ISD::BITCAST, DL, VT, 866 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 867 } 868 869 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) { 870 EVT VT = Op.getValueType(); 871 872 // Generate a byte wise shuffle mask for the BSWAP. 873 SmallVector<int, 16> ShuffleMask; 874 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 875 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 876 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 877 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 878 879 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 880 881 // Only emit a shuffle if the mask is legal. 882 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) 883 return DAG.UnrollVectorOp(Op.getNode()); 884 885 SDLoc DL(Op); 886 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 887 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 888 ShuffleMask.data()); 889 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 890 } 891 892 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { 893 // Implement VSELECT in terms of XOR, AND, OR 894 // on platforms which do not support blend natively. 895 SDLoc DL(Op); 896 897 SDValue Mask = Op.getOperand(0); 898 SDValue Op1 = Op.getOperand(1); 899 SDValue Op2 = Op.getOperand(2); 900 901 EVT VT = Mask.getValueType(); 902 903 // If we can't even use the basic vector operations of 904 // AND,OR,XOR, we will have to scalarize the op. 905 // Notice that the operation may be 'promoted' which means that it is 906 // 'bitcasted' to another type which is handled. 907 // This operation also isn't safe with AND, OR, XOR when the boolean 908 // type is 0/1 as we need an all ones vector constant to mask with. 909 // FIXME: Sign extend 1 to all ones if thats legal on the target. 910 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 911 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 912 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 913 TLI.getBooleanContents(Op1.getValueType()) != 914 TargetLowering::ZeroOrNegativeOneBooleanContent) 915 return DAG.UnrollVectorOp(Op.getNode()); 916 917 // If the mask and the type are different sizes, unroll the vector op. This 918 // can occur when getSetCCResultType returns something that is different in 919 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 920 if (VT.getSizeInBits() != Op1.getValueType().getSizeInBits()) 921 return DAG.UnrollVectorOp(Op.getNode()); 922 923 // Bitcast the operands to be the same type as the mask. 924 // This is needed when we select between FP types because 925 // the mask is a vector of integers. 926 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 927 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 928 929 SDValue AllOnes = DAG.getConstant( 930 APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), DL, VT); 931 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 932 933 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 934 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 935 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 936 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 937 } 938 939 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { 940 EVT VT = Op.getOperand(0).getValueType(); 941 SDLoc DL(Op); 942 943 // Make sure that the SINT_TO_FP and SRL instructions are available. 944 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand || 945 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) 946 return DAG.UnrollVectorOp(Op.getNode()); 947 948 EVT SVT = VT.getScalarType(); 949 assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) && 950 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 951 952 unsigned BW = SVT.getSizeInBits(); 953 SDValue HalfWord = DAG.getConstant(BW/2, DL, VT); 954 955 // Constants to clear the upper part of the word. 956 // Notice that we can also use SHL+SHR, but using a constant is slightly 957 // faster on x86. 958 uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF; 959 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 960 961 // Two to the power of half-word-size. 962 SDValue TWOHW = DAG.getConstantFP(1 << (BW/2), DL, Op.getValueType()); 963 964 // Clear upper part of LO, lower HI 965 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); 966 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); 967 968 // Convert hi and lo to floats 969 // Convert the hi part back to the upper values 970 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); 971 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); 972 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); 973 974 // Add the two halves 975 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); 976 } 977 978 979 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { 980 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { 981 SDLoc DL(Op); 982 SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType()); 983 return DAG.getNode(ISD::FSUB, DL, Op.getValueType(), 984 Zero, Op.getOperand(0)); 985 } 986 return DAG.UnrollVectorOp(Op.getNode()); 987 } 988 989 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { 990 EVT VT = Op.getValueType(); 991 unsigned NumElems = VT.getVectorNumElements(); 992 EVT EltVT = VT.getVectorElementType(); 993 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); 994 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 995 SDLoc dl(Op); 996 SmallVector<SDValue, 8> Ops(NumElems); 997 for (unsigned i = 0; i < NumElems; ++i) { 998 SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 999 DAG.getConstant(i, dl, TLI.getVectorIdxTy())); 1000 SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1001 DAG.getConstant(i, dl, TLI.getVectorIdxTy())); 1002 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1003 TLI.getSetCCResultType(*DAG.getContext(), TmpEltVT), 1004 LHSElem, RHSElem, CC); 1005 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 1006 DAG.getConstant(APInt::getAllOnesValue 1007 (EltVT.getSizeInBits()), dl, EltVT), 1008 DAG.getConstant(0, dl, EltVT)); 1009 } 1010 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 1011 } 1012 1013 } 1014 1015 bool SelectionDAG::LegalizeVectors() { 1016 return VectorLegalizer(*this).Run(); 1017 } 1018