1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::LegalizeVectors method.
10 //
11 // The vector legalizer looks for vector operations which might need to be
12 // scalarized and legalizes them. This is a separate step from Legalize because
13 // scalarizing can introduce illegal types.  For example, suppose we have an
14 // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
16 // operation, which introduces nodes with the illegal type i64 which must be
17 // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
18 // the operation must be unrolled, which introduces nodes with the illegal
19 // type i8 which must be promoted.
20 //
21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
22 // or operations that happen to take a vector which are custom-lowered;
23 // the legalization for such operations never produces nodes
24 // with illegal types, so it's okay to put off legalizing them until
25 // SelectionDAG::Legalize runs.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/SelectionDAGNodes.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MachineValueType.h"
44 #include "llvm/Support/MathExtras.h"
45 #include <cassert>
46 #include <cstdint>
47 #include <iterator>
48 #include <utility>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "legalizevectorops"
53 
54 namespace {
55 
56 class VectorLegalizer {
57   SelectionDAG& DAG;
58   const TargetLowering &TLI;
59   bool Changed = false; // Keep track of whether anything changed
60 
61   /// For nodes that are of legal width, and that have more than one use, this
62   /// map indicates what regularized operand to use.  This allows us to avoid
63   /// legalizing the same thing more than once.
64   SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
65 
66   /// Adds a node to the translation cache.
67   void AddLegalizedOperand(SDValue From, SDValue To) {
68     LegalizedNodes.insert(std::make_pair(From, To));
69     // If someone requests legalization of the new node, return itself.
70     if (From != To)
71       LegalizedNodes.insert(std::make_pair(To, To));
72   }
73 
74   /// Legalizes the given node.
75   SDValue LegalizeOp(SDValue Op);
76 
77   /// Assuming the node is legal, "legalize" the results.
78   SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result);
79 
80   /// Make sure Results are legal and update the translation cache.
81   SDValue RecursivelyLegalizeResults(SDValue Op,
82                                      MutableArrayRef<SDValue> Results);
83 
84   /// Wrapper to interface LowerOperation with a vector of Results.
85   /// Returns false if the target wants to use default expansion. Otherwise
86   /// returns true. If return is true and the Results are empty, then the
87   /// target wants to keep the input node as is.
88   bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results);
89 
90   /// Implements unrolling a VSETCC.
91   SDValue UnrollVSETCC(SDNode *Node);
92 
93   /// Implement expand-based legalization of vector operations.
94   ///
95   /// This is just a high-level routine to dispatch to specific code paths for
96   /// operations to legalize them.
97   void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results);
98 
99   /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
100   /// FP_TO_SINT isn't legal.
101   void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
102 
103   /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
104   /// SINT_TO_FLOAT and SHR on vectors isn't legal.
105   void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
106 
107   /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
108   SDValue ExpandSEXTINREG(SDNode *Node);
109 
110   /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
111   ///
112   /// Shuffles the low lanes of the operand into place and bitcasts to the proper
113   /// type. The contents of the bits in the extended part of each element are
114   /// undef.
115   SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node);
116 
117   /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
118   ///
119   /// Shuffles the low lanes of the operand into place, bitcasts to the proper
120   /// type, then shifts left and arithmetic shifts right to introduce a sign
121   /// extension.
122   SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node);
123 
124   /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
125   ///
126   /// Shuffles the low lanes of the operand into place and blends zeros into
127   /// the remaining lanes, finally bitcasting to the proper type.
128   SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node);
129 
130   /// Expand bswap of vectors into a shuffle if legal.
131   SDValue ExpandBSWAP(SDNode *Node);
132 
133   /// Implement vselect in terms of XOR, AND, OR when blend is not
134   /// supported by the target.
135   SDValue ExpandVSELECT(SDNode *Node);
136   SDValue ExpandSELECT(SDNode *Node);
137   std::pair<SDValue, SDValue> ExpandLoad(SDNode *N);
138   SDValue ExpandStore(SDNode *N);
139   SDValue ExpandFNEG(SDNode *Node);
140   void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results);
141   void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results);
142   void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
143   void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
144   void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
145   void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results);
146   SDValue ExpandStrictFPOp(SDNode *Node);
147   void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
148   void ExpandREM(SDNode *Node, SmallVectorImpl<SDValue> &Results);
149 
150   void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
151 
152   /// Implements vector promotion.
153   ///
154   /// This is essentially just bitcasting the operands to a different type and
155   /// bitcasting the result back to the original type.
156   void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results);
157 
158   /// Implements [SU]INT_TO_FP vector promotion.
159   ///
160   /// This is a [zs]ext of the input operand to a larger integer type.
161   void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results);
162 
163   /// Implements FP_TO_[SU]INT vector promotion of the result type.
164   ///
165   /// It is promoted to a larger integer type.  The result is then
166   /// truncated back to the original type.
167   void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
168 
169 public:
170   VectorLegalizer(SelectionDAG& dag) :
171       DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
172 
173   /// Begin legalizer the vector operations in the DAG.
174   bool Run();
175 };
176 
177 } // end anonymous namespace
178 
179 bool VectorLegalizer::Run() {
180   // Before we start legalizing vector nodes, check if there are any vectors.
181   bool HasVectors = false;
182   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
183        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
184     // Check if the values of the nodes contain vectors. We don't need to check
185     // the operands because we are going to check their values at some point.
186     HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); });
187 
188     // If we found a vector node we can start the legalization.
189     if (HasVectors)
190       break;
191   }
192 
193   // If this basic block has no vectors then no need to legalize vectors.
194   if (!HasVectors)
195     return false;
196 
197   // The legalize process is inherently a bottom-up recursive process (users
198   // legalize their uses before themselves).  Given infinite stack space, we
199   // could just start legalizing on the root and traverse the whole graph.  In
200   // practice however, this causes us to run out of stack space on large basic
201   // blocks.  To avoid this problem, compute an ordering of the nodes where each
202   // node is only legalized after all of its operands are legalized.
203   DAG.AssignTopologicalOrder();
204   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
205        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
206     LegalizeOp(SDValue(&*I, 0));
207 
208   // Finally, it's possible the root changed.  Get the new root.
209   SDValue OldRoot = DAG.getRoot();
210   assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
211   DAG.setRoot(LegalizedNodes[OldRoot]);
212 
213   LegalizedNodes.clear();
214 
215   // Remove dead nodes now.
216   DAG.RemoveDeadNodes();
217 
218   return Changed;
219 }
220 
221 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) {
222   assert(Op->getNumValues() == Result->getNumValues() &&
223          "Unexpected number of results");
224   // Generic legalization: just pass the operand through.
225   for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i)
226     AddLegalizedOperand(Op.getValue(i), SDValue(Result, i));
227   return SDValue(Result, Op.getResNo());
228 }
229 
230 SDValue
231 VectorLegalizer::RecursivelyLegalizeResults(SDValue Op,
232                                             MutableArrayRef<SDValue> Results) {
233   assert(Results.size() == Op->getNumValues() &&
234          "Unexpected number of results");
235   // Make sure that the generated code is itself legal.
236   for (unsigned i = 0, e = Results.size(); i != e; ++i) {
237     Results[i] = LegalizeOp(Results[i]);
238     AddLegalizedOperand(Op.getValue(i), Results[i]);
239   }
240 
241   return Results[Op.getResNo()];
242 }
243 
244 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
245   // Note that LegalizeOp may be reentered even from single-use nodes, which
246   // means that we always must cache transformed nodes.
247   DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
248   if (I != LegalizedNodes.end()) return I->second;
249 
250   // Legalize the operands
251   SmallVector<SDValue, 8> Ops;
252   for (const SDValue &Oper : Op->op_values())
253     Ops.push_back(LegalizeOp(Oper));
254 
255   SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops);
256 
257   if (Op.getOpcode() == ISD::LOAD) {
258     LoadSDNode *LD = cast<LoadSDNode>(Node);
259     ISD::LoadExtType ExtType = LD->getExtensionType();
260     if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) {
261       LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: ";
262                  Node->dump(&DAG));
263       switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
264                                    LD->getMemoryVT())) {
265       default: llvm_unreachable("This action is not supported yet!");
266       case TargetLowering::Legal:
267         return TranslateLegalizeResults(Op, Node);
268       case TargetLowering::Custom: {
269         SmallVector<SDValue, 2> ResultVals;
270         if (LowerOperationWrapper(Node, ResultVals)) {
271           if (ResultVals.empty())
272             return TranslateLegalizeResults(Op, Node);
273 
274           Changed = true;
275           return RecursivelyLegalizeResults(Op, ResultVals);
276         }
277         LLVM_FALLTHROUGH;
278       }
279       case TargetLowering::Expand: {
280         Changed = true;
281         std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node);
282         AddLegalizedOperand(Op.getValue(0), Tmp.first);
283         AddLegalizedOperand(Op.getValue(1), Tmp.second);
284         return Op.getResNo() ? Tmp.first : Tmp.second;
285       }
286       }
287     }
288   } else if (Op.getOpcode() == ISD::STORE) {
289     StoreSDNode *ST = cast<StoreSDNode>(Node);
290     EVT StVT = ST->getMemoryVT();
291     MVT ValVT = ST->getValue().getSimpleValueType();
292     if (StVT.isVector() && ST->isTruncatingStore()) {
293       LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: ";
294                  Node->dump(&DAG));
295       switch (TLI.getTruncStoreAction(ValVT, StVT)) {
296       default: llvm_unreachable("This action is not supported yet!");
297       case TargetLowering::Legal:
298         return TranslateLegalizeResults(Op, Node);
299       case TargetLowering::Custom: {
300         SmallVector<SDValue, 1> ResultVals;
301         if (LowerOperationWrapper(Node, ResultVals)) {
302           if (ResultVals.empty())
303             return TranslateLegalizeResults(Op, Node);
304 
305           Changed = true;
306           return RecursivelyLegalizeResults(Op, ResultVals);
307         }
308         LLVM_FALLTHROUGH;
309       }
310       case TargetLowering::Expand: {
311         Changed = true;
312         SDValue Chain = ExpandStore(Node);
313         AddLegalizedOperand(Op, Chain);
314         return Chain;
315       }
316       }
317     }
318   }
319 
320   bool HasVectorValueOrOp =
321       llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) ||
322       llvm::any_of(Node->op_values(),
323                    [](SDValue O) { return O.getValueType().isVector(); });
324   if (!HasVectorValueOrOp)
325     return TranslateLegalizeResults(Op, Node);
326 
327   TargetLowering::LegalizeAction Action = TargetLowering::Legal;
328   EVT ValVT;
329   switch (Op.getOpcode()) {
330   default:
331     return TranslateLegalizeResults(Op, Node);
332   case ISD::MERGE_VALUES:
333     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
334     // This operation lies about being legal: when it claims to be legal,
335     // it should actually be expanded.
336     if (Action == TargetLowering::Legal)
337       Action = TargetLowering::Expand;
338     break;
339 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
340   case ISD::STRICT_##DAGN:
341 #include "llvm/IR/ConstrainedOps.def"
342     ValVT = Node->getValueType(0);
343     if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP ||
344         Op.getOpcode() == ISD::STRICT_UINT_TO_FP)
345       ValVT = Node->getOperand(1).getValueType();
346     Action = TLI.getOperationAction(Node->getOpcode(), ValVT);
347     // If we're asked to expand a strict vector floating-point operation,
348     // by default we're going to simply unroll it.  That is usually the
349     // best approach, except in the case where the resulting strict (scalar)
350     // operations would themselves use the fallback mutation to non-strict.
351     // In that specific case, just do the fallback on the vector op.
352     if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() &&
353         TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) ==
354             TargetLowering::Legal) {
355       EVT EltVT = ValVT.getVectorElementType();
356       if (TLI.getOperationAction(Node->getOpcode(), EltVT)
357           == TargetLowering::Expand &&
358           TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT)
359           == TargetLowering::Legal)
360         Action = TargetLowering::Legal;
361     }
362     break;
363   case ISD::ADD:
364   case ISD::SUB:
365   case ISD::MUL:
366   case ISD::MULHS:
367   case ISD::MULHU:
368   case ISD::SDIV:
369   case ISD::UDIV:
370   case ISD::SREM:
371   case ISD::UREM:
372   case ISD::SDIVREM:
373   case ISD::UDIVREM:
374   case ISD::FADD:
375   case ISD::FSUB:
376   case ISD::FMUL:
377   case ISD::FDIV:
378   case ISD::FREM:
379   case ISD::AND:
380   case ISD::OR:
381   case ISD::XOR:
382   case ISD::SHL:
383   case ISD::SRA:
384   case ISD::SRL:
385   case ISD::FSHL:
386   case ISD::FSHR:
387   case ISD::ROTL:
388   case ISD::ROTR:
389   case ISD::ABS:
390   case ISD::BSWAP:
391   case ISD::BITREVERSE:
392   case ISD::CTLZ:
393   case ISD::CTTZ:
394   case ISD::CTLZ_ZERO_UNDEF:
395   case ISD::CTTZ_ZERO_UNDEF:
396   case ISD::CTPOP:
397   case ISD::SELECT:
398   case ISD::VSELECT:
399   case ISD::SELECT_CC:
400   case ISD::SETCC:
401   case ISD::ZERO_EXTEND:
402   case ISD::ANY_EXTEND:
403   case ISD::TRUNCATE:
404   case ISD::SIGN_EXTEND:
405   case ISD::FP_TO_SINT:
406   case ISD::FP_TO_UINT:
407   case ISD::FNEG:
408   case ISD::FABS:
409   case ISD::FMINNUM:
410   case ISD::FMAXNUM:
411   case ISD::FMINNUM_IEEE:
412   case ISD::FMAXNUM_IEEE:
413   case ISD::FMINIMUM:
414   case ISD::FMAXIMUM:
415   case ISD::FCOPYSIGN:
416   case ISD::FSQRT:
417   case ISD::FSIN:
418   case ISD::FCOS:
419   case ISD::FPOWI:
420   case ISD::FPOW:
421   case ISD::FLOG:
422   case ISD::FLOG2:
423   case ISD::FLOG10:
424   case ISD::FEXP:
425   case ISD::FEXP2:
426   case ISD::FCEIL:
427   case ISD::FTRUNC:
428   case ISD::FRINT:
429   case ISD::FNEARBYINT:
430   case ISD::FROUND:
431   case ISD::FROUNDEVEN:
432   case ISD::FFLOOR:
433   case ISD::FP_ROUND:
434   case ISD::FP_EXTEND:
435   case ISD::FMA:
436   case ISD::SIGN_EXTEND_INREG:
437   case ISD::ANY_EXTEND_VECTOR_INREG:
438   case ISD::SIGN_EXTEND_VECTOR_INREG:
439   case ISD::ZERO_EXTEND_VECTOR_INREG:
440   case ISD::SMIN:
441   case ISD::SMAX:
442   case ISD::UMIN:
443   case ISD::UMAX:
444   case ISD::SMUL_LOHI:
445   case ISD::UMUL_LOHI:
446   case ISD::SADDO:
447   case ISD::UADDO:
448   case ISD::SSUBO:
449   case ISD::USUBO:
450   case ISD::SMULO:
451   case ISD::UMULO:
452   case ISD::FCANONICALIZE:
453   case ISD::SADDSAT:
454   case ISD::UADDSAT:
455   case ISD::SSUBSAT:
456   case ISD::USUBSAT:
457   case ISD::SSHLSAT:
458   case ISD::USHLSAT:
459     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
460     break;
461   case ISD::SMULFIX:
462   case ISD::SMULFIXSAT:
463   case ISD::UMULFIX:
464   case ISD::UMULFIXSAT:
465   case ISD::SDIVFIX:
466   case ISD::SDIVFIXSAT:
467   case ISD::UDIVFIX:
468   case ISD::UDIVFIXSAT: {
469     unsigned Scale = Node->getConstantOperandVal(2);
470     Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
471                                               Node->getValueType(0), Scale);
472     break;
473   }
474   case ISD::SINT_TO_FP:
475   case ISD::UINT_TO_FP:
476   case ISD::VECREDUCE_ADD:
477   case ISD::VECREDUCE_MUL:
478   case ISD::VECREDUCE_AND:
479   case ISD::VECREDUCE_OR:
480   case ISD::VECREDUCE_XOR:
481   case ISD::VECREDUCE_SMAX:
482   case ISD::VECREDUCE_SMIN:
483   case ISD::VECREDUCE_UMAX:
484   case ISD::VECREDUCE_UMIN:
485   case ISD::VECREDUCE_FADD:
486   case ISD::VECREDUCE_FMUL:
487   case ISD::VECREDUCE_FMAX:
488   case ISD::VECREDUCE_FMIN:
489     Action = TLI.getOperationAction(Node->getOpcode(),
490                                     Node->getOperand(0).getValueType());
491     break;
492   }
493 
494   LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
495 
496   SmallVector<SDValue, 8> ResultVals;
497   switch (Action) {
498   default: llvm_unreachable("This action is not supported yet!");
499   case TargetLowering::Promote:
500     LLVM_DEBUG(dbgs() << "Promoting\n");
501     Promote(Node, ResultVals);
502     assert(!ResultVals.empty() && "No results for promotion?");
503     break;
504   case TargetLowering::Legal:
505     LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
506     break;
507   case TargetLowering::Custom:
508     LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
509     if (LowerOperationWrapper(Node, ResultVals))
510       break;
511     LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
512     LLVM_FALLTHROUGH;
513   case TargetLowering::Expand:
514     LLVM_DEBUG(dbgs() << "Expanding\n");
515     Expand(Node, ResultVals);
516     break;
517   }
518 
519   if (ResultVals.empty())
520     return TranslateLegalizeResults(Op, Node);
521 
522   Changed = true;
523   return RecursivelyLegalizeResults(Op, ResultVals);
524 }
525 
526 // FIME: This is very similar to the X86 override of
527 // TargetLowering::LowerOperationWrapper. Can we merge them somehow?
528 bool VectorLegalizer::LowerOperationWrapper(SDNode *Node,
529                                             SmallVectorImpl<SDValue> &Results) {
530   SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
531 
532   if (!Res.getNode())
533     return false;
534 
535   if (Res == SDValue(Node, 0))
536     return true;
537 
538   // If the original node has one result, take the return value from
539   // LowerOperation as is. It might not be result number 0.
540   if (Node->getNumValues() == 1) {
541     Results.push_back(Res);
542     return true;
543   }
544 
545   // If the original node has multiple results, then the return node should
546   // have the same number of results.
547   assert((Node->getNumValues() == Res->getNumValues()) &&
548          "Lowering returned the wrong number of results!");
549 
550   // Places new result values base on N result number.
551   for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I)
552     Results.push_back(Res.getValue(I));
553 
554   return true;
555 }
556 
557 void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
558   // For a few operations there is a specific concept for promotion based on
559   // the operand's type.
560   switch (Node->getOpcode()) {
561   case ISD::SINT_TO_FP:
562   case ISD::UINT_TO_FP:
563   case ISD::STRICT_SINT_TO_FP:
564   case ISD::STRICT_UINT_TO_FP:
565     // "Promote" the operation by extending the operand.
566     PromoteINT_TO_FP(Node, Results);
567     return;
568   case ISD::FP_TO_UINT:
569   case ISD::FP_TO_SINT:
570   case ISD::STRICT_FP_TO_UINT:
571   case ISD::STRICT_FP_TO_SINT:
572     // Promote the operation by extending the operand.
573     PromoteFP_TO_INT(Node, Results);
574     return;
575   case ISD::FP_ROUND:
576   case ISD::FP_EXTEND:
577     // These operations are used to do promotion so they can't be promoted
578     // themselves.
579     llvm_unreachable("Don't know how to promote this operation!");
580   }
581 
582   // There are currently two cases of vector promotion:
583   // 1) Bitcasting a vector of integers to a different type to a vector of the
584   //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
585   // 2) Extending a vector of floats to a vector of the same number of larger
586   //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
587   assert(Node->getNumValues() == 1 &&
588          "Can't promote a vector with multiple results!");
589   MVT VT = Node->getSimpleValueType(0);
590   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
591   SDLoc dl(Node);
592   SmallVector<SDValue, 4> Operands(Node->getNumOperands());
593 
594   for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
595     if (Node->getOperand(j).getValueType().isVector())
596       if (Node->getOperand(j)
597               .getValueType()
598               .getVectorElementType()
599               .isFloatingPoint() &&
600           NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
601         Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j));
602       else
603         Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j));
604     else
605       Operands[j] = Node->getOperand(j);
606   }
607 
608   SDValue Res =
609       DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags());
610 
611   if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
612       (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
613        NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
614     Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res, DAG.getIntPtrConstant(0, dl));
615   else
616     Res = DAG.getNode(ISD::BITCAST, dl, VT, Res);
617 
618   Results.push_back(Res);
619 }
620 
621 void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node,
622                                        SmallVectorImpl<SDValue> &Results) {
623   // INT_TO_FP operations may require the input operand be promoted even
624   // when the type is otherwise legal.
625   bool IsStrict = Node->isStrictFPOpcode();
626   MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType();
627   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
628   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
629          "Vectors have different number of elements!");
630 
631   SDLoc dl(Node);
632   SmallVector<SDValue, 4> Operands(Node->getNumOperands());
633 
634   unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP ||
635                   Node->getOpcode() == ISD::STRICT_UINT_TO_FP)
636                      ? ISD::ZERO_EXTEND
637                      : ISD::SIGN_EXTEND;
638   for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
639     if (Node->getOperand(j).getValueType().isVector())
640       Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j));
641     else
642       Operands[j] = Node->getOperand(j);
643   }
644 
645   if (IsStrict) {
646     SDValue Res = DAG.getNode(Node->getOpcode(), dl,
647                               {Node->getValueType(0), MVT::Other}, Operands);
648     Results.push_back(Res);
649     Results.push_back(Res.getValue(1));
650     return;
651   }
652 
653   SDValue Res =
654       DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands);
655   Results.push_back(Res);
656 }
657 
658 // For FP_TO_INT we promote the result type to a vector type with wider
659 // elements and then truncate the result.  This is different from the default
660 // PromoteVector which uses bitcast to promote thus assumning that the
661 // promoted vector type has the same overall size.
662 void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node,
663                                        SmallVectorImpl<SDValue> &Results) {
664   MVT VT = Node->getSimpleValueType(0);
665   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
666   bool IsStrict = Node->isStrictFPOpcode();
667   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
668          "Vectors have different number of elements!");
669 
670   unsigned NewOpc = Node->getOpcode();
671   // Change FP_TO_UINT to FP_TO_SINT if possible.
672   // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
673   if (NewOpc == ISD::FP_TO_UINT &&
674       TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
675     NewOpc = ISD::FP_TO_SINT;
676 
677   if (NewOpc == ISD::STRICT_FP_TO_UINT &&
678       TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT))
679     NewOpc = ISD::STRICT_FP_TO_SINT;
680 
681   SDLoc dl(Node);
682   SDValue Promoted, Chain;
683   if (IsStrict) {
684     Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other},
685                            {Node->getOperand(0), Node->getOperand(1)});
686     Chain = Promoted.getValue(1);
687   } else
688     Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0));
689 
690   // Assert that the converted value fits in the original type.  If it doesn't
691   // (eg: because the value being converted is too big), then the result of the
692   // original operation was undefined anyway, so the assert is still correct.
693   if (Node->getOpcode() == ISD::FP_TO_UINT ||
694       Node->getOpcode() == ISD::STRICT_FP_TO_UINT)
695     NewOpc = ISD::AssertZext;
696   else
697     NewOpc = ISD::AssertSext;
698 
699   Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted,
700                          DAG.getValueType(VT.getScalarType()));
701   Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
702   Results.push_back(Promoted);
703   if (IsStrict)
704     Results.push_back(Chain);
705 }
706 
707 std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) {
708   LoadSDNode *LD = cast<LoadSDNode>(N);
709   return TLI.scalarizeVectorLoad(LD, DAG);
710 }
711 
712 SDValue VectorLegalizer::ExpandStore(SDNode *N) {
713   StoreSDNode *ST = cast<StoreSDNode>(N);
714   SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
715   return TF;
716 }
717 
718 void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
719   SDValue Tmp;
720   switch (Node->getOpcode()) {
721   case ISD::MERGE_VALUES:
722     for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
723       Results.push_back(Node->getOperand(i));
724     return;
725   case ISD::SIGN_EXTEND_INREG:
726     Results.push_back(ExpandSEXTINREG(Node));
727     return;
728   case ISD::ANY_EXTEND_VECTOR_INREG:
729     Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node));
730     return;
731   case ISD::SIGN_EXTEND_VECTOR_INREG:
732     Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node));
733     return;
734   case ISD::ZERO_EXTEND_VECTOR_INREG:
735     Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node));
736     return;
737   case ISD::BSWAP:
738     Results.push_back(ExpandBSWAP(Node));
739     return;
740   case ISD::VSELECT:
741     Results.push_back(ExpandVSELECT(Node));
742     return;
743   case ISD::SELECT:
744     Results.push_back(ExpandSELECT(Node));
745     return;
746   case ISD::FP_TO_UINT:
747     ExpandFP_TO_UINT(Node, Results);
748     return;
749   case ISD::UINT_TO_FP:
750     ExpandUINT_TO_FLOAT(Node, Results);
751     return;
752   case ISD::FNEG:
753     Results.push_back(ExpandFNEG(Node));
754     return;
755   case ISD::FSUB:
756     ExpandFSUB(Node, Results);
757     return;
758   case ISD::SETCC:
759     Results.push_back(UnrollVSETCC(Node));
760     return;
761   case ISD::ABS:
762     if (TLI.expandABS(Node, Tmp, DAG)) {
763       Results.push_back(Tmp);
764       return;
765     }
766     break;
767   case ISD::BITREVERSE:
768     ExpandBITREVERSE(Node, Results);
769     return;
770   case ISD::CTPOP:
771     if (TLI.expandCTPOP(Node, Tmp, DAG)) {
772       Results.push_back(Tmp);
773       return;
774     }
775     break;
776   case ISD::CTLZ:
777   case ISD::CTLZ_ZERO_UNDEF:
778     if (TLI.expandCTLZ(Node, Tmp, DAG)) {
779       Results.push_back(Tmp);
780       return;
781     }
782     break;
783   case ISD::CTTZ:
784   case ISD::CTTZ_ZERO_UNDEF:
785     if (TLI.expandCTTZ(Node, Tmp, DAG)) {
786       Results.push_back(Tmp);
787       return;
788     }
789     break;
790   case ISD::FSHL:
791   case ISD::FSHR:
792     if (TLI.expandFunnelShift(Node, Tmp, DAG)) {
793       Results.push_back(Tmp);
794       return;
795     }
796     break;
797   case ISD::ROTL:
798   case ISD::ROTR:
799     if (TLI.expandROT(Node, Tmp, DAG)) {
800       Results.push_back(Tmp);
801       return;
802     }
803     break;
804   case ISD::FMINNUM:
805   case ISD::FMAXNUM:
806     if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) {
807       Results.push_back(Expanded);
808       return;
809     }
810     break;
811   case ISD::UADDO:
812   case ISD::USUBO:
813     ExpandUADDSUBO(Node, Results);
814     return;
815   case ISD::SADDO:
816   case ISD::SSUBO:
817     ExpandSADDSUBO(Node, Results);
818     return;
819   case ISD::UMULO:
820   case ISD::SMULO:
821     ExpandMULO(Node, Results);
822     return;
823   case ISD::USUBSAT:
824   case ISD::SSUBSAT:
825   case ISD::UADDSAT:
826   case ISD::SADDSAT:
827     if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) {
828       Results.push_back(Expanded);
829       return;
830     }
831     break;
832   case ISD::SMULFIX:
833   case ISD::UMULFIX:
834     if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) {
835       Results.push_back(Expanded);
836       return;
837     }
838     break;
839   case ISD::SMULFIXSAT:
840   case ISD::UMULFIXSAT:
841     // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly
842     // why. Maybe it results in worse codegen compared to the unroll for some
843     // targets? This should probably be investigated. And if we still prefer to
844     // unroll an explanation could be helpful.
845     break;
846   case ISD::SDIVFIX:
847   case ISD::UDIVFIX:
848     ExpandFixedPointDiv(Node, Results);
849     return;
850   case ISD::SDIVFIXSAT:
851   case ISD::UDIVFIXSAT:
852     break;
853 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
854   case ISD::STRICT_##DAGN:
855 #include "llvm/IR/ConstrainedOps.def"
856     ExpandStrictFPOp(Node, Results);
857     return;
858   case ISD::VECREDUCE_ADD:
859   case ISD::VECREDUCE_MUL:
860   case ISD::VECREDUCE_AND:
861   case ISD::VECREDUCE_OR:
862   case ISD::VECREDUCE_XOR:
863   case ISD::VECREDUCE_SMAX:
864   case ISD::VECREDUCE_SMIN:
865   case ISD::VECREDUCE_UMAX:
866   case ISD::VECREDUCE_UMIN:
867   case ISD::VECREDUCE_FADD:
868   case ISD::VECREDUCE_FMUL:
869   case ISD::VECREDUCE_FMAX:
870   case ISD::VECREDUCE_FMIN:
871     Results.push_back(TLI.expandVecReduce(Node, DAG));
872     return;
873   case ISD::SREM:
874   case ISD::UREM:
875     ExpandREM(Node, Results);
876     return;
877   }
878 
879   Results.push_back(DAG.UnrollVectorOp(Node));
880 }
881 
882 SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) {
883   // Lower a select instruction where the condition is a scalar and the
884   // operands are vectors. Lower this select to VSELECT and implement it
885   // using XOR AND OR. The selector bit is broadcasted.
886   EVT VT = Node->getValueType(0);
887   SDLoc DL(Node);
888 
889   SDValue Mask = Node->getOperand(0);
890   SDValue Op1 = Node->getOperand(1);
891   SDValue Op2 = Node->getOperand(2);
892 
893   assert(VT.isVector() && !Mask.getValueType().isVector()
894          && Op1.getValueType() == Op2.getValueType() && "Invalid type");
895 
896   // If we can't even use the basic vector operations of
897   // AND,OR,XOR, we will have to scalarize the op.
898   // Notice that the operation may be 'promoted' which means that it is
899   // 'bitcasted' to another type which is handled.
900   // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
901   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
902       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
903       TLI.getOperationAction(ISD::OR,  VT) == TargetLowering::Expand ||
904       TLI.getOperationAction(ISD::BUILD_VECTOR,  VT) == TargetLowering::Expand)
905     return DAG.UnrollVectorOp(Node);
906 
907   // Generate a mask operand.
908   EVT MaskTy = VT.changeVectorElementTypeToInteger();
909 
910   // What is the size of each element in the vector mask.
911   EVT BitTy = MaskTy.getScalarType();
912 
913   Mask = DAG.getSelect(DL, BitTy, Mask,
914           DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
915                           BitTy),
916           DAG.getConstant(0, DL, BitTy));
917 
918   // Broadcast the mask so that the entire vector is all-one or all zero.
919   Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask);
920 
921   // Bitcast the operands to be the same type as the mask.
922   // This is needed when we select between FP types because
923   // the mask is a vector of integers.
924   Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
925   Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
926 
927   SDValue AllOnes = DAG.getConstant(
928             APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
929   SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
930 
931   Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
932   Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
933   SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
934   return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
935 }
936 
937 SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) {
938   EVT VT = Node->getValueType(0);
939 
940   // Make sure that the SRA and SHL instructions are available.
941   if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
942       TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
943     return DAG.UnrollVectorOp(Node);
944 
945   SDLoc DL(Node);
946   EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT();
947 
948   unsigned BW = VT.getScalarSizeInBits();
949   unsigned OrigBW = OrigTy.getScalarSizeInBits();
950   SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
951 
952   SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz);
953   return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
954 }
955 
956 // Generically expand a vector anyext in register to a shuffle of the relevant
957 // lanes into the appropriate locations, with other lanes left undef.
958 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) {
959   SDLoc DL(Node);
960   EVT VT = Node->getValueType(0);
961   int NumElements = VT.getVectorNumElements();
962   SDValue Src = Node->getOperand(0);
963   EVT SrcVT = Src.getValueType();
964   int NumSrcElements = SrcVT.getVectorNumElements();
965 
966   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
967   // into a larger vector type.
968   if (SrcVT.bitsLE(VT)) {
969     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
970            "ANY_EXTEND_VECTOR_INREG vector size mismatch");
971     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
972     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
973                              NumSrcElements);
974     Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
975                       Src, DAG.getVectorIdxConstant(0, DL));
976   }
977 
978   // Build a base mask of undef shuffles.
979   SmallVector<int, 16> ShuffleMask;
980   ShuffleMask.resize(NumSrcElements, -1);
981 
982   // Place the extended lanes into the correct locations.
983   int ExtLaneScale = NumSrcElements / NumElements;
984   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
985   for (int i = 0; i < NumElements; ++i)
986     ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
987 
988   return DAG.getNode(
989       ISD::BITCAST, DL, VT,
990       DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
991 }
992 
993 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) {
994   SDLoc DL(Node);
995   EVT VT = Node->getValueType(0);
996   SDValue Src = Node->getOperand(0);
997   EVT SrcVT = Src.getValueType();
998 
999   // First build an any-extend node which can be legalized above when we
1000   // recurse through it.
1001   SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src);
1002 
1003   // Now we need sign extend. Do this by shifting the elements. Even if these
1004   // aren't legal operations, they have a better chance of being legalized
1005   // without full scalarization than the sign extension does.
1006   unsigned EltWidth = VT.getScalarSizeInBits();
1007   unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
1008   SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
1009   return DAG.getNode(ISD::SRA, DL, VT,
1010                      DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
1011                      ShiftAmount);
1012 }
1013 
1014 // Generically expand a vector zext in register to a shuffle of the relevant
1015 // lanes into the appropriate locations, a blend of zero into the high bits,
1016 // and a bitcast to the wider element type.
1017 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) {
1018   SDLoc DL(Node);
1019   EVT VT = Node->getValueType(0);
1020   int NumElements = VT.getVectorNumElements();
1021   SDValue Src = Node->getOperand(0);
1022   EVT SrcVT = Src.getValueType();
1023   int NumSrcElements = SrcVT.getVectorNumElements();
1024 
1025   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1026   // into a larger vector type.
1027   if (SrcVT.bitsLE(VT)) {
1028     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
1029            "ZERO_EXTEND_VECTOR_INREG vector size mismatch");
1030     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
1031     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
1032                              NumSrcElements);
1033     Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
1034                       Src, DAG.getVectorIdxConstant(0, DL));
1035   }
1036 
1037   // Build up a zero vector to blend into this one.
1038   SDValue Zero = DAG.getConstant(0, DL, SrcVT);
1039 
1040   // Shuffle the incoming lanes into the correct position, and pull all other
1041   // lanes from the zero vector.
1042   SmallVector<int, 16> ShuffleMask;
1043   ShuffleMask.reserve(NumSrcElements);
1044   for (int i = 0; i < NumSrcElements; ++i)
1045     ShuffleMask.push_back(i);
1046 
1047   int ExtLaneScale = NumSrcElements / NumElements;
1048   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
1049   for (int i = 0; i < NumElements; ++i)
1050     ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
1051 
1052   return DAG.getNode(ISD::BITCAST, DL, VT,
1053                      DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
1054 }
1055 
1056 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
1057   int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
1058   for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
1059     for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
1060       ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
1061 }
1062 
1063 SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) {
1064   EVT VT = Node->getValueType(0);
1065 
1066   // Generate a byte wise shuffle mask for the BSWAP.
1067   SmallVector<int, 16> ShuffleMask;
1068   createBSWAPShuffleMask(VT, ShuffleMask);
1069   EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
1070 
1071   // Only emit a shuffle if the mask is legal.
1072   if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
1073     return DAG.UnrollVectorOp(Node);
1074 
1075   SDLoc DL(Node);
1076   SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1077   Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
1078   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1079 }
1080 
1081 void VectorLegalizer::ExpandBITREVERSE(SDNode *Node,
1082                                        SmallVectorImpl<SDValue> &Results) {
1083   EVT VT = Node->getValueType(0);
1084 
1085   // If we have the scalar operation, it's probably cheaper to unroll it.
1086   if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) {
1087     SDValue Tmp = DAG.UnrollVectorOp(Node);
1088     Results.push_back(Tmp);
1089     return;
1090   }
1091 
1092   // If the vector element width is a whole number of bytes, test if its legal
1093   // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
1094   // vector. This greatly reduces the number of bit shifts necessary.
1095   unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
1096   if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
1097     SmallVector<int, 16> BSWAPMask;
1098     createBSWAPShuffleMask(VT, BSWAPMask);
1099 
1100     EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
1101     if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
1102         (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
1103          (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
1104           TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
1105           TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
1106           TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
1107       SDLoc DL(Node);
1108       SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1109       Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
1110                                 BSWAPMask);
1111       Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
1112       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
1113       Results.push_back(Op);
1114       return;
1115     }
1116   }
1117 
1118   // If we have the appropriate vector bit operations, it is better to use them
1119   // than unrolling and expanding each component.
1120   if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
1121       TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
1122       TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
1123       TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
1124     // Let LegalizeDAG handle this later.
1125     return;
1126 
1127   // Otherwise unroll.
1128   SDValue Tmp = DAG.UnrollVectorOp(Node);
1129   Results.push_back(Tmp);
1130 }
1131 
1132 SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) {
1133   // Implement VSELECT in terms of XOR, AND, OR
1134   // on platforms which do not support blend natively.
1135   SDLoc DL(Node);
1136 
1137   SDValue Mask = Node->getOperand(0);
1138   SDValue Op1 = Node->getOperand(1);
1139   SDValue Op2 = Node->getOperand(2);
1140 
1141   EVT VT = Mask.getValueType();
1142 
1143   // If we can't even use the basic vector operations of
1144   // AND,OR,XOR, we will have to scalarize the op.
1145   // Notice that the operation may be 'promoted' which means that it is
1146   // 'bitcasted' to another type which is handled.
1147   // This operation also isn't safe with AND, OR, XOR when the boolean
1148   // type is 0/1 as we need an all ones vector constant to mask with.
1149   // FIXME: Sign extend 1 to all ones if thats legal on the target.
1150   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1151       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1152       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
1153       TLI.getBooleanContents(Op1.getValueType()) !=
1154           TargetLowering::ZeroOrNegativeOneBooleanContent)
1155     return DAG.UnrollVectorOp(Node);
1156 
1157   // If the mask and the type are different sizes, unroll the vector op. This
1158   // can occur when getSetCCResultType returns something that is different in
1159   // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1160   if (VT.getSizeInBits() != Op1.getValueSizeInBits())
1161     return DAG.UnrollVectorOp(Node);
1162 
1163   // Bitcast the operands to be the same type as the mask.
1164   // This is needed when we select between FP types because
1165   // the mask is a vector of integers.
1166   Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
1167   Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
1168 
1169   SDValue AllOnes = DAG.getConstant(
1170     APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT);
1171   SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
1172 
1173   Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
1174   Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
1175   SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
1176   return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
1177 }
1178 
1179 void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node,
1180                                        SmallVectorImpl<SDValue> &Results) {
1181   // Attempt to expand using TargetLowering.
1182   SDValue Result, Chain;
1183   if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) {
1184     Results.push_back(Result);
1185     if (Node->isStrictFPOpcode())
1186       Results.push_back(Chain);
1187     return;
1188   }
1189 
1190   // Otherwise go ahead and unroll.
1191   if (Node->isStrictFPOpcode()) {
1192     UnrollStrictFPOp(Node, Results);
1193     return;
1194   }
1195 
1196   Results.push_back(DAG.UnrollVectorOp(Node));
1197 }
1198 
1199 void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node,
1200                                           SmallVectorImpl<SDValue> &Results) {
1201   bool IsStrict = Node->isStrictFPOpcode();
1202   unsigned OpNo = IsStrict ? 1 : 0;
1203   SDValue Src = Node->getOperand(OpNo);
1204   EVT VT = Src.getValueType();
1205   SDLoc DL(Node);
1206 
1207   // Attempt to expand using TargetLowering.
1208   SDValue Result;
1209   SDValue Chain;
1210   if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) {
1211     Results.push_back(Result);
1212     if (IsStrict)
1213       Results.push_back(Chain);
1214     return;
1215   }
1216 
1217   // Make sure that the SINT_TO_FP and SRL instructions are available.
1218   if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) ==
1219                          TargetLowering::Expand) ||
1220        (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) ==
1221                         TargetLowering::Expand)) ||
1222       TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) {
1223     if (IsStrict) {
1224       UnrollStrictFPOp(Node, Results);
1225       return;
1226     }
1227 
1228     Results.push_back(DAG.UnrollVectorOp(Node));
1229     return;
1230   }
1231 
1232   unsigned BW = VT.getScalarSizeInBits();
1233   assert((BW == 64 || BW == 32) &&
1234          "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1235 
1236   SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
1237 
1238   // Constants to clear the upper part of the word.
1239   // Notice that we can also use SHL+SHR, but using a constant is slightly
1240   // faster on x86.
1241   uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1242   SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
1243 
1244   // Two to the power of half-word-size.
1245   SDValue TWOHW =
1246       DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0));
1247 
1248   // Clear upper part of LO, lower HI
1249   SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord);
1250   SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask);
1251 
1252   if (IsStrict) {
1253     // Convert hi and lo to floats
1254     // Convert the hi part back to the upper values
1255     // TODO: Can any fast-math-flags be set on these nodes?
1256     SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
1257                               {Node->getValueType(0), MVT::Other},
1258                               {Node->getOperand(0), HI});
1259     fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other},
1260                       {fHI.getValue(1), fHI, TWOHW});
1261     SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
1262                               {Node->getValueType(0), MVT::Other},
1263                               {Node->getOperand(0), LO});
1264 
1265     SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1),
1266                              fLO.getValue(1));
1267 
1268     // Add the two halves
1269     SDValue Result =
1270         DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other},
1271                     {TF, fHI, fLO});
1272 
1273     Results.push_back(Result);
1274     Results.push_back(Result.getValue(1));
1275     return;
1276   }
1277 
1278   // Convert hi and lo to floats
1279   // Convert the hi part back to the upper values
1280   // TODO: Can any fast-math-flags be set on these nodes?
1281   SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI);
1282   fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW);
1283   SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO);
1284 
1285   // Add the two halves
1286   Results.push_back(
1287       DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO));
1288 }
1289 
1290 SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) {
1291   if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) {
1292     SDLoc DL(Node);
1293     SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0));
1294     // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1295     return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero,
1296                        Node->getOperand(0));
1297   }
1298   return DAG.UnrollVectorOp(Node);
1299 }
1300 
1301 void VectorLegalizer::ExpandFSUB(SDNode *Node,
1302                                  SmallVectorImpl<SDValue> &Results) {
1303   // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1304   // we can defer this to operation legalization where it will be lowered as
1305   // a+(-b).
1306   EVT VT = Node->getValueType(0);
1307   if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
1308       TLI.isOperationLegalOrCustom(ISD::FADD, VT))
1309     return; // Defer to LegalizeDAG
1310 
1311   SDValue Tmp = DAG.UnrollVectorOp(Node);
1312   Results.push_back(Tmp);
1313 }
1314 
1315 void VectorLegalizer::ExpandUADDSUBO(SDNode *Node,
1316                                      SmallVectorImpl<SDValue> &Results) {
1317   SDValue Result, Overflow;
1318   TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
1319   Results.push_back(Result);
1320   Results.push_back(Overflow);
1321 }
1322 
1323 void VectorLegalizer::ExpandSADDSUBO(SDNode *Node,
1324                                      SmallVectorImpl<SDValue> &Results) {
1325   SDValue Result, Overflow;
1326   TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
1327   Results.push_back(Result);
1328   Results.push_back(Overflow);
1329 }
1330 
1331 void VectorLegalizer::ExpandMULO(SDNode *Node,
1332                                  SmallVectorImpl<SDValue> &Results) {
1333   SDValue Result, Overflow;
1334   if (!TLI.expandMULO(Node, Result, Overflow, DAG))
1335     std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node);
1336 
1337   Results.push_back(Result);
1338   Results.push_back(Overflow);
1339 }
1340 
1341 void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node,
1342                                           SmallVectorImpl<SDValue> &Results) {
1343   SDNode *N = Node;
1344   if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N),
1345           N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG))
1346     Results.push_back(Expanded);
1347 }
1348 
1349 void VectorLegalizer::ExpandStrictFPOp(SDNode *Node,
1350                                        SmallVectorImpl<SDValue> &Results) {
1351   if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) {
1352     ExpandUINT_TO_FLOAT(Node, Results);
1353     return;
1354   }
1355   if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) {
1356     ExpandFP_TO_UINT(Node, Results);
1357     return;
1358   }
1359 
1360   UnrollStrictFPOp(Node, Results);
1361 }
1362 
1363 void VectorLegalizer::ExpandREM(SDNode *Node,
1364                                 SmallVectorImpl<SDValue> &Results) {
1365   assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) &&
1366          "Expected REM node");
1367 
1368   SDValue Result;
1369   if (!TLI.expandREM(Node, Result, DAG))
1370     Result = DAG.UnrollVectorOp(Node);
1371   Results.push_back(Result);
1372 }
1373 
1374 void VectorLegalizer::UnrollStrictFPOp(SDNode *Node,
1375                                        SmallVectorImpl<SDValue> &Results) {
1376   EVT VT = Node->getValueType(0);
1377   EVT EltVT = VT.getVectorElementType();
1378   unsigned NumElems = VT.getVectorNumElements();
1379   unsigned NumOpers = Node->getNumOperands();
1380   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1381 
1382   EVT TmpEltVT = EltVT;
1383   if (Node->getOpcode() == ISD::STRICT_FSETCC ||
1384       Node->getOpcode() == ISD::STRICT_FSETCCS)
1385     TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(),
1386                                       *DAG.getContext(), TmpEltVT);
1387 
1388   EVT ValueVTs[] = {TmpEltVT, MVT::Other};
1389   SDValue Chain = Node->getOperand(0);
1390   SDLoc dl(Node);
1391 
1392   SmallVector<SDValue, 32> OpValues;
1393   SmallVector<SDValue, 32> OpChains;
1394   for (unsigned i = 0; i < NumElems; ++i) {
1395     SmallVector<SDValue, 4> Opers;
1396     SDValue Idx = DAG.getVectorIdxConstant(i, dl);
1397 
1398     // The Chain is the first operand.
1399     Opers.push_back(Chain);
1400 
1401     // Now process the remaining operands.
1402     for (unsigned j = 1; j < NumOpers; ++j) {
1403       SDValue Oper = Node->getOperand(j);
1404       EVT OperVT = Oper.getValueType();
1405 
1406       if (OperVT.isVector())
1407         Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1408                            OperVT.getVectorElementType(), Oper, Idx);
1409 
1410       Opers.push_back(Oper);
1411     }
1412 
1413     SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers);
1414     SDValue ScalarResult = ScalarOp.getValue(0);
1415     SDValue ScalarChain = ScalarOp.getValue(1);
1416 
1417     if (Node->getOpcode() == ISD::STRICT_FSETCC ||
1418         Node->getOpcode() == ISD::STRICT_FSETCCS)
1419       ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult,
1420                            DAG.getConstant(APInt::getAllOnesValue
1421                                            (EltVT.getSizeInBits()), dl, EltVT),
1422                            DAG.getConstant(0, dl, EltVT));
1423 
1424     OpValues.push_back(ScalarResult);
1425     OpChains.push_back(ScalarChain);
1426   }
1427 
1428   SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
1429   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
1430 
1431   Results.push_back(Result);
1432   Results.push_back(NewChain);
1433 }
1434 
1435 SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) {
1436   EVT VT = Node->getValueType(0);
1437   unsigned NumElems = VT.getVectorNumElements();
1438   EVT EltVT = VT.getVectorElementType();
1439   SDValue LHS = Node->getOperand(0);
1440   SDValue RHS = Node->getOperand(1);
1441   SDValue CC = Node->getOperand(2);
1442   EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1443   SDLoc dl(Node);
1444   SmallVector<SDValue, 8> Ops(NumElems);
1445   for (unsigned i = 0; i < NumElems; ++i) {
1446     SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1447                                   DAG.getVectorIdxConstant(i, dl));
1448     SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1449                                   DAG.getVectorIdxConstant(i, dl));
1450     Ops[i] = DAG.getNode(ISD::SETCC, dl,
1451                          TLI.getSetCCResultType(DAG.getDataLayout(),
1452                                                 *DAG.getContext(), TmpEltVT),
1453                          LHSElem, RHSElem, CC);
1454     Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
1455                            DAG.getConstant(APInt::getAllOnesValue
1456                                            (EltVT.getSizeInBits()), dl, EltVT),
1457                            DAG.getConstant(0, dl, EltVT));
1458   }
1459   return DAG.getBuildVector(VT, dl, Ops);
1460 }
1461 
1462 bool SelectionDAG::LegalizeVectors() {
1463   return VectorLegalizer(*this).Run();
1464 }
1465