1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::LegalizeVectors method.
10 //
11 // The vector legalizer looks for vector operations which might need to be
12 // scalarized and legalizes them. This is a separate step from Legalize because
13 // scalarizing can introduce illegal types.  For example, suppose we have an
14 // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
16 // operation, which introduces nodes with the illegal type i64 which must be
17 // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
18 // the operation must be unrolled, which introduces nodes with the illegal
19 // type i8 which must be promoted.
20 //
21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
22 // or operations that happen to take a vector which are custom-lowered;
23 // the legalization for such operations never produces nodes
24 // with illegal types, so it's okay to put off legalizing them until
25 // SelectionDAG::Legalize runs.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/SelectionDAGNodes.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MachineValueType.h"
44 #include "llvm/Support/MathExtras.h"
45 #include <cassert>
46 #include <cstdint>
47 #include <iterator>
48 #include <utility>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "legalizevectorops"
53 
54 namespace {
55 
56 class VectorLegalizer {
57   SelectionDAG& DAG;
58   const TargetLowering &TLI;
59   bool Changed = false; // Keep track of whether anything changed
60 
61   /// For nodes that are of legal width, and that have more than one use, this
62   /// map indicates what regularized operand to use.  This allows us to avoid
63   /// legalizing the same thing more than once.
64   SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
65 
66   /// Adds a node to the translation cache.
67   void AddLegalizedOperand(SDValue From, SDValue To) {
68     LegalizedNodes.insert(std::make_pair(From, To));
69     // If someone requests legalization of the new node, return itself.
70     if (From != To)
71       LegalizedNodes.insert(std::make_pair(To, To));
72   }
73 
74   /// Legalizes the given node.
75   SDValue LegalizeOp(SDValue Op);
76 
77   /// Assuming the node is legal, "legalize" the results.
78   SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result);
79 
80   /// Make sure Results are legal and update the translation cache.
81   SDValue RecursivelyLegalizeResults(SDValue Op,
82                                      MutableArrayRef<SDValue> Results);
83 
84   /// Wrapper to interface LowerOperation with a vector of Results.
85   /// Returns false if the target wants to use default expansion. Otherwise
86   /// returns true. If return is true and the Results are empty, then the
87   /// target wants to keep the input node as is.
88   bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results);
89 
90   /// Implements unrolling a VSETCC.
91   SDValue UnrollVSETCC(SDNode *Node);
92 
93   /// Implement expand-based legalization of vector operations.
94   ///
95   /// This is just a high-level routine to dispatch to specific code paths for
96   /// operations to legalize them.
97   void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results);
98 
99   /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
100   /// FP_TO_SINT isn't legal.
101   void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
102 
103   /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
104   /// SINT_TO_FLOAT and SHR on vectors isn't legal.
105   void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
106 
107   /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
108   SDValue ExpandSEXTINREG(SDNode *Node);
109 
110   /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
111   ///
112   /// Shuffles the low lanes of the operand into place and bitcasts to the proper
113   /// type. The contents of the bits in the extended part of each element are
114   /// undef.
115   SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node);
116 
117   /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
118   ///
119   /// Shuffles the low lanes of the operand into place, bitcasts to the proper
120   /// type, then shifts left and arithmetic shifts right to introduce a sign
121   /// extension.
122   SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node);
123 
124   /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
125   ///
126   /// Shuffles the low lanes of the operand into place and blends zeros into
127   /// the remaining lanes, finally bitcasting to the proper type.
128   SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node);
129 
130   /// Expand bswap of vectors into a shuffle if legal.
131   SDValue ExpandBSWAP(SDNode *Node);
132 
133   /// Implement vselect in terms of XOR, AND, OR when blend is not
134   /// supported by the target.
135   SDValue ExpandVSELECT(SDNode *Node);
136   SDValue ExpandSELECT(SDNode *Node);
137   std::pair<SDValue, SDValue> ExpandLoad(SDNode *N);
138   SDValue ExpandStore(SDNode *N);
139   SDValue ExpandFNEG(SDNode *Node);
140   void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results);
141   void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results);
142   void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
143   void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
144   void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
145   void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results);
146   SDValue ExpandStrictFPOp(SDNode *Node);
147   void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
148   void ExpandREM(SDNode *Node, SmallVectorImpl<SDValue> &Results);
149 
150   void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
151 
152   /// Implements vector promotion.
153   ///
154   /// This is essentially just bitcasting the operands to a different type and
155   /// bitcasting the result back to the original type.
156   void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results);
157 
158   /// Implements [SU]INT_TO_FP vector promotion.
159   ///
160   /// This is a [zs]ext of the input operand to a larger integer type.
161   void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results);
162 
163   /// Implements FP_TO_[SU]INT vector promotion of the result type.
164   ///
165   /// It is promoted to a larger integer type.  The result is then
166   /// truncated back to the original type.
167   void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
168 
169 public:
170   VectorLegalizer(SelectionDAG& dag) :
171       DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
172 
173   /// Begin legalizer the vector operations in the DAG.
174   bool Run();
175 };
176 
177 } // end anonymous namespace
178 
179 bool VectorLegalizer::Run() {
180   // Before we start legalizing vector nodes, check if there are any vectors.
181   bool HasVectors = false;
182   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
183        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
184     // Check if the values of the nodes contain vectors. We don't need to check
185     // the operands because we are going to check their values at some point.
186     HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); });
187 
188     // If we found a vector node we can start the legalization.
189     if (HasVectors)
190       break;
191   }
192 
193   // If this basic block has no vectors then no need to legalize vectors.
194   if (!HasVectors)
195     return false;
196 
197   // The legalize process is inherently a bottom-up recursive process (users
198   // legalize their uses before themselves).  Given infinite stack space, we
199   // could just start legalizing on the root and traverse the whole graph.  In
200   // practice however, this causes us to run out of stack space on large basic
201   // blocks.  To avoid this problem, compute an ordering of the nodes where each
202   // node is only legalized after all of its operands are legalized.
203   DAG.AssignTopologicalOrder();
204   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
205        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
206     LegalizeOp(SDValue(&*I, 0));
207 
208   // Finally, it's possible the root changed.  Get the new root.
209   SDValue OldRoot = DAG.getRoot();
210   assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
211   DAG.setRoot(LegalizedNodes[OldRoot]);
212 
213   LegalizedNodes.clear();
214 
215   // Remove dead nodes now.
216   DAG.RemoveDeadNodes();
217 
218   return Changed;
219 }
220 
221 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) {
222   assert(Op->getNumValues() == Result->getNumValues() &&
223          "Unexpected number of results");
224   // Generic legalization: just pass the operand through.
225   for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i)
226     AddLegalizedOperand(Op.getValue(i), SDValue(Result, i));
227   return SDValue(Result, Op.getResNo());
228 }
229 
230 SDValue
231 VectorLegalizer::RecursivelyLegalizeResults(SDValue Op,
232                                             MutableArrayRef<SDValue> Results) {
233   assert(Results.size() == Op->getNumValues() &&
234          "Unexpected number of results");
235   // Make sure that the generated code is itself legal.
236   for (unsigned i = 0, e = Results.size(); i != e; ++i) {
237     Results[i] = LegalizeOp(Results[i]);
238     AddLegalizedOperand(Op.getValue(i), Results[i]);
239   }
240 
241   return Results[Op.getResNo()];
242 }
243 
244 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
245   // Note that LegalizeOp may be reentered even from single-use nodes, which
246   // means that we always must cache transformed nodes.
247   DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
248   if (I != LegalizedNodes.end()) return I->second;
249 
250   // Legalize the operands
251   SmallVector<SDValue, 8> Ops;
252   for (const SDValue &Oper : Op->op_values())
253     Ops.push_back(LegalizeOp(Oper));
254 
255   SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops);
256 
257   if (Op.getOpcode() == ISD::LOAD) {
258     LoadSDNode *LD = cast<LoadSDNode>(Node);
259     ISD::LoadExtType ExtType = LD->getExtensionType();
260     if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) {
261       LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: ";
262                  Node->dump(&DAG));
263       switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
264                                    LD->getMemoryVT())) {
265       default: llvm_unreachable("This action is not supported yet!");
266       case TargetLowering::Legal:
267         return TranslateLegalizeResults(Op, Node);
268       case TargetLowering::Custom: {
269         SmallVector<SDValue, 2> ResultVals;
270         if (LowerOperationWrapper(Node, ResultVals)) {
271           if (ResultVals.empty())
272             return TranslateLegalizeResults(Op, Node);
273 
274           Changed = true;
275           return RecursivelyLegalizeResults(Op, ResultVals);
276         }
277         LLVM_FALLTHROUGH;
278       }
279       case TargetLowering::Expand: {
280         Changed = true;
281         std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node);
282         AddLegalizedOperand(Op.getValue(0), Tmp.first);
283         AddLegalizedOperand(Op.getValue(1), Tmp.second);
284         return Op.getResNo() ? Tmp.first : Tmp.second;
285       }
286       }
287     }
288   } else if (Op.getOpcode() == ISD::STORE) {
289     StoreSDNode *ST = cast<StoreSDNode>(Node);
290     EVT StVT = ST->getMemoryVT();
291     MVT ValVT = ST->getValue().getSimpleValueType();
292     if (StVT.isVector() && ST->isTruncatingStore()) {
293       LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: ";
294                  Node->dump(&DAG));
295       switch (TLI.getTruncStoreAction(ValVT, StVT)) {
296       default: llvm_unreachable("This action is not supported yet!");
297       case TargetLowering::Legal:
298         return TranslateLegalizeResults(Op, Node);
299       case TargetLowering::Custom: {
300         SmallVector<SDValue, 1> ResultVals;
301         if (LowerOperationWrapper(Node, ResultVals)) {
302           if (ResultVals.empty())
303             return TranslateLegalizeResults(Op, Node);
304 
305           Changed = true;
306           return RecursivelyLegalizeResults(Op, ResultVals);
307         }
308         LLVM_FALLTHROUGH;
309       }
310       case TargetLowering::Expand: {
311         Changed = true;
312         SDValue Chain = ExpandStore(Node);
313         AddLegalizedOperand(Op, Chain);
314         return Chain;
315       }
316       }
317     }
318   }
319 
320   bool HasVectorValueOrOp =
321       llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) ||
322       llvm::any_of(Node->op_values(),
323                    [](SDValue O) { return O.getValueType().isVector(); });
324   if (!HasVectorValueOrOp)
325     return TranslateLegalizeResults(Op, Node);
326 
327   TargetLowering::LegalizeAction Action = TargetLowering::Legal;
328   EVT ValVT;
329   switch (Op.getOpcode()) {
330   default:
331     return TranslateLegalizeResults(Op, Node);
332   case ISD::MERGE_VALUES:
333     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
334     // This operation lies about being legal: when it claims to be legal,
335     // it should actually be expanded.
336     if (Action == TargetLowering::Legal)
337       Action = TargetLowering::Expand;
338     break;
339 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
340   case ISD::STRICT_##DAGN:
341 #include "llvm/IR/ConstrainedOps.def"
342     ValVT = Node->getValueType(0);
343     if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP ||
344         Op.getOpcode() == ISD::STRICT_UINT_TO_FP)
345       ValVT = Node->getOperand(1).getValueType();
346     Action = TLI.getOperationAction(Node->getOpcode(), ValVT);
347     // If we're asked to expand a strict vector floating-point operation,
348     // by default we're going to simply unroll it.  That is usually the
349     // best approach, except in the case where the resulting strict (scalar)
350     // operations would themselves use the fallback mutation to non-strict.
351     // In that specific case, just do the fallback on the vector op.
352     if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() &&
353         TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) ==
354             TargetLowering::Legal) {
355       EVT EltVT = ValVT.getVectorElementType();
356       if (TLI.getOperationAction(Node->getOpcode(), EltVT)
357           == TargetLowering::Expand &&
358           TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT)
359           == TargetLowering::Legal)
360         Action = TargetLowering::Legal;
361     }
362     break;
363   case ISD::ADD:
364   case ISD::SUB:
365   case ISD::MUL:
366   case ISD::MULHS:
367   case ISD::MULHU:
368   case ISD::SDIV:
369   case ISD::UDIV:
370   case ISD::SREM:
371   case ISD::UREM:
372   case ISD::SDIVREM:
373   case ISD::UDIVREM:
374   case ISD::FADD:
375   case ISD::FSUB:
376   case ISD::FMUL:
377   case ISD::FDIV:
378   case ISD::FREM:
379   case ISD::AND:
380   case ISD::OR:
381   case ISD::XOR:
382   case ISD::SHL:
383   case ISD::SRA:
384   case ISD::SRL:
385   case ISD::FSHL:
386   case ISD::FSHR:
387   case ISD::ROTL:
388   case ISD::ROTR:
389   case ISD::ABS:
390   case ISD::BSWAP:
391   case ISD::BITREVERSE:
392   case ISD::CTLZ:
393   case ISD::CTTZ:
394   case ISD::CTLZ_ZERO_UNDEF:
395   case ISD::CTTZ_ZERO_UNDEF:
396   case ISD::CTPOP:
397   case ISD::SELECT:
398   case ISD::VSELECT:
399   case ISD::SELECT_CC:
400   case ISD::SETCC:
401   case ISD::ZERO_EXTEND:
402   case ISD::ANY_EXTEND:
403   case ISD::TRUNCATE:
404   case ISD::SIGN_EXTEND:
405   case ISD::FP_TO_SINT:
406   case ISD::FP_TO_UINT:
407   case ISD::FNEG:
408   case ISD::FABS:
409   case ISD::FMINNUM:
410   case ISD::FMAXNUM:
411   case ISD::FMINNUM_IEEE:
412   case ISD::FMAXNUM_IEEE:
413   case ISD::FMINIMUM:
414   case ISD::FMAXIMUM:
415   case ISD::FCOPYSIGN:
416   case ISD::FSQRT:
417   case ISD::FSIN:
418   case ISD::FCOS:
419   case ISD::FPOWI:
420   case ISD::FPOW:
421   case ISD::FLOG:
422   case ISD::FLOG2:
423   case ISD::FLOG10:
424   case ISD::FEXP:
425   case ISD::FEXP2:
426   case ISD::FCEIL:
427   case ISD::FTRUNC:
428   case ISD::FRINT:
429   case ISD::FNEARBYINT:
430   case ISD::FROUND:
431   case ISD::FROUNDEVEN:
432   case ISD::FFLOOR:
433   case ISD::FP_ROUND:
434   case ISD::FP_EXTEND:
435   case ISD::FMA:
436   case ISD::SIGN_EXTEND_INREG:
437   case ISD::ANY_EXTEND_VECTOR_INREG:
438   case ISD::SIGN_EXTEND_VECTOR_INREG:
439   case ISD::ZERO_EXTEND_VECTOR_INREG:
440   case ISD::SMIN:
441   case ISD::SMAX:
442   case ISD::UMIN:
443   case ISD::UMAX:
444   case ISD::SMUL_LOHI:
445   case ISD::UMUL_LOHI:
446   case ISD::SADDO:
447   case ISD::UADDO:
448   case ISD::SSUBO:
449   case ISD::USUBO:
450   case ISD::SMULO:
451   case ISD::UMULO:
452   case ISD::FCANONICALIZE:
453   case ISD::SADDSAT:
454   case ISD::UADDSAT:
455   case ISD::SSUBSAT:
456   case ISD::USUBSAT:
457   case ISD::SSHLSAT:
458   case ISD::USHLSAT:
459     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
460     break;
461   case ISD::SMULFIX:
462   case ISD::SMULFIXSAT:
463   case ISD::UMULFIX:
464   case ISD::UMULFIXSAT:
465   case ISD::SDIVFIX:
466   case ISD::SDIVFIXSAT:
467   case ISD::UDIVFIX:
468   case ISD::UDIVFIXSAT: {
469     unsigned Scale = Node->getConstantOperandVal(2);
470     Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
471                                               Node->getValueType(0), Scale);
472     break;
473   }
474   case ISD::SINT_TO_FP:
475   case ISD::UINT_TO_FP:
476   case ISD::VECREDUCE_ADD:
477   case ISD::VECREDUCE_MUL:
478   case ISD::VECREDUCE_AND:
479   case ISD::VECREDUCE_OR:
480   case ISD::VECREDUCE_XOR:
481   case ISD::VECREDUCE_SMAX:
482   case ISD::VECREDUCE_SMIN:
483   case ISD::VECREDUCE_UMAX:
484   case ISD::VECREDUCE_UMIN:
485   case ISD::VECREDUCE_FADD:
486   case ISD::VECREDUCE_FMUL:
487   case ISD::VECREDUCE_FMAX:
488   case ISD::VECREDUCE_FMIN:
489     Action = TLI.getOperationAction(Node->getOpcode(),
490                                     Node->getOperand(0).getValueType());
491     break;
492   case ISD::VECREDUCE_SEQ_FADD:
493     Action = TLI.getOperationAction(Node->getOpcode(),
494                                     Node->getOperand(1).getValueType());
495     break;
496   }
497 
498   LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
499 
500   SmallVector<SDValue, 8> ResultVals;
501   switch (Action) {
502   default: llvm_unreachable("This action is not supported yet!");
503   case TargetLowering::Promote:
504     LLVM_DEBUG(dbgs() << "Promoting\n");
505     Promote(Node, ResultVals);
506     assert(!ResultVals.empty() && "No results for promotion?");
507     break;
508   case TargetLowering::Legal:
509     LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
510     break;
511   case TargetLowering::Custom:
512     LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
513     if (LowerOperationWrapper(Node, ResultVals))
514       break;
515     LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
516     LLVM_FALLTHROUGH;
517   case TargetLowering::Expand:
518     LLVM_DEBUG(dbgs() << "Expanding\n");
519     Expand(Node, ResultVals);
520     break;
521   }
522 
523   if (ResultVals.empty())
524     return TranslateLegalizeResults(Op, Node);
525 
526   Changed = true;
527   return RecursivelyLegalizeResults(Op, ResultVals);
528 }
529 
530 // FIME: This is very similar to the X86 override of
531 // TargetLowering::LowerOperationWrapper. Can we merge them somehow?
532 bool VectorLegalizer::LowerOperationWrapper(SDNode *Node,
533                                             SmallVectorImpl<SDValue> &Results) {
534   SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
535 
536   if (!Res.getNode())
537     return false;
538 
539   if (Res == SDValue(Node, 0))
540     return true;
541 
542   // If the original node has one result, take the return value from
543   // LowerOperation as is. It might not be result number 0.
544   if (Node->getNumValues() == 1) {
545     Results.push_back(Res);
546     return true;
547   }
548 
549   // If the original node has multiple results, then the return node should
550   // have the same number of results.
551   assert((Node->getNumValues() == Res->getNumValues()) &&
552          "Lowering returned the wrong number of results!");
553 
554   // Places new result values base on N result number.
555   for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I)
556     Results.push_back(Res.getValue(I));
557 
558   return true;
559 }
560 
561 void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
562   // For a few operations there is a specific concept for promotion based on
563   // the operand's type.
564   switch (Node->getOpcode()) {
565   case ISD::SINT_TO_FP:
566   case ISD::UINT_TO_FP:
567   case ISD::STRICT_SINT_TO_FP:
568   case ISD::STRICT_UINT_TO_FP:
569     // "Promote" the operation by extending the operand.
570     PromoteINT_TO_FP(Node, Results);
571     return;
572   case ISD::FP_TO_UINT:
573   case ISD::FP_TO_SINT:
574   case ISD::STRICT_FP_TO_UINT:
575   case ISD::STRICT_FP_TO_SINT:
576     // Promote the operation by extending the operand.
577     PromoteFP_TO_INT(Node, Results);
578     return;
579   case ISD::FP_ROUND:
580   case ISD::FP_EXTEND:
581     // These operations are used to do promotion so they can't be promoted
582     // themselves.
583     llvm_unreachable("Don't know how to promote this operation!");
584   }
585 
586   // There are currently two cases of vector promotion:
587   // 1) Bitcasting a vector of integers to a different type to a vector of the
588   //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
589   // 2) Extending a vector of floats to a vector of the same number of larger
590   //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
591   assert(Node->getNumValues() == 1 &&
592          "Can't promote a vector with multiple results!");
593   MVT VT = Node->getSimpleValueType(0);
594   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
595   SDLoc dl(Node);
596   SmallVector<SDValue, 4> Operands(Node->getNumOperands());
597 
598   for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
599     if (Node->getOperand(j).getValueType().isVector())
600       if (Node->getOperand(j)
601               .getValueType()
602               .getVectorElementType()
603               .isFloatingPoint() &&
604           NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
605         Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j));
606       else
607         Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j));
608     else
609       Operands[j] = Node->getOperand(j);
610   }
611 
612   SDValue Res =
613       DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags());
614 
615   if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
616       (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
617        NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
618     Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res, DAG.getIntPtrConstant(0, dl));
619   else
620     Res = DAG.getNode(ISD::BITCAST, dl, VT, Res);
621 
622   Results.push_back(Res);
623 }
624 
625 void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node,
626                                        SmallVectorImpl<SDValue> &Results) {
627   // INT_TO_FP operations may require the input operand be promoted even
628   // when the type is otherwise legal.
629   bool IsStrict = Node->isStrictFPOpcode();
630   MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType();
631   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
632   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
633          "Vectors have different number of elements!");
634 
635   SDLoc dl(Node);
636   SmallVector<SDValue, 4> Operands(Node->getNumOperands());
637 
638   unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP ||
639                   Node->getOpcode() == ISD::STRICT_UINT_TO_FP)
640                      ? ISD::ZERO_EXTEND
641                      : ISD::SIGN_EXTEND;
642   for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
643     if (Node->getOperand(j).getValueType().isVector())
644       Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j));
645     else
646       Operands[j] = Node->getOperand(j);
647   }
648 
649   if (IsStrict) {
650     SDValue Res = DAG.getNode(Node->getOpcode(), dl,
651                               {Node->getValueType(0), MVT::Other}, Operands);
652     Results.push_back(Res);
653     Results.push_back(Res.getValue(1));
654     return;
655   }
656 
657   SDValue Res =
658       DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands);
659   Results.push_back(Res);
660 }
661 
662 // For FP_TO_INT we promote the result type to a vector type with wider
663 // elements and then truncate the result.  This is different from the default
664 // PromoteVector which uses bitcast to promote thus assumning that the
665 // promoted vector type has the same overall size.
666 void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node,
667                                        SmallVectorImpl<SDValue> &Results) {
668   MVT VT = Node->getSimpleValueType(0);
669   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
670   bool IsStrict = Node->isStrictFPOpcode();
671   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
672          "Vectors have different number of elements!");
673 
674   unsigned NewOpc = Node->getOpcode();
675   // Change FP_TO_UINT to FP_TO_SINT if possible.
676   // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
677   if (NewOpc == ISD::FP_TO_UINT &&
678       TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
679     NewOpc = ISD::FP_TO_SINT;
680 
681   if (NewOpc == ISD::STRICT_FP_TO_UINT &&
682       TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT))
683     NewOpc = ISD::STRICT_FP_TO_SINT;
684 
685   SDLoc dl(Node);
686   SDValue Promoted, Chain;
687   if (IsStrict) {
688     Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other},
689                            {Node->getOperand(0), Node->getOperand(1)});
690     Chain = Promoted.getValue(1);
691   } else
692     Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0));
693 
694   // Assert that the converted value fits in the original type.  If it doesn't
695   // (eg: because the value being converted is too big), then the result of the
696   // original operation was undefined anyway, so the assert is still correct.
697   if (Node->getOpcode() == ISD::FP_TO_UINT ||
698       Node->getOpcode() == ISD::STRICT_FP_TO_UINT)
699     NewOpc = ISD::AssertZext;
700   else
701     NewOpc = ISD::AssertSext;
702 
703   Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted,
704                          DAG.getValueType(VT.getScalarType()));
705   Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
706   Results.push_back(Promoted);
707   if (IsStrict)
708     Results.push_back(Chain);
709 }
710 
711 std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) {
712   LoadSDNode *LD = cast<LoadSDNode>(N);
713   return TLI.scalarizeVectorLoad(LD, DAG);
714 }
715 
716 SDValue VectorLegalizer::ExpandStore(SDNode *N) {
717   StoreSDNode *ST = cast<StoreSDNode>(N);
718   SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
719   return TF;
720 }
721 
722 void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
723   SDValue Tmp;
724   switch (Node->getOpcode()) {
725   case ISD::MERGE_VALUES:
726     for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
727       Results.push_back(Node->getOperand(i));
728     return;
729   case ISD::SIGN_EXTEND_INREG:
730     Results.push_back(ExpandSEXTINREG(Node));
731     return;
732   case ISD::ANY_EXTEND_VECTOR_INREG:
733     Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node));
734     return;
735   case ISD::SIGN_EXTEND_VECTOR_INREG:
736     Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node));
737     return;
738   case ISD::ZERO_EXTEND_VECTOR_INREG:
739     Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node));
740     return;
741   case ISD::BSWAP:
742     Results.push_back(ExpandBSWAP(Node));
743     return;
744   case ISD::VSELECT:
745     Results.push_back(ExpandVSELECT(Node));
746     return;
747   case ISD::SELECT:
748     Results.push_back(ExpandSELECT(Node));
749     return;
750   case ISD::FP_TO_UINT:
751     ExpandFP_TO_UINT(Node, Results);
752     return;
753   case ISD::UINT_TO_FP:
754     ExpandUINT_TO_FLOAT(Node, Results);
755     return;
756   case ISD::FNEG:
757     Results.push_back(ExpandFNEG(Node));
758     return;
759   case ISD::FSUB:
760     ExpandFSUB(Node, Results);
761     return;
762   case ISD::SETCC:
763     Results.push_back(UnrollVSETCC(Node));
764     return;
765   case ISD::ABS:
766     if (TLI.expandABS(Node, Tmp, DAG)) {
767       Results.push_back(Tmp);
768       return;
769     }
770     break;
771   case ISD::BITREVERSE:
772     ExpandBITREVERSE(Node, Results);
773     return;
774   case ISD::CTPOP:
775     if (TLI.expandCTPOP(Node, Tmp, DAG)) {
776       Results.push_back(Tmp);
777       return;
778     }
779     break;
780   case ISD::CTLZ:
781   case ISD::CTLZ_ZERO_UNDEF:
782     if (TLI.expandCTLZ(Node, Tmp, DAG)) {
783       Results.push_back(Tmp);
784       return;
785     }
786     break;
787   case ISD::CTTZ:
788   case ISD::CTTZ_ZERO_UNDEF:
789     if (TLI.expandCTTZ(Node, Tmp, DAG)) {
790       Results.push_back(Tmp);
791       return;
792     }
793     break;
794   case ISD::FSHL:
795   case ISD::FSHR:
796     if (TLI.expandFunnelShift(Node, Tmp, DAG)) {
797       Results.push_back(Tmp);
798       return;
799     }
800     break;
801   case ISD::ROTL:
802   case ISD::ROTR:
803     if (TLI.expandROT(Node, false /*AllowVectorOps*/, Tmp, DAG)) {
804       Results.push_back(Tmp);
805       return;
806     }
807     break;
808   case ISD::FMINNUM:
809   case ISD::FMAXNUM:
810     if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) {
811       Results.push_back(Expanded);
812       return;
813     }
814     break;
815   case ISD::UADDO:
816   case ISD::USUBO:
817     ExpandUADDSUBO(Node, Results);
818     return;
819   case ISD::SADDO:
820   case ISD::SSUBO:
821     ExpandSADDSUBO(Node, Results);
822     return;
823   case ISD::UMULO:
824   case ISD::SMULO:
825     ExpandMULO(Node, Results);
826     return;
827   case ISD::USUBSAT:
828   case ISD::SSUBSAT:
829   case ISD::UADDSAT:
830   case ISD::SADDSAT:
831     if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) {
832       Results.push_back(Expanded);
833       return;
834     }
835     break;
836   case ISD::SMULFIX:
837   case ISD::UMULFIX:
838     if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) {
839       Results.push_back(Expanded);
840       return;
841     }
842     break;
843   case ISD::SMULFIXSAT:
844   case ISD::UMULFIXSAT:
845     // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly
846     // why. Maybe it results in worse codegen compared to the unroll for some
847     // targets? This should probably be investigated. And if we still prefer to
848     // unroll an explanation could be helpful.
849     break;
850   case ISD::SDIVFIX:
851   case ISD::UDIVFIX:
852     ExpandFixedPointDiv(Node, Results);
853     return;
854   case ISD::SDIVFIXSAT:
855   case ISD::UDIVFIXSAT:
856     break;
857 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
858   case ISD::STRICT_##DAGN:
859 #include "llvm/IR/ConstrainedOps.def"
860     ExpandStrictFPOp(Node, Results);
861     return;
862   case ISD::VECREDUCE_ADD:
863   case ISD::VECREDUCE_MUL:
864   case ISD::VECREDUCE_AND:
865   case ISD::VECREDUCE_OR:
866   case ISD::VECREDUCE_XOR:
867   case ISD::VECREDUCE_SMAX:
868   case ISD::VECREDUCE_SMIN:
869   case ISD::VECREDUCE_UMAX:
870   case ISD::VECREDUCE_UMIN:
871   case ISD::VECREDUCE_FADD:
872   case ISD::VECREDUCE_FMUL:
873   case ISD::VECREDUCE_FMAX:
874   case ISD::VECREDUCE_FMIN:
875     Results.push_back(TLI.expandVecReduce(Node, DAG));
876     return;
877   case ISD::VECREDUCE_SEQ_FADD:
878     Results.push_back(TLI.expandVecReduceSeq(Node, DAG));
879     return;
880   case ISD::SREM:
881   case ISD::UREM:
882     ExpandREM(Node, Results);
883     return;
884   }
885 
886   Results.push_back(DAG.UnrollVectorOp(Node));
887 }
888 
889 SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) {
890   // Lower a select instruction where the condition is a scalar and the
891   // operands are vectors. Lower this select to VSELECT and implement it
892   // using XOR AND OR. The selector bit is broadcasted.
893   EVT VT = Node->getValueType(0);
894   SDLoc DL(Node);
895 
896   SDValue Mask = Node->getOperand(0);
897   SDValue Op1 = Node->getOperand(1);
898   SDValue Op2 = Node->getOperand(2);
899 
900   assert(VT.isVector() && !Mask.getValueType().isVector()
901          && Op1.getValueType() == Op2.getValueType() && "Invalid type");
902 
903   // If we can't even use the basic vector operations of
904   // AND,OR,XOR, we will have to scalarize the op.
905   // Notice that the operation may be 'promoted' which means that it is
906   // 'bitcasted' to another type which is handled.
907   // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
908   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
909       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
910       TLI.getOperationAction(ISD::OR,  VT) == TargetLowering::Expand ||
911       TLI.getOperationAction(ISD::BUILD_VECTOR,  VT) == TargetLowering::Expand)
912     return DAG.UnrollVectorOp(Node);
913 
914   // Generate a mask operand.
915   EVT MaskTy = VT.changeVectorElementTypeToInteger();
916 
917   // What is the size of each element in the vector mask.
918   EVT BitTy = MaskTy.getScalarType();
919 
920   Mask = DAG.getSelect(DL, BitTy, Mask,
921           DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
922                           BitTy),
923           DAG.getConstant(0, DL, BitTy));
924 
925   // Broadcast the mask so that the entire vector is all-one or all zero.
926   Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask);
927 
928   // Bitcast the operands to be the same type as the mask.
929   // This is needed when we select between FP types because
930   // the mask is a vector of integers.
931   Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
932   Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
933 
934   SDValue AllOnes = DAG.getConstant(
935             APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
936   SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
937 
938   Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
939   Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
940   SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
941   return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
942 }
943 
944 SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) {
945   EVT VT = Node->getValueType(0);
946 
947   // Make sure that the SRA and SHL instructions are available.
948   if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
949       TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
950     return DAG.UnrollVectorOp(Node);
951 
952   SDLoc DL(Node);
953   EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT();
954 
955   unsigned BW = VT.getScalarSizeInBits();
956   unsigned OrigBW = OrigTy.getScalarSizeInBits();
957   SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
958 
959   SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz);
960   return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
961 }
962 
963 // Generically expand a vector anyext in register to a shuffle of the relevant
964 // lanes into the appropriate locations, with other lanes left undef.
965 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) {
966   SDLoc DL(Node);
967   EVT VT = Node->getValueType(0);
968   int NumElements = VT.getVectorNumElements();
969   SDValue Src = Node->getOperand(0);
970   EVT SrcVT = Src.getValueType();
971   int NumSrcElements = SrcVT.getVectorNumElements();
972 
973   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
974   // into a larger vector type.
975   if (SrcVT.bitsLE(VT)) {
976     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
977            "ANY_EXTEND_VECTOR_INREG vector size mismatch");
978     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
979     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
980                              NumSrcElements);
981     Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
982                       Src, DAG.getVectorIdxConstant(0, DL));
983   }
984 
985   // Build a base mask of undef shuffles.
986   SmallVector<int, 16> ShuffleMask;
987   ShuffleMask.resize(NumSrcElements, -1);
988 
989   // Place the extended lanes into the correct locations.
990   int ExtLaneScale = NumSrcElements / NumElements;
991   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
992   for (int i = 0; i < NumElements; ++i)
993     ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
994 
995   return DAG.getNode(
996       ISD::BITCAST, DL, VT,
997       DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
998 }
999 
1000 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) {
1001   SDLoc DL(Node);
1002   EVT VT = Node->getValueType(0);
1003   SDValue Src = Node->getOperand(0);
1004   EVT SrcVT = Src.getValueType();
1005 
1006   // First build an any-extend node which can be legalized above when we
1007   // recurse through it.
1008   SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src);
1009 
1010   // Now we need sign extend. Do this by shifting the elements. Even if these
1011   // aren't legal operations, they have a better chance of being legalized
1012   // without full scalarization than the sign extension does.
1013   unsigned EltWidth = VT.getScalarSizeInBits();
1014   unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
1015   SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
1016   return DAG.getNode(ISD::SRA, DL, VT,
1017                      DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
1018                      ShiftAmount);
1019 }
1020 
1021 // Generically expand a vector zext in register to a shuffle of the relevant
1022 // lanes into the appropriate locations, a blend of zero into the high bits,
1023 // and a bitcast to the wider element type.
1024 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) {
1025   SDLoc DL(Node);
1026   EVT VT = Node->getValueType(0);
1027   int NumElements = VT.getVectorNumElements();
1028   SDValue Src = Node->getOperand(0);
1029   EVT SrcVT = Src.getValueType();
1030   int NumSrcElements = SrcVT.getVectorNumElements();
1031 
1032   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1033   // into a larger vector type.
1034   if (SrcVT.bitsLE(VT)) {
1035     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
1036            "ZERO_EXTEND_VECTOR_INREG vector size mismatch");
1037     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
1038     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
1039                              NumSrcElements);
1040     Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
1041                       Src, DAG.getVectorIdxConstant(0, DL));
1042   }
1043 
1044   // Build up a zero vector to blend into this one.
1045   SDValue Zero = DAG.getConstant(0, DL, SrcVT);
1046 
1047   // Shuffle the incoming lanes into the correct position, and pull all other
1048   // lanes from the zero vector.
1049   SmallVector<int, 16> ShuffleMask;
1050   ShuffleMask.reserve(NumSrcElements);
1051   for (int i = 0; i < NumSrcElements; ++i)
1052     ShuffleMask.push_back(i);
1053 
1054   int ExtLaneScale = NumSrcElements / NumElements;
1055   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
1056   for (int i = 0; i < NumElements; ++i)
1057     ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
1058 
1059   return DAG.getNode(ISD::BITCAST, DL, VT,
1060                      DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
1061 }
1062 
1063 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
1064   int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
1065   for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
1066     for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
1067       ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
1068 }
1069 
1070 SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) {
1071   EVT VT = Node->getValueType(0);
1072 
1073   // Generate a byte wise shuffle mask for the BSWAP.
1074   SmallVector<int, 16> ShuffleMask;
1075   createBSWAPShuffleMask(VT, ShuffleMask);
1076   EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
1077 
1078   // Only emit a shuffle if the mask is legal.
1079   if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
1080     return DAG.UnrollVectorOp(Node);
1081 
1082   SDLoc DL(Node);
1083   SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1084   Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
1085   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1086 }
1087 
1088 void VectorLegalizer::ExpandBITREVERSE(SDNode *Node,
1089                                        SmallVectorImpl<SDValue> &Results) {
1090   EVT VT = Node->getValueType(0);
1091 
1092   // If we have the scalar operation, it's probably cheaper to unroll it.
1093   if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) {
1094     SDValue Tmp = DAG.UnrollVectorOp(Node);
1095     Results.push_back(Tmp);
1096     return;
1097   }
1098 
1099   // If the vector element width is a whole number of bytes, test if its legal
1100   // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
1101   // vector. This greatly reduces the number of bit shifts necessary.
1102   unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
1103   if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
1104     SmallVector<int, 16> BSWAPMask;
1105     createBSWAPShuffleMask(VT, BSWAPMask);
1106 
1107     EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
1108     if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
1109         (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
1110          (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
1111           TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
1112           TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
1113           TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
1114       SDLoc DL(Node);
1115       SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1116       Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
1117                                 BSWAPMask);
1118       Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
1119       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
1120       Results.push_back(Op);
1121       return;
1122     }
1123   }
1124 
1125   // If we have the appropriate vector bit operations, it is better to use them
1126   // than unrolling and expanding each component.
1127   if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
1128       TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
1129       TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
1130       TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
1131     // Let LegalizeDAG handle this later.
1132     return;
1133 
1134   // Otherwise unroll.
1135   SDValue Tmp = DAG.UnrollVectorOp(Node);
1136   Results.push_back(Tmp);
1137 }
1138 
1139 SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) {
1140   // Implement VSELECT in terms of XOR, AND, OR
1141   // on platforms which do not support blend natively.
1142   SDLoc DL(Node);
1143 
1144   SDValue Mask = Node->getOperand(0);
1145   SDValue Op1 = Node->getOperand(1);
1146   SDValue Op2 = Node->getOperand(2);
1147 
1148   EVT VT = Mask.getValueType();
1149 
1150   // If we can't even use the basic vector operations of
1151   // AND,OR,XOR, we will have to scalarize the op.
1152   // Notice that the operation may be 'promoted' which means that it is
1153   // 'bitcasted' to another type which is handled.
1154   // This operation also isn't safe with AND, OR, XOR when the boolean
1155   // type is 0/1 as we need an all ones vector constant to mask with.
1156   // FIXME: Sign extend 1 to all ones if thats legal on the target.
1157   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1158       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1159       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
1160       TLI.getBooleanContents(Op1.getValueType()) !=
1161           TargetLowering::ZeroOrNegativeOneBooleanContent)
1162     return DAG.UnrollVectorOp(Node);
1163 
1164   // If the mask and the type are different sizes, unroll the vector op. This
1165   // can occur when getSetCCResultType returns something that is different in
1166   // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1167   if (VT.getSizeInBits() != Op1.getValueSizeInBits())
1168     return DAG.UnrollVectorOp(Node);
1169 
1170   // Bitcast the operands to be the same type as the mask.
1171   // This is needed when we select between FP types because
1172   // the mask is a vector of integers.
1173   Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
1174   Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
1175 
1176   SDValue AllOnes = DAG.getConstant(
1177     APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT);
1178   SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
1179 
1180   Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
1181   Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
1182   SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
1183   return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
1184 }
1185 
1186 void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node,
1187                                        SmallVectorImpl<SDValue> &Results) {
1188   // Attempt to expand using TargetLowering.
1189   SDValue Result, Chain;
1190   if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) {
1191     Results.push_back(Result);
1192     if (Node->isStrictFPOpcode())
1193       Results.push_back(Chain);
1194     return;
1195   }
1196 
1197   // Otherwise go ahead and unroll.
1198   if (Node->isStrictFPOpcode()) {
1199     UnrollStrictFPOp(Node, Results);
1200     return;
1201   }
1202 
1203   Results.push_back(DAG.UnrollVectorOp(Node));
1204 }
1205 
1206 void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node,
1207                                           SmallVectorImpl<SDValue> &Results) {
1208   bool IsStrict = Node->isStrictFPOpcode();
1209   unsigned OpNo = IsStrict ? 1 : 0;
1210   SDValue Src = Node->getOperand(OpNo);
1211   EVT VT = Src.getValueType();
1212   SDLoc DL(Node);
1213 
1214   // Attempt to expand using TargetLowering.
1215   SDValue Result;
1216   SDValue Chain;
1217   if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) {
1218     Results.push_back(Result);
1219     if (IsStrict)
1220       Results.push_back(Chain);
1221     return;
1222   }
1223 
1224   // Make sure that the SINT_TO_FP and SRL instructions are available.
1225   if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) ==
1226                          TargetLowering::Expand) ||
1227        (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) ==
1228                         TargetLowering::Expand)) ||
1229       TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) {
1230     if (IsStrict) {
1231       UnrollStrictFPOp(Node, Results);
1232       return;
1233     }
1234 
1235     Results.push_back(DAG.UnrollVectorOp(Node));
1236     return;
1237   }
1238 
1239   unsigned BW = VT.getScalarSizeInBits();
1240   assert((BW == 64 || BW == 32) &&
1241          "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1242 
1243   SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
1244 
1245   // Constants to clear the upper part of the word.
1246   // Notice that we can also use SHL+SHR, but using a constant is slightly
1247   // faster on x86.
1248   uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1249   SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
1250 
1251   // Two to the power of half-word-size.
1252   SDValue TWOHW =
1253       DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0));
1254 
1255   // Clear upper part of LO, lower HI
1256   SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord);
1257   SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask);
1258 
1259   if (IsStrict) {
1260     // Convert hi and lo to floats
1261     // Convert the hi part back to the upper values
1262     // TODO: Can any fast-math-flags be set on these nodes?
1263     SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
1264                               {Node->getValueType(0), MVT::Other},
1265                               {Node->getOperand(0), HI});
1266     fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other},
1267                       {fHI.getValue(1), fHI, TWOHW});
1268     SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
1269                               {Node->getValueType(0), MVT::Other},
1270                               {Node->getOperand(0), LO});
1271 
1272     SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1),
1273                              fLO.getValue(1));
1274 
1275     // Add the two halves
1276     SDValue Result =
1277         DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other},
1278                     {TF, fHI, fLO});
1279 
1280     Results.push_back(Result);
1281     Results.push_back(Result.getValue(1));
1282     return;
1283   }
1284 
1285   // Convert hi and lo to floats
1286   // Convert the hi part back to the upper values
1287   // TODO: Can any fast-math-flags be set on these nodes?
1288   SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI);
1289   fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW);
1290   SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO);
1291 
1292   // Add the two halves
1293   Results.push_back(
1294       DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO));
1295 }
1296 
1297 SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) {
1298   if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) {
1299     SDLoc DL(Node);
1300     SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0));
1301     // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1302     return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero,
1303                        Node->getOperand(0));
1304   }
1305   return DAG.UnrollVectorOp(Node);
1306 }
1307 
1308 void VectorLegalizer::ExpandFSUB(SDNode *Node,
1309                                  SmallVectorImpl<SDValue> &Results) {
1310   // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1311   // we can defer this to operation legalization where it will be lowered as
1312   // a+(-b).
1313   EVT VT = Node->getValueType(0);
1314   if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
1315       TLI.isOperationLegalOrCustom(ISD::FADD, VT))
1316     return; // Defer to LegalizeDAG
1317 
1318   SDValue Tmp = DAG.UnrollVectorOp(Node);
1319   Results.push_back(Tmp);
1320 }
1321 
1322 void VectorLegalizer::ExpandUADDSUBO(SDNode *Node,
1323                                      SmallVectorImpl<SDValue> &Results) {
1324   SDValue Result, Overflow;
1325   TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
1326   Results.push_back(Result);
1327   Results.push_back(Overflow);
1328 }
1329 
1330 void VectorLegalizer::ExpandSADDSUBO(SDNode *Node,
1331                                      SmallVectorImpl<SDValue> &Results) {
1332   SDValue Result, Overflow;
1333   TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
1334   Results.push_back(Result);
1335   Results.push_back(Overflow);
1336 }
1337 
1338 void VectorLegalizer::ExpandMULO(SDNode *Node,
1339                                  SmallVectorImpl<SDValue> &Results) {
1340   SDValue Result, Overflow;
1341   if (!TLI.expandMULO(Node, Result, Overflow, DAG))
1342     std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node);
1343 
1344   Results.push_back(Result);
1345   Results.push_back(Overflow);
1346 }
1347 
1348 void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node,
1349                                           SmallVectorImpl<SDValue> &Results) {
1350   SDNode *N = Node;
1351   if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N),
1352           N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG))
1353     Results.push_back(Expanded);
1354 }
1355 
1356 void VectorLegalizer::ExpandStrictFPOp(SDNode *Node,
1357                                        SmallVectorImpl<SDValue> &Results) {
1358   if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) {
1359     ExpandUINT_TO_FLOAT(Node, Results);
1360     return;
1361   }
1362   if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) {
1363     ExpandFP_TO_UINT(Node, Results);
1364     return;
1365   }
1366 
1367   UnrollStrictFPOp(Node, Results);
1368 }
1369 
1370 void VectorLegalizer::ExpandREM(SDNode *Node,
1371                                 SmallVectorImpl<SDValue> &Results) {
1372   assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) &&
1373          "Expected REM node");
1374 
1375   SDValue Result;
1376   if (!TLI.expandREM(Node, Result, DAG))
1377     Result = DAG.UnrollVectorOp(Node);
1378   Results.push_back(Result);
1379 }
1380 
1381 void VectorLegalizer::UnrollStrictFPOp(SDNode *Node,
1382                                        SmallVectorImpl<SDValue> &Results) {
1383   EVT VT = Node->getValueType(0);
1384   EVT EltVT = VT.getVectorElementType();
1385   unsigned NumElems = VT.getVectorNumElements();
1386   unsigned NumOpers = Node->getNumOperands();
1387   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1388 
1389   EVT TmpEltVT = EltVT;
1390   if (Node->getOpcode() == ISD::STRICT_FSETCC ||
1391       Node->getOpcode() == ISD::STRICT_FSETCCS)
1392     TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(),
1393                                       *DAG.getContext(), TmpEltVT);
1394 
1395   EVT ValueVTs[] = {TmpEltVT, MVT::Other};
1396   SDValue Chain = Node->getOperand(0);
1397   SDLoc dl(Node);
1398 
1399   SmallVector<SDValue, 32> OpValues;
1400   SmallVector<SDValue, 32> OpChains;
1401   for (unsigned i = 0; i < NumElems; ++i) {
1402     SmallVector<SDValue, 4> Opers;
1403     SDValue Idx = DAG.getVectorIdxConstant(i, dl);
1404 
1405     // The Chain is the first operand.
1406     Opers.push_back(Chain);
1407 
1408     // Now process the remaining operands.
1409     for (unsigned j = 1; j < NumOpers; ++j) {
1410       SDValue Oper = Node->getOperand(j);
1411       EVT OperVT = Oper.getValueType();
1412 
1413       if (OperVT.isVector())
1414         Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1415                            OperVT.getVectorElementType(), Oper, Idx);
1416 
1417       Opers.push_back(Oper);
1418     }
1419 
1420     SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers);
1421     SDValue ScalarResult = ScalarOp.getValue(0);
1422     SDValue ScalarChain = ScalarOp.getValue(1);
1423 
1424     if (Node->getOpcode() == ISD::STRICT_FSETCC ||
1425         Node->getOpcode() == ISD::STRICT_FSETCCS)
1426       ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult,
1427                            DAG.getConstant(APInt::getAllOnesValue
1428                                            (EltVT.getSizeInBits()), dl, EltVT),
1429                            DAG.getConstant(0, dl, EltVT));
1430 
1431     OpValues.push_back(ScalarResult);
1432     OpChains.push_back(ScalarChain);
1433   }
1434 
1435   SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
1436   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
1437 
1438   Results.push_back(Result);
1439   Results.push_back(NewChain);
1440 }
1441 
1442 SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) {
1443   EVT VT = Node->getValueType(0);
1444   unsigned NumElems = VT.getVectorNumElements();
1445   EVT EltVT = VT.getVectorElementType();
1446   SDValue LHS = Node->getOperand(0);
1447   SDValue RHS = Node->getOperand(1);
1448   SDValue CC = Node->getOperand(2);
1449   EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1450   SDLoc dl(Node);
1451   SmallVector<SDValue, 8> Ops(NumElems);
1452   for (unsigned i = 0; i < NumElems; ++i) {
1453     SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1454                                   DAG.getVectorIdxConstant(i, dl));
1455     SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1456                                   DAG.getVectorIdxConstant(i, dl));
1457     Ops[i] = DAG.getNode(ISD::SETCC, dl,
1458                          TLI.getSetCCResultType(DAG.getDataLayout(),
1459                                                 *DAG.getContext(), TmpEltVT),
1460                          LHSElem, RHSElem, CC);
1461     Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
1462                            DAG.getConstant(APInt::getAllOnesValue
1463                                            (EltVT.getSizeInBits()), dl, EltVT),
1464                            DAG.getConstant(0, dl, EltVT));
1465   }
1466   return DAG.getBuildVector(VT, dl, Ops);
1467 }
1468 
1469 bool SelectionDAG::LegalizeVectors() {
1470   return VectorLegalizer(*this).Run();
1471 }
1472