1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::LegalizeVectors method.
10 //
11 // The vector legalizer looks for vector operations which might need to be
12 // scalarized and legalizes them. This is a separate step from Legalize because
13 // scalarizing can introduce illegal types.  For example, suppose we have an
14 // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
16 // operation, which introduces nodes with the illegal type i64 which must be
17 // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
18 // the operation must be unrolled, which introduces nodes with the illegal
19 // type i8 which must be promoted.
20 //
21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
22 // or operations that happen to take a vector which are custom-lowered;
23 // the legalization for such operations never produces nodes
24 // with illegal types, so it's okay to put off legalizing them until
25 // SelectionDAG::Legalize runs.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/SelectionDAG.h"
33 #include "llvm/CodeGen/SelectionDAGNodes.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/ValueTypes.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/MachineValueType.h"
42 #include <cassert>
43 #include <cstdint>
44 #include <iterator>
45 #include <utility>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "legalizevectorops"
50 
51 namespace {
52 
53 class VectorLegalizer {
54   SelectionDAG& DAG;
55   const TargetLowering &TLI;
56   bool Changed = false; // Keep track of whether anything changed
57 
58   /// For nodes that are of legal width, and that have more than one use, this
59   /// map indicates what regularized operand to use.  This allows us to avoid
60   /// legalizing the same thing more than once.
61   SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
62 
63   /// Adds a node to the translation cache.
64   void AddLegalizedOperand(SDValue From, SDValue To) {
65     LegalizedNodes.insert(std::make_pair(From, To));
66     // If someone requests legalization of the new node, return itself.
67     if (From != To)
68       LegalizedNodes.insert(std::make_pair(To, To));
69   }
70 
71   /// Legalizes the given node.
72   SDValue LegalizeOp(SDValue Op);
73 
74   /// Assuming the node is legal, "legalize" the results.
75   SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result);
76 
77   /// Make sure Results are legal and update the translation cache.
78   SDValue RecursivelyLegalizeResults(SDValue Op,
79                                      MutableArrayRef<SDValue> Results);
80 
81   /// Wrapper to interface LowerOperation with a vector of Results.
82   /// Returns false if the target wants to use default expansion. Otherwise
83   /// returns true. If return is true and the Results are empty, then the
84   /// target wants to keep the input node as is.
85   bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results);
86 
87   /// Implements unrolling a VSETCC.
88   SDValue UnrollVSETCC(SDNode *Node);
89 
90   /// Implement expand-based legalization of vector operations.
91   ///
92   /// This is just a high-level routine to dispatch to specific code paths for
93   /// operations to legalize them.
94   void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results);
95 
96   /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
97   /// FP_TO_SINT isn't legal.
98   void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
99 
100   /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
101   /// SINT_TO_FLOAT and SHR on vectors isn't legal.
102   void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
103 
104   /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
105   SDValue ExpandSEXTINREG(SDNode *Node);
106 
107   /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
108   ///
109   /// Shuffles the low lanes of the operand into place and bitcasts to the proper
110   /// type. The contents of the bits in the extended part of each element are
111   /// undef.
112   SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node);
113 
114   /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
115   ///
116   /// Shuffles the low lanes of the operand into place, bitcasts to the proper
117   /// type, then shifts left and arithmetic shifts right to introduce a sign
118   /// extension.
119   SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node);
120 
121   /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
122   ///
123   /// Shuffles the low lanes of the operand into place and blends zeros into
124   /// the remaining lanes, finally bitcasting to the proper type.
125   SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node);
126 
127   /// Expand bswap of vectors into a shuffle if legal.
128   SDValue ExpandBSWAP(SDNode *Node);
129 
130   /// Implement vselect in terms of XOR, AND, OR when blend is not
131   /// supported by the target.
132   SDValue ExpandVSELECT(SDNode *Node);
133   SDValue ExpandVP_SELECT(SDNode *Node);
134   SDValue ExpandVP_MERGE(SDNode *Node);
135   SDValue ExpandSELECT(SDNode *Node);
136   std::pair<SDValue, SDValue> ExpandLoad(SDNode *N);
137   SDValue ExpandStore(SDNode *N);
138   SDValue ExpandFNEG(SDNode *Node);
139   void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results);
140   void ExpandSETCC(SDNode *Node, SmallVectorImpl<SDValue> &Results);
141   void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results);
142   void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
143   void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
144   void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
145   void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results);
146   void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
147   void ExpandREM(SDNode *Node, SmallVectorImpl<SDValue> &Results);
148 
149   void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
150 
151   /// Implements vector promotion.
152   ///
153   /// This is essentially just bitcasting the operands to a different type and
154   /// bitcasting the result back to the original type.
155   void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results);
156 
157   /// Implements [SU]INT_TO_FP vector promotion.
158   ///
159   /// This is a [zs]ext of the input operand to a larger integer type.
160   void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results);
161 
162   /// Implements FP_TO_[SU]INT vector promotion of the result type.
163   ///
164   /// It is promoted to a larger integer type.  The result is then
165   /// truncated back to the original type.
166   void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
167 
168 public:
169   VectorLegalizer(SelectionDAG& dag) :
170       DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
171 
172   /// Begin legalizer the vector operations in the DAG.
173   bool Run();
174 };
175 
176 } // end anonymous namespace
177 
178 bool VectorLegalizer::Run() {
179   // Before we start legalizing vector nodes, check if there are any vectors.
180   bool HasVectors = false;
181   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
182        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
183     // Check if the values of the nodes contain vectors. We don't need to check
184     // the operands because we are going to check their values at some point.
185     HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); });
186 
187     // If we found a vector node we can start the legalization.
188     if (HasVectors)
189       break;
190   }
191 
192   // If this basic block has no vectors then no need to legalize vectors.
193   if (!HasVectors)
194     return false;
195 
196   // The legalize process is inherently a bottom-up recursive process (users
197   // legalize their uses before themselves).  Given infinite stack space, we
198   // could just start legalizing on the root and traverse the whole graph.  In
199   // practice however, this causes us to run out of stack space on large basic
200   // blocks.  To avoid this problem, compute an ordering of the nodes where each
201   // node is only legalized after all of its operands are legalized.
202   DAG.AssignTopologicalOrder();
203   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
204        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
205     LegalizeOp(SDValue(&*I, 0));
206 
207   // Finally, it's possible the root changed.  Get the new root.
208   SDValue OldRoot = DAG.getRoot();
209   assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
210   DAG.setRoot(LegalizedNodes[OldRoot]);
211 
212   LegalizedNodes.clear();
213 
214   // Remove dead nodes now.
215   DAG.RemoveDeadNodes();
216 
217   return Changed;
218 }
219 
220 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) {
221   assert(Op->getNumValues() == Result->getNumValues() &&
222          "Unexpected number of results");
223   // Generic legalization: just pass the operand through.
224   for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i)
225     AddLegalizedOperand(Op.getValue(i), SDValue(Result, i));
226   return SDValue(Result, Op.getResNo());
227 }
228 
229 SDValue
230 VectorLegalizer::RecursivelyLegalizeResults(SDValue Op,
231                                             MutableArrayRef<SDValue> Results) {
232   assert(Results.size() == Op->getNumValues() &&
233          "Unexpected number of results");
234   // Make sure that the generated code is itself legal.
235   for (unsigned i = 0, e = Results.size(); i != e; ++i) {
236     Results[i] = LegalizeOp(Results[i]);
237     AddLegalizedOperand(Op.getValue(i), Results[i]);
238   }
239 
240   return Results[Op.getResNo()];
241 }
242 
243 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
244   // Note that LegalizeOp may be reentered even from single-use nodes, which
245   // means that we always must cache transformed nodes.
246   DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
247   if (I != LegalizedNodes.end()) return I->second;
248 
249   // Legalize the operands
250   SmallVector<SDValue, 8> Ops;
251   for (const SDValue &Oper : Op->op_values())
252     Ops.push_back(LegalizeOp(Oper));
253 
254   SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops);
255 
256   bool HasVectorValueOrOp =
257       llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) ||
258       llvm::any_of(Node->op_values(),
259                    [](SDValue O) { return O.getValueType().isVector(); });
260   if (!HasVectorValueOrOp)
261     return TranslateLegalizeResults(Op, Node);
262 
263   TargetLowering::LegalizeAction Action = TargetLowering::Legal;
264   EVT ValVT;
265   switch (Op.getOpcode()) {
266   default:
267     return TranslateLegalizeResults(Op, Node);
268   case ISD::LOAD: {
269     LoadSDNode *LD = cast<LoadSDNode>(Node);
270     ISD::LoadExtType ExtType = LD->getExtensionType();
271     EVT LoadedVT = LD->getMemoryVT();
272     if (LoadedVT.isVector() && ExtType != ISD::NON_EXTLOAD)
273       Action = TLI.getLoadExtAction(ExtType, LD->getValueType(0), LoadedVT);
274     break;
275   }
276   case ISD::STORE: {
277     StoreSDNode *ST = cast<StoreSDNode>(Node);
278     EVT StVT = ST->getMemoryVT();
279     MVT ValVT = ST->getValue().getSimpleValueType();
280     if (StVT.isVector() && ST->isTruncatingStore())
281       Action = TLI.getTruncStoreAction(ValVT, StVT);
282     break;
283   }
284   case ISD::MERGE_VALUES:
285     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
286     // This operation lies about being legal: when it claims to be legal,
287     // it should actually be expanded.
288     if (Action == TargetLowering::Legal)
289       Action = TargetLowering::Expand;
290     break;
291 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
292   case ISD::STRICT_##DAGN:
293 #include "llvm/IR/ConstrainedOps.def"
294     ValVT = Node->getValueType(0);
295     if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP ||
296         Op.getOpcode() == ISD::STRICT_UINT_TO_FP)
297       ValVT = Node->getOperand(1).getValueType();
298     Action = TLI.getOperationAction(Node->getOpcode(), ValVT);
299     // If we're asked to expand a strict vector floating-point operation,
300     // by default we're going to simply unroll it.  That is usually the
301     // best approach, except in the case where the resulting strict (scalar)
302     // operations would themselves use the fallback mutation to non-strict.
303     // In that specific case, just do the fallback on the vector op.
304     if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() &&
305         TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) ==
306             TargetLowering::Legal) {
307       EVT EltVT = ValVT.getVectorElementType();
308       if (TLI.getOperationAction(Node->getOpcode(), EltVT)
309           == TargetLowering::Expand &&
310           TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT)
311           == TargetLowering::Legal)
312         Action = TargetLowering::Legal;
313     }
314     break;
315   case ISD::ADD:
316   case ISD::SUB:
317   case ISD::MUL:
318   case ISD::MULHS:
319   case ISD::MULHU:
320   case ISD::SDIV:
321   case ISD::UDIV:
322   case ISD::SREM:
323   case ISD::UREM:
324   case ISD::SDIVREM:
325   case ISD::UDIVREM:
326   case ISD::FADD:
327   case ISD::FSUB:
328   case ISD::FMUL:
329   case ISD::FDIV:
330   case ISD::FREM:
331   case ISD::AND:
332   case ISD::OR:
333   case ISD::XOR:
334   case ISD::SHL:
335   case ISD::SRA:
336   case ISD::SRL:
337   case ISD::FSHL:
338   case ISD::FSHR:
339   case ISD::ROTL:
340   case ISD::ROTR:
341   case ISD::ABS:
342   case ISD::BSWAP:
343   case ISD::BITREVERSE:
344   case ISD::CTLZ:
345   case ISD::CTTZ:
346   case ISD::CTLZ_ZERO_UNDEF:
347   case ISD::CTTZ_ZERO_UNDEF:
348   case ISD::CTPOP:
349   case ISD::SELECT:
350   case ISD::VSELECT:
351   case ISD::SELECT_CC:
352   case ISD::ZERO_EXTEND:
353   case ISD::ANY_EXTEND:
354   case ISD::TRUNCATE:
355   case ISD::SIGN_EXTEND:
356   case ISD::FP_TO_SINT:
357   case ISD::FP_TO_UINT:
358   case ISD::FNEG:
359   case ISD::FABS:
360   case ISD::FMINNUM:
361   case ISD::FMAXNUM:
362   case ISD::FMINNUM_IEEE:
363   case ISD::FMAXNUM_IEEE:
364   case ISD::FMINIMUM:
365   case ISD::FMAXIMUM:
366   case ISD::FCOPYSIGN:
367   case ISD::FSQRT:
368   case ISD::FSIN:
369   case ISD::FCOS:
370   case ISD::FPOWI:
371   case ISD::FPOW:
372   case ISD::FLOG:
373   case ISD::FLOG2:
374   case ISD::FLOG10:
375   case ISD::FEXP:
376   case ISD::FEXP2:
377   case ISD::FCEIL:
378   case ISD::FTRUNC:
379   case ISD::FRINT:
380   case ISD::FNEARBYINT:
381   case ISD::FROUND:
382   case ISD::FROUNDEVEN:
383   case ISD::FFLOOR:
384   case ISD::FP_ROUND:
385   case ISD::FP_EXTEND:
386   case ISD::FMA:
387   case ISD::SIGN_EXTEND_INREG:
388   case ISD::ANY_EXTEND_VECTOR_INREG:
389   case ISD::SIGN_EXTEND_VECTOR_INREG:
390   case ISD::ZERO_EXTEND_VECTOR_INREG:
391   case ISD::SMIN:
392   case ISD::SMAX:
393   case ISD::UMIN:
394   case ISD::UMAX:
395   case ISD::SMUL_LOHI:
396   case ISD::UMUL_LOHI:
397   case ISD::SADDO:
398   case ISD::UADDO:
399   case ISD::SSUBO:
400   case ISD::USUBO:
401   case ISD::SMULO:
402   case ISD::UMULO:
403   case ISD::FCANONICALIZE:
404   case ISD::SADDSAT:
405   case ISD::UADDSAT:
406   case ISD::SSUBSAT:
407   case ISD::USUBSAT:
408   case ISD::SSHLSAT:
409   case ISD::USHLSAT:
410   case ISD::FP_TO_SINT_SAT:
411   case ISD::FP_TO_UINT_SAT:
412   case ISD::MGATHER:
413     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
414     break;
415   case ISD::SMULFIX:
416   case ISD::SMULFIXSAT:
417   case ISD::UMULFIX:
418   case ISD::UMULFIXSAT:
419   case ISD::SDIVFIX:
420   case ISD::SDIVFIXSAT:
421   case ISD::UDIVFIX:
422   case ISD::UDIVFIXSAT: {
423     unsigned Scale = Node->getConstantOperandVal(2);
424     Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
425                                               Node->getValueType(0), Scale);
426     break;
427   }
428   case ISD::SINT_TO_FP:
429   case ISD::UINT_TO_FP:
430   case ISD::VECREDUCE_ADD:
431   case ISD::VECREDUCE_MUL:
432   case ISD::VECREDUCE_AND:
433   case ISD::VECREDUCE_OR:
434   case ISD::VECREDUCE_XOR:
435   case ISD::VECREDUCE_SMAX:
436   case ISD::VECREDUCE_SMIN:
437   case ISD::VECREDUCE_UMAX:
438   case ISD::VECREDUCE_UMIN:
439   case ISD::VECREDUCE_FADD:
440   case ISD::VECREDUCE_FMUL:
441   case ISD::VECREDUCE_FMAX:
442   case ISD::VECREDUCE_FMIN:
443     Action = TLI.getOperationAction(Node->getOpcode(),
444                                     Node->getOperand(0).getValueType());
445     break;
446   case ISD::VECREDUCE_SEQ_FADD:
447   case ISD::VECREDUCE_SEQ_FMUL:
448     Action = TLI.getOperationAction(Node->getOpcode(),
449                                     Node->getOperand(1).getValueType());
450     break;
451   case ISD::SETCC: {
452     MVT OpVT = Node->getOperand(0).getSimpleValueType();
453     ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get();
454     Action = TLI.getCondCodeAction(CCCode, OpVT);
455     if (Action == TargetLowering::Legal)
456       Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
457     break;
458   }
459 
460 #define BEGIN_REGISTER_VP_SDNODE(VPID, LEGALPOS, ...)                          \
461   case ISD::VPID: {                                                            \
462     EVT LegalizeVT = LEGALPOS < 0 ? Node->getValueType(-(1 + LEGALPOS))        \
463                                   : Node->getOperand(LEGALPOS).getValueType(); \
464     Action = TLI.getOperationAction(Node->getOpcode(), LegalizeVT);            \
465   } break;
466 #include "llvm/IR/VPIntrinsics.def"
467   }
468 
469   LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
470 
471   SmallVector<SDValue, 8> ResultVals;
472   switch (Action) {
473   default: llvm_unreachable("This action is not supported yet!");
474   case TargetLowering::Promote:
475     assert((Op.getOpcode() != ISD::LOAD && Op.getOpcode() != ISD::STORE) &&
476            "This action is not supported yet!");
477     LLVM_DEBUG(dbgs() << "Promoting\n");
478     Promote(Node, ResultVals);
479     assert(!ResultVals.empty() && "No results for promotion?");
480     break;
481   case TargetLowering::Legal:
482     LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
483     break;
484   case TargetLowering::Custom:
485     LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
486     if (LowerOperationWrapper(Node, ResultVals))
487       break;
488     LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
489     LLVM_FALLTHROUGH;
490   case TargetLowering::Expand:
491     LLVM_DEBUG(dbgs() << "Expanding\n");
492     Expand(Node, ResultVals);
493     break;
494   }
495 
496   if (ResultVals.empty())
497     return TranslateLegalizeResults(Op, Node);
498 
499   Changed = true;
500   return RecursivelyLegalizeResults(Op, ResultVals);
501 }
502 
503 // FIXME: This is very similar to TargetLowering::LowerOperationWrapper. Can we
504 // merge them somehow?
505 bool VectorLegalizer::LowerOperationWrapper(SDNode *Node,
506                                             SmallVectorImpl<SDValue> &Results) {
507   SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
508 
509   if (!Res.getNode())
510     return false;
511 
512   if (Res == SDValue(Node, 0))
513     return true;
514 
515   // If the original node has one result, take the return value from
516   // LowerOperation as is. It might not be result number 0.
517   if (Node->getNumValues() == 1) {
518     Results.push_back(Res);
519     return true;
520   }
521 
522   // If the original node has multiple results, then the return node should
523   // have the same number of results.
524   assert((Node->getNumValues() == Res->getNumValues()) &&
525          "Lowering returned the wrong number of results!");
526 
527   // Places new result values base on N result number.
528   for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I)
529     Results.push_back(Res.getValue(I));
530 
531   return true;
532 }
533 
534 void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
535   // For a few operations there is a specific concept for promotion based on
536   // the operand's type.
537   switch (Node->getOpcode()) {
538   case ISD::SINT_TO_FP:
539   case ISD::UINT_TO_FP:
540   case ISD::STRICT_SINT_TO_FP:
541   case ISD::STRICT_UINT_TO_FP:
542     // "Promote" the operation by extending the operand.
543     PromoteINT_TO_FP(Node, Results);
544     return;
545   case ISD::FP_TO_UINT:
546   case ISD::FP_TO_SINT:
547   case ISD::STRICT_FP_TO_UINT:
548   case ISD::STRICT_FP_TO_SINT:
549     // Promote the operation by extending the operand.
550     PromoteFP_TO_INT(Node, Results);
551     return;
552   case ISD::FP_ROUND:
553   case ISD::FP_EXTEND:
554     // These operations are used to do promotion so they can't be promoted
555     // themselves.
556     llvm_unreachable("Don't know how to promote this operation!");
557   }
558 
559   // There are currently two cases of vector promotion:
560   // 1) Bitcasting a vector of integers to a different type to a vector of the
561   //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
562   // 2) Extending a vector of floats to a vector of the same number of larger
563   //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
564   assert(Node->getNumValues() == 1 &&
565          "Can't promote a vector with multiple results!");
566   MVT VT = Node->getSimpleValueType(0);
567   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
568   SDLoc dl(Node);
569   SmallVector<SDValue, 4> Operands(Node->getNumOperands());
570 
571   for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
572     if (Node->getOperand(j).getValueType().isVector())
573       if (Node->getOperand(j)
574               .getValueType()
575               .getVectorElementType()
576               .isFloatingPoint() &&
577           NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
578         Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j));
579       else
580         Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j));
581     else
582       Operands[j] = Node->getOperand(j);
583   }
584 
585   SDValue Res =
586       DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags());
587 
588   if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
589       (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
590        NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
591     Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res, DAG.getIntPtrConstant(0, dl));
592   else
593     Res = DAG.getNode(ISD::BITCAST, dl, VT, Res);
594 
595   Results.push_back(Res);
596 }
597 
598 void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node,
599                                        SmallVectorImpl<SDValue> &Results) {
600   // INT_TO_FP operations may require the input operand be promoted even
601   // when the type is otherwise legal.
602   bool IsStrict = Node->isStrictFPOpcode();
603   MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType();
604   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
605   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
606          "Vectors have different number of elements!");
607 
608   SDLoc dl(Node);
609   SmallVector<SDValue, 4> Operands(Node->getNumOperands());
610 
611   unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP ||
612                   Node->getOpcode() == ISD::STRICT_UINT_TO_FP)
613                      ? ISD::ZERO_EXTEND
614                      : ISD::SIGN_EXTEND;
615   for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
616     if (Node->getOperand(j).getValueType().isVector())
617       Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j));
618     else
619       Operands[j] = Node->getOperand(j);
620   }
621 
622   if (IsStrict) {
623     SDValue Res = DAG.getNode(Node->getOpcode(), dl,
624                               {Node->getValueType(0), MVT::Other}, Operands);
625     Results.push_back(Res);
626     Results.push_back(Res.getValue(1));
627     return;
628   }
629 
630   SDValue Res =
631       DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands);
632   Results.push_back(Res);
633 }
634 
635 // For FP_TO_INT we promote the result type to a vector type with wider
636 // elements and then truncate the result.  This is different from the default
637 // PromoteVector which uses bitcast to promote thus assumning that the
638 // promoted vector type has the same overall size.
639 void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node,
640                                        SmallVectorImpl<SDValue> &Results) {
641   MVT VT = Node->getSimpleValueType(0);
642   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
643   bool IsStrict = Node->isStrictFPOpcode();
644   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
645          "Vectors have different number of elements!");
646 
647   unsigned NewOpc = Node->getOpcode();
648   // Change FP_TO_UINT to FP_TO_SINT if possible.
649   // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
650   if (NewOpc == ISD::FP_TO_UINT &&
651       TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
652     NewOpc = ISD::FP_TO_SINT;
653 
654   if (NewOpc == ISD::STRICT_FP_TO_UINT &&
655       TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT))
656     NewOpc = ISD::STRICT_FP_TO_SINT;
657 
658   SDLoc dl(Node);
659   SDValue Promoted, Chain;
660   if (IsStrict) {
661     Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other},
662                            {Node->getOperand(0), Node->getOperand(1)});
663     Chain = Promoted.getValue(1);
664   } else
665     Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0));
666 
667   // Assert that the converted value fits in the original type.  If it doesn't
668   // (eg: because the value being converted is too big), then the result of the
669   // original operation was undefined anyway, so the assert is still correct.
670   if (Node->getOpcode() == ISD::FP_TO_UINT ||
671       Node->getOpcode() == ISD::STRICT_FP_TO_UINT)
672     NewOpc = ISD::AssertZext;
673   else
674     NewOpc = ISD::AssertSext;
675 
676   Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted,
677                          DAG.getValueType(VT.getScalarType()));
678   Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
679   Results.push_back(Promoted);
680   if (IsStrict)
681     Results.push_back(Chain);
682 }
683 
684 std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) {
685   LoadSDNode *LD = cast<LoadSDNode>(N);
686   return TLI.scalarizeVectorLoad(LD, DAG);
687 }
688 
689 SDValue VectorLegalizer::ExpandStore(SDNode *N) {
690   StoreSDNode *ST = cast<StoreSDNode>(N);
691   SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
692   return TF;
693 }
694 
695 void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
696   switch (Node->getOpcode()) {
697   case ISD::LOAD: {
698     std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node);
699     Results.push_back(Tmp.first);
700     Results.push_back(Tmp.second);
701     return;
702   }
703   case ISD::STORE:
704     Results.push_back(ExpandStore(Node));
705     return;
706   case ISD::MERGE_VALUES:
707     for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
708       Results.push_back(Node->getOperand(i));
709     return;
710   case ISD::SIGN_EXTEND_INREG:
711     Results.push_back(ExpandSEXTINREG(Node));
712     return;
713   case ISD::ANY_EXTEND_VECTOR_INREG:
714     Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node));
715     return;
716   case ISD::SIGN_EXTEND_VECTOR_INREG:
717     Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node));
718     return;
719   case ISD::ZERO_EXTEND_VECTOR_INREG:
720     Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node));
721     return;
722   case ISD::BSWAP:
723     Results.push_back(ExpandBSWAP(Node));
724     return;
725   case ISD::VSELECT:
726     Results.push_back(ExpandVSELECT(Node));
727     return;
728   case ISD::VP_SELECT:
729     Results.push_back(ExpandVP_SELECT(Node));
730     return;
731   case ISD::SELECT:
732     Results.push_back(ExpandSELECT(Node));
733     return;
734   case ISD::FP_TO_UINT:
735     ExpandFP_TO_UINT(Node, Results);
736     return;
737   case ISD::UINT_TO_FP:
738     ExpandUINT_TO_FLOAT(Node, Results);
739     return;
740   case ISD::FNEG:
741     Results.push_back(ExpandFNEG(Node));
742     return;
743   case ISD::FSUB:
744     ExpandFSUB(Node, Results);
745     return;
746   case ISD::SETCC:
747     ExpandSETCC(Node, Results);
748     return;
749   case ISD::ABS:
750     if (SDValue Expanded = TLI.expandABS(Node, DAG)) {
751       Results.push_back(Expanded);
752       return;
753     }
754     break;
755   case ISD::BITREVERSE:
756     ExpandBITREVERSE(Node, Results);
757     return;
758   case ISD::CTPOP:
759     if (SDValue Expanded = TLI.expandCTPOP(Node, DAG)) {
760       Results.push_back(Expanded);
761       return;
762     }
763     break;
764   case ISD::CTLZ:
765   case ISD::CTLZ_ZERO_UNDEF:
766     if (SDValue Expanded = TLI.expandCTLZ(Node, DAG)) {
767       Results.push_back(Expanded);
768       return;
769     }
770     break;
771   case ISD::CTTZ:
772   case ISD::CTTZ_ZERO_UNDEF:
773     if (SDValue Expanded = TLI.expandCTTZ(Node, DAG)) {
774       Results.push_back(Expanded);
775       return;
776     }
777     break;
778   case ISD::FSHL:
779   case ISD::FSHR:
780     if (SDValue Expanded = TLI.expandFunnelShift(Node, DAG)) {
781       Results.push_back(Expanded);
782       return;
783     }
784     break;
785   case ISD::ROTL:
786   case ISD::ROTR:
787     if (SDValue Expanded = TLI.expandROT(Node, false /*AllowVectorOps*/, DAG)) {
788       Results.push_back(Expanded);
789       return;
790     }
791     break;
792   case ISD::FMINNUM:
793   case ISD::FMAXNUM:
794     if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) {
795       Results.push_back(Expanded);
796       return;
797     }
798     break;
799   case ISD::SMIN:
800   case ISD::SMAX:
801   case ISD::UMIN:
802   case ISD::UMAX:
803     if (SDValue Expanded = TLI.expandIntMINMAX(Node, DAG)) {
804       Results.push_back(Expanded);
805       return;
806     }
807     break;
808   case ISD::UADDO:
809   case ISD::USUBO:
810     ExpandUADDSUBO(Node, Results);
811     return;
812   case ISD::SADDO:
813   case ISD::SSUBO:
814     ExpandSADDSUBO(Node, Results);
815     return;
816   case ISD::UMULO:
817   case ISD::SMULO:
818     ExpandMULO(Node, Results);
819     return;
820   case ISD::USUBSAT:
821   case ISD::SSUBSAT:
822   case ISD::UADDSAT:
823   case ISD::SADDSAT:
824     if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) {
825       Results.push_back(Expanded);
826       return;
827     }
828     break;
829   case ISD::SMULFIX:
830   case ISD::UMULFIX:
831     if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) {
832       Results.push_back(Expanded);
833       return;
834     }
835     break;
836   case ISD::SMULFIXSAT:
837   case ISD::UMULFIXSAT:
838     // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly
839     // why. Maybe it results in worse codegen compared to the unroll for some
840     // targets? This should probably be investigated. And if we still prefer to
841     // unroll an explanation could be helpful.
842     break;
843   case ISD::SDIVFIX:
844   case ISD::UDIVFIX:
845     ExpandFixedPointDiv(Node, Results);
846     return;
847   case ISD::SDIVFIXSAT:
848   case ISD::UDIVFIXSAT:
849     break;
850 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
851   case ISD::STRICT_##DAGN:
852 #include "llvm/IR/ConstrainedOps.def"
853     ExpandStrictFPOp(Node, Results);
854     return;
855   case ISD::VECREDUCE_ADD:
856   case ISD::VECREDUCE_MUL:
857   case ISD::VECREDUCE_AND:
858   case ISD::VECREDUCE_OR:
859   case ISD::VECREDUCE_XOR:
860   case ISD::VECREDUCE_SMAX:
861   case ISD::VECREDUCE_SMIN:
862   case ISD::VECREDUCE_UMAX:
863   case ISD::VECREDUCE_UMIN:
864   case ISD::VECREDUCE_FADD:
865   case ISD::VECREDUCE_FMUL:
866   case ISD::VECREDUCE_FMAX:
867   case ISD::VECREDUCE_FMIN:
868     Results.push_back(TLI.expandVecReduce(Node, DAG));
869     return;
870   case ISD::VECREDUCE_SEQ_FADD:
871   case ISD::VECREDUCE_SEQ_FMUL:
872     Results.push_back(TLI.expandVecReduceSeq(Node, DAG));
873     return;
874   case ISD::SREM:
875   case ISD::UREM:
876     ExpandREM(Node, Results);
877     return;
878   case ISD::VP_MERGE:
879     Results.push_back(ExpandVP_MERGE(Node));
880     return;
881   }
882 
883   Results.push_back(DAG.UnrollVectorOp(Node));
884 }
885 
886 SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) {
887   // Lower a select instruction where the condition is a scalar and the
888   // operands are vectors. Lower this select to VSELECT and implement it
889   // using XOR AND OR. The selector bit is broadcasted.
890   EVT VT = Node->getValueType(0);
891   SDLoc DL(Node);
892 
893   SDValue Mask = Node->getOperand(0);
894   SDValue Op1 = Node->getOperand(1);
895   SDValue Op2 = Node->getOperand(2);
896 
897   assert(VT.isVector() && !Mask.getValueType().isVector()
898          && Op1.getValueType() == Op2.getValueType() && "Invalid type");
899 
900   // If we can't even use the basic vector operations of
901   // AND,OR,XOR, we will have to scalarize the op.
902   // Notice that the operation may be 'promoted' which means that it is
903   // 'bitcasted' to another type which is handled.
904   // Also, we need to be able to construct a splat vector using either
905   // BUILD_VECTOR or SPLAT_VECTOR.
906   // FIXME: Should we also permit fixed-length SPLAT_VECTOR as a fallback to
907   // BUILD_VECTOR?
908   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
909       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
910       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
911       TLI.getOperationAction(VT.isFixedLengthVector() ? ISD::BUILD_VECTOR
912                                                       : ISD::SPLAT_VECTOR,
913                              VT) == TargetLowering::Expand)
914     return DAG.UnrollVectorOp(Node);
915 
916   // Generate a mask operand.
917   EVT MaskTy = VT.changeVectorElementTypeToInteger();
918 
919   // What is the size of each element in the vector mask.
920   EVT BitTy = MaskTy.getScalarType();
921 
922   Mask = DAG.getSelect(DL, BitTy, Mask, DAG.getAllOnesConstant(DL, BitTy),
923                        DAG.getConstant(0, DL, BitTy));
924 
925   // Broadcast the mask so that the entire vector is all one or all zero.
926   if (VT.isFixedLengthVector())
927     Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask);
928   else
929     Mask = DAG.getSplatVector(MaskTy, DL, Mask);
930 
931   // Bitcast the operands to be the same type as the mask.
932   // This is needed when we select between FP types because
933   // the mask is a vector of integers.
934   Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
935   Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
936 
937   SDValue NotMask = DAG.getNOT(DL, Mask, MaskTy);
938 
939   Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
940   Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
941   SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
942   return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
943 }
944 
945 SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) {
946   EVT VT = Node->getValueType(0);
947 
948   // Make sure that the SRA and SHL instructions are available.
949   if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
950       TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
951     return DAG.UnrollVectorOp(Node);
952 
953   SDLoc DL(Node);
954   EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT();
955 
956   unsigned BW = VT.getScalarSizeInBits();
957   unsigned OrigBW = OrigTy.getScalarSizeInBits();
958   SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
959 
960   SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz);
961   return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
962 }
963 
964 // Generically expand a vector anyext in register to a shuffle of the relevant
965 // lanes into the appropriate locations, with other lanes left undef.
966 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) {
967   SDLoc DL(Node);
968   EVT VT = Node->getValueType(0);
969   int NumElements = VT.getVectorNumElements();
970   SDValue Src = Node->getOperand(0);
971   EVT SrcVT = Src.getValueType();
972   int NumSrcElements = SrcVT.getVectorNumElements();
973 
974   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
975   // into a larger vector type.
976   if (SrcVT.bitsLE(VT)) {
977     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
978            "ANY_EXTEND_VECTOR_INREG vector size mismatch");
979     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
980     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
981                              NumSrcElements);
982     Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
983                       Src, DAG.getVectorIdxConstant(0, DL));
984   }
985 
986   // Build a base mask of undef shuffles.
987   SmallVector<int, 16> ShuffleMask;
988   ShuffleMask.resize(NumSrcElements, -1);
989 
990   // Place the extended lanes into the correct locations.
991   int ExtLaneScale = NumSrcElements / NumElements;
992   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
993   for (int i = 0; i < NumElements; ++i)
994     ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
995 
996   return DAG.getNode(
997       ISD::BITCAST, DL, VT,
998       DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
999 }
1000 
1001 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) {
1002   SDLoc DL(Node);
1003   EVT VT = Node->getValueType(0);
1004   SDValue Src = Node->getOperand(0);
1005   EVT SrcVT = Src.getValueType();
1006 
1007   // First build an any-extend node which can be legalized above when we
1008   // recurse through it.
1009   SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src);
1010 
1011   // Now we need sign extend. Do this by shifting the elements. Even if these
1012   // aren't legal operations, they have a better chance of being legalized
1013   // without full scalarization than the sign extension does.
1014   unsigned EltWidth = VT.getScalarSizeInBits();
1015   unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
1016   SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
1017   return DAG.getNode(ISD::SRA, DL, VT,
1018                      DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
1019                      ShiftAmount);
1020 }
1021 
1022 // Generically expand a vector zext in register to a shuffle of the relevant
1023 // lanes into the appropriate locations, a blend of zero into the high bits,
1024 // and a bitcast to the wider element type.
1025 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) {
1026   SDLoc DL(Node);
1027   EVT VT = Node->getValueType(0);
1028   int NumElements = VT.getVectorNumElements();
1029   SDValue Src = Node->getOperand(0);
1030   EVT SrcVT = Src.getValueType();
1031   int NumSrcElements = SrcVT.getVectorNumElements();
1032 
1033   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1034   // into a larger vector type.
1035   if (SrcVT.bitsLE(VT)) {
1036     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
1037            "ZERO_EXTEND_VECTOR_INREG vector size mismatch");
1038     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
1039     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
1040                              NumSrcElements);
1041     Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
1042                       Src, DAG.getVectorIdxConstant(0, DL));
1043   }
1044 
1045   // Build up a zero vector to blend into this one.
1046   SDValue Zero = DAG.getConstant(0, DL, SrcVT);
1047 
1048   // Shuffle the incoming lanes into the correct position, and pull all other
1049   // lanes from the zero vector.
1050   auto ShuffleMask = llvm::to_vector<16>(llvm::seq<int>(0, NumSrcElements));
1051 
1052   int ExtLaneScale = NumSrcElements / NumElements;
1053   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
1054   for (int i = 0; i < NumElements; ++i)
1055     ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
1056 
1057   return DAG.getNode(ISD::BITCAST, DL, VT,
1058                      DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
1059 }
1060 
1061 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
1062   int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
1063   for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
1064     for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
1065       ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
1066 }
1067 
1068 SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) {
1069   EVT VT = Node->getValueType(0);
1070 
1071   // Scalable vectors can't use shuffle expansion.
1072   if (VT.isScalableVector())
1073     return TLI.expandBSWAP(Node, DAG);
1074 
1075   // Generate a byte wise shuffle mask for the BSWAP.
1076   SmallVector<int, 16> ShuffleMask;
1077   createBSWAPShuffleMask(VT, ShuffleMask);
1078   EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
1079 
1080   // Only emit a shuffle if the mask is legal.
1081   if (TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) {
1082     SDLoc DL(Node);
1083     SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1084     Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
1085     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1086   }
1087 
1088   // If we have the appropriate vector bit operations, it is better to use them
1089   // than unrolling and expanding each component.
1090   if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
1091       TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
1092       TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
1093       TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
1094     return TLI.expandBSWAP(Node, DAG);
1095 
1096   // Otherwise unroll.
1097   return DAG.UnrollVectorOp(Node);
1098 }
1099 
1100 void VectorLegalizer::ExpandBITREVERSE(SDNode *Node,
1101                                        SmallVectorImpl<SDValue> &Results) {
1102   EVT VT = Node->getValueType(0);
1103 
1104   // We can't unroll or use shuffles for scalable vectors.
1105   if (VT.isScalableVector()) {
1106     Results.push_back(TLI.expandBITREVERSE(Node, DAG));
1107     return;
1108   }
1109 
1110   // If we have the scalar operation, it's probably cheaper to unroll it.
1111   if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) {
1112     SDValue Tmp = DAG.UnrollVectorOp(Node);
1113     Results.push_back(Tmp);
1114     return;
1115   }
1116 
1117   // If the vector element width is a whole number of bytes, test if its legal
1118   // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
1119   // vector. This greatly reduces the number of bit shifts necessary.
1120   unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
1121   if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
1122     SmallVector<int, 16> BSWAPMask;
1123     createBSWAPShuffleMask(VT, BSWAPMask);
1124 
1125     EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
1126     if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
1127         (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
1128          (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
1129           TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
1130           TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
1131           TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
1132       SDLoc DL(Node);
1133       SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1134       Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
1135                                 BSWAPMask);
1136       Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
1137       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
1138       Results.push_back(Op);
1139       return;
1140     }
1141   }
1142 
1143   // If we have the appropriate vector bit operations, it is better to use them
1144   // than unrolling and expanding each component.
1145   if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
1146       TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
1147       TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
1148       TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) {
1149     Results.push_back(TLI.expandBITREVERSE(Node, DAG));
1150     return;
1151   }
1152 
1153   // Otherwise unroll.
1154   SDValue Tmp = DAG.UnrollVectorOp(Node);
1155   Results.push_back(Tmp);
1156 }
1157 
1158 SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) {
1159   // Implement VSELECT in terms of XOR, AND, OR
1160   // on platforms which do not support blend natively.
1161   SDLoc DL(Node);
1162 
1163   SDValue Mask = Node->getOperand(0);
1164   SDValue Op1 = Node->getOperand(1);
1165   SDValue Op2 = Node->getOperand(2);
1166 
1167   EVT VT = Mask.getValueType();
1168 
1169   // If we can't even use the basic vector operations of
1170   // AND,OR,XOR, we will have to scalarize the op.
1171   // Notice that the operation may be 'promoted' which means that it is
1172   // 'bitcasted' to another type which is handled.
1173   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1174       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1175       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand)
1176     return DAG.UnrollVectorOp(Node);
1177 
1178   // This operation also isn't safe with AND, OR, XOR when the boolean type is
1179   // 0/1 and the select operands aren't also booleans, as we need an all-ones
1180   // vector constant to mask with.
1181   // FIXME: Sign extend 1 to all ones if that's legal on the target.
1182   auto BoolContents = TLI.getBooleanContents(Op1.getValueType());
1183   if (BoolContents != TargetLowering::ZeroOrNegativeOneBooleanContent &&
1184       !(BoolContents == TargetLowering::ZeroOrOneBooleanContent &&
1185         Op1.getValueType().getVectorElementType() == MVT::i1))
1186     return DAG.UnrollVectorOp(Node);
1187 
1188   // If the mask and the type are different sizes, unroll the vector op. This
1189   // can occur when getSetCCResultType returns something that is different in
1190   // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1191   if (VT.getSizeInBits() != Op1.getValueSizeInBits())
1192     return DAG.UnrollVectorOp(Node);
1193 
1194   // Bitcast the operands to be the same type as the mask.
1195   // This is needed when we select between FP types because
1196   // the mask is a vector of integers.
1197   Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
1198   Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
1199 
1200   SDValue NotMask = DAG.getNOT(DL, Mask, VT);
1201 
1202   Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
1203   Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
1204   SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
1205   return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
1206 }
1207 
1208 SDValue VectorLegalizer::ExpandVP_SELECT(SDNode *Node) {
1209   // Implement VP_SELECT in terms of VP_XOR, VP_AND and VP_OR on platforms which
1210   // do not support it natively.
1211   SDLoc DL(Node);
1212 
1213   SDValue Mask = Node->getOperand(0);
1214   SDValue Op1 = Node->getOperand(1);
1215   SDValue Op2 = Node->getOperand(2);
1216   SDValue EVL = Node->getOperand(3);
1217 
1218   EVT VT = Mask.getValueType();
1219 
1220   // If we can't even use the basic vector operations of
1221   // VP_AND,VP_OR,VP_XOR, we will have to scalarize the op.
1222   if (TLI.getOperationAction(ISD::VP_AND, VT) == TargetLowering::Expand ||
1223       TLI.getOperationAction(ISD::VP_XOR, VT) == TargetLowering::Expand ||
1224       TLI.getOperationAction(ISD::VP_OR, VT) == TargetLowering::Expand)
1225     return DAG.UnrollVectorOp(Node);
1226 
1227   // This operation also isn't safe when the operands aren't also booleans.
1228   if (Op1.getValueType().getVectorElementType() != MVT::i1)
1229     return DAG.UnrollVectorOp(Node);
1230 
1231   SDValue Ones = DAG.getAllOnesConstant(DL, VT);
1232   SDValue NotMask = DAG.getNode(ISD::VP_XOR, DL, VT, Mask, Ones, Mask, EVL);
1233 
1234   Op1 = DAG.getNode(ISD::VP_AND, DL, VT, Op1, Mask, Mask, EVL);
1235   Op2 = DAG.getNode(ISD::VP_AND, DL, VT, Op2, NotMask, Mask, EVL);
1236   return DAG.getNode(ISD::VP_OR, DL, VT, Op1, Op2, Mask, EVL);
1237 }
1238 
1239 SDValue VectorLegalizer::ExpandVP_MERGE(SDNode *Node) {
1240   // Implement VP_MERGE in terms of VSELECT. Construct a mask where vector
1241   // indices less than the EVL/pivot are true. Combine that with the original
1242   // mask for a full-length mask. Use a full-length VSELECT to select between
1243   // the true and false values.
1244   SDLoc DL(Node);
1245 
1246   SDValue Mask = Node->getOperand(0);
1247   SDValue Op1 = Node->getOperand(1);
1248   SDValue Op2 = Node->getOperand(2);
1249   SDValue EVL = Node->getOperand(3);
1250 
1251   EVT MaskVT = Mask.getValueType();
1252   bool IsFixedLen = MaskVT.isFixedLengthVector();
1253 
1254   EVT EVLVecVT = EVT::getVectorVT(*DAG.getContext(), EVL.getValueType(),
1255                                   MaskVT.getVectorElementCount());
1256 
1257   // If we can't construct the EVL mask efficiently, it's better to unroll.
1258   if ((IsFixedLen &&
1259        !TLI.isOperationLegalOrCustom(ISD::BUILD_VECTOR, EVLVecVT)) ||
1260       (!IsFixedLen &&
1261        (!TLI.isOperationLegalOrCustom(ISD::STEP_VECTOR, EVLVecVT) ||
1262         !TLI.isOperationLegalOrCustom(ISD::SPLAT_VECTOR, EVLVecVT))))
1263     return DAG.UnrollVectorOp(Node);
1264 
1265   // If using a SETCC would result in a different type than the mask type,
1266   // unroll.
1267   if (TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1268                              EVLVecVT) != MaskVT)
1269     return DAG.UnrollVectorOp(Node);
1270 
1271   SDValue StepVec = DAG.getStepVector(DL, EVLVecVT);
1272   SDValue SplatEVL = IsFixedLen ? DAG.getSplatBuildVector(EVLVecVT, DL, EVL)
1273                                 : DAG.getSplatVector(EVLVecVT, DL, EVL);
1274   SDValue EVLMask =
1275       DAG.getSetCC(DL, MaskVT, StepVec, SplatEVL, ISD::CondCode::SETULT);
1276 
1277   SDValue FullMask = DAG.getNode(ISD::AND, DL, MaskVT, Mask, EVLMask);
1278   return DAG.getSelect(DL, Node->getValueType(0), FullMask, Op1, Op2);
1279 }
1280 
1281 void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node,
1282                                        SmallVectorImpl<SDValue> &Results) {
1283   // Attempt to expand using TargetLowering.
1284   SDValue Result, Chain;
1285   if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) {
1286     Results.push_back(Result);
1287     if (Node->isStrictFPOpcode())
1288       Results.push_back(Chain);
1289     return;
1290   }
1291 
1292   // Otherwise go ahead and unroll.
1293   if (Node->isStrictFPOpcode()) {
1294     UnrollStrictFPOp(Node, Results);
1295     return;
1296   }
1297 
1298   Results.push_back(DAG.UnrollVectorOp(Node));
1299 }
1300 
1301 void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node,
1302                                           SmallVectorImpl<SDValue> &Results) {
1303   bool IsStrict = Node->isStrictFPOpcode();
1304   unsigned OpNo = IsStrict ? 1 : 0;
1305   SDValue Src = Node->getOperand(OpNo);
1306   EVT VT = Src.getValueType();
1307   SDLoc DL(Node);
1308 
1309   // Attempt to expand using TargetLowering.
1310   SDValue Result;
1311   SDValue Chain;
1312   if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) {
1313     Results.push_back(Result);
1314     if (IsStrict)
1315       Results.push_back(Chain);
1316     return;
1317   }
1318 
1319   // Make sure that the SINT_TO_FP and SRL instructions are available.
1320   if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) ==
1321                          TargetLowering::Expand) ||
1322        (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) ==
1323                         TargetLowering::Expand)) ||
1324       TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) {
1325     if (IsStrict) {
1326       UnrollStrictFPOp(Node, Results);
1327       return;
1328     }
1329 
1330     Results.push_back(DAG.UnrollVectorOp(Node));
1331     return;
1332   }
1333 
1334   unsigned BW = VT.getScalarSizeInBits();
1335   assert((BW == 64 || BW == 32) &&
1336          "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1337 
1338   SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
1339 
1340   // Constants to clear the upper part of the word.
1341   // Notice that we can also use SHL+SHR, but using a constant is slightly
1342   // faster on x86.
1343   uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1344   SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
1345 
1346   // Two to the power of half-word-size.
1347   SDValue TWOHW =
1348       DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0));
1349 
1350   // Clear upper part of LO, lower HI
1351   SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord);
1352   SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask);
1353 
1354   if (IsStrict) {
1355     // Convert hi and lo to floats
1356     // Convert the hi part back to the upper values
1357     // TODO: Can any fast-math-flags be set on these nodes?
1358     SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
1359                               {Node->getValueType(0), MVT::Other},
1360                               {Node->getOperand(0), HI});
1361     fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other},
1362                       {fHI.getValue(1), fHI, TWOHW});
1363     SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
1364                               {Node->getValueType(0), MVT::Other},
1365                               {Node->getOperand(0), LO});
1366 
1367     SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1),
1368                              fLO.getValue(1));
1369 
1370     // Add the two halves
1371     SDValue Result =
1372         DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other},
1373                     {TF, fHI, fLO});
1374 
1375     Results.push_back(Result);
1376     Results.push_back(Result.getValue(1));
1377     return;
1378   }
1379 
1380   // Convert hi and lo to floats
1381   // Convert the hi part back to the upper values
1382   // TODO: Can any fast-math-flags be set on these nodes?
1383   SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI);
1384   fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW);
1385   SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO);
1386 
1387   // Add the two halves
1388   Results.push_back(
1389       DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO));
1390 }
1391 
1392 SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) {
1393   if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) {
1394     SDLoc DL(Node);
1395     SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0));
1396     // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1397     return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero,
1398                        Node->getOperand(0));
1399   }
1400   return DAG.UnrollVectorOp(Node);
1401 }
1402 
1403 void VectorLegalizer::ExpandFSUB(SDNode *Node,
1404                                  SmallVectorImpl<SDValue> &Results) {
1405   // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1406   // we can defer this to operation legalization where it will be lowered as
1407   // a+(-b).
1408   EVT VT = Node->getValueType(0);
1409   if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
1410       TLI.isOperationLegalOrCustom(ISD::FADD, VT))
1411     return; // Defer to LegalizeDAG
1412 
1413   SDValue Tmp = DAG.UnrollVectorOp(Node);
1414   Results.push_back(Tmp);
1415 }
1416 
1417 void VectorLegalizer::ExpandSETCC(SDNode *Node,
1418                                   SmallVectorImpl<SDValue> &Results) {
1419   bool NeedInvert = false;
1420   SDLoc dl(Node);
1421   MVT OpVT = Node->getOperand(0).getSimpleValueType();
1422   ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get();
1423 
1424   if (TLI.getCondCodeAction(CCCode, OpVT) != TargetLowering::Expand) {
1425     Results.push_back(UnrollVSETCC(Node));
1426     return;
1427   }
1428 
1429   SDValue Chain;
1430   SDValue LHS = Node->getOperand(0);
1431   SDValue RHS = Node->getOperand(1);
1432   SDValue CC = Node->getOperand(2);
1433   bool Legalized = TLI.LegalizeSetCCCondCode(DAG, Node->getValueType(0), LHS,
1434                                              RHS, CC, NeedInvert, dl, Chain);
1435 
1436   if (Legalized) {
1437     // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
1438     // condition code, create a new SETCC node.
1439     if (CC.getNode())
1440       LHS = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), LHS, RHS, CC,
1441                         Node->getFlags());
1442 
1443     // If we expanded the SETCC by inverting the condition code, then wrap
1444     // the existing SETCC in a NOT to restore the intended condition.
1445     if (NeedInvert)
1446       LHS = DAG.getLogicalNOT(dl, LHS, LHS->getValueType(0));
1447   } else {
1448     // Otherwise, SETCC for the given comparison type must be completely
1449     // illegal; expand it into a SELECT_CC.
1450     EVT VT = Node->getValueType(0);
1451     LHS =
1452         DAG.getNode(ISD::SELECT_CC, dl, VT, LHS, RHS,
1453                     DAG.getBoolConstant(true, dl, VT, LHS.getValueType()),
1454                     DAG.getBoolConstant(false, dl, VT, LHS.getValueType()), CC);
1455     LHS->setFlags(Node->getFlags());
1456   }
1457 
1458   Results.push_back(LHS);
1459 }
1460 
1461 void VectorLegalizer::ExpandUADDSUBO(SDNode *Node,
1462                                      SmallVectorImpl<SDValue> &Results) {
1463   SDValue Result, Overflow;
1464   TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
1465   Results.push_back(Result);
1466   Results.push_back(Overflow);
1467 }
1468 
1469 void VectorLegalizer::ExpandSADDSUBO(SDNode *Node,
1470                                      SmallVectorImpl<SDValue> &Results) {
1471   SDValue Result, Overflow;
1472   TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
1473   Results.push_back(Result);
1474   Results.push_back(Overflow);
1475 }
1476 
1477 void VectorLegalizer::ExpandMULO(SDNode *Node,
1478                                  SmallVectorImpl<SDValue> &Results) {
1479   SDValue Result, Overflow;
1480   if (!TLI.expandMULO(Node, Result, Overflow, DAG))
1481     std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node);
1482 
1483   Results.push_back(Result);
1484   Results.push_back(Overflow);
1485 }
1486 
1487 void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node,
1488                                           SmallVectorImpl<SDValue> &Results) {
1489   SDNode *N = Node;
1490   if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N),
1491           N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG))
1492     Results.push_back(Expanded);
1493 }
1494 
1495 void VectorLegalizer::ExpandStrictFPOp(SDNode *Node,
1496                                        SmallVectorImpl<SDValue> &Results) {
1497   if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) {
1498     ExpandUINT_TO_FLOAT(Node, Results);
1499     return;
1500   }
1501   if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) {
1502     ExpandFP_TO_UINT(Node, Results);
1503     return;
1504   }
1505 
1506   UnrollStrictFPOp(Node, Results);
1507 }
1508 
1509 void VectorLegalizer::ExpandREM(SDNode *Node,
1510                                 SmallVectorImpl<SDValue> &Results) {
1511   assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) &&
1512          "Expected REM node");
1513 
1514   SDValue Result;
1515   if (!TLI.expandREM(Node, Result, DAG))
1516     Result = DAG.UnrollVectorOp(Node);
1517   Results.push_back(Result);
1518 }
1519 
1520 void VectorLegalizer::UnrollStrictFPOp(SDNode *Node,
1521                                        SmallVectorImpl<SDValue> &Results) {
1522   EVT VT = Node->getValueType(0);
1523   EVT EltVT = VT.getVectorElementType();
1524   unsigned NumElems = VT.getVectorNumElements();
1525   unsigned NumOpers = Node->getNumOperands();
1526   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1527 
1528   EVT TmpEltVT = EltVT;
1529   if (Node->getOpcode() == ISD::STRICT_FSETCC ||
1530       Node->getOpcode() == ISD::STRICT_FSETCCS)
1531     TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(),
1532                                       *DAG.getContext(), TmpEltVT);
1533 
1534   EVT ValueVTs[] = {TmpEltVT, MVT::Other};
1535   SDValue Chain = Node->getOperand(0);
1536   SDLoc dl(Node);
1537 
1538   SmallVector<SDValue, 32> OpValues;
1539   SmallVector<SDValue, 32> OpChains;
1540   for (unsigned i = 0; i < NumElems; ++i) {
1541     SmallVector<SDValue, 4> Opers;
1542     SDValue Idx = DAG.getVectorIdxConstant(i, dl);
1543 
1544     // The Chain is the first operand.
1545     Opers.push_back(Chain);
1546 
1547     // Now process the remaining operands.
1548     for (unsigned j = 1; j < NumOpers; ++j) {
1549       SDValue Oper = Node->getOperand(j);
1550       EVT OperVT = Oper.getValueType();
1551 
1552       if (OperVT.isVector())
1553         Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1554                            OperVT.getVectorElementType(), Oper, Idx);
1555 
1556       Opers.push_back(Oper);
1557     }
1558 
1559     SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers);
1560     SDValue ScalarResult = ScalarOp.getValue(0);
1561     SDValue ScalarChain = ScalarOp.getValue(1);
1562 
1563     if (Node->getOpcode() == ISD::STRICT_FSETCC ||
1564         Node->getOpcode() == ISD::STRICT_FSETCCS)
1565       ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult,
1566                                    DAG.getAllOnesConstant(dl, EltVT),
1567                                    DAG.getConstant(0, dl, EltVT));
1568 
1569     OpValues.push_back(ScalarResult);
1570     OpChains.push_back(ScalarChain);
1571   }
1572 
1573   SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
1574   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
1575 
1576   Results.push_back(Result);
1577   Results.push_back(NewChain);
1578 }
1579 
1580 SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) {
1581   EVT VT = Node->getValueType(0);
1582   unsigned NumElems = VT.getVectorNumElements();
1583   EVT EltVT = VT.getVectorElementType();
1584   SDValue LHS = Node->getOperand(0);
1585   SDValue RHS = Node->getOperand(1);
1586   SDValue CC = Node->getOperand(2);
1587   EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1588   SDLoc dl(Node);
1589   SmallVector<SDValue, 8> Ops(NumElems);
1590   for (unsigned i = 0; i < NumElems; ++i) {
1591     SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1592                                   DAG.getVectorIdxConstant(i, dl));
1593     SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1594                                   DAG.getVectorIdxConstant(i, dl));
1595     Ops[i] = DAG.getNode(ISD::SETCC, dl,
1596                          TLI.getSetCCResultType(DAG.getDataLayout(),
1597                                                 *DAG.getContext(), TmpEltVT),
1598                          LHSElem, RHSElem, CC);
1599     Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], DAG.getAllOnesConstant(dl, EltVT),
1600                            DAG.getConstant(0, dl, EltVT));
1601   }
1602   return DAG.getBuildVector(VT, dl, Ops);
1603 }
1604 
1605 bool SelectionDAG::LegalizeVectors() {
1606   return VectorLegalizer(*this).Run();
1607 }
1608