1 //===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SelectionDAG::LegalizeVectors method. 11 // 12 // The vector legalizer looks for vector operations which might need to be 13 // scalarized and legalizes them. This is a separate step from Legalize because 14 // scalarizing can introduce illegal types. For example, suppose we have an 15 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 17 // operation, which introduces nodes with the illegal type i64 which must be 18 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 19 // the operation must be unrolled, which introduces nodes with the illegal 20 // type i8 which must be promoted. 21 // 22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 23 // or operations that happen to take a vector which are custom-lowered; 24 // the legalization for such operations never produces nodes 25 // with illegal types, so it's okay to put off legalizing them until 26 // SelectionDAG::Legalize runs. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/Target/TargetLowering.h" 32 using namespace llvm; 33 34 namespace { 35 class VectorLegalizer { 36 SelectionDAG& DAG; 37 const TargetLowering &TLI; 38 bool Changed; // Keep track of whether anything changed 39 40 /// For nodes that are of legal width, and that have more than one use, this 41 /// map indicates what regularized operand to use. This allows us to avoid 42 /// legalizing the same thing more than once. 43 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 44 45 /// \brief Adds a node to the translation cache. 46 void AddLegalizedOperand(SDValue From, SDValue To) { 47 LegalizedNodes.insert(std::make_pair(From, To)); 48 // If someone requests legalization of the new node, return itself. 49 if (From != To) 50 LegalizedNodes.insert(std::make_pair(To, To)); 51 } 52 53 /// \brief Legalizes the given node. 54 SDValue LegalizeOp(SDValue Op); 55 56 /// \brief Assuming the node is legal, "legalize" the results. 57 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); 58 59 /// \brief Implements unrolling a VSETCC. 60 SDValue UnrollVSETCC(SDValue Op); 61 62 /// \brief Implement expand-based legalization of vector operations. 63 /// 64 /// This is just a high-level routine to dispatch to specific code paths for 65 /// operations to legalize them. 66 SDValue Expand(SDValue Op); 67 68 /// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if 69 /// FSUB isn't legal. 70 /// 71 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 72 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 73 SDValue ExpandUINT_TO_FLOAT(SDValue Op); 74 75 /// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 76 SDValue ExpandSEXTINREG(SDValue Op); 77 78 /// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG. 79 /// 80 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 81 /// type. The contents of the bits in the extended part of each element are 82 /// undef. 83 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op); 84 85 /// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG. 86 /// 87 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 88 /// type, then shifts left and arithmetic shifts right to introduce a sign 89 /// extension. 90 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op); 91 92 /// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG. 93 /// 94 /// Shuffles the low lanes of the operand into place and blends zeros into 95 /// the remaining lanes, finally bitcasting to the proper type. 96 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op); 97 98 /// \brief Expand bswap of vectors into a shuffle if legal. 99 SDValue ExpandBSWAP(SDValue Op); 100 101 /// \brief Implement vselect in terms of XOR, AND, OR when blend is not 102 /// supported by the target. 103 SDValue ExpandVSELECT(SDValue Op); 104 SDValue ExpandSELECT(SDValue Op); 105 SDValue ExpandLoad(SDValue Op); 106 SDValue ExpandStore(SDValue Op); 107 SDValue ExpandFNEG(SDValue Op); 108 SDValue ExpandABSDIFF(SDValue Op); 109 110 /// \brief Implements vector promotion. 111 /// 112 /// This is essentially just bitcasting the operands to a different type and 113 /// bitcasting the result back to the original type. 114 SDValue Promote(SDValue Op); 115 116 /// \brief Implements [SU]INT_TO_FP vector promotion. 117 /// 118 /// This is a [zs]ext of the input operand to the next size up. 119 SDValue PromoteINT_TO_FP(SDValue Op); 120 121 /// \brief Implements FP_TO_[SU]INT vector promotion of the result type. 122 /// 123 /// It is promoted to the next size up integer type. The result is then 124 /// truncated back to the original type. 125 SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned); 126 127 public: 128 /// \brief Begin legalizer the vector operations in the DAG. 129 bool Run(); 130 VectorLegalizer(SelectionDAG& dag) : 131 DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {} 132 }; 133 134 bool VectorLegalizer::Run() { 135 // Before we start legalizing vector nodes, check if there are any vectors. 136 bool HasVectors = false; 137 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 138 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 139 // Check if the values of the nodes contain vectors. We don't need to check 140 // the operands because we are going to check their values at some point. 141 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); 142 J != E; ++J) 143 HasVectors |= J->isVector(); 144 145 // If we found a vector node we can start the legalization. 146 if (HasVectors) 147 break; 148 } 149 150 // If this basic block has no vectors then no need to legalize vectors. 151 if (!HasVectors) 152 return false; 153 154 // The legalize process is inherently a bottom-up recursive process (users 155 // legalize their uses before themselves). Given infinite stack space, we 156 // could just start legalizing on the root and traverse the whole graph. In 157 // practice however, this causes us to run out of stack space on large basic 158 // blocks. To avoid this problem, compute an ordering of the nodes where each 159 // node is only legalized after all of its operands are legalized. 160 DAG.AssignTopologicalOrder(); 161 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 162 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 163 LegalizeOp(SDValue(I, 0)); 164 165 // Finally, it's possible the root changed. Get the new root. 166 SDValue OldRoot = DAG.getRoot(); 167 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 168 DAG.setRoot(LegalizedNodes[OldRoot]); 169 170 LegalizedNodes.clear(); 171 172 // Remove dead nodes now. 173 DAG.RemoveDeadNodes(); 174 175 return Changed; 176 } 177 178 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { 179 // Generic legalization: just pass the operand through. 180 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) 181 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 182 return Result.getValue(Op.getResNo()); 183 } 184 185 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 186 // Note that LegalizeOp may be reentered even from single-use nodes, which 187 // means that we always must cache transformed nodes. 188 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 189 if (I != LegalizedNodes.end()) return I->second; 190 191 SDNode* Node = Op.getNode(); 192 193 // Legalize the operands 194 SmallVector<SDValue, 8> Ops; 195 for (const SDValue &Op : Node->op_values()) 196 Ops.push_back(LegalizeOp(Op)); 197 198 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0); 199 200 bool HasVectorValue = false; 201 if (Op.getOpcode() == ISD::LOAD) { 202 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 203 ISD::LoadExtType ExtType = LD->getExtensionType(); 204 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) 205 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), 206 LD->getMemoryVT())) { 207 default: llvm_unreachable("This action is not supported yet!"); 208 case TargetLowering::Legal: 209 return TranslateLegalizeResults(Op, Result); 210 case TargetLowering::Custom: 211 if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) { 212 if (Lowered == Result) 213 return TranslateLegalizeResults(Op, Lowered); 214 Changed = true; 215 if (Lowered->getNumValues() != Op->getNumValues()) { 216 // This expanded to something other than the load. Assume the 217 // lowering code took care of any chain values, and just handle the 218 // returned value. 219 assert(Result.getValue(1).use_empty() && 220 "There are still live users of the old chain!"); 221 return LegalizeOp(Lowered); 222 } else { 223 return TranslateLegalizeResults(Op, Lowered); 224 } 225 } 226 case TargetLowering::Expand: 227 Changed = true; 228 return LegalizeOp(ExpandLoad(Op)); 229 } 230 } else if (Op.getOpcode() == ISD::STORE) { 231 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 232 EVT StVT = ST->getMemoryVT(); 233 MVT ValVT = ST->getValue().getSimpleValueType(); 234 if (StVT.isVector() && ST->isTruncatingStore()) 235 switch (TLI.getTruncStoreAction(ValVT, StVT.getSimpleVT())) { 236 default: llvm_unreachable("This action is not supported yet!"); 237 case TargetLowering::Legal: 238 return TranslateLegalizeResults(Op, Result); 239 case TargetLowering::Custom: { 240 SDValue Lowered = TLI.LowerOperation(Result, DAG); 241 Changed = Lowered != Result; 242 return TranslateLegalizeResults(Op, Lowered); 243 } 244 case TargetLowering::Expand: 245 Changed = true; 246 return LegalizeOp(ExpandStore(Op)); 247 } 248 } else if (Op.getOpcode() == ISD::MSCATTER) 249 HasVectorValue = true; 250 251 for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end(); 252 J != E; 253 ++J) 254 HasVectorValue |= J->isVector(); 255 if (!HasVectorValue) 256 return TranslateLegalizeResults(Op, Result); 257 258 EVT QueryType; 259 switch (Op.getOpcode()) { 260 default: 261 return TranslateLegalizeResults(Op, Result); 262 case ISD::ADD: 263 case ISD::SUB: 264 case ISD::MUL: 265 case ISD::SDIV: 266 case ISD::UDIV: 267 case ISD::SREM: 268 case ISD::UREM: 269 case ISD::FADD: 270 case ISD::FSUB: 271 case ISD::FMUL: 272 case ISD::FDIV: 273 case ISD::FREM: 274 case ISD::AND: 275 case ISD::OR: 276 case ISD::XOR: 277 case ISD::SHL: 278 case ISD::SRA: 279 case ISD::SRL: 280 case ISD::ROTL: 281 case ISD::ROTR: 282 case ISD::BSWAP: 283 case ISD::CTLZ: 284 case ISD::CTTZ: 285 case ISD::CTLZ_ZERO_UNDEF: 286 case ISD::CTTZ_ZERO_UNDEF: 287 case ISD::CTPOP: 288 case ISD::SELECT: 289 case ISD::VSELECT: 290 case ISD::SELECT_CC: 291 case ISD::SETCC: 292 case ISD::ZERO_EXTEND: 293 case ISD::ANY_EXTEND: 294 case ISD::TRUNCATE: 295 case ISD::SIGN_EXTEND: 296 case ISD::FP_TO_SINT: 297 case ISD::FP_TO_UINT: 298 case ISD::FNEG: 299 case ISD::FABS: 300 case ISD::FMINNUM: 301 case ISD::FMAXNUM: 302 case ISD::FMINNAN: 303 case ISD::FMAXNAN: 304 case ISD::FCOPYSIGN: 305 case ISD::FSQRT: 306 case ISD::FSIN: 307 case ISD::FCOS: 308 case ISD::FPOWI: 309 case ISD::FPOW: 310 case ISD::FLOG: 311 case ISD::FLOG2: 312 case ISD::FLOG10: 313 case ISD::FEXP: 314 case ISD::FEXP2: 315 case ISD::FCEIL: 316 case ISD::FTRUNC: 317 case ISD::FRINT: 318 case ISD::FNEARBYINT: 319 case ISD::FROUND: 320 case ISD::FFLOOR: 321 case ISD::FP_ROUND: 322 case ISD::FP_EXTEND: 323 case ISD::FMA: 324 case ISD::SIGN_EXTEND_INREG: 325 case ISD::ANY_EXTEND_VECTOR_INREG: 326 case ISD::SIGN_EXTEND_VECTOR_INREG: 327 case ISD::ZERO_EXTEND_VECTOR_INREG: 328 case ISD::SMIN: 329 case ISD::SMAX: 330 case ISD::UMIN: 331 case ISD::UMAX: 332 case ISD::UABSDIFF: 333 case ISD::SABSDIFF: 334 QueryType = Node->getValueType(0); 335 break; 336 case ISD::FP_ROUND_INREG: 337 QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 338 break; 339 case ISD::SINT_TO_FP: 340 case ISD::UINT_TO_FP: 341 QueryType = Node->getOperand(0).getValueType(); 342 break; 343 case ISD::MSCATTER: 344 QueryType = cast<MaskedScatterSDNode>(Node)->getValue().getValueType(); 345 break; 346 } 347 348 switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) { 349 case TargetLowering::Promote: 350 Result = Promote(Op); 351 Changed = true; 352 break; 353 case TargetLowering::Legal: 354 break; 355 case TargetLowering::Custom: { 356 SDValue Tmp1 = TLI.LowerOperation(Op, DAG); 357 if (Tmp1.getNode()) { 358 Result = Tmp1; 359 break; 360 } 361 // FALL THROUGH 362 } 363 case TargetLowering::Expand: 364 Result = Expand(Op); 365 } 366 367 // Make sure that the generated code is itself legal. 368 if (Result != Op) { 369 Result = LegalizeOp(Result); 370 Changed = true; 371 } 372 373 // Note that LegalizeOp may be reentered even from single-use nodes, which 374 // means that we always must cache transformed nodes. 375 AddLegalizedOperand(Op, Result); 376 return Result; 377 } 378 379 SDValue VectorLegalizer::Promote(SDValue Op) { 380 // For a few operations there is a specific concept for promotion based on 381 // the operand's type. 382 switch (Op.getOpcode()) { 383 case ISD::SINT_TO_FP: 384 case ISD::UINT_TO_FP: 385 // "Promote" the operation by extending the operand. 386 return PromoteINT_TO_FP(Op); 387 case ISD::FP_TO_UINT: 388 case ISD::FP_TO_SINT: 389 // Promote the operation by extending the operand. 390 return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT); 391 } 392 393 // There are currently two cases of vector promotion: 394 // 1) Bitcasting a vector of integers to a different type to a vector of the 395 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 396 // 2) Extending a vector of floats to a vector of the same number of larger 397 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 398 MVT VT = Op.getSimpleValueType(); 399 assert(Op.getNode()->getNumValues() == 1 && 400 "Can't promote a vector with multiple results!"); 401 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 402 SDLoc dl(Op); 403 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 404 405 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 406 if (Op.getOperand(j).getValueType().isVector()) 407 if (Op.getOperand(j) 408 .getValueType() 409 .getVectorElementType() 410 .isFloatingPoint() && 411 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 412 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j)); 413 else 414 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); 415 else 416 Operands[j] = Op.getOperand(j); 417 } 418 419 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags()); 420 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 421 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 422 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 423 return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl)); 424 else 425 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 426 } 427 428 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) { 429 // INT_TO_FP operations may require the input operand be promoted even 430 // when the type is otherwise legal. 431 EVT VT = Op.getOperand(0).getValueType(); 432 assert(Op.getNode()->getNumValues() == 1 && 433 "Can't promote a vector with multiple results!"); 434 435 // Normal getTypeToPromoteTo() doesn't work here, as that will promote 436 // by widening the vector w/ the same element width and twice the number 437 // of elements. We want the other way around, the same number of elements, 438 // each twice the width. 439 // 440 // Increase the bitwidth of the element to the next pow-of-two 441 // (which is greater than 8 bits). 442 443 EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext()); 444 assert(NVT.isSimple() && "Promoting to a non-simple vector type!"); 445 SDLoc dl(Op); 446 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 447 448 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : 449 ISD::SIGN_EXTEND; 450 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 451 if (Op.getOperand(j).getValueType().isVector()) 452 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j)); 453 else 454 Operands[j] = Op.getOperand(j); 455 } 456 457 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands); 458 } 459 460 // For FP_TO_INT we promote the result type to a vector type with wider 461 // elements and then truncate the result. This is different from the default 462 // PromoteVector which uses bitcast to promote thus assumning that the 463 // promoted vector type has the same overall size. 464 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) { 465 assert(Op.getNode()->getNumValues() == 1 && 466 "Can't promote a vector with multiple results!"); 467 EVT VT = Op.getValueType(); 468 469 EVT NewVT; 470 unsigned NewOpc; 471 while (1) { 472 NewVT = VT.widenIntegerVectorElementType(*DAG.getContext()); 473 assert(NewVT.isSimple() && "Promoting to a non-simple vector type!"); 474 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) { 475 NewOpc = ISD::FP_TO_SINT; 476 break; 477 } 478 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) { 479 NewOpc = ISD::FP_TO_UINT; 480 break; 481 } 482 } 483 484 SDLoc loc(Op); 485 SDValue promoted = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0)); 486 return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted); 487 } 488 489 490 SDValue VectorLegalizer::ExpandLoad(SDValue Op) { 491 SDLoc dl(Op); 492 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 493 SDValue Chain = LD->getChain(); 494 SDValue BasePTR = LD->getBasePtr(); 495 EVT SrcVT = LD->getMemoryVT(); 496 ISD::LoadExtType ExtType = LD->getExtensionType(); 497 498 SmallVector<SDValue, 8> Vals; 499 SmallVector<SDValue, 8> LoadChains; 500 unsigned NumElem = SrcVT.getVectorNumElements(); 501 502 EVT SrcEltVT = SrcVT.getScalarType(); 503 EVT DstEltVT = Op.getNode()->getValueType(0).getScalarType(); 504 505 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { 506 // When elements in a vector is not byte-addressable, we cannot directly 507 // load each element by advancing pointer, which could only address bytes. 508 // Instead, we load all significant words, mask bits off, and concatenate 509 // them to form each element. Finally, they are extended to destination 510 // scalar type to build the destination vector. 511 EVT WideVT = TLI.getPointerTy(DAG.getDataLayout()); 512 513 assert(WideVT.isRound() && 514 "Could not handle the sophisticated case when the widest integer is" 515 " not power of 2."); 516 assert(WideVT.bitsGE(SrcEltVT) && 517 "Type is not legalized?"); 518 519 unsigned WideBytes = WideVT.getStoreSize(); 520 unsigned Offset = 0; 521 unsigned RemainingBytes = SrcVT.getStoreSize(); 522 SmallVector<SDValue, 8> LoadVals; 523 524 while (RemainingBytes > 0) { 525 SDValue ScalarLoad; 526 unsigned LoadBytes = WideBytes; 527 528 if (RemainingBytes >= LoadBytes) { 529 ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR, 530 LD->getPointerInfo().getWithOffset(Offset), 531 LD->isVolatile(), LD->isNonTemporal(), 532 LD->isInvariant(), 533 MinAlign(LD->getAlignment(), Offset), 534 LD->getAAInfo()); 535 } else { 536 EVT LoadVT = WideVT; 537 while (RemainingBytes < LoadBytes) { 538 LoadBytes >>= 1; // Reduce the load size by half. 539 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); 540 } 541 ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, 542 LD->getPointerInfo().getWithOffset(Offset), 543 LoadVT, LD->isVolatile(), 544 LD->isNonTemporal(), LD->isInvariant(), 545 MinAlign(LD->getAlignment(), Offset), 546 LD->getAAInfo()); 547 } 548 549 RemainingBytes -= LoadBytes; 550 Offset += LoadBytes; 551 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 552 DAG.getConstant(LoadBytes, dl, 553 BasePTR.getValueType())); 554 555 LoadVals.push_back(ScalarLoad.getValue(0)); 556 LoadChains.push_back(ScalarLoad.getValue(1)); 557 } 558 559 // Extract bits, pack and extend/trunc them into destination type. 560 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 561 SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT); 562 563 unsigned BitOffset = 0; 564 unsigned WideIdx = 0; 565 unsigned WideBits = WideVT.getSizeInBits(); 566 567 for (unsigned Idx = 0; Idx != NumElem; ++Idx) { 568 SDValue Lo, Hi, ShAmt; 569 570 if (BitOffset < WideBits) { 571 ShAmt = DAG.getConstant( 572 BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 573 Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); 574 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); 575 } 576 577 BitOffset += SrcEltBits; 578 if (BitOffset >= WideBits) { 579 WideIdx++; 580 BitOffset -= WideBits; 581 if (BitOffset > 0) { 582 ShAmt = DAG.getConstant( 583 SrcEltBits - BitOffset, dl, 584 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 585 Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); 586 Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask); 587 } 588 } 589 590 if (Hi.getNode()) 591 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); 592 593 switch (ExtType) { 594 default: llvm_unreachable("Unknown extended-load op!"); 595 case ISD::EXTLOAD: 596 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); 597 break; 598 case ISD::ZEXTLOAD: 599 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); 600 break; 601 case ISD::SEXTLOAD: 602 ShAmt = 603 DAG.getConstant(WideBits - SrcEltBits, dl, 604 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 605 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); 606 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); 607 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); 608 break; 609 } 610 Vals.push_back(Lo); 611 } 612 } else { 613 unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8; 614 615 for (unsigned Idx=0; Idx<NumElem; Idx++) { 616 SDValue ScalarLoad = DAG.getExtLoad(ExtType, dl, 617 Op.getNode()->getValueType(0).getScalarType(), 618 Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride), 619 SrcVT.getScalarType(), 620 LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), 621 MinAlign(LD->getAlignment(), Idx * Stride), LD->getAAInfo()); 622 623 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 624 DAG.getConstant(Stride, dl, BasePTR.getValueType())); 625 626 Vals.push_back(ScalarLoad.getValue(0)); 627 LoadChains.push_back(ScalarLoad.getValue(1)); 628 } 629 } 630 631 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 632 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, 633 Op.getNode()->getValueType(0), Vals); 634 635 AddLegalizedOperand(Op.getValue(0), Value); 636 AddLegalizedOperand(Op.getValue(1), NewChain); 637 638 return (Op.getResNo() ? NewChain : Value); 639 } 640 641 SDValue VectorLegalizer::ExpandStore(SDValue Op) { 642 SDLoc dl(Op); 643 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 644 SDValue Chain = ST->getChain(); 645 SDValue BasePTR = ST->getBasePtr(); 646 SDValue Value = ST->getValue(); 647 EVT StVT = ST->getMemoryVT(); 648 649 unsigned Alignment = ST->getAlignment(); 650 bool isVolatile = ST->isVolatile(); 651 bool isNonTemporal = ST->isNonTemporal(); 652 AAMDNodes AAInfo = ST->getAAInfo(); 653 654 unsigned NumElem = StVT.getVectorNumElements(); 655 // The type of the data we want to save 656 EVT RegVT = Value.getValueType(); 657 EVT RegSclVT = RegVT.getScalarType(); 658 // The type of data as saved in memory. 659 EVT MemSclVT = StVT.getScalarType(); 660 661 // Cast floats into integers 662 unsigned ScalarSize = MemSclVT.getSizeInBits(); 663 664 // Round odd types to the next pow of two. 665 if (!isPowerOf2_32(ScalarSize)) 666 ScalarSize = NextPowerOf2(ScalarSize); 667 668 // Store Stride in bytes 669 unsigned Stride = ScalarSize/8; 670 // Extract each of the elements from the original vector 671 // and save them into memory individually. 672 SmallVector<SDValue, 8> Stores; 673 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 674 SDValue Ex = DAG.getNode( 675 ISD::EXTRACT_VECTOR_ELT, dl, RegSclVT, Value, 676 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 677 678 // This scalar TruncStore may be illegal, but we legalize it later. 679 SDValue Store = DAG.getTruncStore(Chain, dl, Ex, BasePTR, 680 ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT, 681 isVolatile, isNonTemporal, MinAlign(Alignment, Idx*Stride), 682 AAInfo); 683 684 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 685 DAG.getConstant(Stride, dl, BasePTR.getValueType())); 686 687 Stores.push_back(Store); 688 } 689 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 690 AddLegalizedOperand(Op, TF); 691 return TF; 692 } 693 694 SDValue VectorLegalizer::Expand(SDValue Op) { 695 switch (Op->getOpcode()) { 696 case ISD::SIGN_EXTEND_INREG: 697 return ExpandSEXTINREG(Op); 698 case ISD::ANY_EXTEND_VECTOR_INREG: 699 return ExpandANY_EXTEND_VECTOR_INREG(Op); 700 case ISD::SIGN_EXTEND_VECTOR_INREG: 701 return ExpandSIGN_EXTEND_VECTOR_INREG(Op); 702 case ISD::ZERO_EXTEND_VECTOR_INREG: 703 return ExpandZERO_EXTEND_VECTOR_INREG(Op); 704 case ISD::BSWAP: 705 return ExpandBSWAP(Op); 706 case ISD::VSELECT: 707 return ExpandVSELECT(Op); 708 case ISD::SELECT: 709 return ExpandSELECT(Op); 710 case ISD::UINT_TO_FP: 711 return ExpandUINT_TO_FLOAT(Op); 712 case ISD::FNEG: 713 return ExpandFNEG(Op); 714 case ISD::SETCC: 715 return UnrollVSETCC(Op); 716 case ISD::UABSDIFF: 717 case ISD::SABSDIFF: 718 return ExpandABSDIFF(Op); 719 default: 720 return DAG.UnrollVectorOp(Op.getNode()); 721 } 722 } 723 724 SDValue VectorLegalizer::ExpandABSDIFF(SDValue Op) { 725 SDLoc dl(Op); 726 SDValue Op0 = Op.getOperand(0); 727 SDValue Op1 = Op.getOperand(1); 728 EVT VT = Op.getValueType(); 729 730 // For unsigned intrinsic, promote the type to handle unsigned overflow. 731 bool isUabsdiff = (Op->getOpcode() == ISD::UABSDIFF); 732 if (isUabsdiff) { 733 VT = VT.widenIntegerVectorElementType(*DAG.getContext()); 734 Op0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op0); 735 Op1 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op1); 736 } 737 738 SDNodeFlags Flags; 739 Flags.setNoSignedWrap(!isUabsdiff); 740 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Op0, Op1, &Flags); 741 if (isUabsdiff) 742 return DAG.getNode(ISD::TRUNCATE, dl, Op.getValueType(), Sub); 743 744 SDValue Cmp = 745 DAG.getNode(ISD::SETCC, dl, TLI.getSetCCResultType(DAG.getDataLayout(), 746 *DAG.getContext(), VT), 747 Sub, DAG.getConstant(0, dl, VT), DAG.getCondCode(ISD::SETGE)); 748 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), Sub, &Flags); 749 return DAG.getNode(ISD::VSELECT, dl, VT, Cmp, Sub, Neg); 750 } 751 752 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) { 753 // Lower a select instruction where the condition is a scalar and the 754 // operands are vectors. Lower this select to VSELECT and implement it 755 // using XOR AND OR. The selector bit is broadcasted. 756 EVT VT = Op.getValueType(); 757 SDLoc DL(Op); 758 759 SDValue Mask = Op.getOperand(0); 760 SDValue Op1 = Op.getOperand(1); 761 SDValue Op2 = Op.getOperand(2); 762 763 assert(VT.isVector() && !Mask.getValueType().isVector() 764 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 765 766 unsigned NumElem = VT.getVectorNumElements(); 767 768 // If we can't even use the basic vector operations of 769 // AND,OR,XOR, we will have to scalarize the op. 770 // Notice that the operation may be 'promoted' which means that it is 771 // 'bitcasted' to another type which is handled. 772 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 773 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 774 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 775 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 776 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 777 return DAG.UnrollVectorOp(Op.getNode()); 778 779 // Generate a mask operand. 780 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 781 782 // What is the size of each element in the vector mask. 783 EVT BitTy = MaskTy.getScalarType(); 784 785 Mask = DAG.getSelect(DL, BitTy, Mask, 786 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, 787 BitTy), 788 DAG.getConstant(0, DL, BitTy)); 789 790 // Broadcast the mask so that the entire vector is all-one or all zero. 791 SmallVector<SDValue, 8> Ops(NumElem, Mask); 792 Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, Ops); 793 794 // Bitcast the operands to be the same type as the mask. 795 // This is needed when we select between FP types because 796 // the mask is a vector of integers. 797 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 798 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 799 800 SDValue AllOnes = DAG.getConstant( 801 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy); 802 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 803 804 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 805 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 806 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 807 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 808 } 809 810 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) { 811 EVT VT = Op.getValueType(); 812 813 // Make sure that the SRA and SHL instructions are available. 814 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 815 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 816 return DAG.UnrollVectorOp(Op.getNode()); 817 818 SDLoc DL(Op); 819 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT(); 820 821 unsigned BW = VT.getScalarType().getSizeInBits(); 822 unsigned OrigBW = OrigTy.getScalarType().getSizeInBits(); 823 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 824 825 Op = Op.getOperand(0); 826 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz); 827 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 828 } 829 830 // Generically expand a vector anyext in register to a shuffle of the relevant 831 // lanes into the appropriate locations, with other lanes left undef. 832 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) { 833 SDLoc DL(Op); 834 EVT VT = Op.getValueType(); 835 int NumElements = VT.getVectorNumElements(); 836 SDValue Src = Op.getOperand(0); 837 EVT SrcVT = Src.getValueType(); 838 int NumSrcElements = SrcVT.getVectorNumElements(); 839 840 // Build a base mask of undef shuffles. 841 SmallVector<int, 16> ShuffleMask; 842 ShuffleMask.resize(NumSrcElements, -1); 843 844 // Place the extended lanes into the correct locations. 845 int ExtLaneScale = NumSrcElements / NumElements; 846 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 847 for (int i = 0; i < NumElements; ++i) 848 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 849 850 return DAG.getNode( 851 ISD::BITCAST, DL, VT, 852 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 853 } 854 855 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) { 856 SDLoc DL(Op); 857 EVT VT = Op.getValueType(); 858 SDValue Src = Op.getOperand(0); 859 EVT SrcVT = Src.getValueType(); 860 861 // First build an any-extend node which can be legalized above when we 862 // recurse through it. 863 Op = DAG.getAnyExtendVectorInReg(Src, DL, VT); 864 865 // Now we need sign extend. Do this by shifting the elements. Even if these 866 // aren't legal operations, they have a better chance of being legalized 867 // without full scalarization than the sign extension does. 868 unsigned EltWidth = VT.getVectorElementType().getSizeInBits(); 869 unsigned SrcEltWidth = SrcVT.getVectorElementType().getSizeInBits(); 870 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 871 return DAG.getNode(ISD::SRA, DL, VT, 872 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 873 ShiftAmount); 874 } 875 876 // Generically expand a vector zext in register to a shuffle of the relevant 877 // lanes into the appropriate locations, a blend of zero into the high bits, 878 // and a bitcast to the wider element type. 879 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) { 880 SDLoc DL(Op); 881 EVT VT = Op.getValueType(); 882 int NumElements = VT.getVectorNumElements(); 883 SDValue Src = Op.getOperand(0); 884 EVT SrcVT = Src.getValueType(); 885 int NumSrcElements = SrcVT.getVectorNumElements(); 886 887 // Build up a zero vector to blend into this one. 888 EVT SrcScalarVT = SrcVT.getScalarType(); 889 SDValue ScalarZero = DAG.getTargetConstant(0, DL, SrcScalarVT); 890 SmallVector<SDValue, 4> BuildVectorOperands(NumSrcElements, ScalarZero); 891 SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, DL, SrcVT, BuildVectorOperands); 892 893 // Shuffle the incoming lanes into the correct position, and pull all other 894 // lanes from the zero vector. 895 SmallVector<int, 16> ShuffleMask; 896 ShuffleMask.reserve(NumSrcElements); 897 for (int i = 0; i < NumSrcElements; ++i) 898 ShuffleMask.push_back(i); 899 900 int ExtLaneScale = NumSrcElements / NumElements; 901 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 902 for (int i = 0; i < NumElements; ++i) 903 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 904 905 return DAG.getNode(ISD::BITCAST, DL, VT, 906 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 907 } 908 909 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) { 910 EVT VT = Op.getValueType(); 911 912 // Generate a byte wise shuffle mask for the BSWAP. 913 SmallVector<int, 16> ShuffleMask; 914 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 915 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 916 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 917 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 918 919 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 920 921 // Only emit a shuffle if the mask is legal. 922 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) 923 return DAG.UnrollVectorOp(Op.getNode()); 924 925 SDLoc DL(Op); 926 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 927 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 928 ShuffleMask.data()); 929 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 930 } 931 932 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { 933 // Implement VSELECT in terms of XOR, AND, OR 934 // on platforms which do not support blend natively. 935 SDLoc DL(Op); 936 937 SDValue Mask = Op.getOperand(0); 938 SDValue Op1 = Op.getOperand(1); 939 SDValue Op2 = Op.getOperand(2); 940 941 EVT VT = Mask.getValueType(); 942 943 // If we can't even use the basic vector operations of 944 // AND,OR,XOR, we will have to scalarize the op. 945 // Notice that the operation may be 'promoted' which means that it is 946 // 'bitcasted' to another type which is handled. 947 // This operation also isn't safe with AND, OR, XOR when the boolean 948 // type is 0/1 as we need an all ones vector constant to mask with. 949 // FIXME: Sign extend 1 to all ones if thats legal on the target. 950 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 951 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 952 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 953 TLI.getBooleanContents(Op1.getValueType()) != 954 TargetLowering::ZeroOrNegativeOneBooleanContent) 955 return DAG.UnrollVectorOp(Op.getNode()); 956 957 // If the mask and the type are different sizes, unroll the vector op. This 958 // can occur when getSetCCResultType returns something that is different in 959 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 960 if (VT.getSizeInBits() != Op1.getValueType().getSizeInBits()) 961 return DAG.UnrollVectorOp(Op.getNode()); 962 963 // Bitcast the operands to be the same type as the mask. 964 // This is needed when we select between FP types because 965 // the mask is a vector of integers. 966 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 967 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 968 969 SDValue AllOnes = DAG.getConstant( 970 APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), DL, VT); 971 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 972 973 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 974 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 975 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 976 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 977 } 978 979 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { 980 EVT VT = Op.getOperand(0).getValueType(); 981 SDLoc DL(Op); 982 983 // Make sure that the SINT_TO_FP and SRL instructions are available. 984 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand || 985 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) 986 return DAG.UnrollVectorOp(Op.getNode()); 987 988 EVT SVT = VT.getScalarType(); 989 assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) && 990 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 991 992 unsigned BW = SVT.getSizeInBits(); 993 SDValue HalfWord = DAG.getConstant(BW/2, DL, VT); 994 995 // Constants to clear the upper part of the word. 996 // Notice that we can also use SHL+SHR, but using a constant is slightly 997 // faster on x86. 998 uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF; 999 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 1000 1001 // Two to the power of half-word-size. 1002 SDValue TWOHW = DAG.getConstantFP(1 << (BW/2), DL, Op.getValueType()); 1003 1004 // Clear upper part of LO, lower HI 1005 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); 1006 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); 1007 1008 // Convert hi and lo to floats 1009 // Convert the hi part back to the upper values 1010 // TODO: Can any fast-math-flags be set on these nodes? 1011 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); 1012 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); 1013 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); 1014 1015 // Add the two halves 1016 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); 1017 } 1018 1019 1020 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { 1021 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { 1022 SDLoc DL(Op); 1023 SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType()); 1024 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. 1025 return DAG.getNode(ISD::FSUB, DL, Op.getValueType(), 1026 Zero, Op.getOperand(0)); 1027 } 1028 return DAG.UnrollVectorOp(Op.getNode()); 1029 } 1030 1031 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { 1032 EVT VT = Op.getValueType(); 1033 unsigned NumElems = VT.getVectorNumElements(); 1034 EVT EltVT = VT.getVectorElementType(); 1035 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); 1036 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1037 SDLoc dl(Op); 1038 SmallVector<SDValue, 8> Ops(NumElems); 1039 for (unsigned i = 0; i < NumElems; ++i) { 1040 SDValue LHSElem = DAG.getNode( 1041 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1042 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1043 SDValue RHSElem = DAG.getNode( 1044 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1045 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1046 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1047 TLI.getSetCCResultType(DAG.getDataLayout(), 1048 *DAG.getContext(), TmpEltVT), 1049 LHSElem, RHSElem, CC); 1050 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 1051 DAG.getConstant(APInt::getAllOnesValue 1052 (EltVT.getSizeInBits()), dl, EltVT), 1053 DAG.getConstant(0, dl, EltVT)); 1054 } 1055 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 1056 } 1057 1058 } 1059 1060 bool SelectionDAG::LegalizeVectors() { 1061 return VectorLegalizer(*this).Run(); 1062 } 1063