1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::LegalizeVectors method. 10 // 11 // The vector legalizer looks for vector operations which might need to be 12 // scalarized and legalizes them. This is a separate step from Legalize because 13 // scalarizing can introduce illegal types. For example, suppose we have an 14 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 16 // operation, which introduces nodes with the illegal type i64 which must be 17 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 18 // the operation must be unrolled, which introduces nodes with the illegal 19 // type i8 which must be promoted. 20 // 21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 22 // or operations that happen to take a vector which are custom-lowered; 23 // the legalization for such operations never produces nodes 24 // with illegal types, so it's okay to put off legalizing them until 25 // SelectionDAG::Legalize runs. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/SelectionDAGNodes.h" 36 #include "llvm/CodeGen/TargetLowering.h" 37 #include "llvm/CodeGen/ValueTypes.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Support/MachineValueType.h" 43 #include "llvm/Support/MathExtras.h" 44 #include <cassert> 45 #include <cstdint> 46 #include <iterator> 47 #include <utility> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "legalizevectorops" 52 53 namespace { 54 55 class VectorLegalizer { 56 SelectionDAG& DAG; 57 const TargetLowering &TLI; 58 bool Changed = false; // Keep track of whether anything changed 59 60 /// For nodes that are of legal width, and that have more than one use, this 61 /// map indicates what regularized operand to use. This allows us to avoid 62 /// legalizing the same thing more than once. 63 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 64 65 /// Adds a node to the translation cache. 66 void AddLegalizedOperand(SDValue From, SDValue To) { 67 LegalizedNodes.insert(std::make_pair(From, To)); 68 // If someone requests legalization of the new node, return itself. 69 if (From != To) 70 LegalizedNodes.insert(std::make_pair(To, To)); 71 } 72 73 /// Legalizes the given node. 74 SDValue LegalizeOp(SDValue Op); 75 76 /// Assuming the node is legal, "legalize" the results. 77 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); 78 79 /// Implements unrolling a VSETCC. 80 SDValue UnrollVSETCC(SDValue Op); 81 82 /// Implement expand-based legalization of vector operations. 83 /// 84 /// This is just a high-level routine to dispatch to specific code paths for 85 /// operations to legalize them. 86 SDValue Expand(SDValue Op); 87 88 /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if 89 /// FP_TO_SINT isn't legal. 90 SDValue ExpandFP_TO_UINT(SDValue Op); 91 92 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 93 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 94 SDValue ExpandUINT_TO_FLOAT(SDValue Op); 95 96 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 97 SDValue ExpandSEXTINREG(SDValue Op); 98 99 /// Implement expansion for ANY_EXTEND_VECTOR_INREG. 100 /// 101 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 102 /// type. The contents of the bits in the extended part of each element are 103 /// undef. 104 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op); 105 106 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG. 107 /// 108 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 109 /// type, then shifts left and arithmetic shifts right to introduce a sign 110 /// extension. 111 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op); 112 113 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG. 114 /// 115 /// Shuffles the low lanes of the operand into place and blends zeros into 116 /// the remaining lanes, finally bitcasting to the proper type. 117 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op); 118 119 /// Implement expand-based legalization of ABS vector operations. 120 /// If following expanding is legal/custom then do it: 121 /// (ABS x) --> (XOR (ADD x, (SRA x, sizeof(x)-1)), (SRA x, sizeof(x)-1)) 122 /// else unroll the operation. 123 SDValue ExpandABS(SDValue Op); 124 125 /// Expand bswap of vectors into a shuffle if legal. 126 SDValue ExpandBSWAP(SDValue Op); 127 128 /// Implement vselect in terms of XOR, AND, OR when blend is not 129 /// supported by the target. 130 SDValue ExpandVSELECT(SDValue Op); 131 SDValue ExpandSELECT(SDValue Op); 132 SDValue ExpandLoad(SDValue Op); 133 SDValue ExpandStore(SDValue Op); 134 SDValue ExpandFNEG(SDValue Op); 135 SDValue ExpandFSUB(SDValue Op); 136 SDValue ExpandBITREVERSE(SDValue Op); 137 SDValue ExpandCTPOP(SDValue Op); 138 SDValue ExpandCTLZ(SDValue Op); 139 SDValue ExpandCTTZ(SDValue Op); 140 SDValue ExpandFunnelShift(SDValue Op); 141 SDValue ExpandROT(SDValue Op); 142 SDValue ExpandFMINNUM_FMAXNUM(SDValue Op); 143 SDValue ExpandMULO(SDValue Op); 144 SDValue ExpandAddSubSat(SDValue Op); 145 SDValue ExpandFixedPointMul(SDValue Op); 146 SDValue ExpandStrictFPOp(SDValue Op); 147 148 /// Implements vector promotion. 149 /// 150 /// This is essentially just bitcasting the operands to a different type and 151 /// bitcasting the result back to the original type. 152 SDValue Promote(SDValue Op); 153 154 /// Implements [SU]INT_TO_FP vector promotion. 155 /// 156 /// This is a [zs]ext of the input operand to a larger integer type. 157 SDValue PromoteINT_TO_FP(SDValue Op); 158 159 /// Implements FP_TO_[SU]INT vector promotion of the result type. 160 /// 161 /// It is promoted to a larger integer type. The result is then 162 /// truncated back to the original type. 163 SDValue PromoteFP_TO_INT(SDValue Op); 164 165 public: 166 VectorLegalizer(SelectionDAG& dag) : 167 DAG(dag), TLI(dag.getTargetLoweringInfo()) {} 168 169 /// Begin legalizer the vector operations in the DAG. 170 bool Run(); 171 }; 172 173 } // end anonymous namespace 174 175 bool VectorLegalizer::Run() { 176 // Before we start legalizing vector nodes, check if there are any vectors. 177 bool HasVectors = false; 178 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 179 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 180 // Check if the values of the nodes contain vectors. We don't need to check 181 // the operands because we are going to check their values at some point. 182 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); 183 J != E; ++J) 184 HasVectors |= J->isVector(); 185 186 // If we found a vector node we can start the legalization. 187 if (HasVectors) 188 break; 189 } 190 191 // If this basic block has no vectors then no need to legalize vectors. 192 if (!HasVectors) 193 return false; 194 195 // The legalize process is inherently a bottom-up recursive process (users 196 // legalize their uses before themselves). Given infinite stack space, we 197 // could just start legalizing on the root and traverse the whole graph. In 198 // practice however, this causes us to run out of stack space on large basic 199 // blocks. To avoid this problem, compute an ordering of the nodes where each 200 // node is only legalized after all of its operands are legalized. 201 DAG.AssignTopologicalOrder(); 202 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 203 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 204 LegalizeOp(SDValue(&*I, 0)); 205 206 // Finally, it's possible the root changed. Get the new root. 207 SDValue OldRoot = DAG.getRoot(); 208 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 209 DAG.setRoot(LegalizedNodes[OldRoot]); 210 211 LegalizedNodes.clear(); 212 213 // Remove dead nodes now. 214 DAG.RemoveDeadNodes(); 215 216 return Changed; 217 } 218 219 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { 220 // Generic legalization: just pass the operand through. 221 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) 222 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 223 return Result.getValue(Op.getResNo()); 224 } 225 226 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 227 // Note that LegalizeOp may be reentered even from single-use nodes, which 228 // means that we always must cache transformed nodes. 229 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 230 if (I != LegalizedNodes.end()) return I->second; 231 232 SDNode* Node = Op.getNode(); 233 234 // Legalize the operands 235 SmallVector<SDValue, 8> Ops; 236 for (const SDValue &Op : Node->op_values()) 237 Ops.push_back(LegalizeOp(Op)); 238 239 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 240 Op.getResNo()); 241 242 if (Op.getOpcode() == ISD::LOAD) { 243 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 244 ISD::LoadExtType ExtType = LD->getExtensionType(); 245 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) { 246 LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: "; 247 Node->dump(&DAG)); 248 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), 249 LD->getMemoryVT())) { 250 default: llvm_unreachable("This action is not supported yet!"); 251 case TargetLowering::Legal: 252 return TranslateLegalizeResults(Op, Result); 253 case TargetLowering::Custom: 254 if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) { 255 assert(Lowered->getNumValues() == Op->getNumValues() && 256 "Unexpected number of results"); 257 if (Lowered != Result) { 258 // Make sure the new code is also legal. 259 Lowered = LegalizeOp(Lowered); 260 Changed = true; 261 } 262 return TranslateLegalizeResults(Op, Lowered); 263 } 264 LLVM_FALLTHROUGH; 265 case TargetLowering::Expand: 266 Changed = true; 267 return LegalizeOp(ExpandLoad(Op)); 268 } 269 } 270 } else if (Op.getOpcode() == ISD::STORE) { 271 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 272 EVT StVT = ST->getMemoryVT(); 273 MVT ValVT = ST->getValue().getSimpleValueType(); 274 if (StVT.isVector() && ST->isTruncatingStore()) { 275 LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: "; 276 Node->dump(&DAG)); 277 switch (TLI.getTruncStoreAction(ValVT, StVT)) { 278 default: llvm_unreachable("This action is not supported yet!"); 279 case TargetLowering::Legal: 280 return TranslateLegalizeResults(Op, Result); 281 case TargetLowering::Custom: { 282 SDValue Lowered = TLI.LowerOperation(Result, DAG); 283 if (Lowered != Result) { 284 // Make sure the new code is also legal. 285 Lowered = LegalizeOp(Lowered); 286 Changed = true; 287 } 288 return TranslateLegalizeResults(Op, Lowered); 289 } 290 case TargetLowering::Expand: 291 Changed = true; 292 return LegalizeOp(ExpandStore(Op)); 293 } 294 } 295 } 296 297 bool HasVectorValueOrOp = false; 298 for (auto J = Node->value_begin(), E = Node->value_end(); J != E; ++J) 299 HasVectorValueOrOp |= J->isVector(); 300 for (const SDValue &Op : Node->op_values()) 301 HasVectorValueOrOp |= Op.getValueType().isVector(); 302 303 if (!HasVectorValueOrOp) 304 return TranslateLegalizeResults(Op, Result); 305 306 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 307 switch (Op.getOpcode()) { 308 default: 309 return TranslateLegalizeResults(Op, Result); 310 case ISD::STRICT_FADD: 311 case ISD::STRICT_FSUB: 312 case ISD::STRICT_FMUL: 313 case ISD::STRICT_FDIV: 314 case ISD::STRICT_FREM: 315 case ISD::STRICT_FSQRT: 316 case ISD::STRICT_FMA: 317 case ISD::STRICT_FPOW: 318 case ISD::STRICT_FPOWI: 319 case ISD::STRICT_FSIN: 320 case ISD::STRICT_FCOS: 321 case ISD::STRICT_FEXP: 322 case ISD::STRICT_FEXP2: 323 case ISD::STRICT_FLOG: 324 case ISD::STRICT_FLOG10: 325 case ISD::STRICT_FLOG2: 326 case ISD::STRICT_FRINT: 327 case ISD::STRICT_FNEARBYINT: 328 case ISD::STRICT_FMAXNUM: 329 case ISD::STRICT_FMINNUM: 330 case ISD::STRICT_FCEIL: 331 case ISD::STRICT_FFLOOR: 332 case ISD::STRICT_FROUND: 333 case ISD::STRICT_FTRUNC: 334 // These pseudo-ops get legalized as if they were their non-strict 335 // equivalent. For instance, if ISD::FSQRT is legal then ISD::STRICT_FSQRT 336 // is also legal, but if ISD::FSQRT requires expansion then so does 337 // ISD::STRICT_FSQRT. 338 Action = TLI.getStrictFPOperationAction(Node->getOpcode(), 339 Node->getValueType(0)); 340 break; 341 case ISD::ADD: 342 case ISD::SUB: 343 case ISD::MUL: 344 case ISD::MULHS: 345 case ISD::MULHU: 346 case ISD::SDIV: 347 case ISD::UDIV: 348 case ISD::SREM: 349 case ISD::UREM: 350 case ISD::SDIVREM: 351 case ISD::UDIVREM: 352 case ISD::FADD: 353 case ISD::FSUB: 354 case ISD::FMUL: 355 case ISD::FDIV: 356 case ISD::FREM: 357 case ISD::AND: 358 case ISD::OR: 359 case ISD::XOR: 360 case ISD::SHL: 361 case ISD::SRA: 362 case ISD::SRL: 363 case ISD::FSHL: 364 case ISD::FSHR: 365 case ISD::ROTL: 366 case ISD::ROTR: 367 case ISD::ABS: 368 case ISD::BSWAP: 369 case ISD::BITREVERSE: 370 case ISD::CTLZ: 371 case ISD::CTTZ: 372 case ISD::CTLZ_ZERO_UNDEF: 373 case ISD::CTTZ_ZERO_UNDEF: 374 case ISD::CTPOP: 375 case ISD::SELECT: 376 case ISD::VSELECT: 377 case ISD::SELECT_CC: 378 case ISD::SETCC: 379 case ISD::ZERO_EXTEND: 380 case ISD::ANY_EXTEND: 381 case ISD::TRUNCATE: 382 case ISD::SIGN_EXTEND: 383 case ISD::FP_TO_SINT: 384 case ISD::FP_TO_UINT: 385 case ISD::FNEG: 386 case ISD::FABS: 387 case ISD::FMINNUM: 388 case ISD::FMAXNUM: 389 case ISD::FMINNUM_IEEE: 390 case ISD::FMAXNUM_IEEE: 391 case ISD::FMINIMUM: 392 case ISD::FMAXIMUM: 393 case ISD::FCOPYSIGN: 394 case ISD::FSQRT: 395 case ISD::FSIN: 396 case ISD::FCOS: 397 case ISD::FPOWI: 398 case ISD::FPOW: 399 case ISD::FLOG: 400 case ISD::FLOG2: 401 case ISD::FLOG10: 402 case ISD::FEXP: 403 case ISD::FEXP2: 404 case ISD::FCEIL: 405 case ISD::FTRUNC: 406 case ISD::FRINT: 407 case ISD::FNEARBYINT: 408 case ISD::FROUND: 409 case ISD::FFLOOR: 410 case ISD::FP_ROUND: 411 case ISD::FP_EXTEND: 412 case ISD::FMA: 413 case ISD::SIGN_EXTEND_INREG: 414 case ISD::ANY_EXTEND_VECTOR_INREG: 415 case ISD::SIGN_EXTEND_VECTOR_INREG: 416 case ISD::ZERO_EXTEND_VECTOR_INREG: 417 case ISD::SMIN: 418 case ISD::SMAX: 419 case ISD::UMIN: 420 case ISD::UMAX: 421 case ISD::SMUL_LOHI: 422 case ISD::UMUL_LOHI: 423 case ISD::SMULO: 424 case ISD::UMULO: 425 case ISD::FCANONICALIZE: 426 case ISD::SADDSAT: 427 case ISD::UADDSAT: 428 case ISD::SSUBSAT: 429 case ISD::USUBSAT: 430 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 431 break; 432 case ISD::SMULFIX: 433 case ISD::UMULFIX: { 434 unsigned Scale = Node->getConstantOperandVal(2); 435 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 436 Node->getValueType(0), Scale); 437 break; 438 } 439 case ISD::FP_ROUND_INREG: 440 Action = TLI.getOperationAction(Node->getOpcode(), 441 cast<VTSDNode>(Node->getOperand(1))->getVT()); 442 break; 443 case ISD::SINT_TO_FP: 444 case ISD::UINT_TO_FP: 445 case ISD::VECREDUCE_ADD: 446 case ISD::VECREDUCE_MUL: 447 case ISD::VECREDUCE_AND: 448 case ISD::VECREDUCE_OR: 449 case ISD::VECREDUCE_XOR: 450 case ISD::VECREDUCE_SMAX: 451 case ISD::VECREDUCE_SMIN: 452 case ISD::VECREDUCE_UMAX: 453 case ISD::VECREDUCE_UMIN: 454 case ISD::VECREDUCE_FADD: 455 case ISD::VECREDUCE_FMUL: 456 case ISD::VECREDUCE_FMAX: 457 case ISD::VECREDUCE_FMIN: 458 Action = TLI.getOperationAction(Node->getOpcode(), 459 Node->getOperand(0).getValueType()); 460 break; 461 } 462 463 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG)); 464 465 switch (Action) { 466 default: llvm_unreachable("This action is not supported yet!"); 467 case TargetLowering::Promote: 468 Result = Promote(Op); 469 Changed = true; 470 break; 471 case TargetLowering::Legal: 472 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 473 break; 474 case TargetLowering::Custom: { 475 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 476 if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) { 477 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 478 Result = Tmp1; 479 break; 480 } 481 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 482 LLVM_FALLTHROUGH; 483 } 484 case TargetLowering::Expand: 485 Result = Expand(Op); 486 } 487 488 // Make sure that the generated code is itself legal. 489 if (Result != Op) { 490 Result = LegalizeOp(Result); 491 Changed = true; 492 } 493 494 // Note that LegalizeOp may be reentered even from single-use nodes, which 495 // means that we always must cache transformed nodes. 496 AddLegalizedOperand(Op, Result); 497 return Result; 498 } 499 500 SDValue VectorLegalizer::Promote(SDValue Op) { 501 // For a few operations there is a specific concept for promotion based on 502 // the operand's type. 503 switch (Op.getOpcode()) { 504 case ISD::SINT_TO_FP: 505 case ISD::UINT_TO_FP: 506 // "Promote" the operation by extending the operand. 507 return PromoteINT_TO_FP(Op); 508 case ISD::FP_TO_UINT: 509 case ISD::FP_TO_SINT: 510 // Promote the operation by extending the operand. 511 return PromoteFP_TO_INT(Op); 512 } 513 514 // There are currently two cases of vector promotion: 515 // 1) Bitcasting a vector of integers to a different type to a vector of the 516 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 517 // 2) Extending a vector of floats to a vector of the same number of larger 518 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 519 MVT VT = Op.getSimpleValueType(); 520 assert(Op.getNode()->getNumValues() == 1 && 521 "Can't promote a vector with multiple results!"); 522 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 523 SDLoc dl(Op); 524 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 525 526 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 527 if (Op.getOperand(j).getValueType().isVector()) 528 if (Op.getOperand(j) 529 .getValueType() 530 .getVectorElementType() 531 .isFloatingPoint() && 532 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 533 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j)); 534 else 535 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); 536 else 537 Operands[j] = Op.getOperand(j); 538 } 539 540 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags()); 541 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 542 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 543 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 544 return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl)); 545 else 546 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 547 } 548 549 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) { 550 // INT_TO_FP operations may require the input operand be promoted even 551 // when the type is otherwise legal. 552 MVT VT = Op.getOperand(0).getSimpleValueType(); 553 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 554 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 555 "Vectors have different number of elements!"); 556 557 SDLoc dl(Op); 558 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 559 560 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : 561 ISD::SIGN_EXTEND; 562 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 563 if (Op.getOperand(j).getValueType().isVector()) 564 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j)); 565 else 566 Operands[j] = Op.getOperand(j); 567 } 568 569 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands); 570 } 571 572 // For FP_TO_INT we promote the result type to a vector type with wider 573 // elements and then truncate the result. This is different from the default 574 // PromoteVector which uses bitcast to promote thus assumning that the 575 // promoted vector type has the same overall size. 576 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op) { 577 MVT VT = Op.getSimpleValueType(); 578 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 579 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 580 "Vectors have different number of elements!"); 581 582 unsigned NewOpc = Op->getOpcode(); 583 // Change FP_TO_UINT to FP_TO_SINT if possible. 584 // TODO: Should we only do this if FP_TO_UINT itself isn't legal? 585 if (NewOpc == ISD::FP_TO_UINT && 586 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT)) 587 NewOpc = ISD::FP_TO_SINT; 588 589 SDLoc dl(Op); 590 SDValue Promoted = DAG.getNode(NewOpc, dl, NVT, Op.getOperand(0)); 591 592 // Assert that the converted value fits in the original type. If it doesn't 593 // (eg: because the value being converted is too big), then the result of the 594 // original operation was undefined anyway, so the assert is still correct. 595 Promoted = DAG.getNode(Op->getOpcode() == ISD::FP_TO_UINT ? ISD::AssertZext 596 : ISD::AssertSext, 597 dl, NVT, Promoted, 598 DAG.getValueType(VT.getScalarType())); 599 return DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted); 600 } 601 602 SDValue VectorLegalizer::ExpandLoad(SDValue Op) { 603 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 604 605 EVT SrcVT = LD->getMemoryVT(); 606 EVT SrcEltVT = SrcVT.getScalarType(); 607 unsigned NumElem = SrcVT.getVectorNumElements(); 608 609 SDValue NewChain; 610 SDValue Value; 611 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { 612 SDLoc dl(Op); 613 614 SmallVector<SDValue, 8> Vals; 615 SmallVector<SDValue, 8> LoadChains; 616 617 EVT DstEltVT = LD->getValueType(0).getScalarType(); 618 SDValue Chain = LD->getChain(); 619 SDValue BasePTR = LD->getBasePtr(); 620 ISD::LoadExtType ExtType = LD->getExtensionType(); 621 622 // When elements in a vector is not byte-addressable, we cannot directly 623 // load each element by advancing pointer, which could only address bytes. 624 // Instead, we load all significant words, mask bits off, and concatenate 625 // them to form each element. Finally, they are extended to destination 626 // scalar type to build the destination vector. 627 EVT WideVT = TLI.getPointerTy(DAG.getDataLayout()); 628 629 assert(WideVT.isRound() && 630 "Could not handle the sophisticated case when the widest integer is" 631 " not power of 2."); 632 assert(WideVT.bitsGE(SrcEltVT) && 633 "Type is not legalized?"); 634 635 unsigned WideBytes = WideVT.getStoreSize(); 636 unsigned Offset = 0; 637 unsigned RemainingBytes = SrcVT.getStoreSize(); 638 SmallVector<SDValue, 8> LoadVals; 639 while (RemainingBytes > 0) { 640 SDValue ScalarLoad; 641 unsigned LoadBytes = WideBytes; 642 643 if (RemainingBytes >= LoadBytes) { 644 ScalarLoad = 645 DAG.getLoad(WideVT, dl, Chain, BasePTR, 646 LD->getPointerInfo().getWithOffset(Offset), 647 MinAlign(LD->getAlignment(), Offset), 648 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 649 } else { 650 EVT LoadVT = WideVT; 651 while (RemainingBytes < LoadBytes) { 652 LoadBytes >>= 1; // Reduce the load size by half. 653 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); 654 } 655 ScalarLoad = 656 DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, 657 LD->getPointerInfo().getWithOffset(Offset), LoadVT, 658 MinAlign(LD->getAlignment(), Offset), 659 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 660 } 661 662 RemainingBytes -= LoadBytes; 663 Offset += LoadBytes; 664 665 BasePTR = DAG.getObjectPtrOffset(dl, BasePTR, LoadBytes); 666 667 LoadVals.push_back(ScalarLoad.getValue(0)); 668 LoadChains.push_back(ScalarLoad.getValue(1)); 669 } 670 671 unsigned BitOffset = 0; 672 unsigned WideIdx = 0; 673 unsigned WideBits = WideVT.getSizeInBits(); 674 675 // Extract bits, pack and extend/trunc them into destination type. 676 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 677 SDValue SrcEltBitMask = DAG.getConstant( 678 APInt::getLowBitsSet(WideBits, SrcEltBits), dl, WideVT); 679 680 for (unsigned Idx = 0; Idx != NumElem; ++Idx) { 681 assert(BitOffset < WideBits && "Unexpected offset!"); 682 683 SDValue ShAmt = DAG.getConstant( 684 BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 685 SDValue Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); 686 687 BitOffset += SrcEltBits; 688 if (BitOffset >= WideBits) { 689 WideIdx++; 690 BitOffset -= WideBits; 691 if (BitOffset > 0) { 692 ShAmt = DAG.getConstant( 693 SrcEltBits - BitOffset, dl, 694 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 695 SDValue Hi = 696 DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); 697 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); 698 } 699 } 700 701 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); 702 703 switch (ExtType) { 704 default: llvm_unreachable("Unknown extended-load op!"); 705 case ISD::EXTLOAD: 706 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); 707 break; 708 case ISD::ZEXTLOAD: 709 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); 710 break; 711 case ISD::SEXTLOAD: 712 ShAmt = 713 DAG.getConstant(WideBits - SrcEltBits, dl, 714 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 715 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); 716 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); 717 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); 718 break; 719 } 720 Vals.push_back(Lo); 721 } 722 723 NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 724 Value = DAG.getBuildVector(Op.getNode()->getValueType(0), dl, Vals); 725 } else { 726 SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG); 727 // Skip past MERGE_VALUE node if known. 728 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) { 729 NewChain = Scalarized.getOperand(1); 730 Value = Scalarized.getOperand(0); 731 } else { 732 NewChain = Scalarized.getValue(1); 733 Value = Scalarized.getValue(0); 734 } 735 } 736 737 AddLegalizedOperand(Op.getValue(0), Value); 738 AddLegalizedOperand(Op.getValue(1), NewChain); 739 740 return (Op.getResNo() ? NewChain : Value); 741 } 742 743 SDValue VectorLegalizer::ExpandStore(SDValue Op) { 744 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 745 SDValue TF = TLI.scalarizeVectorStore(ST, DAG); 746 AddLegalizedOperand(Op, TF); 747 return TF; 748 } 749 750 SDValue VectorLegalizer::Expand(SDValue Op) { 751 switch (Op->getOpcode()) { 752 case ISD::SIGN_EXTEND_INREG: 753 return ExpandSEXTINREG(Op); 754 case ISD::ANY_EXTEND_VECTOR_INREG: 755 return ExpandANY_EXTEND_VECTOR_INREG(Op); 756 case ISD::SIGN_EXTEND_VECTOR_INREG: 757 return ExpandSIGN_EXTEND_VECTOR_INREG(Op); 758 case ISD::ZERO_EXTEND_VECTOR_INREG: 759 return ExpandZERO_EXTEND_VECTOR_INREG(Op); 760 case ISD::BSWAP: 761 return ExpandBSWAP(Op); 762 case ISD::VSELECT: 763 return ExpandVSELECT(Op); 764 case ISD::SELECT: 765 return ExpandSELECT(Op); 766 case ISD::FP_TO_UINT: 767 return ExpandFP_TO_UINT(Op); 768 case ISD::UINT_TO_FP: 769 return ExpandUINT_TO_FLOAT(Op); 770 case ISD::FNEG: 771 return ExpandFNEG(Op); 772 case ISD::FSUB: 773 return ExpandFSUB(Op); 774 case ISD::SETCC: 775 return UnrollVSETCC(Op); 776 case ISD::ABS: 777 return ExpandABS(Op); 778 case ISD::BITREVERSE: 779 return ExpandBITREVERSE(Op); 780 case ISD::CTPOP: 781 return ExpandCTPOP(Op); 782 case ISD::CTLZ: 783 case ISD::CTLZ_ZERO_UNDEF: 784 return ExpandCTLZ(Op); 785 case ISD::CTTZ: 786 case ISD::CTTZ_ZERO_UNDEF: 787 return ExpandCTTZ(Op); 788 case ISD::FSHL: 789 case ISD::FSHR: 790 return ExpandFunnelShift(Op); 791 case ISD::ROTL: 792 case ISD::ROTR: 793 return ExpandROT(Op); 794 case ISD::FMINNUM: 795 case ISD::FMAXNUM: 796 return ExpandFMINNUM_FMAXNUM(Op); 797 case ISD::UMULO: 798 case ISD::SMULO: 799 return ExpandMULO(Op); 800 case ISD::USUBSAT: 801 case ISD::SSUBSAT: 802 case ISD::UADDSAT: 803 case ISD::SADDSAT: 804 return ExpandAddSubSat(Op); 805 case ISD::SMULFIX: 806 case ISD::UMULFIX: 807 return ExpandFixedPointMul(Op); 808 case ISD::STRICT_FADD: 809 case ISD::STRICT_FSUB: 810 case ISD::STRICT_FMUL: 811 case ISD::STRICT_FDIV: 812 case ISD::STRICT_FREM: 813 case ISD::STRICT_FSQRT: 814 case ISD::STRICT_FMA: 815 case ISD::STRICT_FPOW: 816 case ISD::STRICT_FPOWI: 817 case ISD::STRICT_FSIN: 818 case ISD::STRICT_FCOS: 819 case ISD::STRICT_FEXP: 820 case ISD::STRICT_FEXP2: 821 case ISD::STRICT_FLOG: 822 case ISD::STRICT_FLOG10: 823 case ISD::STRICT_FLOG2: 824 case ISD::STRICT_FRINT: 825 case ISD::STRICT_FNEARBYINT: 826 case ISD::STRICT_FMAXNUM: 827 case ISD::STRICT_FMINNUM: 828 case ISD::STRICT_FCEIL: 829 case ISD::STRICT_FFLOOR: 830 case ISD::STRICT_FROUND: 831 case ISD::STRICT_FTRUNC: 832 return ExpandStrictFPOp(Op); 833 case ISD::VECREDUCE_ADD: 834 case ISD::VECREDUCE_MUL: 835 case ISD::VECREDUCE_AND: 836 case ISD::VECREDUCE_OR: 837 case ISD::VECREDUCE_XOR: 838 case ISD::VECREDUCE_SMAX: 839 case ISD::VECREDUCE_SMIN: 840 case ISD::VECREDUCE_UMAX: 841 case ISD::VECREDUCE_UMIN: 842 case ISD::VECREDUCE_FADD: 843 case ISD::VECREDUCE_FMUL: 844 case ISD::VECREDUCE_FMAX: 845 case ISD::VECREDUCE_FMIN: 846 return TLI.expandVecReduce(Op.getNode(), DAG); 847 default: 848 return DAG.UnrollVectorOp(Op.getNode()); 849 } 850 } 851 852 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) { 853 // Lower a select instruction where the condition is a scalar and the 854 // operands are vectors. Lower this select to VSELECT and implement it 855 // using XOR AND OR. The selector bit is broadcasted. 856 EVT VT = Op.getValueType(); 857 SDLoc DL(Op); 858 859 SDValue Mask = Op.getOperand(0); 860 SDValue Op1 = Op.getOperand(1); 861 SDValue Op2 = Op.getOperand(2); 862 863 assert(VT.isVector() && !Mask.getValueType().isVector() 864 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 865 866 // If we can't even use the basic vector operations of 867 // AND,OR,XOR, we will have to scalarize the op. 868 // Notice that the operation may be 'promoted' which means that it is 869 // 'bitcasted' to another type which is handled. 870 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 871 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 872 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 873 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 874 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 875 return DAG.UnrollVectorOp(Op.getNode()); 876 877 // Generate a mask operand. 878 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 879 880 // What is the size of each element in the vector mask. 881 EVT BitTy = MaskTy.getScalarType(); 882 883 Mask = DAG.getSelect(DL, BitTy, Mask, 884 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, 885 BitTy), 886 DAG.getConstant(0, DL, BitTy)); 887 888 // Broadcast the mask so that the entire vector is all-one or all zero. 889 Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask); 890 891 // Bitcast the operands to be the same type as the mask. 892 // This is needed when we select between FP types because 893 // the mask is a vector of integers. 894 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 895 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 896 897 SDValue AllOnes = DAG.getConstant( 898 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy); 899 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 900 901 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 902 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 903 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 904 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 905 } 906 907 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) { 908 EVT VT = Op.getValueType(); 909 910 // Make sure that the SRA and SHL instructions are available. 911 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 912 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 913 return DAG.UnrollVectorOp(Op.getNode()); 914 915 SDLoc DL(Op); 916 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT(); 917 918 unsigned BW = VT.getScalarSizeInBits(); 919 unsigned OrigBW = OrigTy.getScalarSizeInBits(); 920 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 921 922 Op = Op.getOperand(0); 923 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz); 924 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 925 } 926 927 // Generically expand a vector anyext in register to a shuffle of the relevant 928 // lanes into the appropriate locations, with other lanes left undef. 929 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) { 930 SDLoc DL(Op); 931 EVT VT = Op.getValueType(); 932 int NumElements = VT.getVectorNumElements(); 933 SDValue Src = Op.getOperand(0); 934 EVT SrcVT = Src.getValueType(); 935 int NumSrcElements = SrcVT.getVectorNumElements(); 936 937 // Build a base mask of undef shuffles. 938 SmallVector<int, 16> ShuffleMask; 939 ShuffleMask.resize(NumSrcElements, -1); 940 941 // Place the extended lanes into the correct locations. 942 int ExtLaneScale = NumSrcElements / NumElements; 943 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 944 for (int i = 0; i < NumElements; ++i) 945 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 946 947 return DAG.getNode( 948 ISD::BITCAST, DL, VT, 949 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 950 } 951 952 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) { 953 SDLoc DL(Op); 954 EVT VT = Op.getValueType(); 955 SDValue Src = Op.getOperand(0); 956 EVT SrcVT = Src.getValueType(); 957 958 // First build an any-extend node which can be legalized above when we 959 // recurse through it. 960 Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src); 961 962 // Now we need sign extend. Do this by shifting the elements. Even if these 963 // aren't legal operations, they have a better chance of being legalized 964 // without full scalarization than the sign extension does. 965 unsigned EltWidth = VT.getScalarSizeInBits(); 966 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); 967 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 968 return DAG.getNode(ISD::SRA, DL, VT, 969 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 970 ShiftAmount); 971 } 972 973 // Generically expand a vector zext in register to a shuffle of the relevant 974 // lanes into the appropriate locations, a blend of zero into the high bits, 975 // and a bitcast to the wider element type. 976 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) { 977 SDLoc DL(Op); 978 EVT VT = Op.getValueType(); 979 int NumElements = VT.getVectorNumElements(); 980 SDValue Src = Op.getOperand(0); 981 EVT SrcVT = Src.getValueType(); 982 int NumSrcElements = SrcVT.getVectorNumElements(); 983 984 // Build up a zero vector to blend into this one. 985 SDValue Zero = DAG.getConstant(0, DL, SrcVT); 986 987 // Shuffle the incoming lanes into the correct position, and pull all other 988 // lanes from the zero vector. 989 SmallVector<int, 16> ShuffleMask; 990 ShuffleMask.reserve(NumSrcElements); 991 for (int i = 0; i < NumSrcElements; ++i) 992 ShuffleMask.push_back(i); 993 994 int ExtLaneScale = NumSrcElements / NumElements; 995 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 996 for (int i = 0; i < NumElements; ++i) 997 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 998 999 return DAG.getNode(ISD::BITCAST, DL, VT, 1000 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 1001 } 1002 1003 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) { 1004 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 1005 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 1006 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 1007 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 1008 } 1009 1010 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) { 1011 EVT VT = Op.getValueType(); 1012 1013 // Generate a byte wise shuffle mask for the BSWAP. 1014 SmallVector<int, 16> ShuffleMask; 1015 createBSWAPShuffleMask(VT, ShuffleMask); 1016 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 1017 1018 // Only emit a shuffle if the mask is legal. 1019 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) 1020 return DAG.UnrollVectorOp(Op.getNode()); 1021 1022 SDLoc DL(Op); 1023 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 1024 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); 1025 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 1026 } 1027 1028 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) { 1029 EVT VT = Op.getValueType(); 1030 1031 // If we have the scalar operation, it's probably cheaper to unroll it. 1032 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) 1033 return DAG.UnrollVectorOp(Op.getNode()); 1034 1035 // If the vector element width is a whole number of bytes, test if its legal 1036 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte 1037 // vector. This greatly reduces the number of bit shifts necessary. 1038 unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); 1039 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { 1040 SmallVector<int, 16> BSWAPMask; 1041 createBSWAPShuffleMask(VT, BSWAPMask); 1042 1043 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); 1044 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && 1045 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || 1046 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && 1047 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && 1048 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && 1049 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { 1050 SDLoc DL(Op); 1051 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 1052 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 1053 BSWAPMask); 1054 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); 1055 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 1056 } 1057 } 1058 1059 // If we have the appropriate vector bit operations, it is better to use them 1060 // than unrolling and expanding each component. 1061 if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) || 1062 !TLI.isOperationLegalOrCustom(ISD::SRL, VT) || 1063 !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 1064 !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) 1065 return DAG.UnrollVectorOp(Op.getNode()); 1066 1067 // Let LegalizeDAG handle this later. 1068 return Op; 1069 } 1070 1071 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { 1072 // Implement VSELECT in terms of XOR, AND, OR 1073 // on platforms which do not support blend natively. 1074 SDLoc DL(Op); 1075 1076 SDValue Mask = Op.getOperand(0); 1077 SDValue Op1 = Op.getOperand(1); 1078 SDValue Op2 = Op.getOperand(2); 1079 1080 EVT VT = Mask.getValueType(); 1081 1082 // If we can't even use the basic vector operations of 1083 // AND,OR,XOR, we will have to scalarize the op. 1084 // Notice that the operation may be 'promoted' which means that it is 1085 // 'bitcasted' to another type which is handled. 1086 // This operation also isn't safe with AND, OR, XOR when the boolean 1087 // type is 0/1 as we need an all ones vector constant to mask with. 1088 // FIXME: Sign extend 1 to all ones if thats legal on the target. 1089 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 1090 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 1091 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 1092 TLI.getBooleanContents(Op1.getValueType()) != 1093 TargetLowering::ZeroOrNegativeOneBooleanContent) 1094 return DAG.UnrollVectorOp(Op.getNode()); 1095 1096 // If the mask and the type are different sizes, unroll the vector op. This 1097 // can occur when getSetCCResultType returns something that is different in 1098 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 1099 if (VT.getSizeInBits() != Op1.getValueSizeInBits()) 1100 return DAG.UnrollVectorOp(Op.getNode()); 1101 1102 // Bitcast the operands to be the same type as the mask. 1103 // This is needed when we select between FP types because 1104 // the mask is a vector of integers. 1105 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 1106 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 1107 1108 SDValue AllOnes = DAG.getConstant( 1109 APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT); 1110 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 1111 1112 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 1113 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 1114 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 1115 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 1116 } 1117 1118 SDValue VectorLegalizer::ExpandABS(SDValue Op) { 1119 // Attempt to expand using TargetLowering. 1120 SDValue Result; 1121 if (TLI.expandABS(Op.getNode(), Result, DAG)) 1122 return Result; 1123 1124 // Otherwise go ahead and unroll. 1125 return DAG.UnrollVectorOp(Op.getNode()); 1126 } 1127 1128 SDValue VectorLegalizer::ExpandFP_TO_UINT(SDValue Op) { 1129 // Attempt to expand using TargetLowering. 1130 SDValue Result; 1131 if (TLI.expandFP_TO_UINT(Op.getNode(), Result, DAG)) 1132 return Result; 1133 1134 // Otherwise go ahead and unroll. 1135 return DAG.UnrollVectorOp(Op.getNode()); 1136 } 1137 1138 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { 1139 EVT VT = Op.getOperand(0).getValueType(); 1140 SDLoc DL(Op); 1141 1142 // Attempt to expand using TargetLowering. 1143 SDValue Result; 1144 if (TLI.expandUINT_TO_FP(Op.getNode(), Result, DAG)) 1145 return Result; 1146 1147 // Make sure that the SINT_TO_FP and SRL instructions are available. 1148 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand || 1149 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) 1150 return DAG.UnrollVectorOp(Op.getNode()); 1151 1152 unsigned BW = VT.getScalarSizeInBits(); 1153 assert((BW == 64 || BW == 32) && 1154 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 1155 1156 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT); 1157 1158 // Constants to clear the upper part of the word. 1159 // Notice that we can also use SHL+SHR, but using a constant is slightly 1160 // faster on x86. 1161 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; 1162 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 1163 1164 // Two to the power of half-word-size. 1165 SDValue TWOHW = DAG.getConstantFP(1ULL << (BW / 2), DL, Op.getValueType()); 1166 1167 // Clear upper part of LO, lower HI 1168 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); 1169 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); 1170 1171 // Convert hi and lo to floats 1172 // Convert the hi part back to the upper values 1173 // TODO: Can any fast-math-flags be set on these nodes? 1174 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); 1175 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); 1176 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); 1177 1178 // Add the two halves 1179 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); 1180 } 1181 1182 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { 1183 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { 1184 SDLoc DL(Op); 1185 SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType()); 1186 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. 1187 return DAG.getNode(ISD::FSUB, DL, Op.getValueType(), 1188 Zero, Op.getOperand(0)); 1189 } 1190 return DAG.UnrollVectorOp(Op.getNode()); 1191 } 1192 1193 SDValue VectorLegalizer::ExpandFSUB(SDValue Op) { 1194 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal, 1195 // we can defer this to operation legalization where it will be lowered as 1196 // a+(-b). 1197 EVT VT = Op.getValueType(); 1198 if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && 1199 TLI.isOperationLegalOrCustom(ISD::FADD, VT)) 1200 return Op; // Defer to LegalizeDAG 1201 1202 return DAG.UnrollVectorOp(Op.getNode()); 1203 } 1204 1205 SDValue VectorLegalizer::ExpandCTPOP(SDValue Op) { 1206 SDValue Result; 1207 if (TLI.expandCTPOP(Op.getNode(), Result, DAG)) 1208 return Result; 1209 1210 return DAG.UnrollVectorOp(Op.getNode()); 1211 } 1212 1213 SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) { 1214 SDValue Result; 1215 if (TLI.expandCTLZ(Op.getNode(), Result, DAG)) 1216 return Result; 1217 1218 return DAG.UnrollVectorOp(Op.getNode()); 1219 } 1220 1221 SDValue VectorLegalizer::ExpandCTTZ(SDValue Op) { 1222 SDValue Result; 1223 if (TLI.expandCTTZ(Op.getNode(), Result, DAG)) 1224 return Result; 1225 1226 return DAG.UnrollVectorOp(Op.getNode()); 1227 } 1228 1229 SDValue VectorLegalizer::ExpandFunnelShift(SDValue Op) { 1230 SDValue Result; 1231 if (TLI.expandFunnelShift(Op.getNode(), Result, DAG)) 1232 return Result; 1233 1234 return DAG.UnrollVectorOp(Op.getNode()); 1235 } 1236 1237 SDValue VectorLegalizer::ExpandROT(SDValue Op) { 1238 SDValue Result; 1239 if (TLI.expandROT(Op.getNode(), Result, DAG)) 1240 return Result; 1241 1242 return DAG.UnrollVectorOp(Op.getNode()); 1243 } 1244 1245 SDValue VectorLegalizer::ExpandFMINNUM_FMAXNUM(SDValue Op) { 1246 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Op.getNode(), DAG)) 1247 return Expanded; 1248 return DAG.UnrollVectorOp(Op.getNode()); 1249 } 1250 1251 SDValue VectorLegalizer::ExpandMULO(SDValue Op) { 1252 SDValue Result, Overflow; 1253 if (!TLI.expandMULO(Op.getNode(), Result, Overflow, DAG)) 1254 std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Op.getNode()); 1255 1256 AddLegalizedOperand(Op.getValue(0), Result); 1257 AddLegalizedOperand(Op.getValue(1), Overflow); 1258 return Op.getResNo() ? Overflow : Result; 1259 } 1260 1261 SDValue VectorLegalizer::ExpandAddSubSat(SDValue Op) { 1262 if (SDValue Expanded = TLI.expandAddSubSat(Op.getNode(), DAG)) 1263 return Expanded; 1264 return DAG.UnrollVectorOp(Op.getNode()); 1265 } 1266 1267 SDValue VectorLegalizer::ExpandFixedPointMul(SDValue Op) { 1268 if (SDValue Expanded = TLI.expandFixedPointMul(Op.getNode(), DAG)) 1269 return Expanded; 1270 return DAG.UnrollVectorOp(Op.getNode()); 1271 } 1272 1273 SDValue VectorLegalizer::ExpandStrictFPOp(SDValue Op) { 1274 EVT VT = Op.getValueType(); 1275 EVT EltVT = VT.getVectorElementType(); 1276 unsigned NumElems = VT.getVectorNumElements(); 1277 unsigned NumOpers = Op.getNumOperands(); 1278 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1279 EVT ValueVTs[] = {EltVT, MVT::Other}; 1280 SDValue Chain = Op.getOperand(0); 1281 SDLoc dl(Op); 1282 1283 SmallVector<SDValue, 32> OpValues; 1284 SmallVector<SDValue, 32> OpChains; 1285 for (unsigned i = 0; i < NumElems; ++i) { 1286 SmallVector<SDValue, 4> Opers; 1287 SDValue Idx = DAG.getConstant(i, dl, 1288 TLI.getVectorIdxTy(DAG.getDataLayout())); 1289 1290 // The Chain is the first operand. 1291 Opers.push_back(Chain); 1292 1293 // Now process the remaining operands. 1294 for (unsigned j = 1; j < NumOpers; ++j) { 1295 SDValue Oper = Op.getOperand(j); 1296 EVT OperVT = Oper.getValueType(); 1297 1298 if (OperVT.isVector()) 1299 Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 1300 EltVT, Oper, Idx); 1301 1302 Opers.push_back(Oper); 1303 } 1304 1305 SDValue ScalarOp = DAG.getNode(Op->getOpcode(), dl, ValueVTs, Opers); 1306 1307 OpValues.push_back(ScalarOp.getValue(0)); 1308 OpChains.push_back(ScalarOp.getValue(1)); 1309 } 1310 1311 SDValue Result = DAG.getBuildVector(VT, dl, OpValues); 1312 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains); 1313 1314 AddLegalizedOperand(Op.getValue(0), Result); 1315 AddLegalizedOperand(Op.getValue(1), NewChain); 1316 1317 return Op.getResNo() ? NewChain : Result; 1318 } 1319 1320 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { 1321 EVT VT = Op.getValueType(); 1322 unsigned NumElems = VT.getVectorNumElements(); 1323 EVT EltVT = VT.getVectorElementType(); 1324 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); 1325 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1326 SDLoc dl(Op); 1327 SmallVector<SDValue, 8> Ops(NumElems); 1328 for (unsigned i = 0; i < NumElems; ++i) { 1329 SDValue LHSElem = DAG.getNode( 1330 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1331 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1332 SDValue RHSElem = DAG.getNode( 1333 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1334 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1335 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1336 TLI.getSetCCResultType(DAG.getDataLayout(), 1337 *DAG.getContext(), TmpEltVT), 1338 LHSElem, RHSElem, CC); 1339 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 1340 DAG.getConstant(APInt::getAllOnesValue 1341 (EltVT.getSizeInBits()), dl, EltVT), 1342 DAG.getConstant(0, dl, EltVT)); 1343 } 1344 return DAG.getBuildVector(VT, dl, Ops); 1345 } 1346 1347 bool SelectionDAG::LegalizeVectors() { 1348 return VectorLegalizer(*this).Run(); 1349 } 1350