1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::LegalizeVectors method. 10 // 11 // The vector legalizer looks for vector operations which might need to be 12 // scalarized and legalizes them. This is a separate step from Legalize because 13 // scalarizing can introduce illegal types. For example, suppose we have an 14 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 16 // operation, which introduces nodes with the illegal type i64 which must be 17 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 18 // the operation must be unrolled, which introduces nodes with the illegal 19 // type i8 which must be promoted. 20 // 21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 22 // or operations that happen to take a vector which are custom-lowered; 23 // the legalization for such operations never produces nodes 24 // with illegal types, so it's okay to put off legalizing them until 25 // SelectionDAG::Legalize runs. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/SelectionDAGNodes.h" 36 #include "llvm/CodeGen/TargetLowering.h" 37 #include "llvm/CodeGen/ValueTypes.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Support/MachineValueType.h" 43 #include "llvm/Support/MathExtras.h" 44 #include <cassert> 45 #include <cstdint> 46 #include <iterator> 47 #include <utility> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "legalizevectorops" 52 53 namespace { 54 55 class VectorLegalizer { 56 SelectionDAG& DAG; 57 const TargetLowering &TLI; 58 bool Changed = false; // Keep track of whether anything changed 59 60 /// For nodes that are of legal width, and that have more than one use, this 61 /// map indicates what regularized operand to use. This allows us to avoid 62 /// legalizing the same thing more than once. 63 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 64 65 /// Adds a node to the translation cache. 66 void AddLegalizedOperand(SDValue From, SDValue To) { 67 LegalizedNodes.insert(std::make_pair(From, To)); 68 // If someone requests legalization of the new node, return itself. 69 if (From != To) 70 LegalizedNodes.insert(std::make_pair(To, To)); 71 } 72 73 /// Legalizes the given node. 74 SDValue LegalizeOp(SDValue Op); 75 76 /// Assuming the node is legal, "legalize" the results. 77 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); 78 79 /// Implements unrolling a VSETCC. 80 SDValue UnrollVSETCC(SDValue Op); 81 82 /// Implement expand-based legalization of vector operations. 83 /// 84 /// This is just a high-level routine to dispatch to specific code paths for 85 /// operations to legalize them. 86 SDValue Expand(SDValue Op); 87 88 /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if 89 /// FP_TO_SINT isn't legal. 90 SDValue ExpandFP_TO_UINT(SDValue Op); 91 92 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 93 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 94 SDValue ExpandUINT_TO_FLOAT(SDValue Op); 95 96 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 97 SDValue ExpandSEXTINREG(SDValue Op); 98 99 /// Implement expansion for ANY_EXTEND_VECTOR_INREG. 100 /// 101 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 102 /// type. The contents of the bits in the extended part of each element are 103 /// undef. 104 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op); 105 106 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG. 107 /// 108 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 109 /// type, then shifts left and arithmetic shifts right to introduce a sign 110 /// extension. 111 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op); 112 113 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG. 114 /// 115 /// Shuffles the low lanes of the operand into place and blends zeros into 116 /// the remaining lanes, finally bitcasting to the proper type. 117 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op); 118 119 /// Implement expand-based legalization of ABS vector operations. 120 /// If following expanding is legal/custom then do it: 121 /// (ABS x) --> (XOR (ADD x, (SRA x, sizeof(x)-1)), (SRA x, sizeof(x)-1)) 122 /// else unroll the operation. 123 SDValue ExpandABS(SDValue Op); 124 125 /// Expand bswap of vectors into a shuffle if legal. 126 SDValue ExpandBSWAP(SDValue Op); 127 128 /// Implement vselect in terms of XOR, AND, OR when blend is not 129 /// supported by the target. 130 SDValue ExpandVSELECT(SDValue Op); 131 SDValue ExpandSELECT(SDValue Op); 132 SDValue ExpandLoad(SDValue Op); 133 SDValue ExpandStore(SDValue Op); 134 SDValue ExpandFNEG(SDValue Op); 135 SDValue ExpandFSUB(SDValue Op); 136 SDValue ExpandBITREVERSE(SDValue Op); 137 SDValue ExpandCTPOP(SDValue Op); 138 SDValue ExpandCTLZ(SDValue Op); 139 SDValue ExpandCTTZ(SDValue Op); 140 SDValue ExpandFunnelShift(SDValue Op); 141 SDValue ExpandROT(SDValue Op); 142 SDValue ExpandFMINNUM_FMAXNUM(SDValue Op); 143 SDValue ExpandUADDSUBO(SDValue Op); 144 SDValue ExpandSADDSUBO(SDValue Op); 145 SDValue ExpandMULO(SDValue Op); 146 SDValue ExpandAddSubSat(SDValue Op); 147 SDValue ExpandFixedPointMul(SDValue Op); 148 SDValue ExpandStrictFPOp(SDValue Op); 149 150 /// Implements vector promotion. 151 /// 152 /// This is essentially just bitcasting the operands to a different type and 153 /// bitcasting the result back to the original type. 154 SDValue Promote(SDValue Op); 155 156 /// Implements [SU]INT_TO_FP vector promotion. 157 /// 158 /// This is a [zs]ext of the input operand to a larger integer type. 159 SDValue PromoteINT_TO_FP(SDValue Op); 160 161 /// Implements FP_TO_[SU]INT vector promotion of the result type. 162 /// 163 /// It is promoted to a larger integer type. The result is then 164 /// truncated back to the original type. 165 SDValue PromoteFP_TO_INT(SDValue Op); 166 167 public: 168 VectorLegalizer(SelectionDAG& dag) : 169 DAG(dag), TLI(dag.getTargetLoweringInfo()) {} 170 171 /// Begin legalizer the vector operations in the DAG. 172 bool Run(); 173 }; 174 175 } // end anonymous namespace 176 177 bool VectorLegalizer::Run() { 178 // Before we start legalizing vector nodes, check if there are any vectors. 179 bool HasVectors = false; 180 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 181 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 182 // Check if the values of the nodes contain vectors. We don't need to check 183 // the operands because we are going to check their values at some point. 184 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); 185 J != E; ++J) 186 HasVectors |= J->isVector(); 187 188 // If we found a vector node we can start the legalization. 189 if (HasVectors) 190 break; 191 } 192 193 // If this basic block has no vectors then no need to legalize vectors. 194 if (!HasVectors) 195 return false; 196 197 // The legalize process is inherently a bottom-up recursive process (users 198 // legalize their uses before themselves). Given infinite stack space, we 199 // could just start legalizing on the root and traverse the whole graph. In 200 // practice however, this causes us to run out of stack space on large basic 201 // blocks. To avoid this problem, compute an ordering of the nodes where each 202 // node is only legalized after all of its operands are legalized. 203 DAG.AssignTopologicalOrder(); 204 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 205 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 206 LegalizeOp(SDValue(&*I, 0)); 207 208 // Finally, it's possible the root changed. Get the new root. 209 SDValue OldRoot = DAG.getRoot(); 210 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 211 DAG.setRoot(LegalizedNodes[OldRoot]); 212 213 LegalizedNodes.clear(); 214 215 // Remove dead nodes now. 216 DAG.RemoveDeadNodes(); 217 218 return Changed; 219 } 220 221 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { 222 // Generic legalization: just pass the operand through. 223 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) 224 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 225 return Result.getValue(Op.getResNo()); 226 } 227 228 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 229 // Note that LegalizeOp may be reentered even from single-use nodes, which 230 // means that we always must cache transformed nodes. 231 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 232 if (I != LegalizedNodes.end()) return I->second; 233 234 SDNode* Node = Op.getNode(); 235 236 // Legalize the operands 237 SmallVector<SDValue, 8> Ops; 238 for (const SDValue &Op : Node->op_values()) 239 Ops.push_back(LegalizeOp(Op)); 240 241 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 242 Op.getResNo()); 243 244 if (Op.getOpcode() == ISD::LOAD) { 245 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 246 ISD::LoadExtType ExtType = LD->getExtensionType(); 247 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) { 248 LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: "; 249 Node->dump(&DAG)); 250 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), 251 LD->getMemoryVT())) { 252 default: llvm_unreachable("This action is not supported yet!"); 253 case TargetLowering::Legal: 254 return TranslateLegalizeResults(Op, Result); 255 case TargetLowering::Custom: 256 if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) { 257 assert(Lowered->getNumValues() == Op->getNumValues() && 258 "Unexpected number of results"); 259 if (Lowered != Result) { 260 // Make sure the new code is also legal. 261 Lowered = LegalizeOp(Lowered); 262 Changed = true; 263 } 264 return TranslateLegalizeResults(Op, Lowered); 265 } 266 LLVM_FALLTHROUGH; 267 case TargetLowering::Expand: 268 Changed = true; 269 return ExpandLoad(Op); 270 } 271 } 272 } else if (Op.getOpcode() == ISD::STORE) { 273 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 274 EVT StVT = ST->getMemoryVT(); 275 MVT ValVT = ST->getValue().getSimpleValueType(); 276 if (StVT.isVector() && ST->isTruncatingStore()) { 277 LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: "; 278 Node->dump(&DAG)); 279 switch (TLI.getTruncStoreAction(ValVT, StVT)) { 280 default: llvm_unreachable("This action is not supported yet!"); 281 case TargetLowering::Legal: 282 return TranslateLegalizeResults(Op, Result); 283 case TargetLowering::Custom: { 284 SDValue Lowered = TLI.LowerOperation(Result, DAG); 285 if (Lowered != Result) { 286 // Make sure the new code is also legal. 287 Lowered = LegalizeOp(Lowered); 288 Changed = true; 289 } 290 return TranslateLegalizeResults(Op, Lowered); 291 } 292 case TargetLowering::Expand: 293 Changed = true; 294 return ExpandStore(Op); 295 } 296 } 297 } 298 299 bool HasVectorValueOrOp = false; 300 for (auto J = Node->value_begin(), E = Node->value_end(); J != E; ++J) 301 HasVectorValueOrOp |= J->isVector(); 302 for (const SDValue &Op : Node->op_values()) 303 HasVectorValueOrOp |= Op.getValueType().isVector(); 304 305 if (!HasVectorValueOrOp) 306 return TranslateLegalizeResults(Op, Result); 307 308 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 309 switch (Op.getOpcode()) { 310 default: 311 return TranslateLegalizeResults(Op, Result); 312 case ISD::STRICT_FADD: 313 case ISD::STRICT_FSUB: 314 case ISD::STRICT_FMUL: 315 case ISD::STRICT_FDIV: 316 case ISD::STRICT_FREM: 317 case ISD::STRICT_FSQRT: 318 case ISD::STRICT_FMA: 319 case ISD::STRICT_FPOW: 320 case ISD::STRICT_FPOWI: 321 case ISD::STRICT_FSIN: 322 case ISD::STRICT_FCOS: 323 case ISD::STRICT_FEXP: 324 case ISD::STRICT_FEXP2: 325 case ISD::STRICT_FLOG: 326 case ISD::STRICT_FLOG10: 327 case ISD::STRICT_FLOG2: 328 case ISD::STRICT_FRINT: 329 case ISD::STRICT_FNEARBYINT: 330 case ISD::STRICT_FMAXNUM: 331 case ISD::STRICT_FMINNUM: 332 case ISD::STRICT_FCEIL: 333 case ISD::STRICT_FFLOOR: 334 case ISD::STRICT_FROUND: 335 case ISD::STRICT_FTRUNC: 336 case ISD::STRICT_FP_TO_SINT: 337 case ISD::STRICT_FP_TO_UINT: 338 case ISD::STRICT_FP_ROUND: 339 case ISD::STRICT_FP_EXTEND: 340 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 341 // If we're asked to expand a strict vector floating-point operation, 342 // by default we're going to simply unroll it. That is usually the 343 // best approach, except in the case where the resulting strict (scalar) 344 // operations would themselves use the fallback mutation to non-strict. 345 // In that specific case, just do the fallback on the vector op. 346 if (Action == TargetLowering::Expand && 347 TLI.getStrictFPOperationAction(Node->getOpcode(), 348 Node->getValueType(0)) 349 == TargetLowering::Legal) { 350 EVT EltVT = Node->getValueType(0).getVectorElementType(); 351 if (TLI.getOperationAction(Node->getOpcode(), EltVT) 352 == TargetLowering::Expand && 353 TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT) 354 == TargetLowering::Legal) 355 Action = TargetLowering::Legal; 356 } 357 break; 358 case ISD::ADD: 359 case ISD::SUB: 360 case ISD::MUL: 361 case ISD::MULHS: 362 case ISD::MULHU: 363 case ISD::SDIV: 364 case ISD::UDIV: 365 case ISD::SREM: 366 case ISD::UREM: 367 case ISD::SDIVREM: 368 case ISD::UDIVREM: 369 case ISD::FADD: 370 case ISD::FSUB: 371 case ISD::FMUL: 372 case ISD::FDIV: 373 case ISD::FREM: 374 case ISD::AND: 375 case ISD::OR: 376 case ISD::XOR: 377 case ISD::SHL: 378 case ISD::SRA: 379 case ISD::SRL: 380 case ISD::FSHL: 381 case ISD::FSHR: 382 case ISD::ROTL: 383 case ISD::ROTR: 384 case ISD::ABS: 385 case ISD::BSWAP: 386 case ISD::BITREVERSE: 387 case ISD::CTLZ: 388 case ISD::CTTZ: 389 case ISD::CTLZ_ZERO_UNDEF: 390 case ISD::CTTZ_ZERO_UNDEF: 391 case ISD::CTPOP: 392 case ISD::SELECT: 393 case ISD::VSELECT: 394 case ISD::SELECT_CC: 395 case ISD::SETCC: 396 case ISD::ZERO_EXTEND: 397 case ISD::ANY_EXTEND: 398 case ISD::TRUNCATE: 399 case ISD::SIGN_EXTEND: 400 case ISD::FP_TO_SINT: 401 case ISD::FP_TO_UINT: 402 case ISD::FNEG: 403 case ISD::FABS: 404 case ISD::FMINNUM: 405 case ISD::FMAXNUM: 406 case ISD::FMINNUM_IEEE: 407 case ISD::FMAXNUM_IEEE: 408 case ISD::FMINIMUM: 409 case ISD::FMAXIMUM: 410 case ISD::FCOPYSIGN: 411 case ISD::FSQRT: 412 case ISD::FSIN: 413 case ISD::FCOS: 414 case ISD::FPOWI: 415 case ISD::FPOW: 416 case ISD::FLOG: 417 case ISD::FLOG2: 418 case ISD::FLOG10: 419 case ISD::FEXP: 420 case ISD::FEXP2: 421 case ISD::FCEIL: 422 case ISD::FTRUNC: 423 case ISD::FRINT: 424 case ISD::FNEARBYINT: 425 case ISD::FROUND: 426 case ISD::FFLOOR: 427 case ISD::FP_ROUND: 428 case ISD::FP_EXTEND: 429 case ISD::FMA: 430 case ISD::SIGN_EXTEND_INREG: 431 case ISD::ANY_EXTEND_VECTOR_INREG: 432 case ISD::SIGN_EXTEND_VECTOR_INREG: 433 case ISD::ZERO_EXTEND_VECTOR_INREG: 434 case ISD::SMIN: 435 case ISD::SMAX: 436 case ISD::UMIN: 437 case ISD::UMAX: 438 case ISD::SMUL_LOHI: 439 case ISD::UMUL_LOHI: 440 case ISD::SADDO: 441 case ISD::UADDO: 442 case ISD::SSUBO: 443 case ISD::USUBO: 444 case ISD::SMULO: 445 case ISD::UMULO: 446 case ISD::FCANONICALIZE: 447 case ISD::SADDSAT: 448 case ISD::UADDSAT: 449 case ISD::SSUBSAT: 450 case ISD::USUBSAT: 451 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 452 break; 453 case ISD::SMULFIX: 454 case ISD::SMULFIXSAT: 455 case ISD::UMULFIX: 456 case ISD::UMULFIXSAT: { 457 unsigned Scale = Node->getConstantOperandVal(2); 458 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 459 Node->getValueType(0), Scale); 460 break; 461 } 462 case ISD::SINT_TO_FP: 463 case ISD::UINT_TO_FP: 464 case ISD::VECREDUCE_ADD: 465 case ISD::VECREDUCE_MUL: 466 case ISD::VECREDUCE_AND: 467 case ISD::VECREDUCE_OR: 468 case ISD::VECREDUCE_XOR: 469 case ISD::VECREDUCE_SMAX: 470 case ISD::VECREDUCE_SMIN: 471 case ISD::VECREDUCE_UMAX: 472 case ISD::VECREDUCE_UMIN: 473 case ISD::VECREDUCE_FADD: 474 case ISD::VECREDUCE_FMUL: 475 case ISD::VECREDUCE_FMAX: 476 case ISD::VECREDUCE_FMIN: 477 Action = TLI.getOperationAction(Node->getOpcode(), 478 Node->getOperand(0).getValueType()); 479 break; 480 } 481 482 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG)); 483 484 switch (Action) { 485 default: llvm_unreachable("This action is not supported yet!"); 486 case TargetLowering::Promote: 487 Result = Promote(Op); 488 Changed = true; 489 break; 490 case TargetLowering::Legal: 491 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 492 break; 493 case TargetLowering::Custom: { 494 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 495 if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) { 496 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 497 Result = Tmp1; 498 break; 499 } 500 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 501 LLVM_FALLTHROUGH; 502 } 503 case TargetLowering::Expand: 504 Result = Expand(Op); 505 } 506 507 // Make sure that the generated code is itself legal. 508 if (Result != Op) { 509 Result = LegalizeOp(Result); 510 Changed = true; 511 } 512 513 // Note that LegalizeOp may be reentered even from single-use nodes, which 514 // means that we always must cache transformed nodes. 515 AddLegalizedOperand(Op, Result); 516 return Result; 517 } 518 519 SDValue VectorLegalizer::Promote(SDValue Op) { 520 // For a few operations there is a specific concept for promotion based on 521 // the operand's type. 522 switch (Op.getOpcode()) { 523 case ISD::SINT_TO_FP: 524 case ISD::UINT_TO_FP: 525 // "Promote" the operation by extending the operand. 526 return PromoteINT_TO_FP(Op); 527 case ISD::FP_TO_UINT: 528 case ISD::FP_TO_SINT: 529 // Promote the operation by extending the operand. 530 return PromoteFP_TO_INT(Op); 531 } 532 533 // There are currently two cases of vector promotion: 534 // 1) Bitcasting a vector of integers to a different type to a vector of the 535 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 536 // 2) Extending a vector of floats to a vector of the same number of larger 537 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 538 MVT VT = Op.getSimpleValueType(); 539 assert(Op.getNode()->getNumValues() == 1 && 540 "Can't promote a vector with multiple results!"); 541 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 542 SDLoc dl(Op); 543 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 544 545 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 546 if (Op.getOperand(j).getValueType().isVector()) 547 if (Op.getOperand(j) 548 .getValueType() 549 .getVectorElementType() 550 .isFloatingPoint() && 551 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 552 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j)); 553 else 554 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); 555 else 556 Operands[j] = Op.getOperand(j); 557 } 558 559 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags()); 560 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 561 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 562 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 563 return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl)); 564 else 565 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 566 } 567 568 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) { 569 // INT_TO_FP operations may require the input operand be promoted even 570 // when the type is otherwise legal. 571 MVT VT = Op.getOperand(0).getSimpleValueType(); 572 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 573 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 574 "Vectors have different number of elements!"); 575 576 SDLoc dl(Op); 577 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 578 579 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : 580 ISD::SIGN_EXTEND; 581 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 582 if (Op.getOperand(j).getValueType().isVector()) 583 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j)); 584 else 585 Operands[j] = Op.getOperand(j); 586 } 587 588 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands); 589 } 590 591 // For FP_TO_INT we promote the result type to a vector type with wider 592 // elements and then truncate the result. This is different from the default 593 // PromoteVector which uses bitcast to promote thus assumning that the 594 // promoted vector type has the same overall size. 595 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op) { 596 MVT VT = Op.getSimpleValueType(); 597 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 598 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 599 "Vectors have different number of elements!"); 600 601 unsigned NewOpc = Op->getOpcode(); 602 // Change FP_TO_UINT to FP_TO_SINT if possible. 603 // TODO: Should we only do this if FP_TO_UINT itself isn't legal? 604 if (NewOpc == ISD::FP_TO_UINT && 605 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT)) 606 NewOpc = ISD::FP_TO_SINT; 607 608 SDLoc dl(Op); 609 SDValue Promoted = DAG.getNode(NewOpc, dl, NVT, Op.getOperand(0)); 610 611 // Assert that the converted value fits in the original type. If it doesn't 612 // (eg: because the value being converted is too big), then the result of the 613 // original operation was undefined anyway, so the assert is still correct. 614 Promoted = DAG.getNode(Op->getOpcode() == ISD::FP_TO_UINT ? ISD::AssertZext 615 : ISD::AssertSext, 616 dl, NVT, Promoted, 617 DAG.getValueType(VT.getScalarType())); 618 return DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted); 619 } 620 621 SDValue VectorLegalizer::ExpandLoad(SDValue Op) { 622 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 623 624 EVT SrcVT = LD->getMemoryVT(); 625 EVT SrcEltVT = SrcVT.getScalarType(); 626 unsigned NumElem = SrcVT.getVectorNumElements(); 627 628 SDValue NewChain; 629 SDValue Value; 630 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { 631 SDLoc dl(Op); 632 633 SmallVector<SDValue, 8> Vals; 634 SmallVector<SDValue, 8> LoadChains; 635 636 EVT DstEltVT = LD->getValueType(0).getScalarType(); 637 SDValue Chain = LD->getChain(); 638 SDValue BasePTR = LD->getBasePtr(); 639 ISD::LoadExtType ExtType = LD->getExtensionType(); 640 641 // When elements in a vector is not byte-addressable, we cannot directly 642 // load each element by advancing pointer, which could only address bytes. 643 // Instead, we load all significant words, mask bits off, and concatenate 644 // them to form each element. Finally, they are extended to destination 645 // scalar type to build the destination vector. 646 EVT WideVT = TLI.getPointerTy(DAG.getDataLayout()); 647 648 assert(WideVT.isRound() && 649 "Could not handle the sophisticated case when the widest integer is" 650 " not power of 2."); 651 assert(WideVT.bitsGE(SrcEltVT) && 652 "Type is not legalized?"); 653 654 unsigned WideBytes = WideVT.getStoreSize(); 655 unsigned Offset = 0; 656 unsigned RemainingBytes = SrcVT.getStoreSize(); 657 SmallVector<SDValue, 8> LoadVals; 658 while (RemainingBytes > 0) { 659 SDValue ScalarLoad; 660 unsigned LoadBytes = WideBytes; 661 662 if (RemainingBytes >= LoadBytes) { 663 ScalarLoad = 664 DAG.getLoad(WideVT, dl, Chain, BasePTR, 665 LD->getPointerInfo().getWithOffset(Offset), 666 MinAlign(LD->getAlignment(), Offset), 667 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 668 } else { 669 EVT LoadVT = WideVT; 670 while (RemainingBytes < LoadBytes) { 671 LoadBytes >>= 1; // Reduce the load size by half. 672 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); 673 } 674 ScalarLoad = 675 DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, 676 LD->getPointerInfo().getWithOffset(Offset), LoadVT, 677 MinAlign(LD->getAlignment(), Offset), 678 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 679 } 680 681 RemainingBytes -= LoadBytes; 682 Offset += LoadBytes; 683 684 BasePTR = DAG.getObjectPtrOffset(dl, BasePTR, LoadBytes); 685 686 LoadVals.push_back(ScalarLoad.getValue(0)); 687 LoadChains.push_back(ScalarLoad.getValue(1)); 688 } 689 690 unsigned BitOffset = 0; 691 unsigned WideIdx = 0; 692 unsigned WideBits = WideVT.getSizeInBits(); 693 694 // Extract bits, pack and extend/trunc them into destination type. 695 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 696 SDValue SrcEltBitMask = DAG.getConstant( 697 APInt::getLowBitsSet(WideBits, SrcEltBits), dl, WideVT); 698 699 for (unsigned Idx = 0; Idx != NumElem; ++Idx) { 700 assert(BitOffset < WideBits && "Unexpected offset!"); 701 702 SDValue ShAmt = DAG.getConstant( 703 BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 704 SDValue Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); 705 706 BitOffset += SrcEltBits; 707 if (BitOffset >= WideBits) { 708 WideIdx++; 709 BitOffset -= WideBits; 710 if (BitOffset > 0) { 711 ShAmt = DAG.getConstant( 712 SrcEltBits - BitOffset, dl, 713 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 714 SDValue Hi = 715 DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); 716 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); 717 } 718 } 719 720 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); 721 722 switch (ExtType) { 723 default: llvm_unreachable("Unknown extended-load op!"); 724 case ISD::EXTLOAD: 725 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); 726 break; 727 case ISD::ZEXTLOAD: 728 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); 729 break; 730 case ISD::SEXTLOAD: 731 ShAmt = 732 DAG.getConstant(WideBits - SrcEltBits, dl, 733 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 734 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); 735 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); 736 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); 737 break; 738 } 739 Vals.push_back(Lo); 740 } 741 742 NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 743 Value = DAG.getBuildVector(Op.getNode()->getValueType(0), dl, Vals); 744 } else { 745 SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG); 746 // Skip past MERGE_VALUE node if known. 747 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) { 748 NewChain = Scalarized.getOperand(1); 749 Value = Scalarized.getOperand(0); 750 } else { 751 NewChain = Scalarized.getValue(1); 752 Value = Scalarized.getValue(0); 753 } 754 } 755 756 AddLegalizedOperand(Op.getValue(0), Value); 757 AddLegalizedOperand(Op.getValue(1), NewChain); 758 759 return (Op.getResNo() ? NewChain : Value); 760 } 761 762 SDValue VectorLegalizer::ExpandStore(SDValue Op) { 763 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 764 SDValue TF = TLI.scalarizeVectorStore(ST, DAG); 765 AddLegalizedOperand(Op, TF); 766 return TF; 767 } 768 769 SDValue VectorLegalizer::Expand(SDValue Op) { 770 switch (Op->getOpcode()) { 771 case ISD::SIGN_EXTEND_INREG: 772 return ExpandSEXTINREG(Op); 773 case ISD::ANY_EXTEND_VECTOR_INREG: 774 return ExpandANY_EXTEND_VECTOR_INREG(Op); 775 case ISD::SIGN_EXTEND_VECTOR_INREG: 776 return ExpandSIGN_EXTEND_VECTOR_INREG(Op); 777 case ISD::ZERO_EXTEND_VECTOR_INREG: 778 return ExpandZERO_EXTEND_VECTOR_INREG(Op); 779 case ISD::BSWAP: 780 return ExpandBSWAP(Op); 781 case ISD::VSELECT: 782 return ExpandVSELECT(Op); 783 case ISD::SELECT: 784 return ExpandSELECT(Op); 785 case ISD::FP_TO_UINT: 786 return ExpandFP_TO_UINT(Op); 787 case ISD::UINT_TO_FP: 788 return ExpandUINT_TO_FLOAT(Op); 789 case ISD::FNEG: 790 return ExpandFNEG(Op); 791 case ISD::FSUB: 792 return ExpandFSUB(Op); 793 case ISD::SETCC: 794 return UnrollVSETCC(Op); 795 case ISD::ABS: 796 return ExpandABS(Op); 797 case ISD::BITREVERSE: 798 return ExpandBITREVERSE(Op); 799 case ISD::CTPOP: 800 return ExpandCTPOP(Op); 801 case ISD::CTLZ: 802 case ISD::CTLZ_ZERO_UNDEF: 803 return ExpandCTLZ(Op); 804 case ISD::CTTZ: 805 case ISD::CTTZ_ZERO_UNDEF: 806 return ExpandCTTZ(Op); 807 case ISD::FSHL: 808 case ISD::FSHR: 809 return ExpandFunnelShift(Op); 810 case ISD::ROTL: 811 case ISD::ROTR: 812 return ExpandROT(Op); 813 case ISD::FMINNUM: 814 case ISD::FMAXNUM: 815 return ExpandFMINNUM_FMAXNUM(Op); 816 case ISD::UADDO: 817 case ISD::USUBO: 818 return ExpandUADDSUBO(Op); 819 case ISD::SADDO: 820 case ISD::SSUBO: 821 return ExpandSADDSUBO(Op); 822 case ISD::UMULO: 823 case ISD::SMULO: 824 return ExpandMULO(Op); 825 case ISD::USUBSAT: 826 case ISD::SSUBSAT: 827 case ISD::UADDSAT: 828 case ISD::SADDSAT: 829 return ExpandAddSubSat(Op); 830 case ISD::SMULFIX: 831 case ISD::UMULFIX: 832 return ExpandFixedPointMul(Op); 833 case ISD::SMULFIXSAT: 834 case ISD::UMULFIXSAT: 835 // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly 836 // why. Maybe it results in worse codegen compared to the unroll for some 837 // targets? This should probably be investigated. And if we still prefer to 838 // unroll an explanation could be helpful. 839 return DAG.UnrollVectorOp(Op.getNode()); 840 case ISD::STRICT_FADD: 841 case ISD::STRICT_FSUB: 842 case ISD::STRICT_FMUL: 843 case ISD::STRICT_FDIV: 844 case ISD::STRICT_FREM: 845 case ISD::STRICT_FSQRT: 846 case ISD::STRICT_FMA: 847 case ISD::STRICT_FPOW: 848 case ISD::STRICT_FPOWI: 849 case ISD::STRICT_FSIN: 850 case ISD::STRICT_FCOS: 851 case ISD::STRICT_FEXP: 852 case ISD::STRICT_FEXP2: 853 case ISD::STRICT_FLOG: 854 case ISD::STRICT_FLOG10: 855 case ISD::STRICT_FLOG2: 856 case ISD::STRICT_FRINT: 857 case ISD::STRICT_FNEARBYINT: 858 case ISD::STRICT_FMAXNUM: 859 case ISD::STRICT_FMINNUM: 860 case ISD::STRICT_FCEIL: 861 case ISD::STRICT_FFLOOR: 862 case ISD::STRICT_FROUND: 863 case ISD::STRICT_FTRUNC: 864 case ISD::STRICT_FP_TO_SINT: 865 case ISD::STRICT_FP_TO_UINT: 866 return ExpandStrictFPOp(Op); 867 case ISD::VECREDUCE_ADD: 868 case ISD::VECREDUCE_MUL: 869 case ISD::VECREDUCE_AND: 870 case ISD::VECREDUCE_OR: 871 case ISD::VECREDUCE_XOR: 872 case ISD::VECREDUCE_SMAX: 873 case ISD::VECREDUCE_SMIN: 874 case ISD::VECREDUCE_UMAX: 875 case ISD::VECREDUCE_UMIN: 876 case ISD::VECREDUCE_FADD: 877 case ISD::VECREDUCE_FMUL: 878 case ISD::VECREDUCE_FMAX: 879 case ISD::VECREDUCE_FMIN: 880 return TLI.expandVecReduce(Op.getNode(), DAG); 881 default: 882 return DAG.UnrollVectorOp(Op.getNode()); 883 } 884 } 885 886 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) { 887 // Lower a select instruction where the condition is a scalar and the 888 // operands are vectors. Lower this select to VSELECT and implement it 889 // using XOR AND OR. The selector bit is broadcasted. 890 EVT VT = Op.getValueType(); 891 SDLoc DL(Op); 892 893 SDValue Mask = Op.getOperand(0); 894 SDValue Op1 = Op.getOperand(1); 895 SDValue Op2 = Op.getOperand(2); 896 897 assert(VT.isVector() && !Mask.getValueType().isVector() 898 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 899 900 // If we can't even use the basic vector operations of 901 // AND,OR,XOR, we will have to scalarize the op. 902 // Notice that the operation may be 'promoted' which means that it is 903 // 'bitcasted' to another type which is handled. 904 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 905 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 906 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 907 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 908 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 909 return DAG.UnrollVectorOp(Op.getNode()); 910 911 // Generate a mask operand. 912 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 913 914 // What is the size of each element in the vector mask. 915 EVT BitTy = MaskTy.getScalarType(); 916 917 Mask = DAG.getSelect(DL, BitTy, Mask, 918 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, 919 BitTy), 920 DAG.getConstant(0, DL, BitTy)); 921 922 // Broadcast the mask so that the entire vector is all-one or all zero. 923 Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask); 924 925 // Bitcast the operands to be the same type as the mask. 926 // This is needed when we select between FP types because 927 // the mask is a vector of integers. 928 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 929 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 930 931 SDValue AllOnes = DAG.getConstant( 932 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy); 933 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 934 935 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 936 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 937 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 938 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 939 } 940 941 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) { 942 EVT VT = Op.getValueType(); 943 944 // Make sure that the SRA and SHL instructions are available. 945 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 946 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 947 return DAG.UnrollVectorOp(Op.getNode()); 948 949 SDLoc DL(Op); 950 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT(); 951 952 unsigned BW = VT.getScalarSizeInBits(); 953 unsigned OrigBW = OrigTy.getScalarSizeInBits(); 954 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 955 956 Op = Op.getOperand(0); 957 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz); 958 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 959 } 960 961 // Generically expand a vector anyext in register to a shuffle of the relevant 962 // lanes into the appropriate locations, with other lanes left undef. 963 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) { 964 SDLoc DL(Op); 965 EVT VT = Op.getValueType(); 966 int NumElements = VT.getVectorNumElements(); 967 SDValue Src = Op.getOperand(0); 968 EVT SrcVT = Src.getValueType(); 969 int NumSrcElements = SrcVT.getVectorNumElements(); 970 971 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 972 // into a larger vector type. 973 if (SrcVT.bitsLE(VT)) { 974 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 975 "ANY_EXTEND_VECTOR_INREG vector size mismatch"); 976 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 977 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 978 NumSrcElements); 979 Src = DAG.getNode( 980 ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), Src, 981 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 982 } 983 984 // Build a base mask of undef shuffles. 985 SmallVector<int, 16> ShuffleMask; 986 ShuffleMask.resize(NumSrcElements, -1); 987 988 // Place the extended lanes into the correct locations. 989 int ExtLaneScale = NumSrcElements / NumElements; 990 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 991 for (int i = 0; i < NumElements; ++i) 992 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 993 994 return DAG.getNode( 995 ISD::BITCAST, DL, VT, 996 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 997 } 998 999 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) { 1000 SDLoc DL(Op); 1001 EVT VT = Op.getValueType(); 1002 SDValue Src = Op.getOperand(0); 1003 EVT SrcVT = Src.getValueType(); 1004 1005 // First build an any-extend node which can be legalized above when we 1006 // recurse through it. 1007 Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src); 1008 1009 // Now we need sign extend. Do this by shifting the elements. Even if these 1010 // aren't legal operations, they have a better chance of being legalized 1011 // without full scalarization than the sign extension does. 1012 unsigned EltWidth = VT.getScalarSizeInBits(); 1013 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); 1014 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 1015 return DAG.getNode(ISD::SRA, DL, VT, 1016 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 1017 ShiftAmount); 1018 } 1019 1020 // Generically expand a vector zext in register to a shuffle of the relevant 1021 // lanes into the appropriate locations, a blend of zero into the high bits, 1022 // and a bitcast to the wider element type. 1023 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) { 1024 SDLoc DL(Op); 1025 EVT VT = Op.getValueType(); 1026 int NumElements = VT.getVectorNumElements(); 1027 SDValue Src = Op.getOperand(0); 1028 EVT SrcVT = Src.getValueType(); 1029 int NumSrcElements = SrcVT.getVectorNumElements(); 1030 1031 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 1032 // into a larger vector type. 1033 if (SrcVT.bitsLE(VT)) { 1034 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 1035 "ZERO_EXTEND_VECTOR_INREG vector size mismatch"); 1036 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 1037 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 1038 NumSrcElements); 1039 Src = DAG.getNode( 1040 ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), Src, 1041 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1042 } 1043 1044 // Build up a zero vector to blend into this one. 1045 SDValue Zero = DAG.getConstant(0, DL, SrcVT); 1046 1047 // Shuffle the incoming lanes into the correct position, and pull all other 1048 // lanes from the zero vector. 1049 SmallVector<int, 16> ShuffleMask; 1050 ShuffleMask.reserve(NumSrcElements); 1051 for (int i = 0; i < NumSrcElements; ++i) 1052 ShuffleMask.push_back(i); 1053 1054 int ExtLaneScale = NumSrcElements / NumElements; 1055 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 1056 for (int i = 0; i < NumElements; ++i) 1057 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 1058 1059 return DAG.getNode(ISD::BITCAST, DL, VT, 1060 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 1061 } 1062 1063 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) { 1064 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 1065 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 1066 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 1067 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 1068 } 1069 1070 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) { 1071 EVT VT = Op.getValueType(); 1072 1073 // Generate a byte wise shuffle mask for the BSWAP. 1074 SmallVector<int, 16> ShuffleMask; 1075 createBSWAPShuffleMask(VT, ShuffleMask); 1076 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 1077 1078 // Only emit a shuffle if the mask is legal. 1079 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) 1080 return DAG.UnrollVectorOp(Op.getNode()); 1081 1082 SDLoc DL(Op); 1083 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 1084 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); 1085 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 1086 } 1087 1088 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) { 1089 EVT VT = Op.getValueType(); 1090 1091 // If we have the scalar operation, it's probably cheaper to unroll it. 1092 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) 1093 return DAG.UnrollVectorOp(Op.getNode()); 1094 1095 // If the vector element width is a whole number of bytes, test if its legal 1096 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte 1097 // vector. This greatly reduces the number of bit shifts necessary. 1098 unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); 1099 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { 1100 SmallVector<int, 16> BSWAPMask; 1101 createBSWAPShuffleMask(VT, BSWAPMask); 1102 1103 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); 1104 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && 1105 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || 1106 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && 1107 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && 1108 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && 1109 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { 1110 SDLoc DL(Op); 1111 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 1112 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 1113 BSWAPMask); 1114 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); 1115 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 1116 } 1117 } 1118 1119 // If we have the appropriate vector bit operations, it is better to use them 1120 // than unrolling and expanding each component. 1121 if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) || 1122 !TLI.isOperationLegalOrCustom(ISD::SRL, VT) || 1123 !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 1124 !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) 1125 return DAG.UnrollVectorOp(Op.getNode()); 1126 1127 // Let LegalizeDAG handle this later. 1128 return Op; 1129 } 1130 1131 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { 1132 // Implement VSELECT in terms of XOR, AND, OR 1133 // on platforms which do not support blend natively. 1134 SDLoc DL(Op); 1135 1136 SDValue Mask = Op.getOperand(0); 1137 SDValue Op1 = Op.getOperand(1); 1138 SDValue Op2 = Op.getOperand(2); 1139 1140 EVT VT = Mask.getValueType(); 1141 1142 // If we can't even use the basic vector operations of 1143 // AND,OR,XOR, we will have to scalarize the op. 1144 // Notice that the operation may be 'promoted' which means that it is 1145 // 'bitcasted' to another type which is handled. 1146 // This operation also isn't safe with AND, OR, XOR when the boolean 1147 // type is 0/1 as we need an all ones vector constant to mask with. 1148 // FIXME: Sign extend 1 to all ones if thats legal on the target. 1149 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 1150 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 1151 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 1152 TLI.getBooleanContents(Op1.getValueType()) != 1153 TargetLowering::ZeroOrNegativeOneBooleanContent) 1154 return DAG.UnrollVectorOp(Op.getNode()); 1155 1156 // If the mask and the type are different sizes, unroll the vector op. This 1157 // can occur when getSetCCResultType returns something that is different in 1158 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 1159 if (VT.getSizeInBits() != Op1.getValueSizeInBits()) 1160 return DAG.UnrollVectorOp(Op.getNode()); 1161 1162 // Bitcast the operands to be the same type as the mask. 1163 // This is needed when we select between FP types because 1164 // the mask is a vector of integers. 1165 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 1166 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 1167 1168 SDValue AllOnes = DAG.getConstant( 1169 APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT); 1170 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 1171 1172 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 1173 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 1174 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 1175 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 1176 } 1177 1178 SDValue VectorLegalizer::ExpandABS(SDValue Op) { 1179 // Attempt to expand using TargetLowering. 1180 SDValue Result; 1181 if (TLI.expandABS(Op.getNode(), Result, DAG)) 1182 return Result; 1183 1184 // Otherwise go ahead and unroll. 1185 return DAG.UnrollVectorOp(Op.getNode()); 1186 } 1187 1188 SDValue VectorLegalizer::ExpandFP_TO_UINT(SDValue Op) { 1189 // Attempt to expand using TargetLowering. 1190 SDValue Result, Chain; 1191 if (TLI.expandFP_TO_UINT(Op.getNode(), Result, Chain, DAG)) { 1192 if (Op.getNode()->isStrictFPOpcode()) 1193 // Relink the chain 1194 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Chain); 1195 return Result; 1196 } 1197 1198 // Otherwise go ahead and unroll. 1199 return DAG.UnrollVectorOp(Op.getNode()); 1200 } 1201 1202 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { 1203 EVT VT = Op.getOperand(0).getValueType(); 1204 SDLoc DL(Op); 1205 1206 // Attempt to expand using TargetLowering. 1207 SDValue Result; 1208 if (TLI.expandUINT_TO_FP(Op.getNode(), Result, DAG)) 1209 return Result; 1210 1211 // Make sure that the SINT_TO_FP and SRL instructions are available. 1212 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand || 1213 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) 1214 return DAG.UnrollVectorOp(Op.getNode()); 1215 1216 unsigned BW = VT.getScalarSizeInBits(); 1217 assert((BW == 64 || BW == 32) && 1218 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 1219 1220 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT); 1221 1222 // Constants to clear the upper part of the word. 1223 // Notice that we can also use SHL+SHR, but using a constant is slightly 1224 // faster on x86. 1225 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; 1226 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 1227 1228 // Two to the power of half-word-size. 1229 SDValue TWOHW = DAG.getConstantFP(1ULL << (BW / 2), DL, Op.getValueType()); 1230 1231 // Clear upper part of LO, lower HI 1232 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); 1233 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); 1234 1235 // Convert hi and lo to floats 1236 // Convert the hi part back to the upper values 1237 // TODO: Can any fast-math-flags be set on these nodes? 1238 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); 1239 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); 1240 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); 1241 1242 // Add the two halves 1243 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); 1244 } 1245 1246 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { 1247 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { 1248 SDLoc DL(Op); 1249 SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType()); 1250 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. 1251 return DAG.getNode(ISD::FSUB, DL, Op.getValueType(), 1252 Zero, Op.getOperand(0)); 1253 } 1254 return DAG.UnrollVectorOp(Op.getNode()); 1255 } 1256 1257 SDValue VectorLegalizer::ExpandFSUB(SDValue Op) { 1258 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal, 1259 // we can defer this to operation legalization where it will be lowered as 1260 // a+(-b). 1261 EVT VT = Op.getValueType(); 1262 if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && 1263 TLI.isOperationLegalOrCustom(ISD::FADD, VT)) 1264 return Op; // Defer to LegalizeDAG 1265 1266 return DAG.UnrollVectorOp(Op.getNode()); 1267 } 1268 1269 SDValue VectorLegalizer::ExpandCTPOP(SDValue Op) { 1270 SDValue Result; 1271 if (TLI.expandCTPOP(Op.getNode(), Result, DAG)) 1272 return Result; 1273 1274 return DAG.UnrollVectorOp(Op.getNode()); 1275 } 1276 1277 SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) { 1278 SDValue Result; 1279 if (TLI.expandCTLZ(Op.getNode(), Result, DAG)) 1280 return Result; 1281 1282 return DAG.UnrollVectorOp(Op.getNode()); 1283 } 1284 1285 SDValue VectorLegalizer::ExpandCTTZ(SDValue Op) { 1286 SDValue Result; 1287 if (TLI.expandCTTZ(Op.getNode(), Result, DAG)) 1288 return Result; 1289 1290 return DAG.UnrollVectorOp(Op.getNode()); 1291 } 1292 1293 SDValue VectorLegalizer::ExpandFunnelShift(SDValue Op) { 1294 SDValue Result; 1295 if (TLI.expandFunnelShift(Op.getNode(), Result, DAG)) 1296 return Result; 1297 1298 return DAG.UnrollVectorOp(Op.getNode()); 1299 } 1300 1301 SDValue VectorLegalizer::ExpandROT(SDValue Op) { 1302 SDValue Result; 1303 if (TLI.expandROT(Op.getNode(), Result, DAG)) 1304 return Result; 1305 1306 return DAG.UnrollVectorOp(Op.getNode()); 1307 } 1308 1309 SDValue VectorLegalizer::ExpandFMINNUM_FMAXNUM(SDValue Op) { 1310 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Op.getNode(), DAG)) 1311 return Expanded; 1312 return DAG.UnrollVectorOp(Op.getNode()); 1313 } 1314 1315 SDValue VectorLegalizer::ExpandUADDSUBO(SDValue Op) { 1316 SDValue Result, Overflow; 1317 TLI.expandUADDSUBO(Op.getNode(), Result, Overflow, DAG); 1318 1319 if (Op.getResNo() == 0) { 1320 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow)); 1321 return Result; 1322 } else { 1323 AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result)); 1324 return Overflow; 1325 } 1326 } 1327 1328 SDValue VectorLegalizer::ExpandSADDSUBO(SDValue Op) { 1329 SDValue Result, Overflow; 1330 TLI.expandSADDSUBO(Op.getNode(), Result, Overflow, DAG); 1331 1332 if (Op.getResNo() == 0) { 1333 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow)); 1334 return Result; 1335 } else { 1336 AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result)); 1337 return Overflow; 1338 } 1339 } 1340 1341 SDValue VectorLegalizer::ExpandMULO(SDValue Op) { 1342 SDValue Result, Overflow; 1343 if (!TLI.expandMULO(Op.getNode(), Result, Overflow, DAG)) 1344 std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Op.getNode()); 1345 1346 if (Op.getResNo() == 0) { 1347 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow)); 1348 return Result; 1349 } else { 1350 AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result)); 1351 return Overflow; 1352 } 1353 } 1354 1355 SDValue VectorLegalizer::ExpandAddSubSat(SDValue Op) { 1356 if (SDValue Expanded = TLI.expandAddSubSat(Op.getNode(), DAG)) 1357 return Expanded; 1358 return DAG.UnrollVectorOp(Op.getNode()); 1359 } 1360 1361 SDValue VectorLegalizer::ExpandFixedPointMul(SDValue Op) { 1362 if (SDValue Expanded = TLI.expandFixedPointMul(Op.getNode(), DAG)) 1363 return Expanded; 1364 return DAG.UnrollVectorOp(Op.getNode()); 1365 } 1366 1367 SDValue VectorLegalizer::ExpandStrictFPOp(SDValue Op) { 1368 EVT VT = Op.getValueType(); 1369 EVT EltVT = VT.getVectorElementType(); 1370 unsigned NumElems = VT.getVectorNumElements(); 1371 unsigned NumOpers = Op.getNumOperands(); 1372 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1373 EVT ValueVTs[] = {EltVT, MVT::Other}; 1374 SDValue Chain = Op.getOperand(0); 1375 SDLoc dl(Op); 1376 1377 SmallVector<SDValue, 32> OpValues; 1378 SmallVector<SDValue, 32> OpChains; 1379 for (unsigned i = 0; i < NumElems; ++i) { 1380 SmallVector<SDValue, 4> Opers; 1381 SDValue Idx = DAG.getConstant(i, dl, 1382 TLI.getVectorIdxTy(DAG.getDataLayout())); 1383 1384 // The Chain is the first operand. 1385 Opers.push_back(Chain); 1386 1387 // Now process the remaining operands. 1388 for (unsigned j = 1; j < NumOpers; ++j) { 1389 SDValue Oper = Op.getOperand(j); 1390 EVT OperVT = Oper.getValueType(); 1391 1392 if (OperVT.isVector()) 1393 Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 1394 OperVT.getVectorElementType(), Oper, Idx); 1395 1396 Opers.push_back(Oper); 1397 } 1398 1399 SDValue ScalarOp = DAG.getNode(Op->getOpcode(), dl, ValueVTs, Opers); 1400 1401 OpValues.push_back(ScalarOp.getValue(0)); 1402 OpChains.push_back(ScalarOp.getValue(1)); 1403 } 1404 1405 SDValue Result = DAG.getBuildVector(VT, dl, OpValues); 1406 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains); 1407 1408 AddLegalizedOperand(Op.getValue(0), Result); 1409 AddLegalizedOperand(Op.getValue(1), NewChain); 1410 1411 return Op.getResNo() ? NewChain : Result; 1412 } 1413 1414 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { 1415 EVT VT = Op.getValueType(); 1416 unsigned NumElems = VT.getVectorNumElements(); 1417 EVT EltVT = VT.getVectorElementType(); 1418 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); 1419 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1420 SDLoc dl(Op); 1421 SmallVector<SDValue, 8> Ops(NumElems); 1422 for (unsigned i = 0; i < NumElems; ++i) { 1423 SDValue LHSElem = DAG.getNode( 1424 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1425 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1426 SDValue RHSElem = DAG.getNode( 1427 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1428 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1429 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1430 TLI.getSetCCResultType(DAG.getDataLayout(), 1431 *DAG.getContext(), TmpEltVT), 1432 LHSElem, RHSElem, CC); 1433 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 1434 DAG.getConstant(APInt::getAllOnesValue 1435 (EltVT.getSizeInBits()), dl, EltVT), 1436 DAG.getConstant(0, dl, EltVT)); 1437 } 1438 return DAG.getBuildVector(VT, dl, Ops); 1439 } 1440 1441 bool SelectionDAG::LegalizeVectors() { 1442 return VectorLegalizer(*this).Run(); 1443 } 1444