1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SelectionDAG::LegalizeVectors method. 11 // 12 // The vector legalizer looks for vector operations which might need to be 13 // scalarized and legalizes them. This is a separate step from Legalize because 14 // scalarizing can introduce illegal types. For example, suppose we have an 15 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 17 // operation, which introduces nodes with the illegal type i64 which must be 18 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 19 // the operation must be unrolled, which introduces nodes with the illegal 20 // type i8 which must be promoted. 21 // 22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 23 // or operations that happen to take a vector which are custom-lowered; 24 // the legalization for such operations never produces nodes 25 // with illegal types, so it's okay to put off legalizing them until 26 // SelectionDAG::Legalize runs. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/ADT/APInt.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/CodeGen/ISDOpcodes.h" 34 #include "llvm/CodeGen/MachineMemOperand.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/SelectionDAGNodes.h" 37 #include "llvm/CodeGen/TargetLowering.h" 38 #include "llvm/CodeGen/ValueTypes.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Compiler.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include <cassert> 46 #include <cstdint> 47 #include <iterator> 48 #include <utility> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "legalizevectorops" 53 54 namespace { 55 56 class VectorLegalizer { 57 SelectionDAG& DAG; 58 const TargetLowering &TLI; 59 bool Changed = false; // Keep track of whether anything changed 60 61 /// For nodes that are of legal width, and that have more than one use, this 62 /// map indicates what regularized operand to use. This allows us to avoid 63 /// legalizing the same thing more than once. 64 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 65 66 /// Adds a node to the translation cache. 67 void AddLegalizedOperand(SDValue From, SDValue To) { 68 LegalizedNodes.insert(std::make_pair(From, To)); 69 // If someone requests legalization of the new node, return itself. 70 if (From != To) 71 LegalizedNodes.insert(std::make_pair(To, To)); 72 } 73 74 /// Legalizes the given node. 75 SDValue LegalizeOp(SDValue Op); 76 77 /// Assuming the node is legal, "legalize" the results. 78 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); 79 80 /// Implements unrolling a VSETCC. 81 SDValue UnrollVSETCC(SDValue Op); 82 83 /// Implement expand-based legalization of vector operations. 84 /// 85 /// This is just a high-level routine to dispatch to specific code paths for 86 /// operations to legalize them. 87 SDValue Expand(SDValue Op); 88 89 /// Implements expansion for FNEG; falls back to UnrollVectorOp if 90 /// FSUB isn't legal. 91 /// 92 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 93 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 94 SDValue ExpandUINT_TO_FLOAT(SDValue Op); 95 96 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 97 SDValue ExpandSEXTINREG(SDValue Op); 98 99 /// Implement expansion for ANY_EXTEND_VECTOR_INREG. 100 /// 101 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 102 /// type. The contents of the bits in the extended part of each element are 103 /// undef. 104 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op); 105 106 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG. 107 /// 108 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 109 /// type, then shifts left and arithmetic shifts right to introduce a sign 110 /// extension. 111 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op); 112 113 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG. 114 /// 115 /// Shuffles the low lanes of the operand into place and blends zeros into 116 /// the remaining lanes, finally bitcasting to the proper type. 117 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op); 118 119 /// Expand bswap of vectors into a shuffle if legal. 120 SDValue ExpandBSWAP(SDValue Op); 121 122 /// Implement vselect in terms of XOR, AND, OR when blend is not 123 /// supported by the target. 124 SDValue ExpandVSELECT(SDValue Op); 125 SDValue ExpandSELECT(SDValue Op); 126 SDValue ExpandLoad(SDValue Op); 127 SDValue ExpandStore(SDValue Op); 128 SDValue ExpandFNEG(SDValue Op); 129 SDValue ExpandFSUB(SDValue Op); 130 SDValue ExpandBITREVERSE(SDValue Op); 131 SDValue ExpandCTLZ(SDValue Op); 132 SDValue ExpandCTTZ_ZERO_UNDEF(SDValue Op); 133 SDValue ExpandStrictFPOp(SDValue Op); 134 135 /// Implements vector promotion. 136 /// 137 /// This is essentially just bitcasting the operands to a different type and 138 /// bitcasting the result back to the original type. 139 SDValue Promote(SDValue Op); 140 141 /// Implements [SU]INT_TO_FP vector promotion. 142 /// 143 /// This is a [zs]ext of the input operand to a larger integer type. 144 SDValue PromoteINT_TO_FP(SDValue Op); 145 146 /// Implements FP_TO_[SU]INT vector promotion of the result type. 147 /// 148 /// It is promoted to a larger integer type. The result is then 149 /// truncated back to the original type. 150 SDValue PromoteFP_TO_INT(SDValue Op); 151 152 public: 153 VectorLegalizer(SelectionDAG& dag) : 154 DAG(dag), TLI(dag.getTargetLoweringInfo()) {} 155 156 /// Begin legalizer the vector operations in the DAG. 157 bool Run(); 158 }; 159 160 } // end anonymous namespace 161 162 bool VectorLegalizer::Run() { 163 // Before we start legalizing vector nodes, check if there are any vectors. 164 bool HasVectors = false; 165 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 166 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 167 // Check if the values of the nodes contain vectors. We don't need to check 168 // the operands because we are going to check their values at some point. 169 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); 170 J != E; ++J) 171 HasVectors |= J->isVector(); 172 173 // If we found a vector node we can start the legalization. 174 if (HasVectors) 175 break; 176 } 177 178 // If this basic block has no vectors then no need to legalize vectors. 179 if (!HasVectors) 180 return false; 181 182 // The legalize process is inherently a bottom-up recursive process (users 183 // legalize their uses before themselves). Given infinite stack space, we 184 // could just start legalizing on the root and traverse the whole graph. In 185 // practice however, this causes us to run out of stack space on large basic 186 // blocks. To avoid this problem, compute an ordering of the nodes where each 187 // node is only legalized after all of its operands are legalized. 188 DAG.AssignTopologicalOrder(); 189 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 190 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 191 LegalizeOp(SDValue(&*I, 0)); 192 193 // Finally, it's possible the root changed. Get the new root. 194 SDValue OldRoot = DAG.getRoot(); 195 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 196 DAG.setRoot(LegalizedNodes[OldRoot]); 197 198 LegalizedNodes.clear(); 199 200 // Remove dead nodes now. 201 DAG.RemoveDeadNodes(); 202 203 return Changed; 204 } 205 206 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { 207 // Generic legalization: just pass the operand through. 208 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) 209 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 210 return Result.getValue(Op.getResNo()); 211 } 212 213 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 214 // Note that LegalizeOp may be reentered even from single-use nodes, which 215 // means that we always must cache transformed nodes. 216 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 217 if (I != LegalizedNodes.end()) return I->second; 218 219 SDNode* Node = Op.getNode(); 220 221 // Legalize the operands 222 SmallVector<SDValue, 8> Ops; 223 for (const SDValue &Op : Node->op_values()) 224 Ops.push_back(LegalizeOp(Op)); 225 226 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0); 227 228 bool HasVectorValue = false; 229 if (Op.getOpcode() == ISD::LOAD) { 230 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 231 ISD::LoadExtType ExtType = LD->getExtensionType(); 232 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) { 233 LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: "; 234 Node->dump(&DAG)); 235 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), 236 LD->getMemoryVT())) { 237 default: llvm_unreachable("This action is not supported yet!"); 238 case TargetLowering::Legal: 239 return TranslateLegalizeResults(Op, Result); 240 case TargetLowering::Custom: 241 if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) { 242 if (Lowered == Result) 243 return TranslateLegalizeResults(Op, Lowered); 244 Changed = true; 245 if (Lowered->getNumValues() != Op->getNumValues()) { 246 // This expanded to something other than the load. Assume the 247 // lowering code took care of any chain values, and just handle the 248 // returned value. 249 assert(Result.getValue(1).use_empty() && 250 "There are still live users of the old chain!"); 251 return LegalizeOp(Lowered); 252 } 253 return TranslateLegalizeResults(Op, Lowered); 254 } 255 LLVM_FALLTHROUGH; 256 case TargetLowering::Expand: 257 Changed = true; 258 return LegalizeOp(ExpandLoad(Op)); 259 } 260 } 261 } else if (Op.getOpcode() == ISD::STORE) { 262 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 263 EVT StVT = ST->getMemoryVT(); 264 MVT ValVT = ST->getValue().getSimpleValueType(); 265 if (StVT.isVector() && ST->isTruncatingStore()) { 266 LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: "; 267 Node->dump(&DAG)); 268 switch (TLI.getTruncStoreAction(ValVT, StVT)) { 269 default: llvm_unreachable("This action is not supported yet!"); 270 case TargetLowering::Legal: 271 return TranslateLegalizeResults(Op, Result); 272 case TargetLowering::Custom: { 273 SDValue Lowered = TLI.LowerOperation(Result, DAG); 274 Changed = Lowered != Result; 275 return TranslateLegalizeResults(Op, Lowered); 276 } 277 case TargetLowering::Expand: 278 Changed = true; 279 return LegalizeOp(ExpandStore(Op)); 280 } 281 } 282 } else if (Op.getOpcode() == ISD::MSCATTER || Op.getOpcode() == ISD::MSTORE) 283 HasVectorValue = true; 284 285 for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end(); 286 J != E; 287 ++J) 288 HasVectorValue |= J->isVector(); 289 if (!HasVectorValue) 290 return TranslateLegalizeResults(Op, Result); 291 292 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 293 switch (Op.getOpcode()) { 294 default: 295 return TranslateLegalizeResults(Op, Result); 296 case ISD::STRICT_FADD: 297 case ISD::STRICT_FSUB: 298 case ISD::STRICT_FMUL: 299 case ISD::STRICT_FDIV: 300 case ISD::STRICT_FSQRT: 301 case ISD::STRICT_FMA: 302 case ISD::STRICT_FPOW: 303 case ISD::STRICT_FPOWI: 304 case ISD::STRICT_FSIN: 305 case ISD::STRICT_FCOS: 306 case ISD::STRICT_FEXP: 307 case ISD::STRICT_FEXP2: 308 case ISD::STRICT_FLOG: 309 case ISD::STRICT_FLOG10: 310 case ISD::STRICT_FLOG2: 311 case ISD::STRICT_FRINT: 312 case ISD::STRICT_FNEARBYINT: 313 // These pseudo-ops get legalized as if they were their non-strict 314 // equivalent. For instance, if ISD::FSQRT is legal then ISD::STRICT_FSQRT 315 // is also legal, but if ISD::FSQRT requires expansion then so does 316 // ISD::STRICT_FSQRT. 317 Action = TLI.getStrictFPOperationAction(Node->getOpcode(), 318 Node->getValueType(0)); 319 break; 320 case ISD::ADD: 321 case ISD::SUB: 322 case ISD::MUL: 323 case ISD::SDIV: 324 case ISD::UDIV: 325 case ISD::SREM: 326 case ISD::UREM: 327 case ISD::SDIVREM: 328 case ISD::UDIVREM: 329 case ISD::FADD: 330 case ISD::FSUB: 331 case ISD::FMUL: 332 case ISD::FDIV: 333 case ISD::FREM: 334 case ISD::AND: 335 case ISD::OR: 336 case ISD::XOR: 337 case ISD::SHL: 338 case ISD::SRA: 339 case ISD::SRL: 340 case ISD::ROTL: 341 case ISD::ROTR: 342 case ISD::BSWAP: 343 case ISD::BITREVERSE: 344 case ISD::CTLZ: 345 case ISD::CTTZ: 346 case ISD::CTLZ_ZERO_UNDEF: 347 case ISD::CTTZ_ZERO_UNDEF: 348 case ISD::CTPOP: 349 case ISD::SELECT: 350 case ISD::VSELECT: 351 case ISD::SELECT_CC: 352 case ISD::SETCC: 353 case ISD::ZERO_EXTEND: 354 case ISD::ANY_EXTEND: 355 case ISD::TRUNCATE: 356 case ISD::SIGN_EXTEND: 357 case ISD::FP_TO_SINT: 358 case ISD::FP_TO_UINT: 359 case ISD::FNEG: 360 case ISD::FABS: 361 case ISD::FMINNUM: 362 case ISD::FMAXNUM: 363 case ISD::FMINNAN: 364 case ISD::FMAXNAN: 365 case ISD::FCOPYSIGN: 366 case ISD::FSQRT: 367 case ISD::FSIN: 368 case ISD::FCOS: 369 case ISD::FPOWI: 370 case ISD::FPOW: 371 case ISD::FLOG: 372 case ISD::FLOG2: 373 case ISD::FLOG10: 374 case ISD::FEXP: 375 case ISD::FEXP2: 376 case ISD::FCEIL: 377 case ISD::FTRUNC: 378 case ISD::FRINT: 379 case ISD::FNEARBYINT: 380 case ISD::FROUND: 381 case ISD::FFLOOR: 382 case ISD::FP_ROUND: 383 case ISD::FP_EXTEND: 384 case ISD::FMA: 385 case ISD::SIGN_EXTEND_INREG: 386 case ISD::ANY_EXTEND_VECTOR_INREG: 387 case ISD::SIGN_EXTEND_VECTOR_INREG: 388 case ISD::ZERO_EXTEND_VECTOR_INREG: 389 case ISD::SMIN: 390 case ISD::SMAX: 391 case ISD::UMIN: 392 case ISD::UMAX: 393 case ISD::SMUL_LOHI: 394 case ISD::UMUL_LOHI: 395 case ISD::FCANONICALIZE: 396 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 397 break; 398 case ISD::FP_ROUND_INREG: 399 Action = TLI.getOperationAction(Node->getOpcode(), 400 cast<VTSDNode>(Node->getOperand(1))->getVT()); 401 break; 402 case ISD::SINT_TO_FP: 403 case ISD::UINT_TO_FP: 404 Action = TLI.getOperationAction(Node->getOpcode(), 405 Node->getOperand(0).getValueType()); 406 break; 407 case ISD::MSCATTER: 408 Action = TLI.getOperationAction(Node->getOpcode(), 409 cast<MaskedScatterSDNode>(Node)->getValue().getValueType()); 410 break; 411 case ISD::MSTORE: 412 Action = TLI.getOperationAction(Node->getOpcode(), 413 cast<MaskedStoreSDNode>(Node)->getValue().getValueType()); 414 break; 415 } 416 417 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG)); 418 419 switch (Action) { 420 default: llvm_unreachable("This action is not supported yet!"); 421 case TargetLowering::Promote: 422 Result = Promote(Op); 423 Changed = true; 424 break; 425 case TargetLowering::Legal: 426 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 427 break; 428 case TargetLowering::Custom: { 429 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 430 if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) { 431 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 432 Result = Tmp1; 433 break; 434 } 435 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 436 LLVM_FALLTHROUGH; 437 } 438 case TargetLowering::Expand: 439 Result = Expand(Op); 440 } 441 442 // Make sure that the generated code is itself legal. 443 if (Result != Op) { 444 Result = LegalizeOp(Result); 445 Changed = true; 446 } 447 448 // Note that LegalizeOp may be reentered even from single-use nodes, which 449 // means that we always must cache transformed nodes. 450 AddLegalizedOperand(Op, Result); 451 return Result; 452 } 453 454 SDValue VectorLegalizer::Promote(SDValue Op) { 455 // For a few operations there is a specific concept for promotion based on 456 // the operand's type. 457 switch (Op.getOpcode()) { 458 case ISD::SINT_TO_FP: 459 case ISD::UINT_TO_FP: 460 // "Promote" the operation by extending the operand. 461 return PromoteINT_TO_FP(Op); 462 case ISD::FP_TO_UINT: 463 case ISD::FP_TO_SINT: 464 // Promote the operation by extending the operand. 465 return PromoteFP_TO_INT(Op); 466 } 467 468 // There are currently two cases of vector promotion: 469 // 1) Bitcasting a vector of integers to a different type to a vector of the 470 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 471 // 2) Extending a vector of floats to a vector of the same number of larger 472 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 473 MVT VT = Op.getSimpleValueType(); 474 assert(Op.getNode()->getNumValues() == 1 && 475 "Can't promote a vector with multiple results!"); 476 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 477 SDLoc dl(Op); 478 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 479 480 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 481 if (Op.getOperand(j).getValueType().isVector()) 482 if (Op.getOperand(j) 483 .getValueType() 484 .getVectorElementType() 485 .isFloatingPoint() && 486 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 487 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j)); 488 else 489 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); 490 else 491 Operands[j] = Op.getOperand(j); 492 } 493 494 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags()); 495 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 496 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 497 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 498 return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl)); 499 else 500 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 501 } 502 503 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) { 504 // INT_TO_FP operations may require the input operand be promoted even 505 // when the type is otherwise legal. 506 MVT VT = Op.getOperand(0).getSimpleValueType(); 507 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 508 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 509 "Vectors have different number of elements!"); 510 511 SDLoc dl(Op); 512 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 513 514 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : 515 ISD::SIGN_EXTEND; 516 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 517 if (Op.getOperand(j).getValueType().isVector()) 518 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j)); 519 else 520 Operands[j] = Op.getOperand(j); 521 } 522 523 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands); 524 } 525 526 // For FP_TO_INT we promote the result type to a vector type with wider 527 // elements and then truncate the result. This is different from the default 528 // PromoteVector which uses bitcast to promote thus assumning that the 529 // promoted vector type has the same overall size. 530 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op) { 531 MVT VT = Op.getSimpleValueType(); 532 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 533 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 534 "Vectors have different number of elements!"); 535 536 unsigned NewOpc = Op->getOpcode(); 537 // Change FP_TO_UINT to FP_TO_SINT if possible. 538 // TODO: Should we only do this if FP_TO_UINT itself isn't legal? 539 if (NewOpc == ISD::FP_TO_UINT && 540 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT)) 541 NewOpc = ISD::FP_TO_SINT; 542 543 SDLoc dl(Op); 544 SDValue Promoted = DAG.getNode(NewOpc, dl, NVT, Op.getOperand(0)); 545 546 // Assert that the converted value fits in the original type. If it doesn't 547 // (eg: because the value being converted is too big), then the result of the 548 // original operation was undefined anyway, so the assert is still correct. 549 Promoted = DAG.getNode(Op->getOpcode() == ISD::FP_TO_UINT ? ISD::AssertZext 550 : ISD::AssertSext, 551 dl, NVT, Promoted, 552 DAG.getValueType(VT.getScalarType())); 553 return DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted); 554 } 555 556 SDValue VectorLegalizer::ExpandLoad(SDValue Op) { 557 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 558 559 EVT SrcVT = LD->getMemoryVT(); 560 EVT SrcEltVT = SrcVT.getScalarType(); 561 unsigned NumElem = SrcVT.getVectorNumElements(); 562 563 SDValue NewChain; 564 SDValue Value; 565 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { 566 SDLoc dl(Op); 567 568 SmallVector<SDValue, 8> Vals; 569 SmallVector<SDValue, 8> LoadChains; 570 571 EVT DstEltVT = LD->getValueType(0).getScalarType(); 572 SDValue Chain = LD->getChain(); 573 SDValue BasePTR = LD->getBasePtr(); 574 ISD::LoadExtType ExtType = LD->getExtensionType(); 575 576 // When elements in a vector is not byte-addressable, we cannot directly 577 // load each element by advancing pointer, which could only address bytes. 578 // Instead, we load all significant words, mask bits off, and concatenate 579 // them to form each element. Finally, they are extended to destination 580 // scalar type to build the destination vector. 581 EVT WideVT = TLI.getPointerTy(DAG.getDataLayout()); 582 583 assert(WideVT.isRound() && 584 "Could not handle the sophisticated case when the widest integer is" 585 " not power of 2."); 586 assert(WideVT.bitsGE(SrcEltVT) && 587 "Type is not legalized?"); 588 589 unsigned WideBytes = WideVT.getStoreSize(); 590 unsigned Offset = 0; 591 unsigned RemainingBytes = SrcVT.getStoreSize(); 592 SmallVector<SDValue, 8> LoadVals; 593 while (RemainingBytes > 0) { 594 SDValue ScalarLoad; 595 unsigned LoadBytes = WideBytes; 596 597 if (RemainingBytes >= LoadBytes) { 598 ScalarLoad = 599 DAG.getLoad(WideVT, dl, Chain, BasePTR, 600 LD->getPointerInfo().getWithOffset(Offset), 601 MinAlign(LD->getAlignment(), Offset), 602 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 603 } else { 604 EVT LoadVT = WideVT; 605 while (RemainingBytes < LoadBytes) { 606 LoadBytes >>= 1; // Reduce the load size by half. 607 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); 608 } 609 ScalarLoad = 610 DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, 611 LD->getPointerInfo().getWithOffset(Offset), LoadVT, 612 MinAlign(LD->getAlignment(), Offset), 613 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 614 } 615 616 RemainingBytes -= LoadBytes; 617 Offset += LoadBytes; 618 619 BasePTR = DAG.getObjectPtrOffset(dl, BasePTR, LoadBytes); 620 621 LoadVals.push_back(ScalarLoad.getValue(0)); 622 LoadChains.push_back(ScalarLoad.getValue(1)); 623 } 624 625 // Extract bits, pack and extend/trunc them into destination type. 626 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 627 SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT); 628 629 unsigned BitOffset = 0; 630 unsigned WideIdx = 0; 631 unsigned WideBits = WideVT.getSizeInBits(); 632 633 for (unsigned Idx = 0; Idx != NumElem; ++Idx) { 634 SDValue Lo, Hi, ShAmt; 635 636 if (BitOffset < WideBits) { 637 ShAmt = DAG.getConstant( 638 BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 639 Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); 640 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); 641 } 642 643 BitOffset += SrcEltBits; 644 if (BitOffset >= WideBits) { 645 WideIdx++; 646 BitOffset -= WideBits; 647 if (BitOffset > 0) { 648 ShAmt = DAG.getConstant( 649 SrcEltBits - BitOffset, dl, 650 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 651 Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); 652 Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask); 653 } 654 } 655 656 if (Hi.getNode()) 657 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); 658 659 switch (ExtType) { 660 default: llvm_unreachable("Unknown extended-load op!"); 661 case ISD::EXTLOAD: 662 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); 663 break; 664 case ISD::ZEXTLOAD: 665 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); 666 break; 667 case ISD::SEXTLOAD: 668 ShAmt = 669 DAG.getConstant(WideBits - SrcEltBits, dl, 670 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 671 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); 672 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); 673 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); 674 break; 675 } 676 Vals.push_back(Lo); 677 } 678 679 NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 680 Value = DAG.getBuildVector(Op.getNode()->getValueType(0), dl, Vals); 681 } else { 682 SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG); 683 684 NewChain = Scalarized.getValue(1); 685 Value = Scalarized.getValue(0); 686 } 687 688 AddLegalizedOperand(Op.getValue(0), Value); 689 AddLegalizedOperand(Op.getValue(1), NewChain); 690 691 return (Op.getResNo() ? NewChain : Value); 692 } 693 694 SDValue VectorLegalizer::ExpandStore(SDValue Op) { 695 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 696 SDValue TF = TLI.scalarizeVectorStore(ST, DAG); 697 AddLegalizedOperand(Op, TF); 698 return TF; 699 } 700 701 SDValue VectorLegalizer::Expand(SDValue Op) { 702 switch (Op->getOpcode()) { 703 case ISD::SIGN_EXTEND_INREG: 704 return ExpandSEXTINREG(Op); 705 case ISD::ANY_EXTEND_VECTOR_INREG: 706 return ExpandANY_EXTEND_VECTOR_INREG(Op); 707 case ISD::SIGN_EXTEND_VECTOR_INREG: 708 return ExpandSIGN_EXTEND_VECTOR_INREG(Op); 709 case ISD::ZERO_EXTEND_VECTOR_INREG: 710 return ExpandZERO_EXTEND_VECTOR_INREG(Op); 711 case ISD::BSWAP: 712 return ExpandBSWAP(Op); 713 case ISD::VSELECT: 714 return ExpandVSELECT(Op); 715 case ISD::SELECT: 716 return ExpandSELECT(Op); 717 case ISD::UINT_TO_FP: 718 return ExpandUINT_TO_FLOAT(Op); 719 case ISD::FNEG: 720 return ExpandFNEG(Op); 721 case ISD::FSUB: 722 return ExpandFSUB(Op); 723 case ISD::SETCC: 724 return UnrollVSETCC(Op); 725 case ISD::BITREVERSE: 726 return ExpandBITREVERSE(Op); 727 case ISD::CTLZ: 728 case ISD::CTLZ_ZERO_UNDEF: 729 return ExpandCTLZ(Op); 730 case ISD::CTTZ_ZERO_UNDEF: 731 return ExpandCTTZ_ZERO_UNDEF(Op); 732 case ISD::STRICT_FADD: 733 case ISD::STRICT_FSUB: 734 case ISD::STRICT_FMUL: 735 case ISD::STRICT_FDIV: 736 case ISD::STRICT_FSQRT: 737 case ISD::STRICT_FMA: 738 case ISD::STRICT_FPOW: 739 case ISD::STRICT_FPOWI: 740 case ISD::STRICT_FSIN: 741 case ISD::STRICT_FCOS: 742 case ISD::STRICT_FEXP: 743 case ISD::STRICT_FEXP2: 744 case ISD::STRICT_FLOG: 745 case ISD::STRICT_FLOG10: 746 case ISD::STRICT_FLOG2: 747 case ISD::STRICT_FRINT: 748 case ISD::STRICT_FNEARBYINT: 749 return ExpandStrictFPOp(Op); 750 default: 751 return DAG.UnrollVectorOp(Op.getNode()); 752 } 753 } 754 755 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) { 756 // Lower a select instruction where the condition is a scalar and the 757 // operands are vectors. Lower this select to VSELECT and implement it 758 // using XOR AND OR. The selector bit is broadcasted. 759 EVT VT = Op.getValueType(); 760 SDLoc DL(Op); 761 762 SDValue Mask = Op.getOperand(0); 763 SDValue Op1 = Op.getOperand(1); 764 SDValue Op2 = Op.getOperand(2); 765 766 assert(VT.isVector() && !Mask.getValueType().isVector() 767 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 768 769 // If we can't even use the basic vector operations of 770 // AND,OR,XOR, we will have to scalarize the op. 771 // Notice that the operation may be 'promoted' which means that it is 772 // 'bitcasted' to another type which is handled. 773 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 774 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 775 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 776 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 777 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 778 return DAG.UnrollVectorOp(Op.getNode()); 779 780 // Generate a mask operand. 781 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 782 783 // What is the size of each element in the vector mask. 784 EVT BitTy = MaskTy.getScalarType(); 785 786 Mask = DAG.getSelect(DL, BitTy, Mask, 787 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, 788 BitTy), 789 DAG.getConstant(0, DL, BitTy)); 790 791 // Broadcast the mask so that the entire vector is all-one or all zero. 792 Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask); 793 794 // Bitcast the operands to be the same type as the mask. 795 // This is needed when we select between FP types because 796 // the mask is a vector of integers. 797 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 798 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 799 800 SDValue AllOnes = DAG.getConstant( 801 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy); 802 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 803 804 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 805 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 806 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 807 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 808 } 809 810 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) { 811 EVT VT = Op.getValueType(); 812 813 // Make sure that the SRA and SHL instructions are available. 814 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 815 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 816 return DAG.UnrollVectorOp(Op.getNode()); 817 818 SDLoc DL(Op); 819 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT(); 820 821 unsigned BW = VT.getScalarSizeInBits(); 822 unsigned OrigBW = OrigTy.getScalarSizeInBits(); 823 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 824 825 Op = Op.getOperand(0); 826 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz); 827 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 828 } 829 830 // Generically expand a vector anyext in register to a shuffle of the relevant 831 // lanes into the appropriate locations, with other lanes left undef. 832 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) { 833 SDLoc DL(Op); 834 EVT VT = Op.getValueType(); 835 int NumElements = VT.getVectorNumElements(); 836 SDValue Src = Op.getOperand(0); 837 EVT SrcVT = Src.getValueType(); 838 int NumSrcElements = SrcVT.getVectorNumElements(); 839 840 // Build a base mask of undef shuffles. 841 SmallVector<int, 16> ShuffleMask; 842 ShuffleMask.resize(NumSrcElements, -1); 843 844 // Place the extended lanes into the correct locations. 845 int ExtLaneScale = NumSrcElements / NumElements; 846 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 847 for (int i = 0; i < NumElements; ++i) 848 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 849 850 return DAG.getNode( 851 ISD::BITCAST, DL, VT, 852 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 853 } 854 855 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) { 856 SDLoc DL(Op); 857 EVT VT = Op.getValueType(); 858 SDValue Src = Op.getOperand(0); 859 EVT SrcVT = Src.getValueType(); 860 861 // First build an any-extend node which can be legalized above when we 862 // recurse through it. 863 Op = DAG.getAnyExtendVectorInReg(Src, DL, VT); 864 865 // Now we need sign extend. Do this by shifting the elements. Even if these 866 // aren't legal operations, they have a better chance of being legalized 867 // without full scalarization than the sign extension does. 868 unsigned EltWidth = VT.getScalarSizeInBits(); 869 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); 870 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 871 return DAG.getNode(ISD::SRA, DL, VT, 872 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 873 ShiftAmount); 874 } 875 876 // Generically expand a vector zext in register to a shuffle of the relevant 877 // lanes into the appropriate locations, a blend of zero into the high bits, 878 // and a bitcast to the wider element type. 879 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) { 880 SDLoc DL(Op); 881 EVT VT = Op.getValueType(); 882 int NumElements = VT.getVectorNumElements(); 883 SDValue Src = Op.getOperand(0); 884 EVT SrcVT = Src.getValueType(); 885 int NumSrcElements = SrcVT.getVectorNumElements(); 886 887 // Build up a zero vector to blend into this one. 888 SDValue Zero = DAG.getConstant(0, DL, SrcVT); 889 890 // Shuffle the incoming lanes into the correct position, and pull all other 891 // lanes from the zero vector. 892 SmallVector<int, 16> ShuffleMask; 893 ShuffleMask.reserve(NumSrcElements); 894 for (int i = 0; i < NumSrcElements; ++i) 895 ShuffleMask.push_back(i); 896 897 int ExtLaneScale = NumSrcElements / NumElements; 898 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 899 for (int i = 0; i < NumElements; ++i) 900 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 901 902 return DAG.getNode(ISD::BITCAST, DL, VT, 903 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 904 } 905 906 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) { 907 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 908 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 909 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 910 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 911 } 912 913 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) { 914 EVT VT = Op.getValueType(); 915 916 // Generate a byte wise shuffle mask for the BSWAP. 917 SmallVector<int, 16> ShuffleMask; 918 createBSWAPShuffleMask(VT, ShuffleMask); 919 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 920 921 // Only emit a shuffle if the mask is legal. 922 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) 923 return DAG.UnrollVectorOp(Op.getNode()); 924 925 SDLoc DL(Op); 926 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 927 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); 928 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 929 } 930 931 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) { 932 EVT VT = Op.getValueType(); 933 934 // If we have the scalar operation, it's probably cheaper to unroll it. 935 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) 936 return DAG.UnrollVectorOp(Op.getNode()); 937 938 // If the vector element width is a whole number of bytes, test if its legal 939 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte 940 // vector. This greatly reduces the number of bit shifts necessary. 941 unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); 942 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { 943 SmallVector<int, 16> BSWAPMask; 944 createBSWAPShuffleMask(VT, BSWAPMask); 945 946 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); 947 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && 948 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || 949 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && 950 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && 951 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && 952 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { 953 SDLoc DL(Op); 954 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 955 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 956 BSWAPMask); 957 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); 958 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 959 } 960 } 961 962 // If we have the appropriate vector bit operations, it is better to use them 963 // than unrolling and expanding each component. 964 if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) || 965 !TLI.isOperationLegalOrCustom(ISD::SRL, VT) || 966 !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 967 !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) 968 return DAG.UnrollVectorOp(Op.getNode()); 969 970 // Let LegalizeDAG handle this later. 971 return Op; 972 } 973 974 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { 975 // Implement VSELECT in terms of XOR, AND, OR 976 // on platforms which do not support blend natively. 977 SDLoc DL(Op); 978 979 SDValue Mask = Op.getOperand(0); 980 SDValue Op1 = Op.getOperand(1); 981 SDValue Op2 = Op.getOperand(2); 982 983 EVT VT = Mask.getValueType(); 984 985 // If we can't even use the basic vector operations of 986 // AND,OR,XOR, we will have to scalarize the op. 987 // Notice that the operation may be 'promoted' which means that it is 988 // 'bitcasted' to another type which is handled. 989 // This operation also isn't safe with AND, OR, XOR when the boolean 990 // type is 0/1 as we need an all ones vector constant to mask with. 991 // FIXME: Sign extend 1 to all ones if thats legal on the target. 992 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 993 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 994 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 995 TLI.getBooleanContents(Op1.getValueType()) != 996 TargetLowering::ZeroOrNegativeOneBooleanContent) 997 return DAG.UnrollVectorOp(Op.getNode()); 998 999 // If the mask and the type are different sizes, unroll the vector op. This 1000 // can occur when getSetCCResultType returns something that is different in 1001 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 1002 if (VT.getSizeInBits() != Op1.getValueSizeInBits()) 1003 return DAG.UnrollVectorOp(Op.getNode()); 1004 1005 // Bitcast the operands to be the same type as the mask. 1006 // This is needed when we select between FP types because 1007 // the mask is a vector of integers. 1008 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 1009 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 1010 1011 SDValue AllOnes = DAG.getConstant( 1012 APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT); 1013 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 1014 1015 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 1016 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 1017 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 1018 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 1019 } 1020 1021 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { 1022 EVT VT = Op.getOperand(0).getValueType(); 1023 SDLoc DL(Op); 1024 1025 // Make sure that the SINT_TO_FP and SRL instructions are available. 1026 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand || 1027 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) 1028 return DAG.UnrollVectorOp(Op.getNode()); 1029 1030 unsigned BW = VT.getScalarSizeInBits(); 1031 assert((BW == 64 || BW == 32) && 1032 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 1033 1034 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT); 1035 1036 // Constants to clear the upper part of the word. 1037 // Notice that we can also use SHL+SHR, but using a constant is slightly 1038 // faster on x86. 1039 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; 1040 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 1041 1042 // Two to the power of half-word-size. 1043 SDValue TWOHW = DAG.getConstantFP(1ULL << (BW / 2), DL, Op.getValueType()); 1044 1045 // Clear upper part of LO, lower HI 1046 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); 1047 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); 1048 1049 // Convert hi and lo to floats 1050 // Convert the hi part back to the upper values 1051 // TODO: Can any fast-math-flags be set on these nodes? 1052 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); 1053 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); 1054 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); 1055 1056 // Add the two halves 1057 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); 1058 } 1059 1060 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { 1061 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { 1062 SDLoc DL(Op); 1063 SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType()); 1064 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. 1065 return DAG.getNode(ISD::FSUB, DL, Op.getValueType(), 1066 Zero, Op.getOperand(0)); 1067 } 1068 return DAG.UnrollVectorOp(Op.getNode()); 1069 } 1070 1071 SDValue VectorLegalizer::ExpandFSUB(SDValue Op) { 1072 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal, 1073 // we can defer this to operation legalization where it will be lowered as 1074 // a+(-b). 1075 EVT VT = Op.getValueType(); 1076 if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && 1077 TLI.isOperationLegalOrCustom(ISD::FADD, VT)) 1078 return Op; // Defer to LegalizeDAG 1079 1080 return DAG.UnrollVectorOp(Op.getNode()); 1081 } 1082 1083 SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) { 1084 EVT VT = Op.getValueType(); 1085 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 1086 1087 // If the non-ZERO_UNDEF version is supported we can use that instead. 1088 if (Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF && 1089 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) { 1090 SDLoc DL(Op); 1091 return DAG.getNode(ISD::CTLZ, DL, Op.getValueType(), Op.getOperand(0)); 1092 } 1093 1094 // If CTPOP is available we can lower with a CTPOP based method: 1095 // u16 ctlz(u16 x) { 1096 // x |= (x >> 1); 1097 // x |= (x >> 2); 1098 // x |= (x >> 4); 1099 // x |= (x >> 8); 1100 // return ctpop(~x); 1101 // } 1102 // Ref: "Hacker's Delight" by Henry Warren 1103 if (isPowerOf2_32(NumBitsPerElt) && 1104 TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && 1105 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 1106 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT) && 1107 TLI.isOperationLegalOrCustomOrPromote(ISD::XOR, VT)) { 1108 SDLoc DL(Op); 1109 SDValue Res = Op.getOperand(0); 1110 EVT ShiftTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 1111 1112 for (unsigned i = 1; i != NumBitsPerElt; i *= 2) 1113 Res = DAG.getNode( 1114 ISD::OR, DL, VT, Res, 1115 DAG.getNode(ISD::SRL, DL, VT, Res, DAG.getConstant(i, DL, ShiftTy))); 1116 1117 Res = DAG.getNOT(DL, Res, VT); 1118 return DAG.getNode(ISD::CTPOP, DL, VT, Res); 1119 } 1120 1121 // Otherwise go ahead and unroll. 1122 return DAG.UnrollVectorOp(Op.getNode()); 1123 } 1124 1125 SDValue VectorLegalizer::ExpandCTTZ_ZERO_UNDEF(SDValue Op) { 1126 // If the non-ZERO_UNDEF version is supported we can use that instead. 1127 if (TLI.isOperationLegalOrCustom(ISD::CTTZ, Op.getValueType())) { 1128 SDLoc DL(Op); 1129 return DAG.getNode(ISD::CTTZ, DL, Op.getValueType(), Op.getOperand(0)); 1130 } 1131 1132 // Otherwise go ahead and unroll. 1133 return DAG.UnrollVectorOp(Op.getNode()); 1134 } 1135 1136 SDValue VectorLegalizer::ExpandStrictFPOp(SDValue Op) { 1137 EVT VT = Op.getValueType(); 1138 EVT EltVT = VT.getVectorElementType(); 1139 unsigned NumElems = VT.getVectorNumElements(); 1140 unsigned NumOpers = Op.getNumOperands(); 1141 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1142 EVT ValueVTs[] = {EltVT, MVT::Other}; 1143 SDValue Chain = Op.getOperand(0); 1144 SDLoc dl(Op); 1145 1146 SmallVector<SDValue, 32> OpValues; 1147 SmallVector<SDValue, 32> OpChains; 1148 for (unsigned i = 0; i < NumElems; ++i) { 1149 SmallVector<SDValue, 4> Opers; 1150 SDValue Idx = DAG.getConstant(i, dl, 1151 TLI.getVectorIdxTy(DAG.getDataLayout())); 1152 1153 // The Chain is the first operand. 1154 Opers.push_back(Chain); 1155 1156 // Now process the remaining operands. 1157 for (unsigned j = 1; j < NumOpers; ++j) { 1158 SDValue Oper = Op.getOperand(j); 1159 EVT OperVT = Oper.getValueType(); 1160 1161 if (OperVT.isVector()) 1162 Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 1163 EltVT, Oper, Idx); 1164 1165 Opers.push_back(Oper); 1166 } 1167 1168 SDValue ScalarOp = DAG.getNode(Op->getOpcode(), dl, ValueVTs, Opers); 1169 1170 OpValues.push_back(ScalarOp.getValue(0)); 1171 OpChains.push_back(ScalarOp.getValue(1)); 1172 } 1173 1174 SDValue Result = DAG.getBuildVector(VT, dl, OpValues); 1175 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains); 1176 1177 AddLegalizedOperand(Op.getValue(0), Result); 1178 AddLegalizedOperand(Op.getValue(1), NewChain); 1179 1180 return NewChain; 1181 } 1182 1183 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { 1184 EVT VT = Op.getValueType(); 1185 unsigned NumElems = VT.getVectorNumElements(); 1186 EVT EltVT = VT.getVectorElementType(); 1187 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); 1188 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1189 SDLoc dl(Op); 1190 SmallVector<SDValue, 8> Ops(NumElems); 1191 for (unsigned i = 0; i < NumElems; ++i) { 1192 SDValue LHSElem = DAG.getNode( 1193 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1194 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1195 SDValue RHSElem = DAG.getNode( 1196 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1197 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1198 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1199 TLI.getSetCCResultType(DAG.getDataLayout(), 1200 *DAG.getContext(), TmpEltVT), 1201 LHSElem, RHSElem, CC); 1202 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 1203 DAG.getConstant(APInt::getAllOnesValue 1204 (EltVT.getSizeInBits()), dl, EltVT), 1205 DAG.getConstant(0, dl, EltVT)); 1206 } 1207 return DAG.getBuildVector(VT, dl, Ops); 1208 } 1209 1210 bool SelectionDAG::LegalizeVectors() { 1211 return VectorLegalizer(*this).Run(); 1212 } 1213