1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SelectionDAG::LegalizeVectors method.
11 //
12 // The vector legalizer looks for vector operations which might need to be
13 // scalarized and legalizes them. This is a separate step from Legalize because
14 // scalarizing can introduce illegal types.  For example, suppose we have an
15 // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
17 // operation, which introduces nodes with the illegal type i64 which must be
18 // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
19 // the operation must be unrolled, which introduces nodes with the illegal
20 // type i8 which must be promoted.
21 //
22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
23 // or operations that happen to take a vector which are custom-lowered;
24 // the legalization for such operations never produces nodes
25 // with illegal types, so it's okay to put off legalizing them until
26 // SelectionDAG::Legalize runs.
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #include "llvm/ADT/APInt.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/MachineValueType.h"
36 #include "llvm/CodeGen/SelectionDAG.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/ValueTypes.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/Compiler.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/MathExtras.h"
45 #include <cassert>
46 #include <cstdint>
47 #include <iterator>
48 #include <utility>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "legalizevectorops"
53 
54 namespace {
55 
56 class VectorLegalizer {
57   SelectionDAG& DAG;
58   const TargetLowering &TLI;
59   bool Changed = false; // Keep track of whether anything changed
60 
61   /// For nodes that are of legal width, and that have more than one use, this
62   /// map indicates what regularized operand to use.  This allows us to avoid
63   /// legalizing the same thing more than once.
64   SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
65 
66   /// \brief Adds a node to the translation cache.
67   void AddLegalizedOperand(SDValue From, SDValue To) {
68     LegalizedNodes.insert(std::make_pair(From, To));
69     // If someone requests legalization of the new node, return itself.
70     if (From != To)
71       LegalizedNodes.insert(std::make_pair(To, To));
72   }
73 
74   /// \brief Legalizes the given node.
75   SDValue LegalizeOp(SDValue Op);
76 
77   /// \brief Assuming the node is legal, "legalize" the results.
78   SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
79 
80   /// \brief Implements unrolling a VSETCC.
81   SDValue UnrollVSETCC(SDValue Op);
82 
83   /// \brief Implement expand-based legalization of vector operations.
84   ///
85   /// This is just a high-level routine to dispatch to specific code paths for
86   /// operations to legalize them.
87   SDValue Expand(SDValue Op);
88 
89   /// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if
90   /// FSUB isn't legal.
91   ///
92   /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
93   /// SINT_TO_FLOAT and SHR on vectors isn't legal.
94   SDValue ExpandUINT_TO_FLOAT(SDValue Op);
95 
96   /// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
97   SDValue ExpandSEXTINREG(SDValue Op);
98 
99   /// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG.
100   ///
101   /// Shuffles the low lanes of the operand into place and bitcasts to the proper
102   /// type. The contents of the bits in the extended part of each element are
103   /// undef.
104   SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op);
105 
106   /// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG.
107   ///
108   /// Shuffles the low lanes of the operand into place, bitcasts to the proper
109   /// type, then shifts left and arithmetic shifts right to introduce a sign
110   /// extension.
111   SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op);
112 
113   /// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG.
114   ///
115   /// Shuffles the low lanes of the operand into place and blends zeros into
116   /// the remaining lanes, finally bitcasting to the proper type.
117   SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op);
118 
119   /// \brief Expand bswap of vectors into a shuffle if legal.
120   SDValue ExpandBSWAP(SDValue Op);
121 
122   /// \brief Implement vselect in terms of XOR, AND, OR when blend is not
123   /// supported by the target.
124   SDValue ExpandVSELECT(SDValue Op);
125   SDValue ExpandSELECT(SDValue Op);
126   SDValue ExpandLoad(SDValue Op);
127   SDValue ExpandStore(SDValue Op);
128   SDValue ExpandFNEG(SDValue Op);
129   SDValue ExpandFSUB(SDValue Op);
130   SDValue ExpandBITREVERSE(SDValue Op);
131   SDValue ExpandCTLZ(SDValue Op);
132   SDValue ExpandCTTZ_ZERO_UNDEF(SDValue Op);
133 
134   /// \brief Implements vector promotion.
135   ///
136   /// This is essentially just bitcasting the operands to a different type and
137   /// bitcasting the result back to the original type.
138   SDValue Promote(SDValue Op);
139 
140   /// \brief Implements [SU]INT_TO_FP vector promotion.
141   ///
142   /// This is a [zs]ext of the input operand to a larger integer type.
143   SDValue PromoteINT_TO_FP(SDValue Op);
144 
145   /// \brief Implements FP_TO_[SU]INT vector promotion of the result type.
146   ///
147   /// It is promoted to a larger integer type.  The result is then
148   /// truncated back to the original type.
149   SDValue PromoteFP_TO_INT(SDValue Op);
150 
151 public:
152   VectorLegalizer(SelectionDAG& dag) :
153       DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
154 
155   /// \brief Begin legalizer the vector operations in the DAG.
156   bool Run();
157 };
158 
159 } // end anonymous namespace
160 
161 bool VectorLegalizer::Run() {
162   // Before we start legalizing vector nodes, check if there are any vectors.
163   bool HasVectors = false;
164   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
165        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
166     // Check if the values of the nodes contain vectors. We don't need to check
167     // the operands because we are going to check their values at some point.
168     for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
169          J != E; ++J)
170       HasVectors |= J->isVector();
171 
172     // If we found a vector node we can start the legalization.
173     if (HasVectors)
174       break;
175   }
176 
177   // If this basic block has no vectors then no need to legalize vectors.
178   if (!HasVectors)
179     return false;
180 
181   // The legalize process is inherently a bottom-up recursive process (users
182   // legalize their uses before themselves).  Given infinite stack space, we
183   // could just start legalizing on the root and traverse the whole graph.  In
184   // practice however, this causes us to run out of stack space on large basic
185   // blocks.  To avoid this problem, compute an ordering of the nodes where each
186   // node is only legalized after all of its operands are legalized.
187   DAG.AssignTopologicalOrder();
188   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
189        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
190     LegalizeOp(SDValue(&*I, 0));
191 
192   // Finally, it's possible the root changed.  Get the new root.
193   SDValue OldRoot = DAG.getRoot();
194   assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
195   DAG.setRoot(LegalizedNodes[OldRoot]);
196 
197   LegalizedNodes.clear();
198 
199   // Remove dead nodes now.
200   DAG.RemoveDeadNodes();
201 
202   return Changed;
203 }
204 
205 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
206   // Generic legalization: just pass the operand through.
207   for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
208     AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
209   return Result.getValue(Op.getResNo());
210 }
211 
212 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
213   // Note that LegalizeOp may be reentered even from single-use nodes, which
214   // means that we always must cache transformed nodes.
215   DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
216   if (I != LegalizedNodes.end()) return I->second;
217 
218   SDNode* Node = Op.getNode();
219 
220   // Legalize the operands
221   SmallVector<SDValue, 8> Ops;
222   for (const SDValue &Op : Node->op_values())
223     Ops.push_back(LegalizeOp(Op));
224 
225   SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0);
226 
227   bool HasVectorValue = false;
228   if (Op.getOpcode() == ISD::LOAD) {
229     LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
230     ISD::LoadExtType ExtType = LD->getExtensionType();
231     if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) {
232       DEBUG(dbgs() << "\nLegalizing extending vector load: "; Node->dump(&DAG));
233       switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
234                                    LD->getMemoryVT())) {
235       default: llvm_unreachable("This action is not supported yet!");
236       case TargetLowering::Legal:
237         return TranslateLegalizeResults(Op, Result);
238       case TargetLowering::Custom:
239         if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) {
240           if (Lowered == Result)
241             return TranslateLegalizeResults(Op, Lowered);
242           Changed = true;
243           if (Lowered->getNumValues() != Op->getNumValues()) {
244             // This expanded to something other than the load. Assume the
245             // lowering code took care of any chain values, and just handle the
246             // returned value.
247             assert(Result.getValue(1).use_empty() &&
248                    "There are still live users of the old chain!");
249             return LegalizeOp(Lowered);
250           }
251           return TranslateLegalizeResults(Op, Lowered);
252         }
253         LLVM_FALLTHROUGH;
254       case TargetLowering::Expand:
255         Changed = true;
256         return LegalizeOp(ExpandLoad(Op));
257       }
258     }
259   } else if (Op.getOpcode() == ISD::STORE) {
260     StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
261     EVT StVT = ST->getMemoryVT();
262     MVT ValVT = ST->getValue().getSimpleValueType();
263     if (StVT.isVector() && ST->isTruncatingStore()) {
264       DEBUG(dbgs() << "\nLegalizing truncating vector store: ";
265             Node->dump(&DAG));
266       switch (TLI.getTruncStoreAction(ValVT, StVT)) {
267       default: llvm_unreachable("This action is not supported yet!");
268       case TargetLowering::Legal:
269         return TranslateLegalizeResults(Op, Result);
270       case TargetLowering::Custom: {
271         SDValue Lowered = TLI.LowerOperation(Result, DAG);
272         Changed = Lowered != Result;
273         return TranslateLegalizeResults(Op, Lowered);
274       }
275       case TargetLowering::Expand:
276         Changed = true;
277         return LegalizeOp(ExpandStore(Op));
278       }
279     }
280   } else if (Op.getOpcode() == ISD::MSCATTER || Op.getOpcode() == ISD::MSTORE)
281     HasVectorValue = true;
282 
283   for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end();
284        J != E;
285        ++J)
286     HasVectorValue |= J->isVector();
287   if (!HasVectorValue)
288     return TranslateLegalizeResults(Op, Result);
289 
290   EVT QueryType;
291   switch (Op.getOpcode()) {
292   default:
293     return TranslateLegalizeResults(Op, Result);
294   case ISD::ADD:
295   case ISD::SUB:
296   case ISD::MUL:
297   case ISD::SDIV:
298   case ISD::UDIV:
299   case ISD::SREM:
300   case ISD::UREM:
301   case ISD::SDIVREM:
302   case ISD::UDIVREM:
303   case ISD::FADD:
304   case ISD::FSUB:
305   case ISD::FMUL:
306   case ISD::FDIV:
307   case ISD::FREM:
308   case ISD::AND:
309   case ISD::OR:
310   case ISD::XOR:
311   case ISD::SHL:
312   case ISD::SRA:
313   case ISD::SRL:
314   case ISD::ROTL:
315   case ISD::ROTR:
316   case ISD::BSWAP:
317   case ISD::BITREVERSE:
318   case ISD::CTLZ:
319   case ISD::CTTZ:
320   case ISD::CTLZ_ZERO_UNDEF:
321   case ISD::CTTZ_ZERO_UNDEF:
322   case ISD::CTPOP:
323   case ISD::SELECT:
324   case ISD::VSELECT:
325   case ISD::SELECT_CC:
326   case ISD::SETCC:
327   case ISD::ZERO_EXTEND:
328   case ISD::ANY_EXTEND:
329   case ISD::TRUNCATE:
330   case ISD::SIGN_EXTEND:
331   case ISD::FP_TO_SINT:
332   case ISD::FP_TO_UINT:
333   case ISD::FNEG:
334   case ISD::FABS:
335   case ISD::FMINNUM:
336   case ISD::FMAXNUM:
337   case ISD::FMINNAN:
338   case ISD::FMAXNAN:
339   case ISD::FCOPYSIGN:
340   case ISD::FSQRT:
341   case ISD::FSIN:
342   case ISD::FCOS:
343   case ISD::FPOWI:
344   case ISD::FPOW:
345   case ISD::FLOG:
346   case ISD::FLOG2:
347   case ISD::FLOG10:
348   case ISD::FEXP:
349   case ISD::FEXP2:
350   case ISD::FCEIL:
351   case ISD::FTRUNC:
352   case ISD::FRINT:
353   case ISD::FNEARBYINT:
354   case ISD::FROUND:
355   case ISD::FFLOOR:
356   case ISD::FP_ROUND:
357   case ISD::FP_EXTEND:
358   case ISD::FMA:
359   case ISD::SIGN_EXTEND_INREG:
360   case ISD::ANY_EXTEND_VECTOR_INREG:
361   case ISD::SIGN_EXTEND_VECTOR_INREG:
362   case ISD::ZERO_EXTEND_VECTOR_INREG:
363   case ISD::SMIN:
364   case ISD::SMAX:
365   case ISD::UMIN:
366   case ISD::UMAX:
367   case ISD::SMUL_LOHI:
368   case ISD::UMUL_LOHI:
369     QueryType = Node->getValueType(0);
370     break;
371   case ISD::FP_ROUND_INREG:
372     QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT();
373     break;
374   case ISD::SINT_TO_FP:
375   case ISD::UINT_TO_FP:
376     QueryType = Node->getOperand(0).getValueType();
377     break;
378   case ISD::MSCATTER:
379     QueryType = cast<MaskedScatterSDNode>(Node)->getValue().getValueType();
380     break;
381   case ISD::MSTORE:
382     QueryType = cast<MaskedStoreSDNode>(Node)->getValue().getValueType();
383     break;
384   }
385 
386   DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
387 
388   switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) {
389   default: llvm_unreachable("This action is not supported yet!");
390   case TargetLowering::Promote:
391     Result = Promote(Op);
392     Changed = true;
393     break;
394   case TargetLowering::Legal:
395     DEBUG(dbgs() << "Legal node: nothing to do\n");
396     break;
397   case TargetLowering::Custom: {
398     DEBUG(dbgs() << "Trying custom legalization\n");
399     if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) {
400       DEBUG(dbgs() << "Successfully custom legalized node\n");
401       Result = Tmp1;
402       break;
403     }
404     DEBUG(dbgs() << "Could not custom legalize node\n");
405     LLVM_FALLTHROUGH;
406   }
407   case TargetLowering::Expand:
408     Result = Expand(Op);
409   }
410 
411   // Make sure that the generated code is itself legal.
412   if (Result != Op) {
413     Result = LegalizeOp(Result);
414     Changed = true;
415   }
416 
417   // Note that LegalizeOp may be reentered even from single-use nodes, which
418   // means that we always must cache transformed nodes.
419   AddLegalizedOperand(Op, Result);
420   return Result;
421 }
422 
423 SDValue VectorLegalizer::Promote(SDValue Op) {
424   // For a few operations there is a specific concept for promotion based on
425   // the operand's type.
426   switch (Op.getOpcode()) {
427   case ISD::SINT_TO_FP:
428   case ISD::UINT_TO_FP:
429     // "Promote" the operation by extending the operand.
430     return PromoteINT_TO_FP(Op);
431   case ISD::FP_TO_UINT:
432   case ISD::FP_TO_SINT:
433     // Promote the operation by extending the operand.
434     return PromoteFP_TO_INT(Op);
435   }
436 
437   // There are currently two cases of vector promotion:
438   // 1) Bitcasting a vector of integers to a different type to a vector of the
439   //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
440   // 2) Extending a vector of floats to a vector of the same number of larger
441   //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
442   MVT VT = Op.getSimpleValueType();
443   assert(Op.getNode()->getNumValues() == 1 &&
444          "Can't promote a vector with multiple results!");
445   MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
446   SDLoc dl(Op);
447   SmallVector<SDValue, 4> Operands(Op.getNumOperands());
448 
449   for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
450     if (Op.getOperand(j).getValueType().isVector())
451       if (Op.getOperand(j)
452               .getValueType()
453               .getVectorElementType()
454               .isFloatingPoint() &&
455           NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
456         Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j));
457       else
458         Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
459     else
460       Operands[j] = Op.getOperand(j);
461   }
462 
463   Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags());
464   if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
465       (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
466        NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
467     return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl));
468   else
469     return DAG.getNode(ISD::BITCAST, dl, VT, Op);
470 }
471 
472 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) {
473   // INT_TO_FP operations may require the input operand be promoted even
474   // when the type is otherwise legal.
475   MVT VT = Op.getOperand(0).getSimpleValueType();
476   MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
477   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
478          "Vectors have different number of elements!");
479 
480   SDLoc dl(Op);
481   SmallVector<SDValue, 4> Operands(Op.getNumOperands());
482 
483   unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND :
484     ISD::SIGN_EXTEND;
485   for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
486     if (Op.getOperand(j).getValueType().isVector())
487       Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
488     else
489       Operands[j] = Op.getOperand(j);
490   }
491 
492   return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands);
493 }
494 
495 // For FP_TO_INT we promote the result type to a vector type with wider
496 // elements and then truncate the result.  This is different from the default
497 // PromoteVector which uses bitcast to promote thus assumning that the
498 // promoted vector type has the same overall size.
499 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op) {
500   MVT VT = Op.getSimpleValueType();
501   MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
502   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
503          "Vectors have different number of elements!");
504 
505   unsigned NewOpc = Op->getOpcode();
506   // Change FP_TO_UINT to FP_TO_SINT if possible.
507   // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
508   if (NewOpc == ISD::FP_TO_UINT &&
509       TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
510     NewOpc = ISD::FP_TO_SINT;
511 
512   SDLoc dl(Op);
513   SDValue Promoted  = DAG.getNode(NewOpc, dl, NVT, Op.getOperand(0));
514 
515   // Assert that the converted value fits in the original type.  If it doesn't
516   // (eg: because the value being converted is too big), then the result of the
517   // original operation was undefined anyway, so the assert is still correct.
518   Promoted = DAG.getNode(Op->getOpcode() == ISD::FP_TO_UINT ? ISD::AssertZext
519                                                             : ISD::AssertSext,
520                          dl, NVT, Promoted,
521                          DAG.getValueType(VT.getScalarType()));
522   return DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
523 }
524 
525 SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
526   LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
527 
528   EVT SrcVT = LD->getMemoryVT();
529   EVT SrcEltVT = SrcVT.getScalarType();
530   unsigned NumElem = SrcVT.getVectorNumElements();
531 
532   SDValue NewChain;
533   SDValue Value;
534   if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
535     SDLoc dl(Op);
536 
537     SmallVector<SDValue, 8> Vals;
538     SmallVector<SDValue, 8> LoadChains;
539 
540     EVT DstEltVT = LD->getValueType(0).getScalarType();
541     SDValue Chain = LD->getChain();
542     SDValue BasePTR = LD->getBasePtr();
543     ISD::LoadExtType ExtType = LD->getExtensionType();
544 
545     // When elements in a vector is not byte-addressable, we cannot directly
546     // load each element by advancing pointer, which could only address bytes.
547     // Instead, we load all significant words, mask bits off, and concatenate
548     // them to form each element. Finally, they are extended to destination
549     // scalar type to build the destination vector.
550     EVT WideVT = TLI.getPointerTy(DAG.getDataLayout());
551 
552     assert(WideVT.isRound() &&
553            "Could not handle the sophisticated case when the widest integer is"
554            " not power of 2.");
555     assert(WideVT.bitsGE(SrcEltVT) &&
556            "Type is not legalized?");
557 
558     unsigned WideBytes = WideVT.getStoreSize();
559     unsigned Offset = 0;
560     unsigned RemainingBytes = SrcVT.getStoreSize();
561     SmallVector<SDValue, 8> LoadVals;
562     while (RemainingBytes > 0) {
563       SDValue ScalarLoad;
564       unsigned LoadBytes = WideBytes;
565 
566       if (RemainingBytes >= LoadBytes) {
567         ScalarLoad =
568             DAG.getLoad(WideVT, dl, Chain, BasePTR,
569                         LD->getPointerInfo().getWithOffset(Offset),
570                         MinAlign(LD->getAlignment(), Offset),
571                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
572       } else {
573         EVT LoadVT = WideVT;
574         while (RemainingBytes < LoadBytes) {
575           LoadBytes >>= 1; // Reduce the load size by half.
576           LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
577         }
578         ScalarLoad =
579             DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
580                            LD->getPointerInfo().getWithOffset(Offset), LoadVT,
581                            MinAlign(LD->getAlignment(), Offset),
582                            LD->getMemOperand()->getFlags(), LD->getAAInfo());
583       }
584 
585       RemainingBytes -= LoadBytes;
586       Offset += LoadBytes;
587 
588       BasePTR = DAG.getObjectPtrOffset(dl, BasePTR, LoadBytes);
589 
590       LoadVals.push_back(ScalarLoad.getValue(0));
591       LoadChains.push_back(ScalarLoad.getValue(1));
592     }
593 
594     // Extract bits, pack and extend/trunc them into destination type.
595     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
596     SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT);
597 
598     unsigned BitOffset = 0;
599     unsigned WideIdx = 0;
600     unsigned WideBits = WideVT.getSizeInBits();
601 
602     for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
603       SDValue Lo, Hi, ShAmt;
604 
605       if (BitOffset < WideBits) {
606         ShAmt = DAG.getConstant(
607             BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
608         Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
609         Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
610       }
611 
612       BitOffset += SrcEltBits;
613       if (BitOffset >= WideBits) {
614         WideIdx++;
615         BitOffset -= WideBits;
616         if (BitOffset > 0) {
617           ShAmt = DAG.getConstant(
618               SrcEltBits - BitOffset, dl,
619               TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
620           Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
621           Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask);
622         }
623       }
624 
625       if (Hi.getNode())
626         Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
627 
628       switch (ExtType) {
629       default: llvm_unreachable("Unknown extended-load op!");
630       case ISD::EXTLOAD:
631         Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
632         break;
633       case ISD::ZEXTLOAD:
634         Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
635         break;
636       case ISD::SEXTLOAD:
637         ShAmt =
638             DAG.getConstant(WideBits - SrcEltBits, dl,
639                             TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
640         Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
641         Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
642         Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
643         break;
644       }
645       Vals.push_back(Lo);
646     }
647 
648     NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
649     Value = DAG.getBuildVector(Op.getNode()->getValueType(0), dl, Vals);
650   } else {
651     SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG);
652 
653     NewChain = Scalarized.getValue(1);
654     Value = Scalarized.getValue(0);
655   }
656 
657   AddLegalizedOperand(Op.getValue(0), Value);
658   AddLegalizedOperand(Op.getValue(1), NewChain);
659 
660   return (Op.getResNo() ? NewChain : Value);
661 }
662 
663 SDValue VectorLegalizer::ExpandStore(SDValue Op) {
664   StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
665   SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
666   AddLegalizedOperand(Op, TF);
667   return TF;
668 }
669 
670 SDValue VectorLegalizer::Expand(SDValue Op) {
671   switch (Op->getOpcode()) {
672   case ISD::SIGN_EXTEND_INREG:
673     return ExpandSEXTINREG(Op);
674   case ISD::ANY_EXTEND_VECTOR_INREG:
675     return ExpandANY_EXTEND_VECTOR_INREG(Op);
676   case ISD::SIGN_EXTEND_VECTOR_INREG:
677     return ExpandSIGN_EXTEND_VECTOR_INREG(Op);
678   case ISD::ZERO_EXTEND_VECTOR_INREG:
679     return ExpandZERO_EXTEND_VECTOR_INREG(Op);
680   case ISD::BSWAP:
681     return ExpandBSWAP(Op);
682   case ISD::VSELECT:
683     return ExpandVSELECT(Op);
684   case ISD::SELECT:
685     return ExpandSELECT(Op);
686   case ISD::UINT_TO_FP:
687     return ExpandUINT_TO_FLOAT(Op);
688   case ISD::FNEG:
689     return ExpandFNEG(Op);
690   case ISD::FSUB:
691     return ExpandFSUB(Op);
692   case ISD::SETCC:
693     return UnrollVSETCC(Op);
694   case ISD::BITREVERSE:
695     return ExpandBITREVERSE(Op);
696   case ISD::CTLZ:
697   case ISD::CTLZ_ZERO_UNDEF:
698     return ExpandCTLZ(Op);
699   case ISD::CTTZ_ZERO_UNDEF:
700     return ExpandCTTZ_ZERO_UNDEF(Op);
701   default:
702     return DAG.UnrollVectorOp(Op.getNode());
703   }
704 }
705 
706 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
707   // Lower a select instruction where the condition is a scalar and the
708   // operands are vectors. Lower this select to VSELECT and implement it
709   // using XOR AND OR. The selector bit is broadcasted.
710   EVT VT = Op.getValueType();
711   SDLoc DL(Op);
712 
713   SDValue Mask = Op.getOperand(0);
714   SDValue Op1 = Op.getOperand(1);
715   SDValue Op2 = Op.getOperand(2);
716 
717   assert(VT.isVector() && !Mask.getValueType().isVector()
718          && Op1.getValueType() == Op2.getValueType() && "Invalid type");
719 
720   // If we can't even use the basic vector operations of
721   // AND,OR,XOR, we will have to scalarize the op.
722   // Notice that the operation may be 'promoted' which means that it is
723   // 'bitcasted' to another type which is handled.
724   // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
725   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
726       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
727       TLI.getOperationAction(ISD::OR,  VT) == TargetLowering::Expand ||
728       TLI.getOperationAction(ISD::BUILD_VECTOR,  VT) == TargetLowering::Expand)
729     return DAG.UnrollVectorOp(Op.getNode());
730 
731   // Generate a mask operand.
732   EVT MaskTy = VT.changeVectorElementTypeToInteger();
733 
734   // What is the size of each element in the vector mask.
735   EVT BitTy = MaskTy.getScalarType();
736 
737   Mask = DAG.getSelect(DL, BitTy, Mask,
738           DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
739                           BitTy),
740           DAG.getConstant(0, DL, BitTy));
741 
742   // Broadcast the mask so that the entire vector is all-one or all zero.
743   Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask);
744 
745   // Bitcast the operands to be the same type as the mask.
746   // This is needed when we select between FP types because
747   // the mask is a vector of integers.
748   Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
749   Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
750 
751   SDValue AllOnes = DAG.getConstant(
752             APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
753   SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
754 
755   Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
756   Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
757   SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
758   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
759 }
760 
761 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
762   EVT VT = Op.getValueType();
763 
764   // Make sure that the SRA and SHL instructions are available.
765   if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
766       TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
767     return DAG.UnrollVectorOp(Op.getNode());
768 
769   SDLoc DL(Op);
770   EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
771 
772   unsigned BW = VT.getScalarSizeInBits();
773   unsigned OrigBW = OrigTy.getScalarSizeInBits();
774   SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
775 
776   Op = Op.getOperand(0);
777   Op =   DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
778   return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
779 }
780 
781 // Generically expand a vector anyext in register to a shuffle of the relevant
782 // lanes into the appropriate locations, with other lanes left undef.
783 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) {
784   SDLoc DL(Op);
785   EVT VT = Op.getValueType();
786   int NumElements = VT.getVectorNumElements();
787   SDValue Src = Op.getOperand(0);
788   EVT SrcVT = Src.getValueType();
789   int NumSrcElements = SrcVT.getVectorNumElements();
790 
791   // Build a base mask of undef shuffles.
792   SmallVector<int, 16> ShuffleMask;
793   ShuffleMask.resize(NumSrcElements, -1);
794 
795   // Place the extended lanes into the correct locations.
796   int ExtLaneScale = NumSrcElements / NumElements;
797   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
798   for (int i = 0; i < NumElements; ++i)
799     ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
800 
801   return DAG.getNode(
802       ISD::BITCAST, DL, VT,
803       DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
804 }
805 
806 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) {
807   SDLoc DL(Op);
808   EVT VT = Op.getValueType();
809   SDValue Src = Op.getOperand(0);
810   EVT SrcVT = Src.getValueType();
811 
812   // First build an any-extend node which can be legalized above when we
813   // recurse through it.
814   Op = DAG.getAnyExtendVectorInReg(Src, DL, VT);
815 
816   // Now we need sign extend. Do this by shifting the elements. Even if these
817   // aren't legal operations, they have a better chance of being legalized
818   // without full scalarization than the sign extension does.
819   unsigned EltWidth = VT.getScalarSizeInBits();
820   unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
821   SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
822   return DAG.getNode(ISD::SRA, DL, VT,
823                      DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
824                      ShiftAmount);
825 }
826 
827 // Generically expand a vector zext in register to a shuffle of the relevant
828 // lanes into the appropriate locations, a blend of zero into the high bits,
829 // and a bitcast to the wider element type.
830 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) {
831   SDLoc DL(Op);
832   EVT VT = Op.getValueType();
833   int NumElements = VT.getVectorNumElements();
834   SDValue Src = Op.getOperand(0);
835   EVT SrcVT = Src.getValueType();
836   int NumSrcElements = SrcVT.getVectorNumElements();
837 
838   // Build up a zero vector to blend into this one.
839   SDValue Zero = DAG.getConstant(0, DL, SrcVT);
840 
841   // Shuffle the incoming lanes into the correct position, and pull all other
842   // lanes from the zero vector.
843   SmallVector<int, 16> ShuffleMask;
844   ShuffleMask.reserve(NumSrcElements);
845   for (int i = 0; i < NumSrcElements; ++i)
846     ShuffleMask.push_back(i);
847 
848   int ExtLaneScale = NumSrcElements / NumElements;
849   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
850   for (int i = 0; i < NumElements; ++i)
851     ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
852 
853   return DAG.getNode(ISD::BITCAST, DL, VT,
854                      DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
855 }
856 
857 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
858   int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
859   for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
860     for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
861       ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
862 }
863 
864 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) {
865   EVT VT = Op.getValueType();
866 
867   // Generate a byte wise shuffle mask for the BSWAP.
868   SmallVector<int, 16> ShuffleMask;
869   createBSWAPShuffleMask(VT, ShuffleMask);
870   EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
871 
872   // Only emit a shuffle if the mask is legal.
873   if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
874     return DAG.UnrollVectorOp(Op.getNode());
875 
876   SDLoc DL(Op);
877   Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
878   Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
879   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
880 }
881 
882 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) {
883   EVT VT = Op.getValueType();
884 
885   // If we have the scalar operation, it's probably cheaper to unroll it.
886   if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType()))
887     return DAG.UnrollVectorOp(Op.getNode());
888 
889   // If the vector element width is a whole number of bytes, test if its legal
890   // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
891   // vector. This greatly reduces the number of bit shifts necessary.
892   unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
893   if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
894     SmallVector<int, 16> BSWAPMask;
895     createBSWAPShuffleMask(VT, BSWAPMask);
896 
897     EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
898     if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
899         (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
900          (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
901           TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
902           TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
903           TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
904       SDLoc DL(Op);
905       Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
906       Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
907                                 BSWAPMask);
908       Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
909       return DAG.getNode(ISD::BITCAST, DL, VT, Op);
910     }
911   }
912 
913   // If we have the appropriate vector bit operations, it is better to use them
914   // than unrolling and expanding each component.
915   if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) ||
916       !TLI.isOperationLegalOrCustom(ISD::SRL, VT) ||
917       !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
918       !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
919     return DAG.UnrollVectorOp(Op.getNode());
920 
921   // Let LegalizeDAG handle this later.
922   return Op;
923 }
924 
925 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
926   // Implement VSELECT in terms of XOR, AND, OR
927   // on platforms which do not support blend natively.
928   SDLoc DL(Op);
929 
930   SDValue Mask = Op.getOperand(0);
931   SDValue Op1 = Op.getOperand(1);
932   SDValue Op2 = Op.getOperand(2);
933 
934   EVT VT = Mask.getValueType();
935 
936   // If we can't even use the basic vector operations of
937   // AND,OR,XOR, we will have to scalarize the op.
938   // Notice that the operation may be 'promoted' which means that it is
939   // 'bitcasted' to another type which is handled.
940   // This operation also isn't safe with AND, OR, XOR when the boolean
941   // type is 0/1 as we need an all ones vector constant to mask with.
942   // FIXME: Sign extend 1 to all ones if thats legal on the target.
943   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
944       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
945       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
946       TLI.getBooleanContents(Op1.getValueType()) !=
947           TargetLowering::ZeroOrNegativeOneBooleanContent)
948     return DAG.UnrollVectorOp(Op.getNode());
949 
950   // If the mask and the type are different sizes, unroll the vector op. This
951   // can occur when getSetCCResultType returns something that is different in
952   // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
953   if (VT.getSizeInBits() != Op1.getValueSizeInBits())
954     return DAG.UnrollVectorOp(Op.getNode());
955 
956   // Bitcast the operands to be the same type as the mask.
957   // This is needed when we select between FP types because
958   // the mask is a vector of integers.
959   Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
960   Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
961 
962   SDValue AllOnes = DAG.getConstant(
963     APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT);
964   SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
965 
966   Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
967   Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
968   SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
969   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
970 }
971 
972 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
973   EVT VT = Op.getOperand(0).getValueType();
974   SDLoc DL(Op);
975 
976   // Make sure that the SINT_TO_FP and SRL instructions are available.
977   if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand ||
978       TLI.getOperationAction(ISD::SRL,        VT) == TargetLowering::Expand)
979     return DAG.UnrollVectorOp(Op.getNode());
980 
981   unsigned BW = VT.getScalarSizeInBits();
982   assert((BW == 64 || BW == 32) &&
983          "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
984 
985   SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
986 
987   // Constants to clear the upper part of the word.
988   // Notice that we can also use SHL+SHR, but using a constant is slightly
989   // faster on x86.
990   uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
991   SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
992 
993   // Two to the power of half-word-size.
994   SDValue TWOHW = DAG.getConstantFP(1 << (BW / 2), DL, Op.getValueType());
995 
996   // Clear upper part of LO, lower HI
997   SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
998   SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask);
999 
1000   // Convert hi and lo to floats
1001   // Convert the hi part back to the upper values
1002   // TODO: Can any fast-math-flags be set on these nodes?
1003   SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
1004           fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
1005   SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);
1006 
1007   // Add the two halves
1008   return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
1009 }
1010 
1011 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
1012   if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
1013     SDLoc DL(Op);
1014     SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType());
1015     // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1016     return DAG.getNode(ISD::FSUB, DL, Op.getValueType(),
1017                        Zero, Op.getOperand(0));
1018   }
1019   return DAG.UnrollVectorOp(Op.getNode());
1020 }
1021 
1022 SDValue VectorLegalizer::ExpandFSUB(SDValue Op) {
1023   // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1024   // we can defer this to operation legalization where it will be lowered as
1025   // a+(-b).
1026   EVT VT = Op.getValueType();
1027   if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
1028       TLI.isOperationLegalOrCustom(ISD::FADD, VT))
1029     return Op; // Defer to LegalizeDAG
1030 
1031   return DAG.UnrollVectorOp(Op.getNode());
1032 }
1033 
1034 SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) {
1035   EVT VT = Op.getValueType();
1036   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
1037 
1038   // If the non-ZERO_UNDEF version is supported we can use that instead.
1039   if (Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
1040       TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) {
1041     SDLoc DL(Op);
1042     return DAG.getNode(ISD::CTLZ, DL, Op.getValueType(), Op.getOperand(0));
1043   }
1044 
1045   // If CTPOP is available we can lower with a CTPOP based method:
1046   // u16 ctlz(u16 x) {
1047   //   x |= (x >> 1);
1048   //   x |= (x >> 2);
1049   //   x |= (x >> 4);
1050   //   x |= (x >> 8);
1051   //   return ctpop(~x);
1052   // }
1053   // Ref: "Hacker's Delight" by Henry Warren
1054   if (isPowerOf2_32(NumBitsPerElt) &&
1055       TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
1056       TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
1057       TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT) &&
1058       TLI.isOperationLegalOrCustomOrPromote(ISD::XOR, VT)) {
1059     SDLoc DL(Op);
1060     SDValue Res = Op.getOperand(0);
1061     EVT ShiftTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
1062 
1063     for (unsigned i = 1; i != NumBitsPerElt; i *= 2)
1064       Res = DAG.getNode(
1065           ISD::OR, DL, VT, Res,
1066           DAG.getNode(ISD::SRL, DL, VT, Res, DAG.getConstant(i, DL, ShiftTy)));
1067 
1068     Res = DAG.getNOT(DL, Res, VT);
1069     return DAG.getNode(ISD::CTPOP, DL, VT, Res);
1070   }
1071 
1072   // Otherwise go ahead and unroll.
1073   return DAG.UnrollVectorOp(Op.getNode());
1074 }
1075 
1076 SDValue VectorLegalizer::ExpandCTTZ_ZERO_UNDEF(SDValue Op) {
1077   // If the non-ZERO_UNDEF version is supported we can use that instead.
1078   if (TLI.isOperationLegalOrCustom(ISD::CTTZ, Op.getValueType())) {
1079     SDLoc DL(Op);
1080     return DAG.getNode(ISD::CTTZ, DL, Op.getValueType(), Op.getOperand(0));
1081   }
1082 
1083   // Otherwise go ahead and unroll.
1084   return DAG.UnrollVectorOp(Op.getNode());
1085 }
1086 
1087 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
1088   EVT VT = Op.getValueType();
1089   unsigned NumElems = VT.getVectorNumElements();
1090   EVT EltVT = VT.getVectorElementType();
1091   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
1092   EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1093   SDLoc dl(Op);
1094   SmallVector<SDValue, 8> Ops(NumElems);
1095   for (unsigned i = 0; i < NumElems; ++i) {
1096     SDValue LHSElem = DAG.getNode(
1097         ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1098         DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1099     SDValue RHSElem = DAG.getNode(
1100         ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1101         DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1102     Ops[i] = DAG.getNode(ISD::SETCC, dl,
1103                          TLI.getSetCCResultType(DAG.getDataLayout(),
1104                                                 *DAG.getContext(), TmpEltVT),
1105                          LHSElem, RHSElem, CC);
1106     Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
1107                            DAG.getConstant(APInt::getAllOnesValue
1108                                            (EltVT.getSizeInBits()), dl, EltVT),
1109                            DAG.getConstant(0, dl, EltVT));
1110   }
1111   return DAG.getBuildVector(VT, dl, Ops);
1112 }
1113 
1114 bool SelectionDAG::LegalizeVectors() {
1115   return VectorLegalizer(*this).Run();
1116 }
1117