1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::LegalizeVectors method.
10 //
11 // The vector legalizer looks for vector operations which might need to be
12 // scalarized and legalizes them. This is a separate step from Legalize because
13 // scalarizing can introduce illegal types.  For example, suppose we have an
14 // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
16 // operation, which introduces nodes with the illegal type i64 which must be
17 // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
18 // the operation must be unrolled, which introduces nodes with the illegal
19 // type i8 which must be promoted.
20 //
21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
22 // or operations that happen to take a vector which are custom-lowered;
23 // the legalization for such operations never produces nodes
24 // with illegal types, so it's okay to put off legalizing them until
25 // SelectionDAG::Legalize runs.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/SelectionDAGNodes.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MachineValueType.h"
44 #include "llvm/Support/MathExtras.h"
45 #include <cassert>
46 #include <cstdint>
47 #include <iterator>
48 #include <utility>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "legalizevectorops"
53 
54 namespace {
55 
56 class VectorLegalizer {
57   SelectionDAG& DAG;
58   const TargetLowering &TLI;
59   bool Changed = false; // Keep track of whether anything changed
60 
61   /// For nodes that are of legal width, and that have more than one use, this
62   /// map indicates what regularized operand to use.  This allows us to avoid
63   /// legalizing the same thing more than once.
64   SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
65 
66   /// Adds a node to the translation cache.
67   void AddLegalizedOperand(SDValue From, SDValue To) {
68     LegalizedNodes.insert(std::make_pair(From, To));
69     // If someone requests legalization of the new node, return itself.
70     if (From != To)
71       LegalizedNodes.insert(std::make_pair(To, To));
72   }
73 
74   /// Legalizes the given node.
75   SDValue LegalizeOp(SDValue Op);
76 
77   /// Assuming the node is legal, "legalize" the results.
78   SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result);
79 
80   /// Make sure Results are legal and update the translation cache.
81   SDValue RecursivelyLegalizeResults(SDValue Op,
82                                      MutableArrayRef<SDValue> Results);
83 
84   /// Wrapper to interface LowerOperation with a vector of Results.
85   /// Returns false if the target wants to use default expansion. Otherwise
86   /// returns true. If return is true and the Results are empty, then the
87   /// target wants to keep the input node as is.
88   bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results);
89 
90   /// Implements unrolling a VSETCC.
91   SDValue UnrollVSETCC(SDNode *Node);
92 
93   /// Implement expand-based legalization of vector operations.
94   ///
95   /// This is just a high-level routine to dispatch to specific code paths for
96   /// operations to legalize them.
97   void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results);
98 
99   /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
100   /// FP_TO_SINT isn't legal.
101   void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
102 
103   /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
104   /// SINT_TO_FLOAT and SHR on vectors isn't legal.
105   void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
106 
107   /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
108   SDValue ExpandSEXTINREG(SDNode *Node);
109 
110   /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
111   ///
112   /// Shuffles the low lanes of the operand into place and bitcasts to the proper
113   /// type. The contents of the bits in the extended part of each element are
114   /// undef.
115   SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node);
116 
117   /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
118   ///
119   /// Shuffles the low lanes of the operand into place, bitcasts to the proper
120   /// type, then shifts left and arithmetic shifts right to introduce a sign
121   /// extension.
122   SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node);
123 
124   /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
125   ///
126   /// Shuffles the low lanes of the operand into place and blends zeros into
127   /// the remaining lanes, finally bitcasting to the proper type.
128   SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node);
129 
130   /// Expand bswap of vectors into a shuffle if legal.
131   SDValue ExpandBSWAP(SDNode *Node);
132 
133   /// Implement vselect in terms of XOR, AND, OR when blend is not
134   /// supported by the target.
135   SDValue ExpandVSELECT(SDNode *Node);
136   SDValue ExpandSELECT(SDNode *Node);
137   std::pair<SDValue, SDValue> ExpandLoad(SDNode *N);
138   SDValue ExpandStore(SDNode *N);
139   SDValue ExpandFNEG(SDNode *Node);
140   void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results);
141   void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results);
142   void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
143   void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
144   void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
145   void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results);
146   SDValue ExpandStrictFPOp(SDNode *Node);
147   void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
148   void ExpandREM(SDNode *Node, SmallVectorImpl<SDValue> &Results);
149 
150   void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
151 
152   /// Implements vector promotion.
153   ///
154   /// This is essentially just bitcasting the operands to a different type and
155   /// bitcasting the result back to the original type.
156   void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results);
157 
158   /// Implements [SU]INT_TO_FP vector promotion.
159   ///
160   /// This is a [zs]ext of the input operand to a larger integer type.
161   void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results);
162 
163   /// Implements FP_TO_[SU]INT vector promotion of the result type.
164   ///
165   /// It is promoted to a larger integer type.  The result is then
166   /// truncated back to the original type.
167   void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
168 
169 public:
170   VectorLegalizer(SelectionDAG& dag) :
171       DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
172 
173   /// Begin legalizer the vector operations in the DAG.
174   bool Run();
175 };
176 
177 } // end anonymous namespace
178 
179 bool VectorLegalizer::Run() {
180   // Before we start legalizing vector nodes, check if there are any vectors.
181   bool HasVectors = false;
182   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
183        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
184     // Check if the values of the nodes contain vectors. We don't need to check
185     // the operands because we are going to check their values at some point.
186     HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); });
187 
188     // If we found a vector node we can start the legalization.
189     if (HasVectors)
190       break;
191   }
192 
193   // If this basic block has no vectors then no need to legalize vectors.
194   if (!HasVectors)
195     return false;
196 
197   // The legalize process is inherently a bottom-up recursive process (users
198   // legalize their uses before themselves).  Given infinite stack space, we
199   // could just start legalizing on the root and traverse the whole graph.  In
200   // practice however, this causes us to run out of stack space on large basic
201   // blocks.  To avoid this problem, compute an ordering of the nodes where each
202   // node is only legalized after all of its operands are legalized.
203   DAG.AssignTopologicalOrder();
204   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
205        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
206     LegalizeOp(SDValue(&*I, 0));
207 
208   // Finally, it's possible the root changed.  Get the new root.
209   SDValue OldRoot = DAG.getRoot();
210   assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
211   DAG.setRoot(LegalizedNodes[OldRoot]);
212 
213   LegalizedNodes.clear();
214 
215   // Remove dead nodes now.
216   DAG.RemoveDeadNodes();
217 
218   return Changed;
219 }
220 
221 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) {
222   assert(Op->getNumValues() == Result->getNumValues() &&
223          "Unexpected number of results");
224   // Generic legalization: just pass the operand through.
225   for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i)
226     AddLegalizedOperand(Op.getValue(i), SDValue(Result, i));
227   return SDValue(Result, Op.getResNo());
228 }
229 
230 SDValue
231 VectorLegalizer::RecursivelyLegalizeResults(SDValue Op,
232                                             MutableArrayRef<SDValue> Results) {
233   assert(Results.size() == Op->getNumValues() &&
234          "Unexpected number of results");
235   // Make sure that the generated code is itself legal.
236   for (unsigned i = 0, e = Results.size(); i != e; ++i) {
237     Results[i] = LegalizeOp(Results[i]);
238     AddLegalizedOperand(Op.getValue(i), Results[i]);
239   }
240 
241   return Results[Op.getResNo()];
242 }
243 
244 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
245   // Note that LegalizeOp may be reentered even from single-use nodes, which
246   // means that we always must cache transformed nodes.
247   DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
248   if (I != LegalizedNodes.end()) return I->second;
249 
250   // Legalize the operands
251   SmallVector<SDValue, 8> Ops;
252   for (const SDValue &Oper : Op->op_values())
253     Ops.push_back(LegalizeOp(Oper));
254 
255   SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops);
256 
257   if (Op.getOpcode() == ISD::LOAD) {
258     LoadSDNode *LD = cast<LoadSDNode>(Node);
259     ISD::LoadExtType ExtType = LD->getExtensionType();
260     if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) {
261       LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: ";
262                  Node->dump(&DAG));
263       switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
264                                    LD->getMemoryVT())) {
265       default: llvm_unreachable("This action is not supported yet!");
266       case TargetLowering::Legal:
267         return TranslateLegalizeResults(Op, Node);
268       case TargetLowering::Custom: {
269         SmallVector<SDValue, 2> ResultVals;
270         if (LowerOperationWrapper(Node, ResultVals)) {
271           if (ResultVals.empty())
272             return TranslateLegalizeResults(Op, Node);
273 
274           Changed = true;
275           return RecursivelyLegalizeResults(Op, ResultVals);
276         }
277         LLVM_FALLTHROUGH;
278       }
279       case TargetLowering::Expand: {
280         Changed = true;
281         std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node);
282         AddLegalizedOperand(Op.getValue(0), Tmp.first);
283         AddLegalizedOperand(Op.getValue(1), Tmp.second);
284         return Op.getResNo() ? Tmp.first : Tmp.second;
285       }
286       }
287     }
288   } else if (Op.getOpcode() == ISD::STORE) {
289     StoreSDNode *ST = cast<StoreSDNode>(Node);
290     EVT StVT = ST->getMemoryVT();
291     MVT ValVT = ST->getValue().getSimpleValueType();
292     if (StVT.isVector() && ST->isTruncatingStore()) {
293       LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: ";
294                  Node->dump(&DAG));
295       switch (TLI.getTruncStoreAction(ValVT, StVT)) {
296       default: llvm_unreachable("This action is not supported yet!");
297       case TargetLowering::Legal:
298         return TranslateLegalizeResults(Op, Node);
299       case TargetLowering::Custom: {
300         SmallVector<SDValue, 1> ResultVals;
301         if (LowerOperationWrapper(Node, ResultVals)) {
302           if (ResultVals.empty())
303             return TranslateLegalizeResults(Op, Node);
304 
305           Changed = true;
306           return RecursivelyLegalizeResults(Op, ResultVals);
307         }
308         LLVM_FALLTHROUGH;
309       }
310       case TargetLowering::Expand: {
311         Changed = true;
312         SDValue Chain = ExpandStore(Node);
313         AddLegalizedOperand(Op, Chain);
314         return Chain;
315       }
316       }
317     }
318   }
319 
320   bool HasVectorValueOrOp =
321       llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) ||
322       llvm::any_of(Node->op_values(),
323                    [](SDValue O) { return O.getValueType().isVector(); });
324   if (!HasVectorValueOrOp)
325     return TranslateLegalizeResults(Op, Node);
326 
327   TargetLowering::LegalizeAction Action = TargetLowering::Legal;
328   EVT ValVT;
329   switch (Op.getOpcode()) {
330   default:
331     return TranslateLegalizeResults(Op, Node);
332   case ISD::MERGE_VALUES:
333     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
334     // This operation lies about being legal: when it claims to be legal,
335     // it should actually be expanded.
336     if (Action == TargetLowering::Legal)
337       Action = TargetLowering::Expand;
338     break;
339 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
340   case ISD::STRICT_##DAGN:
341 #include "llvm/IR/ConstrainedOps.def"
342     ValVT = Node->getValueType(0);
343     if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP ||
344         Op.getOpcode() == ISD::STRICT_UINT_TO_FP)
345       ValVT = Node->getOperand(1).getValueType();
346     Action = TLI.getOperationAction(Node->getOpcode(), ValVT);
347     // If we're asked to expand a strict vector floating-point operation,
348     // by default we're going to simply unroll it.  That is usually the
349     // best approach, except in the case where the resulting strict (scalar)
350     // operations would themselves use the fallback mutation to non-strict.
351     // In that specific case, just do the fallback on the vector op.
352     if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() &&
353         TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) ==
354             TargetLowering::Legal) {
355       EVT EltVT = ValVT.getVectorElementType();
356       if (TLI.getOperationAction(Node->getOpcode(), EltVT)
357           == TargetLowering::Expand &&
358           TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT)
359           == TargetLowering::Legal)
360         Action = TargetLowering::Legal;
361     }
362     break;
363   case ISD::ADD:
364   case ISD::SUB:
365   case ISD::MUL:
366   case ISD::MULHS:
367   case ISD::MULHU:
368   case ISD::SDIV:
369   case ISD::UDIV:
370   case ISD::SREM:
371   case ISD::UREM:
372   case ISD::SDIVREM:
373   case ISD::UDIVREM:
374   case ISD::FADD:
375   case ISD::FSUB:
376   case ISD::FMUL:
377   case ISD::FDIV:
378   case ISD::FREM:
379   case ISD::AND:
380   case ISD::OR:
381   case ISD::XOR:
382   case ISD::SHL:
383   case ISD::SRA:
384   case ISD::SRL:
385   case ISD::FSHL:
386   case ISD::FSHR:
387   case ISD::ROTL:
388   case ISD::ROTR:
389   case ISD::ABS:
390   case ISD::BSWAP:
391   case ISD::BITREVERSE:
392   case ISD::CTLZ:
393   case ISD::CTTZ:
394   case ISD::CTLZ_ZERO_UNDEF:
395   case ISD::CTTZ_ZERO_UNDEF:
396   case ISD::CTPOP:
397   case ISD::SELECT:
398   case ISD::VSELECT:
399   case ISD::SELECT_CC:
400   case ISD::SETCC:
401   case ISD::ZERO_EXTEND:
402   case ISD::ANY_EXTEND:
403   case ISD::TRUNCATE:
404   case ISD::SIGN_EXTEND:
405   case ISD::FP_TO_SINT:
406   case ISD::FP_TO_UINT:
407   case ISD::FNEG:
408   case ISD::FABS:
409   case ISD::FMINNUM:
410   case ISD::FMAXNUM:
411   case ISD::FMINNUM_IEEE:
412   case ISD::FMAXNUM_IEEE:
413   case ISD::FMINIMUM:
414   case ISD::FMAXIMUM:
415   case ISD::FCOPYSIGN:
416   case ISD::FSQRT:
417   case ISD::FSIN:
418   case ISD::FCOS:
419   case ISD::FPOWI:
420   case ISD::FPOW:
421   case ISD::FLOG:
422   case ISD::FLOG2:
423   case ISD::FLOG10:
424   case ISD::FEXP:
425   case ISD::FEXP2:
426   case ISD::FCEIL:
427   case ISD::FTRUNC:
428   case ISD::FRINT:
429   case ISD::FNEARBYINT:
430   case ISD::FROUND:
431   case ISD::FROUNDEVEN:
432   case ISD::FFLOOR:
433   case ISD::FP_ROUND:
434   case ISD::FP_EXTEND:
435   case ISD::FMA:
436   case ISD::SIGN_EXTEND_INREG:
437   case ISD::ANY_EXTEND_VECTOR_INREG:
438   case ISD::SIGN_EXTEND_VECTOR_INREG:
439   case ISD::ZERO_EXTEND_VECTOR_INREG:
440   case ISD::SMIN:
441   case ISD::SMAX:
442   case ISD::UMIN:
443   case ISD::UMAX:
444   case ISD::SMUL_LOHI:
445   case ISD::UMUL_LOHI:
446   case ISD::SADDO:
447   case ISD::UADDO:
448   case ISD::SSUBO:
449   case ISD::USUBO:
450   case ISD::SMULO:
451   case ISD::UMULO:
452   case ISD::FCANONICALIZE:
453   case ISD::SADDSAT:
454   case ISD::UADDSAT:
455   case ISD::SSUBSAT:
456   case ISD::USUBSAT:
457   case ISD::SSHLSAT:
458   case ISD::USHLSAT:
459     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
460     break;
461   case ISD::SMULFIX:
462   case ISD::SMULFIXSAT:
463   case ISD::UMULFIX:
464   case ISD::UMULFIXSAT:
465   case ISD::SDIVFIX:
466   case ISD::SDIVFIXSAT:
467   case ISD::UDIVFIX:
468   case ISD::UDIVFIXSAT: {
469     unsigned Scale = Node->getConstantOperandVal(2);
470     Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
471                                               Node->getValueType(0), Scale);
472     break;
473   }
474   case ISD::SINT_TO_FP:
475   case ISD::UINT_TO_FP:
476   case ISD::VECREDUCE_ADD:
477   case ISD::VECREDUCE_MUL:
478   case ISD::VECREDUCE_AND:
479   case ISD::VECREDUCE_OR:
480   case ISD::VECREDUCE_XOR:
481   case ISD::VECREDUCE_SMAX:
482   case ISD::VECREDUCE_SMIN:
483   case ISD::VECREDUCE_UMAX:
484   case ISD::VECREDUCE_UMIN:
485   case ISD::VECREDUCE_FADD:
486   case ISD::VECREDUCE_FMUL:
487   case ISD::VECREDUCE_FMAX:
488   case ISD::VECREDUCE_FMIN:
489     Action = TLI.getOperationAction(Node->getOpcode(),
490                                     Node->getOperand(0).getValueType());
491     break;
492   case ISD::VECREDUCE_SEQ_FADD:
493   case ISD::VECREDUCE_SEQ_FMUL:
494     Action = TLI.getOperationAction(Node->getOpcode(),
495                                     Node->getOperand(1).getValueType());
496     break;
497   }
498 
499   LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
500 
501   SmallVector<SDValue, 8> ResultVals;
502   switch (Action) {
503   default: llvm_unreachable("This action is not supported yet!");
504   case TargetLowering::Promote:
505     LLVM_DEBUG(dbgs() << "Promoting\n");
506     Promote(Node, ResultVals);
507     assert(!ResultVals.empty() && "No results for promotion?");
508     break;
509   case TargetLowering::Legal:
510     LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
511     break;
512   case TargetLowering::Custom:
513     LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
514     if (LowerOperationWrapper(Node, ResultVals))
515       break;
516     LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
517     LLVM_FALLTHROUGH;
518   case TargetLowering::Expand:
519     LLVM_DEBUG(dbgs() << "Expanding\n");
520     Expand(Node, ResultVals);
521     break;
522   }
523 
524   if (ResultVals.empty())
525     return TranslateLegalizeResults(Op, Node);
526 
527   Changed = true;
528   return RecursivelyLegalizeResults(Op, ResultVals);
529 }
530 
531 // FIME: This is very similar to the X86 override of
532 // TargetLowering::LowerOperationWrapper. Can we merge them somehow?
533 bool VectorLegalizer::LowerOperationWrapper(SDNode *Node,
534                                             SmallVectorImpl<SDValue> &Results) {
535   SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
536 
537   if (!Res.getNode())
538     return false;
539 
540   if (Res == SDValue(Node, 0))
541     return true;
542 
543   // If the original node has one result, take the return value from
544   // LowerOperation as is. It might not be result number 0.
545   if (Node->getNumValues() == 1) {
546     Results.push_back(Res);
547     return true;
548   }
549 
550   // If the original node has multiple results, then the return node should
551   // have the same number of results.
552   assert((Node->getNumValues() == Res->getNumValues()) &&
553          "Lowering returned the wrong number of results!");
554 
555   // Places new result values base on N result number.
556   for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I)
557     Results.push_back(Res.getValue(I));
558 
559   return true;
560 }
561 
562 void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
563   // For a few operations there is a specific concept for promotion based on
564   // the operand's type.
565   switch (Node->getOpcode()) {
566   case ISD::SINT_TO_FP:
567   case ISD::UINT_TO_FP:
568   case ISD::STRICT_SINT_TO_FP:
569   case ISD::STRICT_UINT_TO_FP:
570     // "Promote" the operation by extending the operand.
571     PromoteINT_TO_FP(Node, Results);
572     return;
573   case ISD::FP_TO_UINT:
574   case ISD::FP_TO_SINT:
575   case ISD::STRICT_FP_TO_UINT:
576   case ISD::STRICT_FP_TO_SINT:
577     // Promote the operation by extending the operand.
578     PromoteFP_TO_INT(Node, Results);
579     return;
580   case ISD::FP_ROUND:
581   case ISD::FP_EXTEND:
582     // These operations are used to do promotion so they can't be promoted
583     // themselves.
584     llvm_unreachable("Don't know how to promote this operation!");
585   }
586 
587   // There are currently two cases of vector promotion:
588   // 1) Bitcasting a vector of integers to a different type to a vector of the
589   //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
590   // 2) Extending a vector of floats to a vector of the same number of larger
591   //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
592   assert(Node->getNumValues() == 1 &&
593          "Can't promote a vector with multiple results!");
594   MVT VT = Node->getSimpleValueType(0);
595   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
596   SDLoc dl(Node);
597   SmallVector<SDValue, 4> Operands(Node->getNumOperands());
598 
599   for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
600     if (Node->getOperand(j).getValueType().isVector())
601       if (Node->getOperand(j)
602               .getValueType()
603               .getVectorElementType()
604               .isFloatingPoint() &&
605           NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
606         Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j));
607       else
608         Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j));
609     else
610       Operands[j] = Node->getOperand(j);
611   }
612 
613   SDValue Res =
614       DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags());
615 
616   if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
617       (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
618        NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
619     Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res, DAG.getIntPtrConstant(0, dl));
620   else
621     Res = DAG.getNode(ISD::BITCAST, dl, VT, Res);
622 
623   Results.push_back(Res);
624 }
625 
626 void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node,
627                                        SmallVectorImpl<SDValue> &Results) {
628   // INT_TO_FP operations may require the input operand be promoted even
629   // when the type is otherwise legal.
630   bool IsStrict = Node->isStrictFPOpcode();
631   MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType();
632   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
633   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
634          "Vectors have different number of elements!");
635 
636   SDLoc dl(Node);
637   SmallVector<SDValue, 4> Operands(Node->getNumOperands());
638 
639   unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP ||
640                   Node->getOpcode() == ISD::STRICT_UINT_TO_FP)
641                      ? ISD::ZERO_EXTEND
642                      : ISD::SIGN_EXTEND;
643   for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
644     if (Node->getOperand(j).getValueType().isVector())
645       Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j));
646     else
647       Operands[j] = Node->getOperand(j);
648   }
649 
650   if (IsStrict) {
651     SDValue Res = DAG.getNode(Node->getOpcode(), dl,
652                               {Node->getValueType(0), MVT::Other}, Operands);
653     Results.push_back(Res);
654     Results.push_back(Res.getValue(1));
655     return;
656   }
657 
658   SDValue Res =
659       DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands);
660   Results.push_back(Res);
661 }
662 
663 // For FP_TO_INT we promote the result type to a vector type with wider
664 // elements and then truncate the result.  This is different from the default
665 // PromoteVector which uses bitcast to promote thus assumning that the
666 // promoted vector type has the same overall size.
667 void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node,
668                                        SmallVectorImpl<SDValue> &Results) {
669   MVT VT = Node->getSimpleValueType(0);
670   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
671   bool IsStrict = Node->isStrictFPOpcode();
672   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
673          "Vectors have different number of elements!");
674 
675   unsigned NewOpc = Node->getOpcode();
676   // Change FP_TO_UINT to FP_TO_SINT if possible.
677   // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
678   if (NewOpc == ISD::FP_TO_UINT &&
679       TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
680     NewOpc = ISD::FP_TO_SINT;
681 
682   if (NewOpc == ISD::STRICT_FP_TO_UINT &&
683       TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT))
684     NewOpc = ISD::STRICT_FP_TO_SINT;
685 
686   SDLoc dl(Node);
687   SDValue Promoted, Chain;
688   if (IsStrict) {
689     Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other},
690                            {Node->getOperand(0), Node->getOperand(1)});
691     Chain = Promoted.getValue(1);
692   } else
693     Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0));
694 
695   // Assert that the converted value fits in the original type.  If it doesn't
696   // (eg: because the value being converted is too big), then the result of the
697   // original operation was undefined anyway, so the assert is still correct.
698   if (Node->getOpcode() == ISD::FP_TO_UINT ||
699       Node->getOpcode() == ISD::STRICT_FP_TO_UINT)
700     NewOpc = ISD::AssertZext;
701   else
702     NewOpc = ISD::AssertSext;
703 
704   Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted,
705                          DAG.getValueType(VT.getScalarType()));
706   Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
707   Results.push_back(Promoted);
708   if (IsStrict)
709     Results.push_back(Chain);
710 }
711 
712 std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) {
713   LoadSDNode *LD = cast<LoadSDNode>(N);
714   return TLI.scalarizeVectorLoad(LD, DAG);
715 }
716 
717 SDValue VectorLegalizer::ExpandStore(SDNode *N) {
718   StoreSDNode *ST = cast<StoreSDNode>(N);
719   SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
720   return TF;
721 }
722 
723 void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
724   SDValue Tmp;
725   switch (Node->getOpcode()) {
726   case ISD::MERGE_VALUES:
727     for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
728       Results.push_back(Node->getOperand(i));
729     return;
730   case ISD::SIGN_EXTEND_INREG:
731     Results.push_back(ExpandSEXTINREG(Node));
732     return;
733   case ISD::ANY_EXTEND_VECTOR_INREG:
734     Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node));
735     return;
736   case ISD::SIGN_EXTEND_VECTOR_INREG:
737     Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node));
738     return;
739   case ISD::ZERO_EXTEND_VECTOR_INREG:
740     Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node));
741     return;
742   case ISD::BSWAP:
743     Results.push_back(ExpandBSWAP(Node));
744     return;
745   case ISD::VSELECT:
746     Results.push_back(ExpandVSELECT(Node));
747     return;
748   case ISD::SELECT:
749     Results.push_back(ExpandSELECT(Node));
750     return;
751   case ISD::FP_TO_UINT:
752     ExpandFP_TO_UINT(Node, Results);
753     return;
754   case ISD::UINT_TO_FP:
755     ExpandUINT_TO_FLOAT(Node, Results);
756     return;
757   case ISD::FNEG:
758     Results.push_back(ExpandFNEG(Node));
759     return;
760   case ISD::FSUB:
761     ExpandFSUB(Node, Results);
762     return;
763   case ISD::SETCC:
764     Results.push_back(UnrollVSETCC(Node));
765     return;
766   case ISD::ABS:
767     if (TLI.expandABS(Node, Tmp, DAG)) {
768       Results.push_back(Tmp);
769       return;
770     }
771     break;
772   case ISD::BITREVERSE:
773     ExpandBITREVERSE(Node, Results);
774     return;
775   case ISD::CTPOP:
776     if (TLI.expandCTPOP(Node, Tmp, DAG)) {
777       Results.push_back(Tmp);
778       return;
779     }
780     break;
781   case ISD::CTLZ:
782   case ISD::CTLZ_ZERO_UNDEF:
783     if (TLI.expandCTLZ(Node, Tmp, DAG)) {
784       Results.push_back(Tmp);
785       return;
786     }
787     break;
788   case ISD::CTTZ:
789   case ISD::CTTZ_ZERO_UNDEF:
790     if (TLI.expandCTTZ(Node, Tmp, DAG)) {
791       Results.push_back(Tmp);
792       return;
793     }
794     break;
795   case ISD::FSHL:
796   case ISD::FSHR:
797     if (TLI.expandFunnelShift(Node, Tmp, DAG)) {
798       Results.push_back(Tmp);
799       return;
800     }
801     break;
802   case ISD::ROTL:
803   case ISD::ROTR:
804     if (TLI.expandROT(Node, false /*AllowVectorOps*/, Tmp, DAG)) {
805       Results.push_back(Tmp);
806       return;
807     }
808     break;
809   case ISD::FMINNUM:
810   case ISD::FMAXNUM:
811     if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) {
812       Results.push_back(Expanded);
813       return;
814     }
815     break;
816   case ISD::UADDO:
817   case ISD::USUBO:
818     ExpandUADDSUBO(Node, Results);
819     return;
820   case ISD::SADDO:
821   case ISD::SSUBO:
822     ExpandSADDSUBO(Node, Results);
823     return;
824   case ISD::UMULO:
825   case ISD::SMULO:
826     ExpandMULO(Node, Results);
827     return;
828   case ISD::USUBSAT:
829   case ISD::SSUBSAT:
830   case ISD::UADDSAT:
831   case ISD::SADDSAT:
832     if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) {
833       Results.push_back(Expanded);
834       return;
835     }
836     break;
837   case ISD::SMULFIX:
838   case ISD::UMULFIX:
839     if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) {
840       Results.push_back(Expanded);
841       return;
842     }
843     break;
844   case ISD::SMULFIXSAT:
845   case ISD::UMULFIXSAT:
846     // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly
847     // why. Maybe it results in worse codegen compared to the unroll for some
848     // targets? This should probably be investigated. And if we still prefer to
849     // unroll an explanation could be helpful.
850     break;
851   case ISD::SDIVFIX:
852   case ISD::UDIVFIX:
853     ExpandFixedPointDiv(Node, Results);
854     return;
855   case ISD::SDIVFIXSAT:
856   case ISD::UDIVFIXSAT:
857     break;
858 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
859   case ISD::STRICT_##DAGN:
860 #include "llvm/IR/ConstrainedOps.def"
861     ExpandStrictFPOp(Node, Results);
862     return;
863   case ISD::VECREDUCE_ADD:
864   case ISD::VECREDUCE_MUL:
865   case ISD::VECREDUCE_AND:
866   case ISD::VECREDUCE_OR:
867   case ISD::VECREDUCE_XOR:
868   case ISD::VECREDUCE_SMAX:
869   case ISD::VECREDUCE_SMIN:
870   case ISD::VECREDUCE_UMAX:
871   case ISD::VECREDUCE_UMIN:
872   case ISD::VECREDUCE_FADD:
873   case ISD::VECREDUCE_FMUL:
874   case ISD::VECREDUCE_FMAX:
875   case ISD::VECREDUCE_FMIN:
876     Results.push_back(TLI.expandVecReduce(Node, DAG));
877     return;
878   case ISD::VECREDUCE_SEQ_FADD:
879   case ISD::VECREDUCE_SEQ_FMUL:
880     Results.push_back(TLI.expandVecReduceSeq(Node, DAG));
881     return;
882   case ISD::SREM:
883   case ISD::UREM:
884     ExpandREM(Node, Results);
885     return;
886   }
887 
888   Results.push_back(DAG.UnrollVectorOp(Node));
889 }
890 
891 SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) {
892   // Lower a select instruction where the condition is a scalar and the
893   // operands are vectors. Lower this select to VSELECT and implement it
894   // using XOR AND OR. The selector bit is broadcasted.
895   EVT VT = Node->getValueType(0);
896   SDLoc DL(Node);
897 
898   SDValue Mask = Node->getOperand(0);
899   SDValue Op1 = Node->getOperand(1);
900   SDValue Op2 = Node->getOperand(2);
901 
902   assert(VT.isVector() && !Mask.getValueType().isVector()
903          && Op1.getValueType() == Op2.getValueType() && "Invalid type");
904 
905   // If we can't even use the basic vector operations of
906   // AND,OR,XOR, we will have to scalarize the op.
907   // Notice that the operation may be 'promoted' which means that it is
908   // 'bitcasted' to another type which is handled.
909   // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
910   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
911       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
912       TLI.getOperationAction(ISD::OR,  VT) == TargetLowering::Expand ||
913       TLI.getOperationAction(ISD::BUILD_VECTOR,  VT) == TargetLowering::Expand)
914     return DAG.UnrollVectorOp(Node);
915 
916   // Generate a mask operand.
917   EVT MaskTy = VT.changeVectorElementTypeToInteger();
918 
919   // What is the size of each element in the vector mask.
920   EVT BitTy = MaskTy.getScalarType();
921 
922   Mask = DAG.getSelect(DL, BitTy, Mask,
923           DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
924                           BitTy),
925           DAG.getConstant(0, DL, BitTy));
926 
927   // Broadcast the mask so that the entire vector is all-one or all zero.
928   Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask);
929 
930   // Bitcast the operands to be the same type as the mask.
931   // This is needed when we select between FP types because
932   // the mask is a vector of integers.
933   Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
934   Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
935 
936   SDValue AllOnes = DAG.getConstant(
937             APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
938   SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
939 
940   Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
941   Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
942   SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
943   return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
944 }
945 
946 SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) {
947   EVT VT = Node->getValueType(0);
948 
949   // Make sure that the SRA and SHL instructions are available.
950   if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
951       TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
952     return DAG.UnrollVectorOp(Node);
953 
954   SDLoc DL(Node);
955   EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT();
956 
957   unsigned BW = VT.getScalarSizeInBits();
958   unsigned OrigBW = OrigTy.getScalarSizeInBits();
959   SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
960 
961   SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz);
962   return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
963 }
964 
965 // Generically expand a vector anyext in register to a shuffle of the relevant
966 // lanes into the appropriate locations, with other lanes left undef.
967 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) {
968   SDLoc DL(Node);
969   EVT VT = Node->getValueType(0);
970   int NumElements = VT.getVectorNumElements();
971   SDValue Src = Node->getOperand(0);
972   EVT SrcVT = Src.getValueType();
973   int NumSrcElements = SrcVT.getVectorNumElements();
974 
975   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
976   // into a larger vector type.
977   if (SrcVT.bitsLE(VT)) {
978     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
979            "ANY_EXTEND_VECTOR_INREG vector size mismatch");
980     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
981     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
982                              NumSrcElements);
983     Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
984                       Src, DAG.getVectorIdxConstant(0, DL));
985   }
986 
987   // Build a base mask of undef shuffles.
988   SmallVector<int, 16> ShuffleMask;
989   ShuffleMask.resize(NumSrcElements, -1);
990 
991   // Place the extended lanes into the correct locations.
992   int ExtLaneScale = NumSrcElements / NumElements;
993   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
994   for (int i = 0; i < NumElements; ++i)
995     ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
996 
997   return DAG.getNode(
998       ISD::BITCAST, DL, VT,
999       DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
1000 }
1001 
1002 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) {
1003   SDLoc DL(Node);
1004   EVT VT = Node->getValueType(0);
1005   SDValue Src = Node->getOperand(0);
1006   EVT SrcVT = Src.getValueType();
1007 
1008   // First build an any-extend node which can be legalized above when we
1009   // recurse through it.
1010   SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src);
1011 
1012   // Now we need sign extend. Do this by shifting the elements. Even if these
1013   // aren't legal operations, they have a better chance of being legalized
1014   // without full scalarization than the sign extension does.
1015   unsigned EltWidth = VT.getScalarSizeInBits();
1016   unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
1017   SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
1018   return DAG.getNode(ISD::SRA, DL, VT,
1019                      DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
1020                      ShiftAmount);
1021 }
1022 
1023 // Generically expand a vector zext in register to a shuffle of the relevant
1024 // lanes into the appropriate locations, a blend of zero into the high bits,
1025 // and a bitcast to the wider element type.
1026 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) {
1027   SDLoc DL(Node);
1028   EVT VT = Node->getValueType(0);
1029   int NumElements = VT.getVectorNumElements();
1030   SDValue Src = Node->getOperand(0);
1031   EVT SrcVT = Src.getValueType();
1032   int NumSrcElements = SrcVT.getVectorNumElements();
1033 
1034   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1035   // into a larger vector type.
1036   if (SrcVT.bitsLE(VT)) {
1037     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
1038            "ZERO_EXTEND_VECTOR_INREG vector size mismatch");
1039     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
1040     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
1041                              NumSrcElements);
1042     Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
1043                       Src, DAG.getVectorIdxConstant(0, DL));
1044   }
1045 
1046   // Build up a zero vector to blend into this one.
1047   SDValue Zero = DAG.getConstant(0, DL, SrcVT);
1048 
1049   // Shuffle the incoming lanes into the correct position, and pull all other
1050   // lanes from the zero vector.
1051   SmallVector<int, 16> ShuffleMask;
1052   ShuffleMask.reserve(NumSrcElements);
1053   for (int i = 0; i < NumSrcElements; ++i)
1054     ShuffleMask.push_back(i);
1055 
1056   int ExtLaneScale = NumSrcElements / NumElements;
1057   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
1058   for (int i = 0; i < NumElements; ++i)
1059     ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
1060 
1061   return DAG.getNode(ISD::BITCAST, DL, VT,
1062                      DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
1063 }
1064 
1065 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
1066   int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
1067   for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
1068     for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
1069       ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
1070 }
1071 
1072 SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) {
1073   EVT VT = Node->getValueType(0);
1074 
1075   // Generate a byte wise shuffle mask for the BSWAP.
1076   SmallVector<int, 16> ShuffleMask;
1077   createBSWAPShuffleMask(VT, ShuffleMask);
1078   EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
1079 
1080   // Only emit a shuffle if the mask is legal.
1081   if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
1082     return DAG.UnrollVectorOp(Node);
1083 
1084   SDLoc DL(Node);
1085   SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1086   Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
1087   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1088 }
1089 
1090 void VectorLegalizer::ExpandBITREVERSE(SDNode *Node,
1091                                        SmallVectorImpl<SDValue> &Results) {
1092   EVT VT = Node->getValueType(0);
1093 
1094   // If we have the scalar operation, it's probably cheaper to unroll it.
1095   if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) {
1096     SDValue Tmp = DAG.UnrollVectorOp(Node);
1097     Results.push_back(Tmp);
1098     return;
1099   }
1100 
1101   // If the vector element width is a whole number of bytes, test if its legal
1102   // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
1103   // vector. This greatly reduces the number of bit shifts necessary.
1104   unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
1105   if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
1106     SmallVector<int, 16> BSWAPMask;
1107     createBSWAPShuffleMask(VT, BSWAPMask);
1108 
1109     EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
1110     if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
1111         (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
1112          (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
1113           TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
1114           TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
1115           TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
1116       SDLoc DL(Node);
1117       SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1118       Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
1119                                 BSWAPMask);
1120       Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
1121       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
1122       Results.push_back(Op);
1123       return;
1124     }
1125   }
1126 
1127   // If we have the appropriate vector bit operations, it is better to use them
1128   // than unrolling and expanding each component.
1129   if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
1130       TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
1131       TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
1132       TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
1133     // Let LegalizeDAG handle this later.
1134     return;
1135 
1136   // Otherwise unroll.
1137   SDValue Tmp = DAG.UnrollVectorOp(Node);
1138   Results.push_back(Tmp);
1139 }
1140 
1141 SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) {
1142   // Implement VSELECT in terms of XOR, AND, OR
1143   // on platforms which do not support blend natively.
1144   SDLoc DL(Node);
1145 
1146   SDValue Mask = Node->getOperand(0);
1147   SDValue Op1 = Node->getOperand(1);
1148   SDValue Op2 = Node->getOperand(2);
1149 
1150   EVT VT = Mask.getValueType();
1151 
1152   // If we can't even use the basic vector operations of
1153   // AND,OR,XOR, we will have to scalarize the op.
1154   // Notice that the operation may be 'promoted' which means that it is
1155   // 'bitcasted' to another type which is handled.
1156   // This operation also isn't safe with AND, OR, XOR when the boolean
1157   // type is 0/1 as we need an all ones vector constant to mask with.
1158   // FIXME: Sign extend 1 to all ones if thats legal on the target.
1159   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1160       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1161       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
1162       TLI.getBooleanContents(Op1.getValueType()) !=
1163           TargetLowering::ZeroOrNegativeOneBooleanContent)
1164     return DAG.UnrollVectorOp(Node);
1165 
1166   // If the mask and the type are different sizes, unroll the vector op. This
1167   // can occur when getSetCCResultType returns something that is different in
1168   // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1169   if (VT.getSizeInBits() != Op1.getValueSizeInBits())
1170     return DAG.UnrollVectorOp(Node);
1171 
1172   // Bitcast the operands to be the same type as the mask.
1173   // This is needed when we select between FP types because
1174   // the mask is a vector of integers.
1175   Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
1176   Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
1177 
1178   SDValue AllOnes = DAG.getConstant(
1179     APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT);
1180   SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
1181 
1182   Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
1183   Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
1184   SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
1185   return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
1186 }
1187 
1188 void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node,
1189                                        SmallVectorImpl<SDValue> &Results) {
1190   // Attempt to expand using TargetLowering.
1191   SDValue Result, Chain;
1192   if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) {
1193     Results.push_back(Result);
1194     if (Node->isStrictFPOpcode())
1195       Results.push_back(Chain);
1196     return;
1197   }
1198 
1199   // Otherwise go ahead and unroll.
1200   if (Node->isStrictFPOpcode()) {
1201     UnrollStrictFPOp(Node, Results);
1202     return;
1203   }
1204 
1205   Results.push_back(DAG.UnrollVectorOp(Node));
1206 }
1207 
1208 void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node,
1209                                           SmallVectorImpl<SDValue> &Results) {
1210   bool IsStrict = Node->isStrictFPOpcode();
1211   unsigned OpNo = IsStrict ? 1 : 0;
1212   SDValue Src = Node->getOperand(OpNo);
1213   EVT VT = Src.getValueType();
1214   SDLoc DL(Node);
1215 
1216   // Attempt to expand using TargetLowering.
1217   SDValue Result;
1218   SDValue Chain;
1219   if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) {
1220     Results.push_back(Result);
1221     if (IsStrict)
1222       Results.push_back(Chain);
1223     return;
1224   }
1225 
1226   // Make sure that the SINT_TO_FP and SRL instructions are available.
1227   if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) ==
1228                          TargetLowering::Expand) ||
1229        (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) ==
1230                         TargetLowering::Expand)) ||
1231       TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) {
1232     if (IsStrict) {
1233       UnrollStrictFPOp(Node, Results);
1234       return;
1235     }
1236 
1237     Results.push_back(DAG.UnrollVectorOp(Node));
1238     return;
1239   }
1240 
1241   unsigned BW = VT.getScalarSizeInBits();
1242   assert((BW == 64 || BW == 32) &&
1243          "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1244 
1245   SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
1246 
1247   // Constants to clear the upper part of the word.
1248   // Notice that we can also use SHL+SHR, but using a constant is slightly
1249   // faster on x86.
1250   uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1251   SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
1252 
1253   // Two to the power of half-word-size.
1254   SDValue TWOHW =
1255       DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0));
1256 
1257   // Clear upper part of LO, lower HI
1258   SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord);
1259   SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask);
1260 
1261   if (IsStrict) {
1262     // Convert hi and lo to floats
1263     // Convert the hi part back to the upper values
1264     // TODO: Can any fast-math-flags be set on these nodes?
1265     SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
1266                               {Node->getValueType(0), MVT::Other},
1267                               {Node->getOperand(0), HI});
1268     fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other},
1269                       {fHI.getValue(1), fHI, TWOHW});
1270     SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
1271                               {Node->getValueType(0), MVT::Other},
1272                               {Node->getOperand(0), LO});
1273 
1274     SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1),
1275                              fLO.getValue(1));
1276 
1277     // Add the two halves
1278     SDValue Result =
1279         DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other},
1280                     {TF, fHI, fLO});
1281 
1282     Results.push_back(Result);
1283     Results.push_back(Result.getValue(1));
1284     return;
1285   }
1286 
1287   // Convert hi and lo to floats
1288   // Convert the hi part back to the upper values
1289   // TODO: Can any fast-math-flags be set on these nodes?
1290   SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI);
1291   fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW);
1292   SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO);
1293 
1294   // Add the two halves
1295   Results.push_back(
1296       DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO));
1297 }
1298 
1299 SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) {
1300   if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) {
1301     SDLoc DL(Node);
1302     SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0));
1303     // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1304     return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero,
1305                        Node->getOperand(0));
1306   }
1307   return DAG.UnrollVectorOp(Node);
1308 }
1309 
1310 void VectorLegalizer::ExpandFSUB(SDNode *Node,
1311                                  SmallVectorImpl<SDValue> &Results) {
1312   // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1313   // we can defer this to operation legalization where it will be lowered as
1314   // a+(-b).
1315   EVT VT = Node->getValueType(0);
1316   if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
1317       TLI.isOperationLegalOrCustom(ISD::FADD, VT))
1318     return; // Defer to LegalizeDAG
1319 
1320   SDValue Tmp = DAG.UnrollVectorOp(Node);
1321   Results.push_back(Tmp);
1322 }
1323 
1324 void VectorLegalizer::ExpandUADDSUBO(SDNode *Node,
1325                                      SmallVectorImpl<SDValue> &Results) {
1326   SDValue Result, Overflow;
1327   TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
1328   Results.push_back(Result);
1329   Results.push_back(Overflow);
1330 }
1331 
1332 void VectorLegalizer::ExpandSADDSUBO(SDNode *Node,
1333                                      SmallVectorImpl<SDValue> &Results) {
1334   SDValue Result, Overflow;
1335   TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
1336   Results.push_back(Result);
1337   Results.push_back(Overflow);
1338 }
1339 
1340 void VectorLegalizer::ExpandMULO(SDNode *Node,
1341                                  SmallVectorImpl<SDValue> &Results) {
1342   SDValue Result, Overflow;
1343   if (!TLI.expandMULO(Node, Result, Overflow, DAG))
1344     std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node);
1345 
1346   Results.push_back(Result);
1347   Results.push_back(Overflow);
1348 }
1349 
1350 void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node,
1351                                           SmallVectorImpl<SDValue> &Results) {
1352   SDNode *N = Node;
1353   if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N),
1354           N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG))
1355     Results.push_back(Expanded);
1356 }
1357 
1358 void VectorLegalizer::ExpandStrictFPOp(SDNode *Node,
1359                                        SmallVectorImpl<SDValue> &Results) {
1360   if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) {
1361     ExpandUINT_TO_FLOAT(Node, Results);
1362     return;
1363   }
1364   if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) {
1365     ExpandFP_TO_UINT(Node, Results);
1366     return;
1367   }
1368 
1369   UnrollStrictFPOp(Node, Results);
1370 }
1371 
1372 void VectorLegalizer::ExpandREM(SDNode *Node,
1373                                 SmallVectorImpl<SDValue> &Results) {
1374   assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) &&
1375          "Expected REM node");
1376 
1377   SDValue Result;
1378   if (!TLI.expandREM(Node, Result, DAG))
1379     Result = DAG.UnrollVectorOp(Node);
1380   Results.push_back(Result);
1381 }
1382 
1383 void VectorLegalizer::UnrollStrictFPOp(SDNode *Node,
1384                                        SmallVectorImpl<SDValue> &Results) {
1385   EVT VT = Node->getValueType(0);
1386   EVT EltVT = VT.getVectorElementType();
1387   unsigned NumElems = VT.getVectorNumElements();
1388   unsigned NumOpers = Node->getNumOperands();
1389   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1390 
1391   EVT TmpEltVT = EltVT;
1392   if (Node->getOpcode() == ISD::STRICT_FSETCC ||
1393       Node->getOpcode() == ISD::STRICT_FSETCCS)
1394     TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(),
1395                                       *DAG.getContext(), TmpEltVT);
1396 
1397   EVT ValueVTs[] = {TmpEltVT, MVT::Other};
1398   SDValue Chain = Node->getOperand(0);
1399   SDLoc dl(Node);
1400 
1401   SmallVector<SDValue, 32> OpValues;
1402   SmallVector<SDValue, 32> OpChains;
1403   for (unsigned i = 0; i < NumElems; ++i) {
1404     SmallVector<SDValue, 4> Opers;
1405     SDValue Idx = DAG.getVectorIdxConstant(i, dl);
1406 
1407     // The Chain is the first operand.
1408     Opers.push_back(Chain);
1409 
1410     // Now process the remaining operands.
1411     for (unsigned j = 1; j < NumOpers; ++j) {
1412       SDValue Oper = Node->getOperand(j);
1413       EVT OperVT = Oper.getValueType();
1414 
1415       if (OperVT.isVector())
1416         Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1417                            OperVT.getVectorElementType(), Oper, Idx);
1418 
1419       Opers.push_back(Oper);
1420     }
1421 
1422     SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers);
1423     SDValue ScalarResult = ScalarOp.getValue(0);
1424     SDValue ScalarChain = ScalarOp.getValue(1);
1425 
1426     if (Node->getOpcode() == ISD::STRICT_FSETCC ||
1427         Node->getOpcode() == ISD::STRICT_FSETCCS)
1428       ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult,
1429                            DAG.getConstant(APInt::getAllOnesValue
1430                                            (EltVT.getSizeInBits()), dl, EltVT),
1431                            DAG.getConstant(0, dl, EltVT));
1432 
1433     OpValues.push_back(ScalarResult);
1434     OpChains.push_back(ScalarChain);
1435   }
1436 
1437   SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
1438   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
1439 
1440   Results.push_back(Result);
1441   Results.push_back(NewChain);
1442 }
1443 
1444 SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) {
1445   EVT VT = Node->getValueType(0);
1446   unsigned NumElems = VT.getVectorNumElements();
1447   EVT EltVT = VT.getVectorElementType();
1448   SDValue LHS = Node->getOperand(0);
1449   SDValue RHS = Node->getOperand(1);
1450   SDValue CC = Node->getOperand(2);
1451   EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1452   SDLoc dl(Node);
1453   SmallVector<SDValue, 8> Ops(NumElems);
1454   for (unsigned i = 0; i < NumElems; ++i) {
1455     SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1456                                   DAG.getVectorIdxConstant(i, dl));
1457     SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1458                                   DAG.getVectorIdxConstant(i, dl));
1459     Ops[i] = DAG.getNode(ISD::SETCC, dl,
1460                          TLI.getSetCCResultType(DAG.getDataLayout(),
1461                                                 *DAG.getContext(), TmpEltVT),
1462                          LHSElem, RHSElem, CC);
1463     Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
1464                            DAG.getConstant(APInt::getAllOnesValue
1465                                            (EltVT.getSizeInBits()), dl, EltVT),
1466                            DAG.getConstant(0, dl, EltVT));
1467   }
1468   return DAG.getBuildVector(VT, dl, Ops);
1469 }
1470 
1471 bool SelectionDAG::LegalizeVectors() {
1472   return VectorLegalizer(*this).Run();
1473 }
1474