1 //===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SelectionDAG::LegalizeVectors method.
11 //
12 // The vector legalizer looks for vector operations which might need to be
13 // scalarized and legalizes them. This is a separate step from Legalize because
14 // scalarizing can introduce illegal types.  For example, suppose we have an
15 // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
17 // operation, which introduces nodes with the illegal type i64 which must be
18 // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
19 // the operation must be unrolled, which introduces nodes with the illegal
20 // type i8 which must be promoted.
21 //
22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
23 // or operations that happen to take a vector which are custom-lowered;
24 // the legalization for such operations never produces nodes
25 // with illegal types, so it's okay to put off legalizing them until
26 // SelectionDAG::Legalize runs.
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #include "llvm/CodeGen/SelectionDAG.h"
31 #include "llvm/Target/TargetLowering.h"
32 using namespace llvm;
33 
34 namespace {
35 class VectorLegalizer {
36   SelectionDAG& DAG;
37   const TargetLowering &TLI;
38   bool Changed; // Keep track of whether anything changed
39 
40   /// For nodes that are of legal width, and that have more than one use, this
41   /// map indicates what regularized operand to use.  This allows us to avoid
42   /// legalizing the same thing more than once.
43   SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
44 
45   /// \brief Adds a node to the translation cache.
46   void AddLegalizedOperand(SDValue From, SDValue To) {
47     LegalizedNodes.insert(std::make_pair(From, To));
48     // If someone requests legalization of the new node, return itself.
49     if (From != To)
50       LegalizedNodes.insert(std::make_pair(To, To));
51   }
52 
53   /// \brief Legalizes the given node.
54   SDValue LegalizeOp(SDValue Op);
55 
56   /// \brief Assuming the node is legal, "legalize" the results.
57   SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
58 
59   /// \brief Implements unrolling a VSETCC.
60   SDValue UnrollVSETCC(SDValue Op);
61 
62   /// \brief Implement expand-based legalization of vector operations.
63   ///
64   /// This is just a high-level routine to dispatch to specific code paths for
65   /// operations to legalize them.
66   SDValue Expand(SDValue Op);
67 
68   /// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if
69   /// FSUB isn't legal.
70   ///
71   /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
72   /// SINT_TO_FLOAT and SHR on vectors isn't legal.
73   SDValue ExpandUINT_TO_FLOAT(SDValue Op);
74 
75   /// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
76   SDValue ExpandSEXTINREG(SDValue Op);
77 
78   /// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG.
79   ///
80   /// Shuffles the low lanes of the operand into place and bitcasts to the proper
81   /// type. The contents of the bits in the extended part of each element are
82   /// undef.
83   SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op);
84 
85   /// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG.
86   ///
87   /// Shuffles the low lanes of the operand into place, bitcasts to the proper
88   /// type, then shifts left and arithmetic shifts right to introduce a sign
89   /// extension.
90   SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op);
91 
92   /// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG.
93   ///
94   /// Shuffles the low lanes of the operand into place and blends zeros into
95   /// the remaining lanes, finally bitcasting to the proper type.
96   SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op);
97 
98   /// \brief Expand bswap of vectors into a shuffle if legal.
99   SDValue ExpandBSWAP(SDValue Op);
100 
101   /// \brief Implement vselect in terms of XOR, AND, OR when blend is not
102   /// supported by the target.
103   SDValue ExpandVSELECT(SDValue Op);
104   SDValue ExpandSELECT(SDValue Op);
105   SDValue ExpandLoad(SDValue Op);
106   SDValue ExpandStore(SDValue Op);
107   SDValue ExpandFNEG(SDValue Op);
108   SDValue ExpandABSDIFF(SDValue Op);
109 
110   /// \brief Implements vector promotion.
111   ///
112   /// This is essentially just bitcasting the operands to a different type and
113   /// bitcasting the result back to the original type.
114   SDValue Promote(SDValue Op);
115 
116   /// \brief Implements [SU]INT_TO_FP vector promotion.
117   ///
118   /// This is a [zs]ext of the input operand to the next size up.
119   SDValue PromoteINT_TO_FP(SDValue Op);
120 
121   /// \brief Implements FP_TO_[SU]INT vector promotion of the result type.
122   ///
123   /// It is promoted to the next size up integer type.  The result is then
124   /// truncated back to the original type.
125   SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned);
126 
127 public:
128   /// \brief Begin legalizer the vector operations in the DAG.
129   bool Run();
130   VectorLegalizer(SelectionDAG& dag) :
131       DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {}
132 };
133 
134 bool VectorLegalizer::Run() {
135   // Before we start legalizing vector nodes, check if there are any vectors.
136   bool HasVectors = false;
137   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
138        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
139     // Check if the values of the nodes contain vectors. We don't need to check
140     // the operands because we are going to check their values at some point.
141     for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
142          J != E; ++J)
143       HasVectors |= J->isVector();
144 
145     // If we found a vector node we can start the legalization.
146     if (HasVectors)
147       break;
148   }
149 
150   // If this basic block has no vectors then no need to legalize vectors.
151   if (!HasVectors)
152     return false;
153 
154   // The legalize process is inherently a bottom-up recursive process (users
155   // legalize their uses before themselves).  Given infinite stack space, we
156   // could just start legalizing on the root and traverse the whole graph.  In
157   // practice however, this causes us to run out of stack space on large basic
158   // blocks.  To avoid this problem, compute an ordering of the nodes where each
159   // node is only legalized after all of its operands are legalized.
160   DAG.AssignTopologicalOrder();
161   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
162        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
163     LegalizeOp(SDValue(&*I, 0));
164 
165   // Finally, it's possible the root changed.  Get the new root.
166   SDValue OldRoot = DAG.getRoot();
167   assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
168   DAG.setRoot(LegalizedNodes[OldRoot]);
169 
170   LegalizedNodes.clear();
171 
172   // Remove dead nodes now.
173   DAG.RemoveDeadNodes();
174 
175   return Changed;
176 }
177 
178 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
179   // Generic legalization: just pass the operand through.
180   for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
181     AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
182   return Result.getValue(Op.getResNo());
183 }
184 
185 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
186   // Note that LegalizeOp may be reentered even from single-use nodes, which
187   // means that we always must cache transformed nodes.
188   DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
189   if (I != LegalizedNodes.end()) return I->second;
190 
191   SDNode* Node = Op.getNode();
192 
193   // Legalize the operands
194   SmallVector<SDValue, 8> Ops;
195   for (const SDValue &Op : Node->op_values())
196     Ops.push_back(LegalizeOp(Op));
197 
198   SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0);
199 
200   bool HasVectorValue = false;
201   if (Op.getOpcode() == ISD::LOAD) {
202     LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
203     ISD::LoadExtType ExtType = LD->getExtensionType();
204     if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD)
205       switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
206                                    LD->getMemoryVT())) {
207       default: llvm_unreachable("This action is not supported yet!");
208       case TargetLowering::Legal:
209         return TranslateLegalizeResults(Op, Result);
210       case TargetLowering::Custom:
211         if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) {
212           if (Lowered == Result)
213             return TranslateLegalizeResults(Op, Lowered);
214           Changed = true;
215           if (Lowered->getNumValues() != Op->getNumValues()) {
216             // This expanded to something other than the load. Assume the
217             // lowering code took care of any chain values, and just handle the
218             // returned value.
219             assert(Result.getValue(1).use_empty() &&
220                    "There are still live users of the old chain!");
221             return LegalizeOp(Lowered);
222           }
223           return TranslateLegalizeResults(Op, Lowered);
224         }
225       case TargetLowering::Expand:
226         Changed = true;
227         return LegalizeOp(ExpandLoad(Op));
228       }
229   } else if (Op.getOpcode() == ISD::STORE) {
230     StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
231     EVT StVT = ST->getMemoryVT();
232     MVT ValVT = ST->getValue().getSimpleValueType();
233     if (StVT.isVector() && ST->isTruncatingStore())
234       switch (TLI.getTruncStoreAction(ValVT, StVT)) {
235       default: llvm_unreachable("This action is not supported yet!");
236       case TargetLowering::Legal:
237         return TranslateLegalizeResults(Op, Result);
238       case TargetLowering::Custom: {
239         SDValue Lowered = TLI.LowerOperation(Result, DAG);
240         Changed = Lowered != Result;
241         return TranslateLegalizeResults(Op, Lowered);
242       }
243       case TargetLowering::Expand:
244         Changed = true;
245         return LegalizeOp(ExpandStore(Op));
246       }
247   } else if (Op.getOpcode() == ISD::MSCATTER || Op.getOpcode() == ISD::MSTORE)
248     HasVectorValue = true;
249 
250   for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end();
251        J != E;
252        ++J)
253     HasVectorValue |= J->isVector();
254   if (!HasVectorValue)
255     return TranslateLegalizeResults(Op, Result);
256 
257   EVT QueryType;
258   switch (Op.getOpcode()) {
259   default:
260     return TranslateLegalizeResults(Op, Result);
261   case ISD::ADD:
262   case ISD::SUB:
263   case ISD::MUL:
264   case ISD::SDIV:
265   case ISD::UDIV:
266   case ISD::SREM:
267   case ISD::UREM:
268   case ISD::SDIVREM:
269   case ISD::UDIVREM:
270   case ISD::FADD:
271   case ISD::FSUB:
272   case ISD::FMUL:
273   case ISD::FDIV:
274   case ISD::FREM:
275   case ISD::AND:
276   case ISD::OR:
277   case ISD::XOR:
278   case ISD::SHL:
279   case ISD::SRA:
280   case ISD::SRL:
281   case ISD::ROTL:
282   case ISD::ROTR:
283   case ISD::BSWAP:
284   case ISD::CTLZ:
285   case ISD::CTTZ:
286   case ISD::CTLZ_ZERO_UNDEF:
287   case ISD::CTTZ_ZERO_UNDEF:
288   case ISD::CTPOP:
289   case ISD::SELECT:
290   case ISD::VSELECT:
291   case ISD::SELECT_CC:
292   case ISD::SETCC:
293   case ISD::ZERO_EXTEND:
294   case ISD::ANY_EXTEND:
295   case ISD::TRUNCATE:
296   case ISD::SIGN_EXTEND:
297   case ISD::FP_TO_SINT:
298   case ISD::FP_TO_UINT:
299   case ISD::FNEG:
300   case ISD::FABS:
301   case ISD::FMINNUM:
302   case ISD::FMAXNUM:
303   case ISD::FMINNAN:
304   case ISD::FMAXNAN:
305   case ISD::FCOPYSIGN:
306   case ISD::FSQRT:
307   case ISD::FSIN:
308   case ISD::FCOS:
309   case ISD::FPOWI:
310   case ISD::FPOW:
311   case ISD::FLOG:
312   case ISD::FLOG2:
313   case ISD::FLOG10:
314   case ISD::FEXP:
315   case ISD::FEXP2:
316   case ISD::FCEIL:
317   case ISD::FTRUNC:
318   case ISD::FRINT:
319   case ISD::FNEARBYINT:
320   case ISD::FROUND:
321   case ISD::FFLOOR:
322   case ISD::FP_ROUND:
323   case ISD::FP_EXTEND:
324   case ISD::FMA:
325   case ISD::SIGN_EXTEND_INREG:
326   case ISD::ANY_EXTEND_VECTOR_INREG:
327   case ISD::SIGN_EXTEND_VECTOR_INREG:
328   case ISD::ZERO_EXTEND_VECTOR_INREG:
329   case ISD::SMIN:
330   case ISD::SMAX:
331   case ISD::UMIN:
332   case ISD::UMAX:
333   case ISD::UABSDIFF:
334   case ISD::SABSDIFF:
335     QueryType = Node->getValueType(0);
336     break;
337   case ISD::FP_ROUND_INREG:
338     QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT();
339     break;
340   case ISD::SINT_TO_FP:
341   case ISD::UINT_TO_FP:
342     QueryType = Node->getOperand(0).getValueType();
343     break;
344   case ISD::MSCATTER:
345     QueryType = cast<MaskedScatterSDNode>(Node)->getValue().getValueType();
346     break;
347   case ISD::MSTORE:
348     QueryType = cast<MaskedStoreSDNode>(Node)->getValue().getValueType();
349     break;
350   }
351 
352   switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) {
353   default: llvm_unreachable("This action is not supported yet!");
354   case TargetLowering::Promote:
355     Result = Promote(Op);
356     Changed = true;
357     break;
358   case TargetLowering::Legal:
359     break;
360   case TargetLowering::Custom: {
361     SDValue Tmp1 = TLI.LowerOperation(Op, DAG);
362     if (Tmp1.getNode()) {
363       Result = Tmp1;
364       break;
365     }
366     // FALL THROUGH
367   }
368   case TargetLowering::Expand:
369     Result = Expand(Op);
370   }
371 
372   // Make sure that the generated code is itself legal.
373   if (Result != Op) {
374     Result = LegalizeOp(Result);
375     Changed = true;
376   }
377 
378   // Note that LegalizeOp may be reentered even from single-use nodes, which
379   // means that we always must cache transformed nodes.
380   AddLegalizedOperand(Op, Result);
381   return Result;
382 }
383 
384 SDValue VectorLegalizer::Promote(SDValue Op) {
385   // For a few operations there is a specific concept for promotion based on
386   // the operand's type.
387   switch (Op.getOpcode()) {
388   case ISD::SINT_TO_FP:
389   case ISD::UINT_TO_FP:
390     // "Promote" the operation by extending the operand.
391     return PromoteINT_TO_FP(Op);
392   case ISD::FP_TO_UINT:
393   case ISD::FP_TO_SINT:
394     // Promote the operation by extending the operand.
395     return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT);
396   }
397 
398   // There are currently two cases of vector promotion:
399   // 1) Bitcasting a vector of integers to a different type to a vector of the
400   //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
401   // 2) Extending a vector of floats to a vector of the same number of larger
402   //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
403   MVT VT = Op.getSimpleValueType();
404   assert(Op.getNode()->getNumValues() == 1 &&
405          "Can't promote a vector with multiple results!");
406   MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
407   SDLoc dl(Op);
408   SmallVector<SDValue, 4> Operands(Op.getNumOperands());
409 
410   for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
411     if (Op.getOperand(j).getValueType().isVector())
412       if (Op.getOperand(j)
413               .getValueType()
414               .getVectorElementType()
415               .isFloatingPoint() &&
416           NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
417         Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j));
418       else
419         Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
420     else
421       Operands[j] = Op.getOperand(j);
422   }
423 
424   Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags());
425   if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
426       (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
427        NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
428     return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl));
429   else
430     return DAG.getNode(ISD::BITCAST, dl, VT, Op);
431 }
432 
433 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) {
434   // INT_TO_FP operations may require the input operand be promoted even
435   // when the type is otherwise legal.
436   EVT VT = Op.getOperand(0).getValueType();
437   assert(Op.getNode()->getNumValues() == 1 &&
438          "Can't promote a vector with multiple results!");
439 
440   // Normal getTypeToPromoteTo() doesn't work here, as that will promote
441   // by widening the vector w/ the same element width and twice the number
442   // of elements. We want the other way around, the same number of elements,
443   // each twice the width.
444   //
445   // Increase the bitwidth of the element to the next pow-of-two
446   // (which is greater than 8 bits).
447 
448   EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext());
449   assert(NVT.isSimple() && "Promoting to a non-simple vector type!");
450   SDLoc dl(Op);
451   SmallVector<SDValue, 4> Operands(Op.getNumOperands());
452 
453   unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND :
454     ISD::SIGN_EXTEND;
455   for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
456     if (Op.getOperand(j).getValueType().isVector())
457       Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
458     else
459       Operands[j] = Op.getOperand(j);
460   }
461 
462   return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands);
463 }
464 
465 // For FP_TO_INT we promote the result type to a vector type with wider
466 // elements and then truncate the result.  This is different from the default
467 // PromoteVector which uses bitcast to promote thus assumning that the
468 // promoted vector type has the same overall size.
469 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) {
470   assert(Op.getNode()->getNumValues() == 1 &&
471          "Can't promote a vector with multiple results!");
472   EVT VT = Op.getValueType();
473 
474   EVT NewVT;
475   unsigned NewOpc;
476   while (1) {
477     NewVT = VT.widenIntegerVectorElementType(*DAG.getContext());
478     assert(NewVT.isSimple() && "Promoting to a non-simple vector type!");
479     if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) {
480       NewOpc = ISD::FP_TO_SINT;
481       break;
482     }
483     if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) {
484       NewOpc = ISD::FP_TO_UINT;
485       break;
486     }
487   }
488 
489   SDLoc loc(Op);
490   SDValue promoted  = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0));
491   return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted);
492 }
493 
494 
495 SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
496   SDLoc dl(Op);
497   LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
498   SDValue Chain = LD->getChain();
499   SDValue BasePTR = LD->getBasePtr();
500   EVT SrcVT = LD->getMemoryVT();
501   ISD::LoadExtType ExtType = LD->getExtensionType();
502 
503   SmallVector<SDValue, 8> Vals;
504   SmallVector<SDValue, 8> LoadChains;
505   unsigned NumElem = SrcVT.getVectorNumElements();
506 
507   EVT SrcEltVT = SrcVT.getScalarType();
508   EVT DstEltVT = Op.getNode()->getValueType(0).getScalarType();
509 
510   if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
511     // When elements in a vector is not byte-addressable, we cannot directly
512     // load each element by advancing pointer, which could only address bytes.
513     // Instead, we load all significant words, mask bits off, and concatenate
514     // them to form each element. Finally, they are extended to destination
515     // scalar type to build the destination vector.
516     EVT WideVT = TLI.getPointerTy(DAG.getDataLayout());
517 
518     assert(WideVT.isRound() &&
519            "Could not handle the sophisticated case when the widest integer is"
520            " not power of 2.");
521     assert(WideVT.bitsGE(SrcEltVT) &&
522            "Type is not legalized?");
523 
524     unsigned WideBytes = WideVT.getStoreSize();
525     unsigned Offset = 0;
526     unsigned RemainingBytes = SrcVT.getStoreSize();
527     SmallVector<SDValue, 8> LoadVals;
528 
529     while (RemainingBytes > 0) {
530       SDValue ScalarLoad;
531       unsigned LoadBytes = WideBytes;
532 
533       if (RemainingBytes >= LoadBytes) {
534         ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR,
535                                  LD->getPointerInfo().getWithOffset(Offset),
536                                  LD->isVolatile(), LD->isNonTemporal(),
537                                  LD->isInvariant(),
538                                  MinAlign(LD->getAlignment(), Offset),
539                                  LD->getAAInfo());
540       } else {
541         EVT LoadVT = WideVT;
542         while (RemainingBytes < LoadBytes) {
543           LoadBytes >>= 1; // Reduce the load size by half.
544           LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
545         }
546         ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
547                                     LD->getPointerInfo().getWithOffset(Offset),
548                                     LoadVT, LD->isVolatile(),
549                                     LD->isNonTemporal(), LD->isInvariant(),
550                                     MinAlign(LD->getAlignment(), Offset),
551                                     LD->getAAInfo());
552       }
553 
554       RemainingBytes -= LoadBytes;
555       Offset += LoadBytes;
556       BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
557                             DAG.getConstant(LoadBytes, dl,
558                                             BasePTR.getValueType()));
559 
560       LoadVals.push_back(ScalarLoad.getValue(0));
561       LoadChains.push_back(ScalarLoad.getValue(1));
562     }
563 
564     // Extract bits, pack and extend/trunc them into destination type.
565     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
566     SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT);
567 
568     unsigned BitOffset = 0;
569     unsigned WideIdx = 0;
570     unsigned WideBits = WideVT.getSizeInBits();
571 
572     for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
573       SDValue Lo, Hi, ShAmt;
574 
575       if (BitOffset < WideBits) {
576         ShAmt = DAG.getConstant(
577             BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
578         Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
579         Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
580       }
581 
582       BitOffset += SrcEltBits;
583       if (BitOffset >= WideBits) {
584         WideIdx++;
585         BitOffset -= WideBits;
586         if (BitOffset > 0) {
587           ShAmt = DAG.getConstant(
588               SrcEltBits - BitOffset, dl,
589               TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
590           Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
591           Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask);
592         }
593       }
594 
595       if (Hi.getNode())
596         Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
597 
598       switch (ExtType) {
599       default: llvm_unreachable("Unknown extended-load op!");
600       case ISD::EXTLOAD:
601         Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
602         break;
603       case ISD::ZEXTLOAD:
604         Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
605         break;
606       case ISD::SEXTLOAD:
607         ShAmt =
608             DAG.getConstant(WideBits - SrcEltBits, dl,
609                             TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
610         Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
611         Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
612         Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
613         break;
614       }
615       Vals.push_back(Lo);
616     }
617   } else {
618     unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8;
619 
620     for (unsigned Idx=0; Idx<NumElem; Idx++) {
621       SDValue ScalarLoad = DAG.getExtLoad(ExtType, dl,
622                 Op.getNode()->getValueType(0).getScalarType(),
623                 Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride),
624                 SrcVT.getScalarType(),
625                 LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(),
626                 MinAlign(LD->getAlignment(), Idx * Stride), LD->getAAInfo());
627 
628       BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
629                          DAG.getConstant(Stride, dl, BasePTR.getValueType()));
630 
631       Vals.push_back(ScalarLoad.getValue(0));
632       LoadChains.push_back(ScalarLoad.getValue(1));
633     }
634   }
635 
636   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
637   SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl,
638                               Op.getNode()->getValueType(0), Vals);
639 
640   AddLegalizedOperand(Op.getValue(0), Value);
641   AddLegalizedOperand(Op.getValue(1), NewChain);
642 
643   return (Op.getResNo() ? NewChain : Value);
644 }
645 
646 SDValue VectorLegalizer::ExpandStore(SDValue Op) {
647   SDLoc dl(Op);
648   StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
649   SDValue Chain = ST->getChain();
650   SDValue BasePTR = ST->getBasePtr();
651   SDValue Value = ST->getValue();
652   EVT StVT = ST->getMemoryVT();
653 
654   unsigned Alignment = ST->getAlignment();
655   bool isVolatile = ST->isVolatile();
656   bool isNonTemporal = ST->isNonTemporal();
657   AAMDNodes AAInfo = ST->getAAInfo();
658 
659   unsigned NumElem = StVT.getVectorNumElements();
660   // The type of the data we want to save
661   EVT RegVT = Value.getValueType();
662   EVT RegSclVT = RegVT.getScalarType();
663   // The type of data as saved in memory.
664   EVT MemSclVT = StVT.getScalarType();
665 
666   // Cast floats into integers
667   unsigned ScalarSize = MemSclVT.getSizeInBits();
668 
669   // Round odd types to the next pow of two.
670   if (!isPowerOf2_32(ScalarSize))
671     ScalarSize = NextPowerOf2(ScalarSize);
672 
673   // Store Stride in bytes
674   unsigned Stride = ScalarSize/8;
675   // Extract each of the elements from the original vector
676   // and save them into memory individually.
677   SmallVector<SDValue, 8> Stores;
678   for (unsigned Idx = 0; Idx < NumElem; Idx++) {
679     SDValue Ex = DAG.getNode(
680         ISD::EXTRACT_VECTOR_ELT, dl, RegSclVT, Value,
681         DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
682 
683     // This scalar TruncStore may be illegal, but we legalize it later.
684     SDValue Store = DAG.getTruncStore(Chain, dl, Ex, BasePTR,
685                ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT,
686                isVolatile, isNonTemporal, MinAlign(Alignment, Idx*Stride),
687                AAInfo);
688 
689     BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
690                           DAG.getConstant(Stride, dl, BasePTR.getValueType()));
691 
692     Stores.push_back(Store);
693   }
694   SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
695   AddLegalizedOperand(Op, TF);
696   return TF;
697 }
698 
699 SDValue VectorLegalizer::Expand(SDValue Op) {
700   switch (Op->getOpcode()) {
701   case ISD::SIGN_EXTEND_INREG:
702     return ExpandSEXTINREG(Op);
703   case ISD::ANY_EXTEND_VECTOR_INREG:
704     return ExpandANY_EXTEND_VECTOR_INREG(Op);
705   case ISD::SIGN_EXTEND_VECTOR_INREG:
706     return ExpandSIGN_EXTEND_VECTOR_INREG(Op);
707   case ISD::ZERO_EXTEND_VECTOR_INREG:
708     return ExpandZERO_EXTEND_VECTOR_INREG(Op);
709   case ISD::BSWAP:
710     return ExpandBSWAP(Op);
711   case ISD::VSELECT:
712     return ExpandVSELECT(Op);
713   case ISD::SELECT:
714     return ExpandSELECT(Op);
715   case ISD::UINT_TO_FP:
716     return ExpandUINT_TO_FLOAT(Op);
717   case ISD::FNEG:
718     return ExpandFNEG(Op);
719   case ISD::SETCC:
720     return UnrollVSETCC(Op);
721   case ISD::UABSDIFF:
722   case ISD::SABSDIFF:
723     return ExpandABSDIFF(Op);
724   default:
725     return DAG.UnrollVectorOp(Op.getNode());
726   }
727 }
728 
729 SDValue VectorLegalizer::ExpandABSDIFF(SDValue Op) {
730   SDLoc dl(Op);
731   SDValue Op0 = Op.getOperand(0);
732   SDValue Op1 = Op.getOperand(1);
733   EVT VT = Op.getValueType();
734 
735   // For unsigned intrinsic, promote the type to handle unsigned overflow.
736   bool isUabsdiff = (Op->getOpcode() == ISD::UABSDIFF);
737   if (isUabsdiff) {
738     VT = VT.widenIntegerVectorElementType(*DAG.getContext());
739     Op0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op0);
740     Op1 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op1);
741   }
742 
743   SDNodeFlags Flags;
744   Flags.setNoSignedWrap(!isUabsdiff);
745   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Op0, Op1, &Flags);
746   if (isUabsdiff)
747     return DAG.getNode(ISD::TRUNCATE, dl, Op.getValueType(), Sub);
748 
749   SDValue Cmp =
750       DAG.getNode(ISD::SETCC, dl, TLI.getSetCCResultType(DAG.getDataLayout(),
751                                                          *DAG.getContext(), VT),
752                   Sub, DAG.getConstant(0, dl, VT), DAG.getCondCode(ISD::SETGE));
753   SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), Sub, &Flags);
754   return DAG.getNode(ISD::VSELECT, dl, VT, Cmp, Sub, Neg);
755 }
756 
757 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
758   // Lower a select instruction where the condition is a scalar and the
759   // operands are vectors. Lower this select to VSELECT and implement it
760   // using XOR AND OR. The selector bit is broadcasted.
761   EVT VT = Op.getValueType();
762   SDLoc DL(Op);
763 
764   SDValue Mask = Op.getOperand(0);
765   SDValue Op1 = Op.getOperand(1);
766   SDValue Op2 = Op.getOperand(2);
767 
768   assert(VT.isVector() && !Mask.getValueType().isVector()
769          && Op1.getValueType() == Op2.getValueType() && "Invalid type");
770 
771   unsigned NumElem = VT.getVectorNumElements();
772 
773   // If we can't even use the basic vector operations of
774   // AND,OR,XOR, we will have to scalarize the op.
775   // Notice that the operation may be 'promoted' which means that it is
776   // 'bitcasted' to another type which is handled.
777   // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
778   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
779       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
780       TLI.getOperationAction(ISD::OR,  VT) == TargetLowering::Expand ||
781       TLI.getOperationAction(ISD::BUILD_VECTOR,  VT) == TargetLowering::Expand)
782     return DAG.UnrollVectorOp(Op.getNode());
783 
784   // Generate a mask operand.
785   EVT MaskTy = VT.changeVectorElementTypeToInteger();
786 
787   // What is the size of each element in the vector mask.
788   EVT BitTy = MaskTy.getScalarType();
789 
790   Mask = DAG.getSelect(DL, BitTy, Mask,
791           DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
792                           BitTy),
793           DAG.getConstant(0, DL, BitTy));
794 
795   // Broadcast the mask so that the entire vector is all-one or all zero.
796   SmallVector<SDValue, 8> Ops(NumElem, Mask);
797   Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, Ops);
798 
799   // Bitcast the operands to be the same type as the mask.
800   // This is needed when we select between FP types because
801   // the mask is a vector of integers.
802   Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
803   Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
804 
805   SDValue AllOnes = DAG.getConstant(
806             APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
807   SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
808 
809   Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
810   Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
811   SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
812   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
813 }
814 
815 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
816   EVT VT = Op.getValueType();
817 
818   // Make sure that the SRA and SHL instructions are available.
819   if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
820       TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
821     return DAG.UnrollVectorOp(Op.getNode());
822 
823   SDLoc DL(Op);
824   EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
825 
826   unsigned BW = VT.getScalarType().getSizeInBits();
827   unsigned OrigBW = OrigTy.getScalarType().getSizeInBits();
828   SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
829 
830   Op = Op.getOperand(0);
831   Op =   DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
832   return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
833 }
834 
835 // Generically expand a vector anyext in register to a shuffle of the relevant
836 // lanes into the appropriate locations, with other lanes left undef.
837 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) {
838   SDLoc DL(Op);
839   EVT VT = Op.getValueType();
840   int NumElements = VT.getVectorNumElements();
841   SDValue Src = Op.getOperand(0);
842   EVT SrcVT = Src.getValueType();
843   int NumSrcElements = SrcVT.getVectorNumElements();
844 
845   // Build a base mask of undef shuffles.
846   SmallVector<int, 16> ShuffleMask;
847   ShuffleMask.resize(NumSrcElements, -1);
848 
849   // Place the extended lanes into the correct locations.
850   int ExtLaneScale = NumSrcElements / NumElements;
851   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
852   for (int i = 0; i < NumElements; ++i)
853     ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
854 
855   return DAG.getNode(
856       ISD::BITCAST, DL, VT,
857       DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
858 }
859 
860 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) {
861   SDLoc DL(Op);
862   EVT VT = Op.getValueType();
863   SDValue Src = Op.getOperand(0);
864   EVT SrcVT = Src.getValueType();
865 
866   // First build an any-extend node which can be legalized above when we
867   // recurse through it.
868   Op = DAG.getAnyExtendVectorInReg(Src, DL, VT);
869 
870   // Now we need sign extend. Do this by shifting the elements. Even if these
871   // aren't legal operations, they have a better chance of being legalized
872   // without full scalarization than the sign extension does.
873   unsigned EltWidth = VT.getVectorElementType().getSizeInBits();
874   unsigned SrcEltWidth = SrcVT.getVectorElementType().getSizeInBits();
875   SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
876   return DAG.getNode(ISD::SRA, DL, VT,
877                      DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
878                      ShiftAmount);
879 }
880 
881 // Generically expand a vector zext in register to a shuffle of the relevant
882 // lanes into the appropriate locations, a blend of zero into the high bits,
883 // and a bitcast to the wider element type.
884 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) {
885   SDLoc DL(Op);
886   EVT VT = Op.getValueType();
887   int NumElements = VT.getVectorNumElements();
888   SDValue Src = Op.getOperand(0);
889   EVT SrcVT = Src.getValueType();
890   int NumSrcElements = SrcVT.getVectorNumElements();
891 
892   // Build up a zero vector to blend into this one.
893   EVT SrcScalarVT = SrcVT.getScalarType();
894   SDValue ScalarZero = DAG.getTargetConstant(0, DL, SrcScalarVT);
895   SmallVector<SDValue, 4> BuildVectorOperands(NumSrcElements, ScalarZero);
896   SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, DL, SrcVT, BuildVectorOperands);
897 
898   // Shuffle the incoming lanes into the correct position, and pull all other
899   // lanes from the zero vector.
900   SmallVector<int, 16> ShuffleMask;
901   ShuffleMask.reserve(NumSrcElements);
902   for (int i = 0; i < NumSrcElements; ++i)
903     ShuffleMask.push_back(i);
904 
905   int ExtLaneScale = NumSrcElements / NumElements;
906   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
907   for (int i = 0; i < NumElements; ++i)
908     ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
909 
910   return DAG.getNode(ISD::BITCAST, DL, VT,
911                      DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
912 }
913 
914 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) {
915   EVT VT = Op.getValueType();
916 
917   // Generate a byte wise shuffle mask for the BSWAP.
918   SmallVector<int, 16> ShuffleMask;
919   int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
920   for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
921     for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
922       ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
923 
924   EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
925 
926   // Only emit a shuffle if the mask is legal.
927   if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
928     return DAG.UnrollVectorOp(Op.getNode());
929 
930   SDLoc DL(Op);
931   Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
932   Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
933                             ShuffleMask.data());
934   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
935 }
936 
937 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
938   // Implement VSELECT in terms of XOR, AND, OR
939   // on platforms which do not support blend natively.
940   SDLoc DL(Op);
941 
942   SDValue Mask = Op.getOperand(0);
943   SDValue Op1 = Op.getOperand(1);
944   SDValue Op2 = Op.getOperand(2);
945 
946   EVT VT = Mask.getValueType();
947 
948   // If we can't even use the basic vector operations of
949   // AND,OR,XOR, we will have to scalarize the op.
950   // Notice that the operation may be 'promoted' which means that it is
951   // 'bitcasted' to another type which is handled.
952   // This operation also isn't safe with AND, OR, XOR when the boolean
953   // type is 0/1 as we need an all ones vector constant to mask with.
954   // FIXME: Sign extend 1 to all ones if thats legal on the target.
955   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
956       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
957       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
958       TLI.getBooleanContents(Op1.getValueType()) !=
959           TargetLowering::ZeroOrNegativeOneBooleanContent)
960     return DAG.UnrollVectorOp(Op.getNode());
961 
962   // If the mask and the type are different sizes, unroll the vector op. This
963   // can occur when getSetCCResultType returns something that is different in
964   // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
965   if (VT.getSizeInBits() != Op1.getValueType().getSizeInBits())
966     return DAG.UnrollVectorOp(Op.getNode());
967 
968   // Bitcast the operands to be the same type as the mask.
969   // This is needed when we select between FP types because
970   // the mask is a vector of integers.
971   Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
972   Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
973 
974   SDValue AllOnes = DAG.getConstant(
975     APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), DL, VT);
976   SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
977 
978   Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
979   Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
980   SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
981   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
982 }
983 
984 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
985   EVT VT = Op.getOperand(0).getValueType();
986   SDLoc DL(Op);
987 
988   // Make sure that the SINT_TO_FP and SRL instructions are available.
989   if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand ||
990       TLI.getOperationAction(ISD::SRL,        VT) == TargetLowering::Expand)
991     return DAG.UnrollVectorOp(Op.getNode());
992 
993  EVT SVT = VT.getScalarType();
994   assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) &&
995       "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
996 
997   unsigned BW = SVT.getSizeInBits();
998   SDValue HalfWord = DAG.getConstant(BW/2, DL, VT);
999 
1000   // Constants to clear the upper part of the word.
1001   // Notice that we can also use SHL+SHR, but using a constant is slightly
1002   // faster on x86.
1003   uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF;
1004   SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
1005 
1006   // Two to the power of half-word-size.
1007   SDValue TWOHW = DAG.getConstantFP(1 << (BW/2), DL, Op.getValueType());
1008 
1009   // Clear upper part of LO, lower HI
1010   SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
1011   SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask);
1012 
1013   // Convert hi and lo to floats
1014   // Convert the hi part back to the upper values
1015   // TODO: Can any fast-math-flags be set on these nodes?
1016   SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
1017           fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
1018   SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);
1019 
1020   // Add the two halves
1021   return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
1022 }
1023 
1024 
1025 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
1026   if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
1027     SDLoc DL(Op);
1028     SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType());
1029     // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1030     return DAG.getNode(ISD::FSUB, DL, Op.getValueType(),
1031                        Zero, Op.getOperand(0));
1032   }
1033   return DAG.UnrollVectorOp(Op.getNode());
1034 }
1035 
1036 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
1037   EVT VT = Op.getValueType();
1038   unsigned NumElems = VT.getVectorNumElements();
1039   EVT EltVT = VT.getVectorElementType();
1040   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
1041   EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1042   SDLoc dl(Op);
1043   SmallVector<SDValue, 8> Ops(NumElems);
1044   for (unsigned i = 0; i < NumElems; ++i) {
1045     SDValue LHSElem = DAG.getNode(
1046         ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1047         DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1048     SDValue RHSElem = DAG.getNode(
1049         ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1050         DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1051     Ops[i] = DAG.getNode(ISD::SETCC, dl,
1052                          TLI.getSetCCResultType(DAG.getDataLayout(),
1053                                                 *DAG.getContext(), TmpEltVT),
1054                          LHSElem, RHSElem, CC);
1055     Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
1056                            DAG.getConstant(APInt::getAllOnesValue
1057                                            (EltVT.getSizeInBits()), dl, EltVT),
1058                            DAG.getConstant(0, dl, EltVT));
1059   }
1060   return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
1061 }
1062 
1063 }
1064 
1065 bool SelectionDAG::LegalizeVectors() {
1066   return VectorLegalizer(*this).Run();
1067 }
1068