1 //===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SelectionDAG::LegalizeVectors method. 11 // 12 // The vector legalizer looks for vector operations which might need to be 13 // scalarized and legalizes them. This is a separate step from Legalize because 14 // scalarizing can introduce illegal types. For example, suppose we have an 15 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 17 // operation, which introduces nodes with the illegal type i64 which must be 18 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 19 // the operation must be unrolled, which introduces nodes with the illegal 20 // type i8 which must be promoted. 21 // 22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 23 // or operations that happen to take a vector which are custom-lowered; 24 // the legalization for such operations never produces nodes 25 // with illegal types, so it's okay to put off legalizing them until 26 // SelectionDAG::Legalize runs. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/Target/TargetLowering.h" 32 using namespace llvm; 33 34 namespace { 35 class VectorLegalizer { 36 SelectionDAG& DAG; 37 const TargetLowering &TLI; 38 bool Changed; // Keep track of whether anything changed 39 40 /// For nodes that are of legal width, and that have more than one use, this 41 /// map indicates what regularized operand to use. This allows us to avoid 42 /// legalizing the same thing more than once. 43 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 44 45 /// \brief Adds a node to the translation cache. 46 void AddLegalizedOperand(SDValue From, SDValue To) { 47 LegalizedNodes.insert(std::make_pair(From, To)); 48 // If someone requests legalization of the new node, return itself. 49 if (From != To) 50 LegalizedNodes.insert(std::make_pair(To, To)); 51 } 52 53 /// \brief Legalizes the given node. 54 SDValue LegalizeOp(SDValue Op); 55 56 /// \brief Assuming the node is legal, "legalize" the results. 57 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); 58 59 /// \brief Implements unrolling a VSETCC. 60 SDValue UnrollVSETCC(SDValue Op); 61 62 /// \brief Implement expand-based legalization of vector operations. 63 /// 64 /// This is just a high-level routine to dispatch to specific code paths for 65 /// operations to legalize them. 66 SDValue Expand(SDValue Op); 67 68 /// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if 69 /// FSUB isn't legal. 70 /// 71 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 72 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 73 SDValue ExpandUINT_TO_FLOAT(SDValue Op); 74 75 /// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 76 SDValue ExpandSEXTINREG(SDValue Op); 77 78 /// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG. 79 /// 80 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 81 /// type. The contents of the bits in the extended part of each element are 82 /// undef. 83 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op); 84 85 /// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG. 86 /// 87 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 88 /// type, then shifts left and arithmetic shifts right to introduce a sign 89 /// extension. 90 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op); 91 92 /// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG. 93 /// 94 /// Shuffles the low lanes of the operand into place and blends zeros into 95 /// the remaining lanes, finally bitcasting to the proper type. 96 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op); 97 98 /// \brief Expand bswap of vectors into a shuffle if legal. 99 SDValue ExpandBSWAP(SDValue Op); 100 101 /// \brief Implement vselect in terms of XOR, AND, OR when blend is not 102 /// supported by the target. 103 SDValue ExpandVSELECT(SDValue Op); 104 SDValue ExpandSELECT(SDValue Op); 105 SDValue ExpandLoad(SDValue Op); 106 SDValue ExpandStore(SDValue Op); 107 SDValue ExpandFNEG(SDValue Op); 108 109 /// \brief Implements vector promotion. 110 /// 111 /// This is essentially just bitcasting the operands to a different type and 112 /// bitcasting the result back to the original type. 113 SDValue Promote(SDValue Op); 114 115 /// \brief Implements [SU]INT_TO_FP vector promotion. 116 /// 117 /// This is a [zs]ext of the input operand to the next size up. 118 SDValue PromoteINT_TO_FP(SDValue Op); 119 120 /// \brief Implements FP_TO_[SU]INT vector promotion of the result type. 121 /// 122 /// It is promoted to the next size up integer type. The result is then 123 /// truncated back to the original type. 124 SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned); 125 126 public: 127 /// \brief Begin legalizer the vector operations in the DAG. 128 bool Run(); 129 VectorLegalizer(SelectionDAG& dag) : 130 DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {} 131 }; 132 133 bool VectorLegalizer::Run() { 134 // Before we start legalizing vector nodes, check if there are any vectors. 135 bool HasVectors = false; 136 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 137 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 138 // Check if the values of the nodes contain vectors. We don't need to check 139 // the operands because we are going to check their values at some point. 140 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); 141 J != E; ++J) 142 HasVectors |= J->isVector(); 143 144 // If we found a vector node we can start the legalization. 145 if (HasVectors) 146 break; 147 } 148 149 // If this basic block has no vectors then no need to legalize vectors. 150 if (!HasVectors) 151 return false; 152 153 // The legalize process is inherently a bottom-up recursive process (users 154 // legalize their uses before themselves). Given infinite stack space, we 155 // could just start legalizing on the root and traverse the whole graph. In 156 // practice however, this causes us to run out of stack space on large basic 157 // blocks. To avoid this problem, compute an ordering of the nodes where each 158 // node is only legalized after all of its operands are legalized. 159 DAG.AssignTopologicalOrder(); 160 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 161 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 162 LegalizeOp(SDValue(I, 0)); 163 164 // Finally, it's possible the root changed. Get the new root. 165 SDValue OldRoot = DAG.getRoot(); 166 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 167 DAG.setRoot(LegalizedNodes[OldRoot]); 168 169 LegalizedNodes.clear(); 170 171 // Remove dead nodes now. 172 DAG.RemoveDeadNodes(); 173 174 return Changed; 175 } 176 177 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { 178 // Generic legalization: just pass the operand through. 179 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) 180 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 181 return Result.getValue(Op.getResNo()); 182 } 183 184 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 185 // Note that LegalizeOp may be reentered even from single-use nodes, which 186 // means that we always must cache transformed nodes. 187 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 188 if (I != LegalizedNodes.end()) return I->second; 189 190 SDNode* Node = Op.getNode(); 191 192 // Legalize the operands 193 SmallVector<SDValue, 8> Ops; 194 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 195 Ops.push_back(LegalizeOp(Node->getOperand(i))); 196 197 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0); 198 199 bool HasVectorValue = false; 200 if (Op.getOpcode() == ISD::LOAD) { 201 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 202 ISD::LoadExtType ExtType = LD->getExtensionType(); 203 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) 204 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), 205 LD->getMemoryVT())) { 206 default: llvm_unreachable("This action is not supported yet!"); 207 case TargetLowering::Legal: 208 return TranslateLegalizeResults(Op, Result); 209 case TargetLowering::Custom: 210 if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) { 211 if (Lowered == Result) 212 return TranslateLegalizeResults(Op, Lowered); 213 Changed = true; 214 if (Lowered->getNumValues() != Op->getNumValues()) { 215 // This expanded to something other than the load. Assume the 216 // lowering code took care of any chain values, and just handle the 217 // returned value. 218 assert(Result.getValue(1).use_empty() && 219 "There are still live users of the old chain!"); 220 return LegalizeOp(Lowered); 221 } else { 222 return TranslateLegalizeResults(Op, Lowered); 223 } 224 } 225 case TargetLowering::Expand: 226 Changed = true; 227 return LegalizeOp(ExpandLoad(Op)); 228 } 229 } else if (Op.getOpcode() == ISD::STORE) { 230 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 231 EVT StVT = ST->getMemoryVT(); 232 MVT ValVT = ST->getValue().getSimpleValueType(); 233 if (StVT.isVector() && ST->isTruncatingStore()) 234 switch (TLI.getTruncStoreAction(ValVT, StVT.getSimpleVT())) { 235 default: llvm_unreachable("This action is not supported yet!"); 236 case TargetLowering::Legal: 237 return TranslateLegalizeResults(Op, Result); 238 case TargetLowering::Custom: { 239 SDValue Lowered = TLI.LowerOperation(Result, DAG); 240 Changed = Lowered != Result; 241 return TranslateLegalizeResults(Op, Lowered); 242 } 243 case TargetLowering::Expand: 244 Changed = true; 245 return LegalizeOp(ExpandStore(Op)); 246 } 247 } else if (Op.getOpcode() == ISD::MSCATTER) 248 HasVectorValue = true; 249 250 for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end(); 251 J != E; 252 ++J) 253 HasVectorValue |= J->isVector(); 254 if (!HasVectorValue) 255 return TranslateLegalizeResults(Op, Result); 256 257 EVT QueryType; 258 switch (Op.getOpcode()) { 259 default: 260 return TranslateLegalizeResults(Op, Result); 261 case ISD::ADD: 262 case ISD::SUB: 263 case ISD::MUL: 264 case ISD::SDIV: 265 case ISD::UDIV: 266 case ISD::SREM: 267 case ISD::UREM: 268 case ISD::FADD: 269 case ISD::FSUB: 270 case ISD::FMUL: 271 case ISD::FDIV: 272 case ISD::FREM: 273 case ISD::AND: 274 case ISD::OR: 275 case ISD::XOR: 276 case ISD::SHL: 277 case ISD::SRA: 278 case ISD::SRL: 279 case ISD::ROTL: 280 case ISD::ROTR: 281 case ISD::BSWAP: 282 case ISD::CTLZ: 283 case ISD::CTTZ: 284 case ISD::CTLZ_ZERO_UNDEF: 285 case ISD::CTTZ_ZERO_UNDEF: 286 case ISD::CTPOP: 287 case ISD::SELECT: 288 case ISD::VSELECT: 289 case ISD::SELECT_CC: 290 case ISD::SETCC: 291 case ISD::ZERO_EXTEND: 292 case ISD::ANY_EXTEND: 293 case ISD::TRUNCATE: 294 case ISD::SIGN_EXTEND: 295 case ISD::FP_TO_SINT: 296 case ISD::FP_TO_UINT: 297 case ISD::FNEG: 298 case ISD::FABS: 299 case ISD::FMINNUM: 300 case ISD::FMAXNUM: 301 case ISD::FCOPYSIGN: 302 case ISD::FSQRT: 303 case ISD::FSIN: 304 case ISD::FCOS: 305 case ISD::FPOWI: 306 case ISD::FPOW: 307 case ISD::FLOG: 308 case ISD::FLOG2: 309 case ISD::FLOG10: 310 case ISD::FEXP: 311 case ISD::FEXP2: 312 case ISD::FCEIL: 313 case ISD::FTRUNC: 314 case ISD::FRINT: 315 case ISD::FNEARBYINT: 316 case ISD::FROUND: 317 case ISD::FFLOOR: 318 case ISD::FP_ROUND: 319 case ISD::FP_EXTEND: 320 case ISD::FMA: 321 case ISD::SIGN_EXTEND_INREG: 322 case ISD::ANY_EXTEND_VECTOR_INREG: 323 case ISD::SIGN_EXTEND_VECTOR_INREG: 324 case ISD::ZERO_EXTEND_VECTOR_INREG: 325 QueryType = Node->getValueType(0); 326 break; 327 case ISD::FP_ROUND_INREG: 328 QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 329 break; 330 case ISD::SINT_TO_FP: 331 case ISD::UINT_TO_FP: 332 QueryType = Node->getOperand(0).getValueType(); 333 break; 334 case ISD::MSCATTER: 335 QueryType = cast<MaskedScatterSDNode>(Node)->getValue().getValueType(); 336 break; 337 } 338 339 switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) { 340 case TargetLowering::Promote: 341 Result = Promote(Op); 342 Changed = true; 343 break; 344 case TargetLowering::Legal: 345 break; 346 case TargetLowering::Custom: { 347 SDValue Tmp1 = TLI.LowerOperation(Op, DAG); 348 if (Tmp1.getNode()) { 349 Result = Tmp1; 350 break; 351 } 352 // FALL THROUGH 353 } 354 case TargetLowering::Expand: 355 Result = Expand(Op); 356 } 357 358 // Make sure that the generated code is itself legal. 359 if (Result != Op) { 360 Result = LegalizeOp(Result); 361 Changed = true; 362 } 363 364 // Note that LegalizeOp may be reentered even from single-use nodes, which 365 // means that we always must cache transformed nodes. 366 AddLegalizedOperand(Op, Result); 367 return Result; 368 } 369 370 SDValue VectorLegalizer::Promote(SDValue Op) { 371 // For a few operations there is a specific concept for promotion based on 372 // the operand's type. 373 switch (Op.getOpcode()) { 374 case ISD::SINT_TO_FP: 375 case ISD::UINT_TO_FP: 376 // "Promote" the operation by extending the operand. 377 return PromoteINT_TO_FP(Op); 378 case ISD::FP_TO_UINT: 379 case ISD::FP_TO_SINT: 380 // Promote the operation by extending the operand. 381 return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT); 382 } 383 384 // There are currently two cases of vector promotion: 385 // 1) Bitcasting a vector of integers to a different type to a vector of the 386 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 387 // 2) Extending a vector of floats to a vector of the same number of larger 388 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 389 MVT VT = Op.getSimpleValueType(); 390 assert(Op.getNode()->getNumValues() == 1 && 391 "Can't promote a vector with multiple results!"); 392 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 393 SDLoc dl(Op); 394 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 395 396 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 397 if (Op.getOperand(j).getValueType().isVector()) 398 if (Op.getOperand(j) 399 .getValueType() 400 .getVectorElementType() 401 .isFloatingPoint() && 402 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 403 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j)); 404 else 405 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); 406 else 407 Operands[j] = Op.getOperand(j); 408 } 409 410 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands); 411 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 412 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 413 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 414 return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl)); 415 else 416 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 417 } 418 419 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) { 420 // INT_TO_FP operations may require the input operand be promoted even 421 // when the type is otherwise legal. 422 EVT VT = Op.getOperand(0).getValueType(); 423 assert(Op.getNode()->getNumValues() == 1 && 424 "Can't promote a vector with multiple results!"); 425 426 // Normal getTypeToPromoteTo() doesn't work here, as that will promote 427 // by widening the vector w/ the same element width and twice the number 428 // of elements. We want the other way around, the same number of elements, 429 // each twice the width. 430 // 431 // Increase the bitwidth of the element to the next pow-of-two 432 // (which is greater than 8 bits). 433 434 EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext()); 435 assert(NVT.isSimple() && "Promoting to a non-simple vector type!"); 436 SDLoc dl(Op); 437 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 438 439 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : 440 ISD::SIGN_EXTEND; 441 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 442 if (Op.getOperand(j).getValueType().isVector()) 443 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j)); 444 else 445 Operands[j] = Op.getOperand(j); 446 } 447 448 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands); 449 } 450 451 // For FP_TO_INT we promote the result type to a vector type with wider 452 // elements and then truncate the result. This is different from the default 453 // PromoteVector which uses bitcast to promote thus assumning that the 454 // promoted vector type has the same overall size. 455 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) { 456 assert(Op.getNode()->getNumValues() == 1 && 457 "Can't promote a vector with multiple results!"); 458 EVT VT = Op.getValueType(); 459 460 EVT NewVT; 461 unsigned NewOpc; 462 while (1) { 463 NewVT = VT.widenIntegerVectorElementType(*DAG.getContext()); 464 assert(NewVT.isSimple() && "Promoting to a non-simple vector type!"); 465 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) { 466 NewOpc = ISD::FP_TO_SINT; 467 break; 468 } 469 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) { 470 NewOpc = ISD::FP_TO_UINT; 471 break; 472 } 473 } 474 475 SDLoc loc(Op); 476 SDValue promoted = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0)); 477 return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted); 478 } 479 480 481 SDValue VectorLegalizer::ExpandLoad(SDValue Op) { 482 SDLoc dl(Op); 483 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 484 SDValue Chain = LD->getChain(); 485 SDValue BasePTR = LD->getBasePtr(); 486 EVT SrcVT = LD->getMemoryVT(); 487 ISD::LoadExtType ExtType = LD->getExtensionType(); 488 489 SmallVector<SDValue, 8> Vals; 490 SmallVector<SDValue, 8> LoadChains; 491 unsigned NumElem = SrcVT.getVectorNumElements(); 492 493 EVT SrcEltVT = SrcVT.getScalarType(); 494 EVT DstEltVT = Op.getNode()->getValueType(0).getScalarType(); 495 496 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { 497 // When elements in a vector is not byte-addressable, we cannot directly 498 // load each element by advancing pointer, which could only address bytes. 499 // Instead, we load all significant words, mask bits off, and concatenate 500 // them to form each element. Finally, they are extended to destination 501 // scalar type to build the destination vector. 502 EVT WideVT = TLI.getPointerTy(); 503 504 assert(WideVT.isRound() && 505 "Could not handle the sophisticated case when the widest integer is" 506 " not power of 2."); 507 assert(WideVT.bitsGE(SrcEltVT) && 508 "Type is not legalized?"); 509 510 unsigned WideBytes = WideVT.getStoreSize(); 511 unsigned Offset = 0; 512 unsigned RemainingBytes = SrcVT.getStoreSize(); 513 SmallVector<SDValue, 8> LoadVals; 514 515 while (RemainingBytes > 0) { 516 SDValue ScalarLoad; 517 unsigned LoadBytes = WideBytes; 518 519 if (RemainingBytes >= LoadBytes) { 520 ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR, 521 LD->getPointerInfo().getWithOffset(Offset), 522 LD->isVolatile(), LD->isNonTemporal(), 523 LD->isInvariant(), 524 MinAlign(LD->getAlignment(), Offset), 525 LD->getAAInfo()); 526 } else { 527 EVT LoadVT = WideVT; 528 while (RemainingBytes < LoadBytes) { 529 LoadBytes >>= 1; // Reduce the load size by half. 530 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); 531 } 532 ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, 533 LD->getPointerInfo().getWithOffset(Offset), 534 LoadVT, LD->isVolatile(), 535 LD->isNonTemporal(), LD->isInvariant(), 536 MinAlign(LD->getAlignment(), Offset), 537 LD->getAAInfo()); 538 } 539 540 RemainingBytes -= LoadBytes; 541 Offset += LoadBytes; 542 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 543 DAG.getConstant(LoadBytes, dl, 544 BasePTR.getValueType())); 545 546 LoadVals.push_back(ScalarLoad.getValue(0)); 547 LoadChains.push_back(ScalarLoad.getValue(1)); 548 } 549 550 // Extract bits, pack and extend/trunc them into destination type. 551 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 552 SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT); 553 554 unsigned BitOffset = 0; 555 unsigned WideIdx = 0; 556 unsigned WideBits = WideVT.getSizeInBits(); 557 558 for (unsigned Idx = 0; Idx != NumElem; ++Idx) { 559 SDValue Lo, Hi, ShAmt; 560 561 if (BitOffset < WideBits) { 562 ShAmt = DAG.getConstant(BitOffset, dl, TLI.getShiftAmountTy(WideVT)); 563 Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); 564 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); 565 } 566 567 BitOffset += SrcEltBits; 568 if (BitOffset >= WideBits) { 569 WideIdx++; 570 BitOffset -= WideBits; 571 if (BitOffset > 0) { 572 ShAmt = DAG.getConstant(SrcEltBits - BitOffset, dl, 573 TLI.getShiftAmountTy(WideVT)); 574 Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); 575 Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask); 576 } 577 } 578 579 if (Hi.getNode()) 580 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); 581 582 switch (ExtType) { 583 default: llvm_unreachable("Unknown extended-load op!"); 584 case ISD::EXTLOAD: 585 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); 586 break; 587 case ISD::ZEXTLOAD: 588 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); 589 break; 590 case ISD::SEXTLOAD: 591 ShAmt = DAG.getConstant(WideBits - SrcEltBits, dl, 592 TLI.getShiftAmountTy(WideVT)); 593 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); 594 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); 595 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); 596 break; 597 } 598 Vals.push_back(Lo); 599 } 600 } else { 601 unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8; 602 603 for (unsigned Idx=0; Idx<NumElem; Idx++) { 604 SDValue ScalarLoad = DAG.getExtLoad(ExtType, dl, 605 Op.getNode()->getValueType(0).getScalarType(), 606 Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride), 607 SrcVT.getScalarType(), 608 LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), 609 MinAlign(LD->getAlignment(), Idx * Stride), LD->getAAInfo()); 610 611 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 612 DAG.getConstant(Stride, dl, BasePTR.getValueType())); 613 614 Vals.push_back(ScalarLoad.getValue(0)); 615 LoadChains.push_back(ScalarLoad.getValue(1)); 616 } 617 } 618 619 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 620 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, 621 Op.getNode()->getValueType(0), Vals); 622 623 AddLegalizedOperand(Op.getValue(0), Value); 624 AddLegalizedOperand(Op.getValue(1), NewChain); 625 626 return (Op.getResNo() ? NewChain : Value); 627 } 628 629 SDValue VectorLegalizer::ExpandStore(SDValue Op) { 630 SDLoc dl(Op); 631 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 632 SDValue Chain = ST->getChain(); 633 SDValue BasePTR = ST->getBasePtr(); 634 SDValue Value = ST->getValue(); 635 EVT StVT = ST->getMemoryVT(); 636 637 unsigned Alignment = ST->getAlignment(); 638 bool isVolatile = ST->isVolatile(); 639 bool isNonTemporal = ST->isNonTemporal(); 640 AAMDNodes AAInfo = ST->getAAInfo(); 641 642 unsigned NumElem = StVT.getVectorNumElements(); 643 // The type of the data we want to save 644 EVT RegVT = Value.getValueType(); 645 EVT RegSclVT = RegVT.getScalarType(); 646 // The type of data as saved in memory. 647 EVT MemSclVT = StVT.getScalarType(); 648 649 // Cast floats into integers 650 unsigned ScalarSize = MemSclVT.getSizeInBits(); 651 652 // Round odd types to the next pow of two. 653 if (!isPowerOf2_32(ScalarSize)) 654 ScalarSize = NextPowerOf2(ScalarSize); 655 656 // Store Stride in bytes 657 unsigned Stride = ScalarSize/8; 658 // Extract each of the elements from the original vector 659 // and save them into memory individually. 660 SmallVector<SDValue, 8> Stores; 661 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 662 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 663 RegSclVT, Value, DAG.getConstant(Idx, dl, TLI.getVectorIdxTy())); 664 665 // This scalar TruncStore may be illegal, but we legalize it later. 666 SDValue Store = DAG.getTruncStore(Chain, dl, Ex, BasePTR, 667 ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT, 668 isVolatile, isNonTemporal, MinAlign(Alignment, Idx*Stride), 669 AAInfo); 670 671 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 672 DAG.getConstant(Stride, dl, BasePTR.getValueType())); 673 674 Stores.push_back(Store); 675 } 676 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 677 AddLegalizedOperand(Op, TF); 678 return TF; 679 } 680 681 SDValue VectorLegalizer::Expand(SDValue Op) { 682 switch (Op->getOpcode()) { 683 case ISD::SIGN_EXTEND_INREG: 684 return ExpandSEXTINREG(Op); 685 case ISD::ANY_EXTEND_VECTOR_INREG: 686 return ExpandANY_EXTEND_VECTOR_INREG(Op); 687 case ISD::SIGN_EXTEND_VECTOR_INREG: 688 return ExpandSIGN_EXTEND_VECTOR_INREG(Op); 689 case ISD::ZERO_EXTEND_VECTOR_INREG: 690 return ExpandZERO_EXTEND_VECTOR_INREG(Op); 691 case ISD::BSWAP: 692 return ExpandBSWAP(Op); 693 case ISD::VSELECT: 694 return ExpandVSELECT(Op); 695 case ISD::SELECT: 696 return ExpandSELECT(Op); 697 case ISD::UINT_TO_FP: 698 return ExpandUINT_TO_FLOAT(Op); 699 case ISD::FNEG: 700 return ExpandFNEG(Op); 701 case ISD::SETCC: 702 return UnrollVSETCC(Op); 703 default: 704 return DAG.UnrollVectorOp(Op.getNode()); 705 } 706 } 707 708 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) { 709 // Lower a select instruction where the condition is a scalar and the 710 // operands are vectors. Lower this select to VSELECT and implement it 711 // using XOR AND OR. The selector bit is broadcasted. 712 EVT VT = Op.getValueType(); 713 SDLoc DL(Op); 714 715 SDValue Mask = Op.getOperand(0); 716 SDValue Op1 = Op.getOperand(1); 717 SDValue Op2 = Op.getOperand(2); 718 719 assert(VT.isVector() && !Mask.getValueType().isVector() 720 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 721 722 unsigned NumElem = VT.getVectorNumElements(); 723 724 // If we can't even use the basic vector operations of 725 // AND,OR,XOR, we will have to scalarize the op. 726 // Notice that the operation may be 'promoted' which means that it is 727 // 'bitcasted' to another type which is handled. 728 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 729 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 730 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 731 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 732 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 733 return DAG.UnrollVectorOp(Op.getNode()); 734 735 // Generate a mask operand. 736 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 737 738 // What is the size of each element in the vector mask. 739 EVT BitTy = MaskTy.getScalarType(); 740 741 Mask = DAG.getSelect(DL, BitTy, Mask, 742 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, 743 BitTy), 744 DAG.getConstant(0, DL, BitTy)); 745 746 // Broadcast the mask so that the entire vector is all-one or all zero. 747 SmallVector<SDValue, 8> Ops(NumElem, Mask); 748 Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, Ops); 749 750 // Bitcast the operands to be the same type as the mask. 751 // This is needed when we select between FP types because 752 // the mask is a vector of integers. 753 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 754 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 755 756 SDValue AllOnes = DAG.getConstant( 757 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy); 758 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 759 760 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 761 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 762 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 763 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 764 } 765 766 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) { 767 EVT VT = Op.getValueType(); 768 769 // Make sure that the SRA and SHL instructions are available. 770 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 771 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 772 return DAG.UnrollVectorOp(Op.getNode()); 773 774 SDLoc DL(Op); 775 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT(); 776 777 unsigned BW = VT.getScalarType().getSizeInBits(); 778 unsigned OrigBW = OrigTy.getScalarType().getSizeInBits(); 779 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 780 781 Op = Op.getOperand(0); 782 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz); 783 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 784 } 785 786 // Generically expand a vector anyext in register to a shuffle of the relevant 787 // lanes into the appropriate locations, with other lanes left undef. 788 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) { 789 SDLoc DL(Op); 790 EVT VT = Op.getValueType(); 791 int NumElements = VT.getVectorNumElements(); 792 SDValue Src = Op.getOperand(0); 793 EVT SrcVT = Src.getValueType(); 794 int NumSrcElements = SrcVT.getVectorNumElements(); 795 796 // Build a base mask of undef shuffles. 797 SmallVector<int, 16> ShuffleMask; 798 ShuffleMask.resize(NumSrcElements, -1); 799 800 // Place the extended lanes into the correct locations. 801 int ExtLaneScale = NumSrcElements / NumElements; 802 int EndianOffset = TLI.isBigEndian() ? ExtLaneScale - 1 : 0; 803 for (int i = 0; i < NumElements; ++i) 804 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 805 806 return DAG.getNode( 807 ISD::BITCAST, DL, VT, 808 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 809 } 810 811 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) { 812 SDLoc DL(Op); 813 EVT VT = Op.getValueType(); 814 SDValue Src = Op.getOperand(0); 815 EVT SrcVT = Src.getValueType(); 816 817 // First build an any-extend node which can be legalized above when we 818 // recurse through it. 819 Op = DAG.getAnyExtendVectorInReg(Src, DL, VT); 820 821 // Now we need sign extend. Do this by shifting the elements. Even if these 822 // aren't legal operations, they have a better chance of being legalized 823 // without full scalarization than the sign extension does. 824 unsigned EltWidth = VT.getVectorElementType().getSizeInBits(); 825 unsigned SrcEltWidth = SrcVT.getVectorElementType().getSizeInBits(); 826 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 827 return DAG.getNode(ISD::SRA, DL, VT, 828 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 829 ShiftAmount); 830 } 831 832 // Generically expand a vector zext in register to a shuffle of the relevant 833 // lanes into the appropriate locations, a blend of zero into the high bits, 834 // and a bitcast to the wider element type. 835 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) { 836 SDLoc DL(Op); 837 EVT VT = Op.getValueType(); 838 int NumElements = VT.getVectorNumElements(); 839 SDValue Src = Op.getOperand(0); 840 EVT SrcVT = Src.getValueType(); 841 int NumSrcElements = SrcVT.getVectorNumElements(); 842 843 // Build up a zero vector to blend into this one. 844 EVT SrcScalarVT = SrcVT.getScalarType(); 845 SDValue ScalarZero = DAG.getTargetConstant(0, DL, SrcScalarVT); 846 SmallVector<SDValue, 4> BuildVectorOperands(NumSrcElements, ScalarZero); 847 SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, DL, SrcVT, BuildVectorOperands); 848 849 // Shuffle the incoming lanes into the correct position, and pull all other 850 // lanes from the zero vector. 851 SmallVector<int, 16> ShuffleMask; 852 ShuffleMask.reserve(NumSrcElements); 853 for (int i = 0; i < NumSrcElements; ++i) 854 ShuffleMask.push_back(i); 855 856 int ExtLaneScale = NumSrcElements / NumElements; 857 int EndianOffset = TLI.isBigEndian() ? ExtLaneScale - 1 : 0; 858 for (int i = 0; i < NumElements; ++i) 859 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 860 861 return DAG.getNode(ISD::BITCAST, DL, VT, 862 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 863 } 864 865 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) { 866 EVT VT = Op.getValueType(); 867 868 // Generate a byte wise shuffle mask for the BSWAP. 869 SmallVector<int, 16> ShuffleMask; 870 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 871 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 872 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 873 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 874 875 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 876 877 // Only emit a shuffle if the mask is legal. 878 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) 879 return DAG.UnrollVectorOp(Op.getNode()); 880 881 SDLoc DL(Op); 882 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 883 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 884 ShuffleMask.data()); 885 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 886 } 887 888 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { 889 // Implement VSELECT in terms of XOR, AND, OR 890 // on platforms which do not support blend natively. 891 SDLoc DL(Op); 892 893 SDValue Mask = Op.getOperand(0); 894 SDValue Op1 = Op.getOperand(1); 895 SDValue Op2 = Op.getOperand(2); 896 897 EVT VT = Mask.getValueType(); 898 899 // If we can't even use the basic vector operations of 900 // AND,OR,XOR, we will have to scalarize the op. 901 // Notice that the operation may be 'promoted' which means that it is 902 // 'bitcasted' to another type which is handled. 903 // This operation also isn't safe with AND, OR, XOR when the boolean 904 // type is 0/1 as we need an all ones vector constant to mask with. 905 // FIXME: Sign extend 1 to all ones if thats legal on the target. 906 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 907 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 908 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 909 TLI.getBooleanContents(Op1.getValueType()) != 910 TargetLowering::ZeroOrNegativeOneBooleanContent) 911 return DAG.UnrollVectorOp(Op.getNode()); 912 913 // If the mask and the type are different sizes, unroll the vector op. This 914 // can occur when getSetCCResultType returns something that is different in 915 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 916 if (VT.getSizeInBits() != Op1.getValueType().getSizeInBits()) 917 return DAG.UnrollVectorOp(Op.getNode()); 918 919 // Bitcast the operands to be the same type as the mask. 920 // This is needed when we select between FP types because 921 // the mask is a vector of integers. 922 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 923 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 924 925 SDValue AllOnes = DAG.getConstant( 926 APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), DL, VT); 927 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 928 929 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 930 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 931 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 932 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 933 } 934 935 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { 936 EVT VT = Op.getOperand(0).getValueType(); 937 SDLoc DL(Op); 938 939 // Make sure that the SINT_TO_FP and SRL instructions are available. 940 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand || 941 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) 942 return DAG.UnrollVectorOp(Op.getNode()); 943 944 EVT SVT = VT.getScalarType(); 945 assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) && 946 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 947 948 unsigned BW = SVT.getSizeInBits(); 949 SDValue HalfWord = DAG.getConstant(BW/2, DL, VT); 950 951 // Constants to clear the upper part of the word. 952 // Notice that we can also use SHL+SHR, but using a constant is slightly 953 // faster on x86. 954 uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF; 955 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 956 957 // Two to the power of half-word-size. 958 SDValue TWOHW = DAG.getConstantFP(1 << (BW/2), DL, Op.getValueType()); 959 960 // Clear upper part of LO, lower HI 961 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); 962 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); 963 964 // Convert hi and lo to floats 965 // Convert the hi part back to the upper values 966 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); 967 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); 968 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); 969 970 // Add the two halves 971 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); 972 } 973 974 975 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { 976 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { 977 SDLoc DL(Op); 978 SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType()); 979 return DAG.getNode(ISD::FSUB, DL, Op.getValueType(), 980 Zero, Op.getOperand(0)); 981 } 982 return DAG.UnrollVectorOp(Op.getNode()); 983 } 984 985 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { 986 EVT VT = Op.getValueType(); 987 unsigned NumElems = VT.getVectorNumElements(); 988 EVT EltVT = VT.getVectorElementType(); 989 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); 990 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 991 SDLoc dl(Op); 992 SmallVector<SDValue, 8> Ops(NumElems); 993 for (unsigned i = 0; i < NumElems; ++i) { 994 SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 995 DAG.getConstant(i, dl, TLI.getVectorIdxTy())); 996 SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 997 DAG.getConstant(i, dl, TLI.getVectorIdxTy())); 998 Ops[i] = DAG.getNode(ISD::SETCC, dl, 999 TLI.getSetCCResultType(*DAG.getContext(), TmpEltVT), 1000 LHSElem, RHSElem, CC); 1001 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 1002 DAG.getConstant(APInt::getAllOnesValue 1003 (EltVT.getSizeInBits()), dl, EltVT), 1004 DAG.getConstant(0, dl, EltVT)); 1005 } 1006 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 1007 } 1008 1009 } 1010 1011 bool SelectionDAG::LegalizeVectors() { 1012 return VectorLegalizer(*this).Run(); 1013 } 1014