1 //===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SelectionDAG::LegalizeVectors method.
11 //
12 // The vector legalizer looks for vector operations which might need to be
13 // scalarized and legalizes them. This is a separate step from Legalize because
14 // scalarizing can introduce illegal types.  For example, suppose we have an
15 // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
17 // operation, which introduces nodes with the illegal type i64 which must be
18 // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
19 // the operation must be unrolled, which introduces nodes with the illegal
20 // type i8 which must be promoted.
21 //
22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
23 // or operations that happen to take a vector which are custom-lowered;
24 // the legalization for such operations never produces nodes
25 // with illegal types, so it's okay to put off legalizing them until
26 // SelectionDAG::Legalize runs.
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #include "llvm/CodeGen/SelectionDAG.h"
31 #include "llvm/Target/TargetLowering.h"
32 using namespace llvm;
33 
34 namespace {
35 class VectorLegalizer {
36   SelectionDAG& DAG;
37   const TargetLowering &TLI;
38   bool Changed; // Keep track of whether anything changed
39 
40   /// For nodes that are of legal width, and that have more than one use, this
41   /// map indicates what regularized operand to use.  This allows us to avoid
42   /// legalizing the same thing more than once.
43   SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
44 
45   /// \brief Adds a node to the translation cache.
46   void AddLegalizedOperand(SDValue From, SDValue To) {
47     LegalizedNodes.insert(std::make_pair(From, To));
48     // If someone requests legalization of the new node, return itself.
49     if (From != To)
50       LegalizedNodes.insert(std::make_pair(To, To));
51   }
52 
53   /// \brief Legalizes the given node.
54   SDValue LegalizeOp(SDValue Op);
55 
56   /// \brief Assuming the node is legal, "legalize" the results.
57   SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
58 
59   /// \brief Implements unrolling a VSETCC.
60   SDValue UnrollVSETCC(SDValue Op);
61 
62   /// \brief Implement expand-based legalization of vector operations.
63   ///
64   /// This is just a high-level routine to dispatch to specific code paths for
65   /// operations to legalize them.
66   SDValue Expand(SDValue Op);
67 
68   /// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if
69   /// FSUB isn't legal.
70   ///
71   /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
72   /// SINT_TO_FLOAT and SHR on vectors isn't legal.
73   SDValue ExpandUINT_TO_FLOAT(SDValue Op);
74 
75   /// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
76   SDValue ExpandSEXTINREG(SDValue Op);
77 
78   /// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG.
79   ///
80   /// Shuffles the low lanes of the operand into place and bitcasts to the proper
81   /// type. The contents of the bits in the extended part of each element are
82   /// undef.
83   SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op);
84 
85   /// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG.
86   ///
87   /// Shuffles the low lanes of the operand into place, bitcasts to the proper
88   /// type, then shifts left and arithmetic shifts right to introduce a sign
89   /// extension.
90   SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op);
91 
92   /// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG.
93   ///
94   /// Shuffles the low lanes of the operand into place and blends zeros into
95   /// the remaining lanes, finally bitcasting to the proper type.
96   SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op);
97 
98   /// \brief Expand bswap of vectors into a shuffle if legal.
99   SDValue ExpandBSWAP(SDValue Op);
100 
101   /// \brief Implement vselect in terms of XOR, AND, OR when blend is not
102   /// supported by the target.
103   SDValue ExpandVSELECT(SDValue Op);
104   SDValue ExpandSELECT(SDValue Op);
105   SDValue ExpandLoad(SDValue Op);
106   SDValue ExpandStore(SDValue Op);
107   SDValue ExpandFNEG(SDValue Op);
108 
109   /// \brief Implements vector promotion.
110   ///
111   /// This is essentially just bitcasting the operands to a different type and
112   /// bitcasting the result back to the original type.
113   SDValue Promote(SDValue Op);
114 
115   /// \brief Implements [SU]INT_TO_FP vector promotion.
116   ///
117   /// This is a [zs]ext of the input operand to the next size up.
118   SDValue PromoteINT_TO_FP(SDValue Op);
119 
120   /// \brief Implements FP_TO_[SU]INT vector promotion of the result type.
121   ///
122   /// It is promoted to the next size up integer type.  The result is then
123   /// truncated back to the original type.
124   SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned);
125 
126 public:
127   /// \brief Begin legalizer the vector operations in the DAG.
128   bool Run();
129   VectorLegalizer(SelectionDAG& dag) :
130       DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {}
131 };
132 
133 bool VectorLegalizer::Run() {
134   // Before we start legalizing vector nodes, check if there are any vectors.
135   bool HasVectors = false;
136   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
137        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
138     // Check if the values of the nodes contain vectors. We don't need to check
139     // the operands because we are going to check their values at some point.
140     for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
141          J != E; ++J)
142       HasVectors |= J->isVector();
143 
144     // If we found a vector node we can start the legalization.
145     if (HasVectors)
146       break;
147   }
148 
149   // If this basic block has no vectors then no need to legalize vectors.
150   if (!HasVectors)
151     return false;
152 
153   // The legalize process is inherently a bottom-up recursive process (users
154   // legalize their uses before themselves).  Given infinite stack space, we
155   // could just start legalizing on the root and traverse the whole graph.  In
156   // practice however, this causes us to run out of stack space on large basic
157   // blocks.  To avoid this problem, compute an ordering of the nodes where each
158   // node is only legalized after all of its operands are legalized.
159   DAG.AssignTopologicalOrder();
160   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
161        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
162     LegalizeOp(SDValue(I, 0));
163 
164   // Finally, it's possible the root changed.  Get the new root.
165   SDValue OldRoot = DAG.getRoot();
166   assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
167   DAG.setRoot(LegalizedNodes[OldRoot]);
168 
169   LegalizedNodes.clear();
170 
171   // Remove dead nodes now.
172   DAG.RemoveDeadNodes();
173 
174   return Changed;
175 }
176 
177 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
178   // Generic legalization: just pass the operand through.
179   for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
180     AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
181   return Result.getValue(Op.getResNo());
182 }
183 
184 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
185   // Note that LegalizeOp may be reentered even from single-use nodes, which
186   // means that we always must cache transformed nodes.
187   DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
188   if (I != LegalizedNodes.end()) return I->second;
189 
190   SDNode* Node = Op.getNode();
191 
192   // Legalize the operands
193   SmallVector<SDValue, 8> Ops;
194   for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
195     Ops.push_back(LegalizeOp(Node->getOperand(i)));
196 
197   SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0);
198 
199   bool HasVectorValue = false;
200   if (Op.getOpcode() == ISD::LOAD) {
201     LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
202     ISD::LoadExtType ExtType = LD->getExtensionType();
203     if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD)
204       switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
205                                    LD->getMemoryVT())) {
206       default: llvm_unreachable("This action is not supported yet!");
207       case TargetLowering::Legal:
208         return TranslateLegalizeResults(Op, Result);
209       case TargetLowering::Custom:
210         if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) {
211           if (Lowered == Result)
212             return TranslateLegalizeResults(Op, Lowered);
213           Changed = true;
214           if (Lowered->getNumValues() != Op->getNumValues()) {
215             // This expanded to something other than the load. Assume the
216             // lowering code took care of any chain values, and just handle the
217             // returned value.
218             assert(Result.getValue(1).use_empty() &&
219                    "There are still live users of the old chain!");
220             return LegalizeOp(Lowered);
221           } else {
222             return TranslateLegalizeResults(Op, Lowered);
223           }
224         }
225       case TargetLowering::Expand:
226         Changed = true;
227         return LegalizeOp(ExpandLoad(Op));
228       }
229   } else if (Op.getOpcode() == ISD::STORE) {
230     StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
231     EVT StVT = ST->getMemoryVT();
232     MVT ValVT = ST->getValue().getSimpleValueType();
233     if (StVT.isVector() && ST->isTruncatingStore())
234       switch (TLI.getTruncStoreAction(ValVT, StVT.getSimpleVT())) {
235       default: llvm_unreachable("This action is not supported yet!");
236       case TargetLowering::Legal:
237         return TranslateLegalizeResults(Op, Result);
238       case TargetLowering::Custom: {
239         SDValue Lowered = TLI.LowerOperation(Result, DAG);
240         Changed = Lowered != Result;
241         return TranslateLegalizeResults(Op, Lowered);
242       }
243       case TargetLowering::Expand:
244         Changed = true;
245         return LegalizeOp(ExpandStore(Op));
246       }
247   } else if (Op.getOpcode() == ISD::MSCATTER)
248     HasVectorValue = true;
249 
250   for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end();
251        J != E;
252        ++J)
253     HasVectorValue |= J->isVector();
254   if (!HasVectorValue)
255     return TranslateLegalizeResults(Op, Result);
256 
257   EVT QueryType;
258   switch (Op.getOpcode()) {
259   default:
260     return TranslateLegalizeResults(Op, Result);
261   case ISD::ADD:
262   case ISD::SUB:
263   case ISD::MUL:
264   case ISD::SDIV:
265   case ISD::UDIV:
266   case ISD::SREM:
267   case ISD::UREM:
268   case ISD::FADD:
269   case ISD::FSUB:
270   case ISD::FMUL:
271   case ISD::FDIV:
272   case ISD::FREM:
273   case ISD::AND:
274   case ISD::OR:
275   case ISD::XOR:
276   case ISD::SHL:
277   case ISD::SRA:
278   case ISD::SRL:
279   case ISD::ROTL:
280   case ISD::ROTR:
281   case ISD::BSWAP:
282   case ISD::CTLZ:
283   case ISD::CTTZ:
284   case ISD::CTLZ_ZERO_UNDEF:
285   case ISD::CTTZ_ZERO_UNDEF:
286   case ISD::CTPOP:
287   case ISD::SELECT:
288   case ISD::VSELECT:
289   case ISD::SELECT_CC:
290   case ISD::SETCC:
291   case ISD::ZERO_EXTEND:
292   case ISD::ANY_EXTEND:
293   case ISD::TRUNCATE:
294   case ISD::SIGN_EXTEND:
295   case ISD::FP_TO_SINT:
296   case ISD::FP_TO_UINT:
297   case ISD::FNEG:
298   case ISD::FABS:
299   case ISD::FMINNUM:
300   case ISD::FMAXNUM:
301   case ISD::FCOPYSIGN:
302   case ISD::FSQRT:
303   case ISD::FSIN:
304   case ISD::FCOS:
305   case ISD::FPOWI:
306   case ISD::FPOW:
307   case ISD::FLOG:
308   case ISD::FLOG2:
309   case ISD::FLOG10:
310   case ISD::FEXP:
311   case ISD::FEXP2:
312   case ISD::FCEIL:
313   case ISD::FTRUNC:
314   case ISD::FRINT:
315   case ISD::FNEARBYINT:
316   case ISD::FROUND:
317   case ISD::FFLOOR:
318   case ISD::FP_ROUND:
319   case ISD::FP_EXTEND:
320   case ISD::FMA:
321   case ISD::SIGN_EXTEND_INREG:
322   case ISD::ANY_EXTEND_VECTOR_INREG:
323   case ISD::SIGN_EXTEND_VECTOR_INREG:
324   case ISD::ZERO_EXTEND_VECTOR_INREG:
325     QueryType = Node->getValueType(0);
326     break;
327   case ISD::FP_ROUND_INREG:
328     QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT();
329     break;
330   case ISD::SINT_TO_FP:
331   case ISD::UINT_TO_FP:
332     QueryType = Node->getOperand(0).getValueType();
333     break;
334   case ISD::MSCATTER:
335     QueryType = cast<MaskedScatterSDNode>(Node)->getValue().getValueType();
336     break;
337   }
338 
339   switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) {
340   case TargetLowering::Promote:
341     Result = Promote(Op);
342     Changed = true;
343     break;
344   case TargetLowering::Legal:
345     break;
346   case TargetLowering::Custom: {
347     SDValue Tmp1 = TLI.LowerOperation(Op, DAG);
348     if (Tmp1.getNode()) {
349       Result = Tmp1;
350       break;
351     }
352     // FALL THROUGH
353   }
354   case TargetLowering::Expand:
355     Result = Expand(Op);
356   }
357 
358   // Make sure that the generated code is itself legal.
359   if (Result != Op) {
360     Result = LegalizeOp(Result);
361     Changed = true;
362   }
363 
364   // Note that LegalizeOp may be reentered even from single-use nodes, which
365   // means that we always must cache transformed nodes.
366   AddLegalizedOperand(Op, Result);
367   return Result;
368 }
369 
370 SDValue VectorLegalizer::Promote(SDValue Op) {
371   // For a few operations there is a specific concept for promotion based on
372   // the operand's type.
373   switch (Op.getOpcode()) {
374   case ISD::SINT_TO_FP:
375   case ISD::UINT_TO_FP:
376     // "Promote" the operation by extending the operand.
377     return PromoteINT_TO_FP(Op);
378   case ISD::FP_TO_UINT:
379   case ISD::FP_TO_SINT:
380     // Promote the operation by extending the operand.
381     return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT);
382   }
383 
384   // There are currently two cases of vector promotion:
385   // 1) Bitcasting a vector of integers to a different type to a vector of the
386   //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
387   // 2) Extending a vector of floats to a vector of the same number of larger
388   //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
389   MVT VT = Op.getSimpleValueType();
390   assert(Op.getNode()->getNumValues() == 1 &&
391          "Can't promote a vector with multiple results!");
392   MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
393   SDLoc dl(Op);
394   SmallVector<SDValue, 4> Operands(Op.getNumOperands());
395 
396   for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
397     if (Op.getOperand(j).getValueType().isVector())
398       if (Op.getOperand(j)
399               .getValueType()
400               .getVectorElementType()
401               .isFloatingPoint() &&
402           NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
403         Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j));
404       else
405         Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
406     else
407       Operands[j] = Op.getOperand(j);
408   }
409 
410   Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands);
411   if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
412       (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
413        NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
414     return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl));
415   else
416     return DAG.getNode(ISD::BITCAST, dl, VT, Op);
417 }
418 
419 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) {
420   // INT_TO_FP operations may require the input operand be promoted even
421   // when the type is otherwise legal.
422   EVT VT = Op.getOperand(0).getValueType();
423   assert(Op.getNode()->getNumValues() == 1 &&
424          "Can't promote a vector with multiple results!");
425 
426   // Normal getTypeToPromoteTo() doesn't work here, as that will promote
427   // by widening the vector w/ the same element width and twice the number
428   // of elements. We want the other way around, the same number of elements,
429   // each twice the width.
430   //
431   // Increase the bitwidth of the element to the next pow-of-two
432   // (which is greater than 8 bits).
433 
434   EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext());
435   assert(NVT.isSimple() && "Promoting to a non-simple vector type!");
436   SDLoc dl(Op);
437   SmallVector<SDValue, 4> Operands(Op.getNumOperands());
438 
439   unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND :
440     ISD::SIGN_EXTEND;
441   for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
442     if (Op.getOperand(j).getValueType().isVector())
443       Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
444     else
445       Operands[j] = Op.getOperand(j);
446   }
447 
448   return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands);
449 }
450 
451 // For FP_TO_INT we promote the result type to a vector type with wider
452 // elements and then truncate the result.  This is different from the default
453 // PromoteVector which uses bitcast to promote thus assumning that the
454 // promoted vector type has the same overall size.
455 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) {
456   assert(Op.getNode()->getNumValues() == 1 &&
457          "Can't promote a vector with multiple results!");
458   EVT VT = Op.getValueType();
459 
460   EVT NewVT;
461   unsigned NewOpc;
462   while (1) {
463     NewVT = VT.widenIntegerVectorElementType(*DAG.getContext());
464     assert(NewVT.isSimple() && "Promoting to a non-simple vector type!");
465     if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) {
466       NewOpc = ISD::FP_TO_SINT;
467       break;
468     }
469     if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) {
470       NewOpc = ISD::FP_TO_UINT;
471       break;
472     }
473   }
474 
475   SDLoc loc(Op);
476   SDValue promoted  = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0));
477   return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted);
478 }
479 
480 
481 SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
482   SDLoc dl(Op);
483   LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
484   SDValue Chain = LD->getChain();
485   SDValue BasePTR = LD->getBasePtr();
486   EVT SrcVT = LD->getMemoryVT();
487   ISD::LoadExtType ExtType = LD->getExtensionType();
488 
489   SmallVector<SDValue, 8> Vals;
490   SmallVector<SDValue, 8> LoadChains;
491   unsigned NumElem = SrcVT.getVectorNumElements();
492 
493   EVT SrcEltVT = SrcVT.getScalarType();
494   EVT DstEltVT = Op.getNode()->getValueType(0).getScalarType();
495 
496   if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
497     // When elements in a vector is not byte-addressable, we cannot directly
498     // load each element by advancing pointer, which could only address bytes.
499     // Instead, we load all significant words, mask bits off, and concatenate
500     // them to form each element. Finally, they are extended to destination
501     // scalar type to build the destination vector.
502     EVT WideVT = TLI.getPointerTy();
503 
504     assert(WideVT.isRound() &&
505            "Could not handle the sophisticated case when the widest integer is"
506            " not power of 2.");
507     assert(WideVT.bitsGE(SrcEltVT) &&
508            "Type is not legalized?");
509 
510     unsigned WideBytes = WideVT.getStoreSize();
511     unsigned Offset = 0;
512     unsigned RemainingBytes = SrcVT.getStoreSize();
513     SmallVector<SDValue, 8> LoadVals;
514 
515     while (RemainingBytes > 0) {
516       SDValue ScalarLoad;
517       unsigned LoadBytes = WideBytes;
518 
519       if (RemainingBytes >= LoadBytes) {
520         ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR,
521                                  LD->getPointerInfo().getWithOffset(Offset),
522                                  LD->isVolatile(), LD->isNonTemporal(),
523                                  LD->isInvariant(),
524                                  MinAlign(LD->getAlignment(), Offset),
525                                  LD->getAAInfo());
526       } else {
527         EVT LoadVT = WideVT;
528         while (RemainingBytes < LoadBytes) {
529           LoadBytes >>= 1; // Reduce the load size by half.
530           LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
531         }
532         ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
533                                     LD->getPointerInfo().getWithOffset(Offset),
534                                     LoadVT, LD->isVolatile(),
535                                     LD->isNonTemporal(), LD->isInvariant(),
536                                     MinAlign(LD->getAlignment(), Offset),
537                                     LD->getAAInfo());
538       }
539 
540       RemainingBytes -= LoadBytes;
541       Offset += LoadBytes;
542       BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
543                             DAG.getConstant(LoadBytes, dl,
544                                             BasePTR.getValueType()));
545 
546       LoadVals.push_back(ScalarLoad.getValue(0));
547       LoadChains.push_back(ScalarLoad.getValue(1));
548     }
549 
550     // Extract bits, pack and extend/trunc them into destination type.
551     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
552     SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT);
553 
554     unsigned BitOffset = 0;
555     unsigned WideIdx = 0;
556     unsigned WideBits = WideVT.getSizeInBits();
557 
558     for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
559       SDValue Lo, Hi, ShAmt;
560 
561       if (BitOffset < WideBits) {
562         ShAmt = DAG.getConstant(BitOffset, dl, TLI.getShiftAmountTy(WideVT));
563         Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
564         Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
565       }
566 
567       BitOffset += SrcEltBits;
568       if (BitOffset >= WideBits) {
569         WideIdx++;
570         BitOffset -= WideBits;
571         if (BitOffset > 0) {
572           ShAmt = DAG.getConstant(SrcEltBits - BitOffset, dl,
573                                   TLI.getShiftAmountTy(WideVT));
574           Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
575           Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask);
576         }
577       }
578 
579       if (Hi.getNode())
580         Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
581 
582       switch (ExtType) {
583       default: llvm_unreachable("Unknown extended-load op!");
584       case ISD::EXTLOAD:
585         Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
586         break;
587       case ISD::ZEXTLOAD:
588         Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
589         break;
590       case ISD::SEXTLOAD:
591         ShAmt = DAG.getConstant(WideBits - SrcEltBits, dl,
592                                 TLI.getShiftAmountTy(WideVT));
593         Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
594         Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
595         Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
596         break;
597       }
598       Vals.push_back(Lo);
599     }
600   } else {
601     unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8;
602 
603     for (unsigned Idx=0; Idx<NumElem; Idx++) {
604       SDValue ScalarLoad = DAG.getExtLoad(ExtType, dl,
605                 Op.getNode()->getValueType(0).getScalarType(),
606                 Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride),
607                 SrcVT.getScalarType(),
608                 LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(),
609                 MinAlign(LD->getAlignment(), Idx * Stride), LD->getAAInfo());
610 
611       BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
612                          DAG.getConstant(Stride, dl, BasePTR.getValueType()));
613 
614       Vals.push_back(ScalarLoad.getValue(0));
615       LoadChains.push_back(ScalarLoad.getValue(1));
616     }
617   }
618 
619   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
620   SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl,
621                               Op.getNode()->getValueType(0), Vals);
622 
623   AddLegalizedOperand(Op.getValue(0), Value);
624   AddLegalizedOperand(Op.getValue(1), NewChain);
625 
626   return (Op.getResNo() ? NewChain : Value);
627 }
628 
629 SDValue VectorLegalizer::ExpandStore(SDValue Op) {
630   SDLoc dl(Op);
631   StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
632   SDValue Chain = ST->getChain();
633   SDValue BasePTR = ST->getBasePtr();
634   SDValue Value = ST->getValue();
635   EVT StVT = ST->getMemoryVT();
636 
637   unsigned Alignment = ST->getAlignment();
638   bool isVolatile = ST->isVolatile();
639   bool isNonTemporal = ST->isNonTemporal();
640   AAMDNodes AAInfo = ST->getAAInfo();
641 
642   unsigned NumElem = StVT.getVectorNumElements();
643   // The type of the data we want to save
644   EVT RegVT = Value.getValueType();
645   EVT RegSclVT = RegVT.getScalarType();
646   // The type of data as saved in memory.
647   EVT MemSclVT = StVT.getScalarType();
648 
649   // Cast floats into integers
650   unsigned ScalarSize = MemSclVT.getSizeInBits();
651 
652   // Round odd types to the next pow of two.
653   if (!isPowerOf2_32(ScalarSize))
654     ScalarSize = NextPowerOf2(ScalarSize);
655 
656   // Store Stride in bytes
657   unsigned Stride = ScalarSize/8;
658   // Extract each of the elements from the original vector
659   // and save them into memory individually.
660   SmallVector<SDValue, 8> Stores;
661   for (unsigned Idx = 0; Idx < NumElem; Idx++) {
662     SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
663                RegSclVT, Value, DAG.getConstant(Idx, dl, TLI.getVectorIdxTy()));
664 
665     // This scalar TruncStore may be illegal, but we legalize it later.
666     SDValue Store = DAG.getTruncStore(Chain, dl, Ex, BasePTR,
667                ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT,
668                isVolatile, isNonTemporal, MinAlign(Alignment, Idx*Stride),
669                AAInfo);
670 
671     BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
672                           DAG.getConstant(Stride, dl, BasePTR.getValueType()));
673 
674     Stores.push_back(Store);
675   }
676   SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
677   AddLegalizedOperand(Op, TF);
678   return TF;
679 }
680 
681 SDValue VectorLegalizer::Expand(SDValue Op) {
682   switch (Op->getOpcode()) {
683   case ISD::SIGN_EXTEND_INREG:
684     return ExpandSEXTINREG(Op);
685   case ISD::ANY_EXTEND_VECTOR_INREG:
686     return ExpandANY_EXTEND_VECTOR_INREG(Op);
687   case ISD::SIGN_EXTEND_VECTOR_INREG:
688     return ExpandSIGN_EXTEND_VECTOR_INREG(Op);
689   case ISD::ZERO_EXTEND_VECTOR_INREG:
690     return ExpandZERO_EXTEND_VECTOR_INREG(Op);
691   case ISD::BSWAP:
692     return ExpandBSWAP(Op);
693   case ISD::VSELECT:
694     return ExpandVSELECT(Op);
695   case ISD::SELECT:
696     return ExpandSELECT(Op);
697   case ISD::UINT_TO_FP:
698     return ExpandUINT_TO_FLOAT(Op);
699   case ISD::FNEG:
700     return ExpandFNEG(Op);
701   case ISD::SETCC:
702     return UnrollVSETCC(Op);
703   default:
704     return DAG.UnrollVectorOp(Op.getNode());
705   }
706 }
707 
708 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
709   // Lower a select instruction where the condition is a scalar and the
710   // operands are vectors. Lower this select to VSELECT and implement it
711   // using XOR AND OR. The selector bit is broadcasted.
712   EVT VT = Op.getValueType();
713   SDLoc DL(Op);
714 
715   SDValue Mask = Op.getOperand(0);
716   SDValue Op1 = Op.getOperand(1);
717   SDValue Op2 = Op.getOperand(2);
718 
719   assert(VT.isVector() && !Mask.getValueType().isVector()
720          && Op1.getValueType() == Op2.getValueType() && "Invalid type");
721 
722   unsigned NumElem = VT.getVectorNumElements();
723 
724   // If we can't even use the basic vector operations of
725   // AND,OR,XOR, we will have to scalarize the op.
726   // Notice that the operation may be 'promoted' which means that it is
727   // 'bitcasted' to another type which is handled.
728   // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
729   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
730       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
731       TLI.getOperationAction(ISD::OR,  VT) == TargetLowering::Expand ||
732       TLI.getOperationAction(ISD::BUILD_VECTOR,  VT) == TargetLowering::Expand)
733     return DAG.UnrollVectorOp(Op.getNode());
734 
735   // Generate a mask operand.
736   EVT MaskTy = VT.changeVectorElementTypeToInteger();
737 
738   // What is the size of each element in the vector mask.
739   EVT BitTy = MaskTy.getScalarType();
740 
741   Mask = DAG.getSelect(DL, BitTy, Mask,
742           DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
743                           BitTy),
744           DAG.getConstant(0, DL, BitTy));
745 
746   // Broadcast the mask so that the entire vector is all-one or all zero.
747   SmallVector<SDValue, 8> Ops(NumElem, Mask);
748   Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, Ops);
749 
750   // Bitcast the operands to be the same type as the mask.
751   // This is needed when we select between FP types because
752   // the mask is a vector of integers.
753   Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
754   Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
755 
756   SDValue AllOnes = DAG.getConstant(
757             APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
758   SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
759 
760   Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
761   Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
762   SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
763   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
764 }
765 
766 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
767   EVT VT = Op.getValueType();
768 
769   // Make sure that the SRA and SHL instructions are available.
770   if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
771       TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
772     return DAG.UnrollVectorOp(Op.getNode());
773 
774   SDLoc DL(Op);
775   EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
776 
777   unsigned BW = VT.getScalarType().getSizeInBits();
778   unsigned OrigBW = OrigTy.getScalarType().getSizeInBits();
779   SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
780 
781   Op = Op.getOperand(0);
782   Op =   DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
783   return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
784 }
785 
786 // Generically expand a vector anyext in register to a shuffle of the relevant
787 // lanes into the appropriate locations, with other lanes left undef.
788 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) {
789   SDLoc DL(Op);
790   EVT VT = Op.getValueType();
791   int NumElements = VT.getVectorNumElements();
792   SDValue Src = Op.getOperand(0);
793   EVT SrcVT = Src.getValueType();
794   int NumSrcElements = SrcVT.getVectorNumElements();
795 
796   // Build a base mask of undef shuffles.
797   SmallVector<int, 16> ShuffleMask;
798   ShuffleMask.resize(NumSrcElements, -1);
799 
800   // Place the extended lanes into the correct locations.
801   int ExtLaneScale = NumSrcElements / NumElements;
802   int EndianOffset = TLI.isBigEndian() ? ExtLaneScale - 1 : 0;
803   for (int i = 0; i < NumElements; ++i)
804     ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
805 
806   return DAG.getNode(
807       ISD::BITCAST, DL, VT,
808       DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
809 }
810 
811 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) {
812   SDLoc DL(Op);
813   EVT VT = Op.getValueType();
814   SDValue Src = Op.getOperand(0);
815   EVT SrcVT = Src.getValueType();
816 
817   // First build an any-extend node which can be legalized above when we
818   // recurse through it.
819   Op = DAG.getAnyExtendVectorInReg(Src, DL, VT);
820 
821   // Now we need sign extend. Do this by shifting the elements. Even if these
822   // aren't legal operations, they have a better chance of being legalized
823   // without full scalarization than the sign extension does.
824   unsigned EltWidth = VT.getVectorElementType().getSizeInBits();
825   unsigned SrcEltWidth = SrcVT.getVectorElementType().getSizeInBits();
826   SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
827   return DAG.getNode(ISD::SRA, DL, VT,
828                      DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
829                      ShiftAmount);
830 }
831 
832 // Generically expand a vector zext in register to a shuffle of the relevant
833 // lanes into the appropriate locations, a blend of zero into the high bits,
834 // and a bitcast to the wider element type.
835 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) {
836   SDLoc DL(Op);
837   EVT VT = Op.getValueType();
838   int NumElements = VT.getVectorNumElements();
839   SDValue Src = Op.getOperand(0);
840   EVT SrcVT = Src.getValueType();
841   int NumSrcElements = SrcVT.getVectorNumElements();
842 
843   // Build up a zero vector to blend into this one.
844   EVT SrcScalarVT = SrcVT.getScalarType();
845   SDValue ScalarZero = DAG.getTargetConstant(0, DL, SrcScalarVT);
846   SmallVector<SDValue, 4> BuildVectorOperands(NumSrcElements, ScalarZero);
847   SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, DL, SrcVT, BuildVectorOperands);
848 
849   // Shuffle the incoming lanes into the correct position, and pull all other
850   // lanes from the zero vector.
851   SmallVector<int, 16> ShuffleMask;
852   ShuffleMask.reserve(NumSrcElements);
853   for (int i = 0; i < NumSrcElements; ++i)
854     ShuffleMask.push_back(i);
855 
856   int ExtLaneScale = NumSrcElements / NumElements;
857   int EndianOffset = TLI.isBigEndian() ? ExtLaneScale - 1 : 0;
858   for (int i = 0; i < NumElements; ++i)
859     ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
860 
861   return DAG.getNode(ISD::BITCAST, DL, VT,
862                      DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
863 }
864 
865 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) {
866   EVT VT = Op.getValueType();
867 
868   // Generate a byte wise shuffle mask for the BSWAP.
869   SmallVector<int, 16> ShuffleMask;
870   int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
871   for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
872     for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
873       ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
874 
875   EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
876 
877   // Only emit a shuffle if the mask is legal.
878   if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
879     return DAG.UnrollVectorOp(Op.getNode());
880 
881   SDLoc DL(Op);
882   Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
883   Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
884                             ShuffleMask.data());
885   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
886 }
887 
888 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
889   // Implement VSELECT in terms of XOR, AND, OR
890   // on platforms which do not support blend natively.
891   SDLoc DL(Op);
892 
893   SDValue Mask = Op.getOperand(0);
894   SDValue Op1 = Op.getOperand(1);
895   SDValue Op2 = Op.getOperand(2);
896 
897   EVT VT = Mask.getValueType();
898 
899   // If we can't even use the basic vector operations of
900   // AND,OR,XOR, we will have to scalarize the op.
901   // Notice that the operation may be 'promoted' which means that it is
902   // 'bitcasted' to another type which is handled.
903   // This operation also isn't safe with AND, OR, XOR when the boolean
904   // type is 0/1 as we need an all ones vector constant to mask with.
905   // FIXME: Sign extend 1 to all ones if thats legal on the target.
906   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
907       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
908       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
909       TLI.getBooleanContents(Op1.getValueType()) !=
910           TargetLowering::ZeroOrNegativeOneBooleanContent)
911     return DAG.UnrollVectorOp(Op.getNode());
912 
913   // If the mask and the type are different sizes, unroll the vector op. This
914   // can occur when getSetCCResultType returns something that is different in
915   // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
916   if (VT.getSizeInBits() != Op1.getValueType().getSizeInBits())
917     return DAG.UnrollVectorOp(Op.getNode());
918 
919   // Bitcast the operands to be the same type as the mask.
920   // This is needed when we select between FP types because
921   // the mask is a vector of integers.
922   Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
923   Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
924 
925   SDValue AllOnes = DAG.getConstant(
926     APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), DL, VT);
927   SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
928 
929   Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
930   Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
931   SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
932   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
933 }
934 
935 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
936   EVT VT = Op.getOperand(0).getValueType();
937   SDLoc DL(Op);
938 
939   // Make sure that the SINT_TO_FP and SRL instructions are available.
940   if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand ||
941       TLI.getOperationAction(ISD::SRL,        VT) == TargetLowering::Expand)
942     return DAG.UnrollVectorOp(Op.getNode());
943 
944  EVT SVT = VT.getScalarType();
945   assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) &&
946       "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
947 
948   unsigned BW = SVT.getSizeInBits();
949   SDValue HalfWord = DAG.getConstant(BW/2, DL, VT);
950 
951   // Constants to clear the upper part of the word.
952   // Notice that we can also use SHL+SHR, but using a constant is slightly
953   // faster on x86.
954   uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF;
955   SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
956 
957   // Two to the power of half-word-size.
958   SDValue TWOHW = DAG.getConstantFP(1 << (BW/2), DL, Op.getValueType());
959 
960   // Clear upper part of LO, lower HI
961   SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
962   SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask);
963 
964   // Convert hi and lo to floats
965   // Convert the hi part back to the upper values
966   SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
967           fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
968   SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);
969 
970   // Add the two halves
971   return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
972 }
973 
974 
975 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
976   if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
977     SDLoc DL(Op);
978     SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType());
979     return DAG.getNode(ISD::FSUB, DL, Op.getValueType(),
980                        Zero, Op.getOperand(0));
981   }
982   return DAG.UnrollVectorOp(Op.getNode());
983 }
984 
985 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
986   EVT VT = Op.getValueType();
987   unsigned NumElems = VT.getVectorNumElements();
988   EVT EltVT = VT.getVectorElementType();
989   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
990   EVT TmpEltVT = LHS.getValueType().getVectorElementType();
991   SDLoc dl(Op);
992   SmallVector<SDValue, 8> Ops(NumElems);
993   for (unsigned i = 0; i < NumElems; ++i) {
994     SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
995                                   DAG.getConstant(i, dl, TLI.getVectorIdxTy()));
996     SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
997                                   DAG.getConstant(i, dl, TLI.getVectorIdxTy()));
998     Ops[i] = DAG.getNode(ISD::SETCC, dl,
999                          TLI.getSetCCResultType(*DAG.getContext(), TmpEltVT),
1000                          LHSElem, RHSElem, CC);
1001     Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
1002                            DAG.getConstant(APInt::getAllOnesValue
1003                                            (EltVT.getSizeInBits()), dl, EltVT),
1004                            DAG.getConstant(0, dl, EltVT));
1005   }
1006   return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
1007 }
1008 
1009 }
1010 
1011 bool SelectionDAG::LegalizeVectors() {
1012   return VectorLegalizer(*this).Run();
1013 }
1014