1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::LegalizeVectors method. 10 // 11 // The vector legalizer looks for vector operations which might need to be 12 // scalarized and legalizes them. This is a separate step from Legalize because 13 // scalarizing can introduce illegal types. For example, suppose we have an 14 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 16 // operation, which introduces nodes with the illegal type i64 which must be 17 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 18 // the operation must be unrolled, which introduces nodes with the illegal 19 // type i8 which must be promoted. 20 // 21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 22 // or operations that happen to take a vector which are custom-lowered; 23 // the legalization for such operations never produces nodes 24 // with illegal types, so it's okay to put off legalizing them until 25 // SelectionDAG::Legalize runs. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/SelectionDAGNodes.h" 36 #include "llvm/CodeGen/TargetLowering.h" 37 #include "llvm/CodeGen/ValueTypes.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include <cassert> 46 #include <cstdint> 47 #include <iterator> 48 #include <utility> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "legalizevectorops" 53 54 namespace { 55 56 class VectorLegalizer { 57 SelectionDAG& DAG; 58 const TargetLowering &TLI; 59 bool Changed = false; // Keep track of whether anything changed 60 61 /// For nodes that are of legal width, and that have more than one use, this 62 /// map indicates what regularized operand to use. This allows us to avoid 63 /// legalizing the same thing more than once. 64 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 65 66 /// Adds a node to the translation cache. 67 void AddLegalizedOperand(SDValue From, SDValue To) { 68 LegalizedNodes.insert(std::make_pair(From, To)); 69 // If someone requests legalization of the new node, return itself. 70 if (From != To) 71 LegalizedNodes.insert(std::make_pair(To, To)); 72 } 73 74 /// Legalizes the given node. 75 SDValue LegalizeOp(SDValue Op); 76 77 /// Assuming the node is legal, "legalize" the results. 78 SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result); 79 80 /// Make sure Results are legal and update the translation cache. 81 SDValue RecursivelyLegalizeResults(SDValue Op, 82 MutableArrayRef<SDValue> Results); 83 84 /// Wrapper to interface LowerOperation with a vector of Results. 85 /// Returns false if the target wants to use default expansion. Otherwise 86 /// returns true. If return is true and the Results are empty, then the 87 /// target wants to keep the input node as is. 88 bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results); 89 90 /// Implements unrolling a VSETCC. 91 SDValue UnrollVSETCC(SDNode *Node); 92 93 /// Implement expand-based legalization of vector operations. 94 /// 95 /// This is just a high-level routine to dispatch to specific code paths for 96 /// operations to legalize them. 97 void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results); 98 99 /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if 100 /// FP_TO_SINT isn't legal. 101 void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 102 103 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 104 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 105 void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 106 107 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 108 SDValue ExpandSEXTINREG(SDNode *Node); 109 110 /// Implement expansion for ANY_EXTEND_VECTOR_INREG. 111 /// 112 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 113 /// type. The contents of the bits in the extended part of each element are 114 /// undef. 115 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node); 116 117 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG. 118 /// 119 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 120 /// type, then shifts left and arithmetic shifts right to introduce a sign 121 /// extension. 122 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node); 123 124 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG. 125 /// 126 /// Shuffles the low lanes of the operand into place and blends zeros into 127 /// the remaining lanes, finally bitcasting to the proper type. 128 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node); 129 130 /// Expand bswap of vectors into a shuffle if legal. 131 SDValue ExpandBSWAP(SDNode *Node); 132 133 /// Implement vselect in terms of XOR, AND, OR when blend is not 134 /// supported by the target. 135 SDValue ExpandVSELECT(SDNode *Node); 136 SDValue ExpandSELECT(SDNode *Node); 137 std::pair<SDValue, SDValue> ExpandLoad(SDNode *N); 138 SDValue ExpandStore(SDNode *N); 139 SDValue ExpandFNEG(SDNode *Node); 140 void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results); 141 void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results); 142 void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 143 void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 144 void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 145 void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results); 146 SDValue ExpandStrictFPOp(SDNode *Node); 147 void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results); 148 149 void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results); 150 151 /// Implements vector promotion. 152 /// 153 /// This is essentially just bitcasting the operands to a different type and 154 /// bitcasting the result back to the original type. 155 void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results); 156 157 /// Implements [SU]INT_TO_FP vector promotion. 158 /// 159 /// This is a [zs]ext of the input operand to a larger integer type. 160 void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results); 161 162 /// Implements FP_TO_[SU]INT vector promotion of the result type. 163 /// 164 /// It is promoted to a larger integer type. The result is then 165 /// truncated back to the original type. 166 void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 167 168 public: 169 VectorLegalizer(SelectionDAG& dag) : 170 DAG(dag), TLI(dag.getTargetLoweringInfo()) {} 171 172 /// Begin legalizer the vector operations in the DAG. 173 bool Run(); 174 }; 175 176 } // end anonymous namespace 177 178 bool VectorLegalizer::Run() { 179 // Before we start legalizing vector nodes, check if there are any vectors. 180 bool HasVectors = false; 181 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 182 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 183 // Check if the values of the nodes contain vectors. We don't need to check 184 // the operands because we are going to check their values at some point. 185 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); 186 J != E; ++J) 187 HasVectors |= J->isVector(); 188 189 // If we found a vector node we can start the legalization. 190 if (HasVectors) 191 break; 192 } 193 194 // If this basic block has no vectors then no need to legalize vectors. 195 if (!HasVectors) 196 return false; 197 198 // The legalize process is inherently a bottom-up recursive process (users 199 // legalize their uses before themselves). Given infinite stack space, we 200 // could just start legalizing on the root and traverse the whole graph. In 201 // practice however, this causes us to run out of stack space on large basic 202 // blocks. To avoid this problem, compute an ordering of the nodes where each 203 // node is only legalized after all of its operands are legalized. 204 DAG.AssignTopologicalOrder(); 205 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 206 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 207 LegalizeOp(SDValue(&*I, 0)); 208 209 // Finally, it's possible the root changed. Get the new root. 210 SDValue OldRoot = DAG.getRoot(); 211 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 212 DAG.setRoot(LegalizedNodes[OldRoot]); 213 214 LegalizedNodes.clear(); 215 216 // Remove dead nodes now. 217 DAG.RemoveDeadNodes(); 218 219 return Changed; 220 } 221 222 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) { 223 assert(Op->getNumValues() == Result->getNumValues() && 224 "Unexpected number of results"); 225 // Generic legalization: just pass the operand through. 226 for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i) 227 AddLegalizedOperand(Op.getValue(i), SDValue(Result, i)); 228 return SDValue(Result, Op.getResNo()); 229 } 230 231 SDValue 232 VectorLegalizer::RecursivelyLegalizeResults(SDValue Op, 233 MutableArrayRef<SDValue> Results) { 234 assert(Results.size() == Op->getNumValues() && 235 "Unexpected number of results"); 236 // Make sure that the generated code is itself legal. 237 for (unsigned i = 0, e = Results.size(); i != e; ++i) { 238 Results[i] = LegalizeOp(Results[i]); 239 AddLegalizedOperand(Op.getValue(i), Results[i]); 240 } 241 242 return Results[Op.getResNo()]; 243 } 244 245 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 246 // Note that LegalizeOp may be reentered even from single-use nodes, which 247 // means that we always must cache transformed nodes. 248 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 249 if (I != LegalizedNodes.end()) return I->second; 250 251 // Legalize the operands 252 SmallVector<SDValue, 8> Ops; 253 for (const SDValue &Oper : Op->op_values()) 254 Ops.push_back(LegalizeOp(Oper)); 255 256 SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops); 257 258 if (Op.getOpcode() == ISD::LOAD) { 259 LoadSDNode *LD = cast<LoadSDNode>(Node); 260 ISD::LoadExtType ExtType = LD->getExtensionType(); 261 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) { 262 LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: "; 263 Node->dump(&DAG)); 264 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), 265 LD->getMemoryVT())) { 266 default: llvm_unreachable("This action is not supported yet!"); 267 case TargetLowering::Legal: 268 return TranslateLegalizeResults(Op, Node); 269 case TargetLowering::Custom: { 270 SmallVector<SDValue, 2> ResultVals; 271 if (LowerOperationWrapper(Node, ResultVals)) { 272 if (ResultVals.empty()) 273 return TranslateLegalizeResults(Op, Node); 274 275 Changed = true; 276 return RecursivelyLegalizeResults(Op, ResultVals); 277 } 278 LLVM_FALLTHROUGH; 279 } 280 case TargetLowering::Expand: { 281 Changed = true; 282 std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node); 283 AddLegalizedOperand(Op.getValue(0), Tmp.first); 284 AddLegalizedOperand(Op.getValue(1), Tmp.second); 285 return Op.getResNo() ? Tmp.first : Tmp.second; 286 } 287 } 288 } 289 } else if (Op.getOpcode() == ISD::STORE) { 290 StoreSDNode *ST = cast<StoreSDNode>(Node); 291 EVT StVT = ST->getMemoryVT(); 292 MVT ValVT = ST->getValue().getSimpleValueType(); 293 if (StVT.isVector() && ST->isTruncatingStore()) { 294 LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: "; 295 Node->dump(&DAG)); 296 switch (TLI.getTruncStoreAction(ValVT, StVT)) { 297 default: llvm_unreachable("This action is not supported yet!"); 298 case TargetLowering::Legal: 299 return TranslateLegalizeResults(Op, Node); 300 case TargetLowering::Custom: { 301 SmallVector<SDValue, 1> ResultVals; 302 if (LowerOperationWrapper(Node, ResultVals)) { 303 if (ResultVals.empty()) 304 return TranslateLegalizeResults(Op, Node); 305 306 Changed = true; 307 return RecursivelyLegalizeResults(Op, ResultVals); 308 } 309 LLVM_FALLTHROUGH; 310 } 311 case TargetLowering::Expand: { 312 Changed = true; 313 SDValue Chain = ExpandStore(Node); 314 AddLegalizedOperand(Op, Chain); 315 return Chain; 316 } 317 } 318 } 319 } 320 321 bool HasVectorValueOrOp = false; 322 for (auto J = Node->value_begin(), E = Node->value_end(); J != E; ++J) 323 HasVectorValueOrOp |= J->isVector(); 324 for (const SDValue &Oper : Node->op_values()) 325 HasVectorValueOrOp |= Oper.getValueType().isVector(); 326 327 if (!HasVectorValueOrOp) 328 return TranslateLegalizeResults(Op, Node); 329 330 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 331 EVT ValVT; 332 switch (Op.getOpcode()) { 333 default: 334 return TranslateLegalizeResults(Op, Node); 335 case ISD::MERGE_VALUES: 336 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 337 // This operation lies about being legal: when it claims to be legal, 338 // it should actually be expanded. 339 if (Action == TargetLowering::Legal) 340 Action = TargetLowering::Expand; 341 break; 342 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 343 case ISD::STRICT_##DAGN: 344 #include "llvm/IR/ConstrainedOps.def" 345 ValVT = Node->getValueType(0); 346 if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP || 347 Op.getOpcode() == ISD::STRICT_UINT_TO_FP) 348 ValVT = Node->getOperand(1).getValueType(); 349 Action = TLI.getOperationAction(Node->getOpcode(), ValVT); 350 // If we're asked to expand a strict vector floating-point operation, 351 // by default we're going to simply unroll it. That is usually the 352 // best approach, except in the case where the resulting strict (scalar) 353 // operations would themselves use the fallback mutation to non-strict. 354 // In that specific case, just do the fallback on the vector op. 355 if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() && 356 TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) == 357 TargetLowering::Legal) { 358 EVT EltVT = ValVT.getVectorElementType(); 359 if (TLI.getOperationAction(Node->getOpcode(), EltVT) 360 == TargetLowering::Expand && 361 TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT) 362 == TargetLowering::Legal) 363 Action = TargetLowering::Legal; 364 } 365 break; 366 case ISD::ADD: 367 case ISD::SUB: 368 case ISD::MUL: 369 case ISD::MULHS: 370 case ISD::MULHU: 371 case ISD::SDIV: 372 case ISD::UDIV: 373 case ISD::SREM: 374 case ISD::UREM: 375 case ISD::SDIVREM: 376 case ISD::UDIVREM: 377 case ISD::FADD: 378 case ISD::FSUB: 379 case ISD::FMUL: 380 case ISD::FDIV: 381 case ISD::FREM: 382 case ISD::AND: 383 case ISD::OR: 384 case ISD::XOR: 385 case ISD::SHL: 386 case ISD::SRA: 387 case ISD::SRL: 388 case ISD::FSHL: 389 case ISD::FSHR: 390 case ISD::ROTL: 391 case ISD::ROTR: 392 case ISD::ABS: 393 case ISD::BSWAP: 394 case ISD::BITREVERSE: 395 case ISD::CTLZ: 396 case ISD::CTTZ: 397 case ISD::CTLZ_ZERO_UNDEF: 398 case ISD::CTTZ_ZERO_UNDEF: 399 case ISD::CTPOP: 400 case ISD::SELECT: 401 case ISD::VSELECT: 402 case ISD::SELECT_CC: 403 case ISD::SETCC: 404 case ISD::ZERO_EXTEND: 405 case ISD::ANY_EXTEND: 406 case ISD::TRUNCATE: 407 case ISD::SIGN_EXTEND: 408 case ISD::FP_TO_SINT: 409 case ISD::FP_TO_UINT: 410 case ISD::FNEG: 411 case ISD::FABS: 412 case ISD::FMINNUM: 413 case ISD::FMAXNUM: 414 case ISD::FMINNUM_IEEE: 415 case ISD::FMAXNUM_IEEE: 416 case ISD::FMINIMUM: 417 case ISD::FMAXIMUM: 418 case ISD::FCOPYSIGN: 419 case ISD::FSQRT: 420 case ISD::FSIN: 421 case ISD::FCOS: 422 case ISD::FPOWI: 423 case ISD::FPOW: 424 case ISD::FLOG: 425 case ISD::FLOG2: 426 case ISD::FLOG10: 427 case ISD::FEXP: 428 case ISD::FEXP2: 429 case ISD::FCEIL: 430 case ISD::FTRUNC: 431 case ISD::FRINT: 432 case ISD::FNEARBYINT: 433 case ISD::FROUND: 434 case ISD::FFLOOR: 435 case ISD::FP_ROUND: 436 case ISD::FP_EXTEND: 437 case ISD::FMA: 438 case ISD::SIGN_EXTEND_INREG: 439 case ISD::ANY_EXTEND_VECTOR_INREG: 440 case ISD::SIGN_EXTEND_VECTOR_INREG: 441 case ISD::ZERO_EXTEND_VECTOR_INREG: 442 case ISD::SMIN: 443 case ISD::SMAX: 444 case ISD::UMIN: 445 case ISD::UMAX: 446 case ISD::SMUL_LOHI: 447 case ISD::UMUL_LOHI: 448 case ISD::SADDO: 449 case ISD::UADDO: 450 case ISD::SSUBO: 451 case ISD::USUBO: 452 case ISD::SMULO: 453 case ISD::UMULO: 454 case ISD::FCANONICALIZE: 455 case ISD::SADDSAT: 456 case ISD::UADDSAT: 457 case ISD::SSUBSAT: 458 case ISD::USUBSAT: 459 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 460 break; 461 case ISD::SMULFIX: 462 case ISD::SMULFIXSAT: 463 case ISD::UMULFIX: 464 case ISD::UMULFIXSAT: 465 case ISD::SDIVFIX: 466 case ISD::SDIVFIXSAT: 467 case ISD::UDIVFIX: 468 case ISD::UDIVFIXSAT: { 469 unsigned Scale = Node->getConstantOperandVal(2); 470 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 471 Node->getValueType(0), Scale); 472 break; 473 } 474 case ISD::SINT_TO_FP: 475 case ISD::UINT_TO_FP: 476 case ISD::VECREDUCE_ADD: 477 case ISD::VECREDUCE_MUL: 478 case ISD::VECREDUCE_AND: 479 case ISD::VECREDUCE_OR: 480 case ISD::VECREDUCE_XOR: 481 case ISD::VECREDUCE_SMAX: 482 case ISD::VECREDUCE_SMIN: 483 case ISD::VECREDUCE_UMAX: 484 case ISD::VECREDUCE_UMIN: 485 case ISD::VECREDUCE_FADD: 486 case ISD::VECREDUCE_FMUL: 487 case ISD::VECREDUCE_FMAX: 488 case ISD::VECREDUCE_FMIN: 489 Action = TLI.getOperationAction(Node->getOpcode(), 490 Node->getOperand(0).getValueType()); 491 break; 492 } 493 494 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG)); 495 496 SmallVector<SDValue, 8> ResultVals; 497 switch (Action) { 498 default: llvm_unreachable("This action is not supported yet!"); 499 case TargetLowering::Promote: 500 LLVM_DEBUG(dbgs() << "Promoting\n"); 501 Promote(Node, ResultVals); 502 assert(!ResultVals.empty() && "No results for promotion?"); 503 break; 504 case TargetLowering::Legal: 505 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 506 break; 507 case TargetLowering::Custom: 508 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 509 if (LowerOperationWrapper(Node, ResultVals)) 510 break; 511 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 512 LLVM_FALLTHROUGH; 513 case TargetLowering::Expand: 514 LLVM_DEBUG(dbgs() << "Expanding\n"); 515 Expand(Node, ResultVals); 516 break; 517 } 518 519 if (ResultVals.empty()) 520 return TranslateLegalizeResults(Op, Node); 521 522 Changed = true; 523 return RecursivelyLegalizeResults(Op, ResultVals); 524 } 525 526 // FIME: This is very similar to the X86 override of 527 // TargetLowering::LowerOperationWrapper. Can we merge them somehow? 528 bool VectorLegalizer::LowerOperationWrapper(SDNode *Node, 529 SmallVectorImpl<SDValue> &Results) { 530 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 531 532 if (!Res.getNode()) 533 return false; 534 535 if (Res == SDValue(Node, 0)) 536 return true; 537 538 // If the original node has one result, take the return value from 539 // LowerOperation as is. It might not be result number 0. 540 if (Node->getNumValues() == 1) { 541 Results.push_back(Res); 542 return true; 543 } 544 545 // If the original node has multiple results, then the return node should 546 // have the same number of results. 547 assert((Node->getNumValues() == Res->getNumValues()) && 548 "Lowering returned the wrong number of results!"); 549 550 // Places new result values base on N result number. 551 for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I) 552 Results.push_back(Res.getValue(I)); 553 554 return true; 555 } 556 557 void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) { 558 // For a few operations there is a specific concept for promotion based on 559 // the operand's type. 560 switch (Node->getOpcode()) { 561 case ISD::SINT_TO_FP: 562 case ISD::UINT_TO_FP: 563 case ISD::STRICT_SINT_TO_FP: 564 case ISD::STRICT_UINT_TO_FP: 565 // "Promote" the operation by extending the operand. 566 PromoteINT_TO_FP(Node, Results); 567 return; 568 case ISD::FP_TO_UINT: 569 case ISD::FP_TO_SINT: 570 case ISD::STRICT_FP_TO_UINT: 571 case ISD::STRICT_FP_TO_SINT: 572 // Promote the operation by extending the operand. 573 PromoteFP_TO_INT(Node, Results); 574 return; 575 case ISD::FP_ROUND: 576 case ISD::FP_EXTEND: 577 // These operations are used to do promotion so they can't be promoted 578 // themselves. 579 llvm_unreachable("Don't know how to promote this operation!"); 580 } 581 582 // There are currently two cases of vector promotion: 583 // 1) Bitcasting a vector of integers to a different type to a vector of the 584 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 585 // 2) Extending a vector of floats to a vector of the same number of larger 586 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 587 assert(Node->getNumValues() == 1 && 588 "Can't promote a vector with multiple results!"); 589 MVT VT = Node->getSimpleValueType(0); 590 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 591 SDLoc dl(Node); 592 SmallVector<SDValue, 4> Operands(Node->getNumOperands()); 593 594 for (unsigned j = 0; j != Node->getNumOperands(); ++j) { 595 if (Node->getOperand(j).getValueType().isVector()) 596 if (Node->getOperand(j) 597 .getValueType() 598 .getVectorElementType() 599 .isFloatingPoint() && 600 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 601 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j)); 602 else 603 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j)); 604 else 605 Operands[j] = Node->getOperand(j); 606 } 607 608 SDValue Res = 609 DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags()); 610 611 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 612 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 613 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 614 Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res, DAG.getIntPtrConstant(0, dl)); 615 else 616 Res = DAG.getNode(ISD::BITCAST, dl, VT, Res); 617 618 Results.push_back(Res); 619 } 620 621 void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node, 622 SmallVectorImpl<SDValue> &Results) { 623 // INT_TO_FP operations may require the input operand be promoted even 624 // when the type is otherwise legal. 625 bool IsStrict = Node->isStrictFPOpcode(); 626 MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType(); 627 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 628 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 629 "Vectors have different number of elements!"); 630 631 SDLoc dl(Node); 632 SmallVector<SDValue, 4> Operands(Node->getNumOperands()); 633 634 unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP || 635 Node->getOpcode() == ISD::STRICT_UINT_TO_FP) 636 ? ISD::ZERO_EXTEND 637 : ISD::SIGN_EXTEND; 638 for (unsigned j = 0; j != Node->getNumOperands(); ++j) { 639 if (Node->getOperand(j).getValueType().isVector()) 640 Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j)); 641 else 642 Operands[j] = Node->getOperand(j); 643 } 644 645 if (IsStrict) { 646 SDValue Res = DAG.getNode(Node->getOpcode(), dl, 647 {Node->getValueType(0), MVT::Other}, Operands); 648 Results.push_back(Res); 649 Results.push_back(Res.getValue(1)); 650 return; 651 } 652 653 SDValue Res = 654 DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands); 655 Results.push_back(Res); 656 } 657 658 // For FP_TO_INT we promote the result type to a vector type with wider 659 // elements and then truncate the result. This is different from the default 660 // PromoteVector which uses bitcast to promote thus assumning that the 661 // promoted vector type has the same overall size. 662 void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node, 663 SmallVectorImpl<SDValue> &Results) { 664 MVT VT = Node->getSimpleValueType(0); 665 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 666 bool IsStrict = Node->isStrictFPOpcode(); 667 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 668 "Vectors have different number of elements!"); 669 670 unsigned NewOpc = Node->getOpcode(); 671 // Change FP_TO_UINT to FP_TO_SINT if possible. 672 // TODO: Should we only do this if FP_TO_UINT itself isn't legal? 673 if (NewOpc == ISD::FP_TO_UINT && 674 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT)) 675 NewOpc = ISD::FP_TO_SINT; 676 677 if (NewOpc == ISD::STRICT_FP_TO_UINT && 678 TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT)) 679 NewOpc = ISD::STRICT_FP_TO_SINT; 680 681 SDLoc dl(Node); 682 SDValue Promoted, Chain; 683 if (IsStrict) { 684 Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other}, 685 {Node->getOperand(0), Node->getOperand(1)}); 686 Chain = Promoted.getValue(1); 687 } else 688 Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0)); 689 690 // Assert that the converted value fits in the original type. If it doesn't 691 // (eg: because the value being converted is too big), then the result of the 692 // original operation was undefined anyway, so the assert is still correct. 693 if (Node->getOpcode() == ISD::FP_TO_UINT || 694 Node->getOpcode() == ISD::STRICT_FP_TO_UINT) 695 NewOpc = ISD::AssertZext; 696 else 697 NewOpc = ISD::AssertSext; 698 699 Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted, 700 DAG.getValueType(VT.getScalarType())); 701 Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted); 702 Results.push_back(Promoted); 703 if (IsStrict) 704 Results.push_back(Chain); 705 } 706 707 std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) { 708 LoadSDNode *LD = cast<LoadSDNode>(N); 709 710 EVT SrcVT = LD->getMemoryVT(); 711 EVT SrcEltVT = SrcVT.getScalarType(); 712 unsigned NumElem = SrcVT.getVectorNumElements(); 713 714 SDValue NewChain; 715 SDValue Value; 716 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { 717 SDLoc dl(N); 718 719 SmallVector<SDValue, 8> Vals; 720 SmallVector<SDValue, 8> LoadChains; 721 722 EVT DstEltVT = LD->getValueType(0).getScalarType(); 723 SDValue Chain = LD->getChain(); 724 SDValue BasePTR = LD->getBasePtr(); 725 ISD::LoadExtType ExtType = LD->getExtensionType(); 726 727 // When elements in a vector is not byte-addressable, we cannot directly 728 // load each element by advancing pointer, which could only address bytes. 729 // Instead, we load all significant words, mask bits off, and concatenate 730 // them to form each element. Finally, they are extended to destination 731 // scalar type to build the destination vector. 732 EVT WideVT = TLI.getPointerTy(DAG.getDataLayout()); 733 734 assert(WideVT.isRound() && 735 "Could not handle the sophisticated case when the widest integer is" 736 " not power of 2."); 737 assert(WideVT.bitsGE(SrcEltVT) && 738 "Type is not legalized?"); 739 740 unsigned WideBytes = WideVT.getStoreSize(); 741 unsigned Offset = 0; 742 unsigned RemainingBytes = SrcVT.getStoreSize(); 743 SmallVector<SDValue, 8> LoadVals; 744 while (RemainingBytes > 0) { 745 SDValue ScalarLoad; 746 unsigned LoadBytes = WideBytes; 747 748 if (RemainingBytes >= LoadBytes) { 749 ScalarLoad = 750 DAG.getLoad(WideVT, dl, Chain, BasePTR, 751 LD->getPointerInfo().getWithOffset(Offset), 752 MinAlign(LD->getAlignment(), Offset), 753 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 754 } else { 755 EVT LoadVT = WideVT; 756 while (RemainingBytes < LoadBytes) { 757 LoadBytes >>= 1; // Reduce the load size by half. 758 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); 759 } 760 ScalarLoad = 761 DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, 762 LD->getPointerInfo().getWithOffset(Offset), LoadVT, 763 MinAlign(LD->getAlignment(), Offset), 764 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 765 } 766 767 RemainingBytes -= LoadBytes; 768 Offset += LoadBytes; 769 770 BasePTR = DAG.getObjectPtrOffset(dl, BasePTR, LoadBytes); 771 772 LoadVals.push_back(ScalarLoad.getValue(0)); 773 LoadChains.push_back(ScalarLoad.getValue(1)); 774 } 775 776 unsigned BitOffset = 0; 777 unsigned WideIdx = 0; 778 unsigned WideBits = WideVT.getSizeInBits(); 779 780 // Extract bits, pack and extend/trunc them into destination type. 781 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 782 SDValue SrcEltBitMask = DAG.getConstant( 783 APInt::getLowBitsSet(WideBits, SrcEltBits), dl, WideVT); 784 785 for (unsigned Idx = 0; Idx != NumElem; ++Idx) { 786 assert(BitOffset < WideBits && "Unexpected offset!"); 787 788 SDValue ShAmt = DAG.getConstant( 789 BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 790 SDValue Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); 791 792 BitOffset += SrcEltBits; 793 if (BitOffset >= WideBits) { 794 WideIdx++; 795 BitOffset -= WideBits; 796 if (BitOffset > 0) { 797 ShAmt = DAG.getConstant( 798 SrcEltBits - BitOffset, dl, 799 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 800 SDValue Hi = 801 DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); 802 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); 803 } 804 } 805 806 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); 807 808 switch (ExtType) { 809 default: llvm_unreachable("Unknown extended-load op!"); 810 case ISD::EXTLOAD: 811 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); 812 break; 813 case ISD::ZEXTLOAD: 814 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); 815 break; 816 case ISD::SEXTLOAD: 817 ShAmt = 818 DAG.getConstant(WideBits - SrcEltBits, dl, 819 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 820 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); 821 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); 822 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); 823 break; 824 } 825 Vals.push_back(Lo); 826 } 827 828 NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 829 Value = DAG.getBuildVector(N->getValueType(0), dl, Vals); 830 } else { 831 std::tie(Value, NewChain) = TLI.scalarizeVectorLoad(LD, DAG); 832 } 833 834 return std::make_pair(Value, NewChain); 835 } 836 837 SDValue VectorLegalizer::ExpandStore(SDNode *N) { 838 StoreSDNode *ST = cast<StoreSDNode>(N); 839 SDValue TF = TLI.scalarizeVectorStore(ST, DAG); 840 return TF; 841 } 842 843 void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) { 844 SDValue Tmp; 845 switch (Node->getOpcode()) { 846 case ISD::MERGE_VALUES: 847 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 848 Results.push_back(Node->getOperand(i)); 849 return; 850 case ISD::SIGN_EXTEND_INREG: 851 Results.push_back(ExpandSEXTINREG(Node)); 852 return; 853 case ISD::ANY_EXTEND_VECTOR_INREG: 854 Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node)); 855 return; 856 case ISD::SIGN_EXTEND_VECTOR_INREG: 857 Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node)); 858 return; 859 case ISD::ZERO_EXTEND_VECTOR_INREG: 860 Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node)); 861 return; 862 case ISD::BSWAP: 863 Results.push_back(ExpandBSWAP(Node)); 864 return; 865 case ISD::VSELECT: 866 Results.push_back(ExpandVSELECT(Node)); 867 return; 868 case ISD::SELECT: 869 Results.push_back(ExpandSELECT(Node)); 870 return; 871 case ISD::FP_TO_UINT: 872 ExpandFP_TO_UINT(Node, Results); 873 return; 874 case ISD::UINT_TO_FP: 875 ExpandUINT_TO_FLOAT(Node, Results); 876 return; 877 case ISD::FNEG: 878 Results.push_back(ExpandFNEG(Node)); 879 return; 880 case ISD::FSUB: 881 ExpandFSUB(Node, Results); 882 return; 883 case ISD::SETCC: 884 Results.push_back(UnrollVSETCC(Node)); 885 return; 886 case ISD::ABS: 887 if (TLI.expandABS(Node, Tmp, DAG)) { 888 Results.push_back(Tmp); 889 return; 890 } 891 break; 892 case ISD::BITREVERSE: 893 ExpandBITREVERSE(Node, Results); 894 return; 895 case ISD::CTPOP: 896 if (TLI.expandCTPOP(Node, Tmp, DAG)) { 897 Results.push_back(Tmp); 898 return; 899 } 900 break; 901 case ISD::CTLZ: 902 case ISD::CTLZ_ZERO_UNDEF: 903 if (TLI.expandCTLZ(Node, Tmp, DAG)) { 904 Results.push_back(Tmp); 905 return; 906 } 907 break; 908 case ISD::CTTZ: 909 case ISD::CTTZ_ZERO_UNDEF: 910 if (TLI.expandCTTZ(Node, Tmp, DAG)) { 911 Results.push_back(Tmp); 912 return; 913 } 914 break; 915 case ISD::FSHL: 916 case ISD::FSHR: 917 if (TLI.expandFunnelShift(Node, Tmp, DAG)) { 918 Results.push_back(Tmp); 919 return; 920 } 921 break; 922 case ISD::ROTL: 923 case ISD::ROTR: 924 if (TLI.expandROT(Node, Tmp, DAG)) { 925 Results.push_back(Tmp); 926 return; 927 } 928 break; 929 case ISD::FMINNUM: 930 case ISD::FMAXNUM: 931 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) { 932 Results.push_back(Expanded); 933 return; 934 } 935 break; 936 case ISD::UADDO: 937 case ISD::USUBO: 938 ExpandUADDSUBO(Node, Results); 939 return; 940 case ISD::SADDO: 941 case ISD::SSUBO: 942 ExpandSADDSUBO(Node, Results); 943 return; 944 case ISD::UMULO: 945 case ISD::SMULO: 946 ExpandMULO(Node, Results); 947 return; 948 case ISD::USUBSAT: 949 case ISD::SSUBSAT: 950 case ISD::UADDSAT: 951 case ISD::SADDSAT: 952 if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) { 953 Results.push_back(Expanded); 954 return; 955 } 956 break; 957 case ISD::SMULFIX: 958 case ISD::UMULFIX: 959 if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) { 960 Results.push_back(Expanded); 961 return; 962 } 963 break; 964 case ISD::SMULFIXSAT: 965 case ISD::UMULFIXSAT: 966 // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly 967 // why. Maybe it results in worse codegen compared to the unroll for some 968 // targets? This should probably be investigated. And if we still prefer to 969 // unroll an explanation could be helpful. 970 break; 971 case ISD::SDIVFIX: 972 case ISD::UDIVFIX: 973 ExpandFixedPointDiv(Node, Results); 974 return; 975 case ISD::SDIVFIXSAT: 976 case ISD::UDIVFIXSAT: 977 break; 978 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 979 case ISD::STRICT_##DAGN: 980 #include "llvm/IR/ConstrainedOps.def" 981 ExpandStrictFPOp(Node, Results); 982 return; 983 case ISD::VECREDUCE_ADD: 984 case ISD::VECREDUCE_MUL: 985 case ISD::VECREDUCE_AND: 986 case ISD::VECREDUCE_OR: 987 case ISD::VECREDUCE_XOR: 988 case ISD::VECREDUCE_SMAX: 989 case ISD::VECREDUCE_SMIN: 990 case ISD::VECREDUCE_UMAX: 991 case ISD::VECREDUCE_UMIN: 992 case ISD::VECREDUCE_FADD: 993 case ISD::VECREDUCE_FMUL: 994 case ISD::VECREDUCE_FMAX: 995 case ISD::VECREDUCE_FMIN: 996 Results.push_back(TLI.expandVecReduce(Node, DAG)); 997 return; 998 } 999 1000 Results.push_back(DAG.UnrollVectorOp(Node)); 1001 } 1002 1003 SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) { 1004 // Lower a select instruction where the condition is a scalar and the 1005 // operands are vectors. Lower this select to VSELECT and implement it 1006 // using XOR AND OR. The selector bit is broadcasted. 1007 EVT VT = Node->getValueType(0); 1008 SDLoc DL(Node); 1009 1010 SDValue Mask = Node->getOperand(0); 1011 SDValue Op1 = Node->getOperand(1); 1012 SDValue Op2 = Node->getOperand(2); 1013 1014 assert(VT.isVector() && !Mask.getValueType().isVector() 1015 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 1016 1017 // If we can't even use the basic vector operations of 1018 // AND,OR,XOR, we will have to scalarize the op. 1019 // Notice that the operation may be 'promoted' which means that it is 1020 // 'bitcasted' to another type which is handled. 1021 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 1022 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 1023 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 1024 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 1025 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 1026 return DAG.UnrollVectorOp(Node); 1027 1028 // Generate a mask operand. 1029 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 1030 1031 // What is the size of each element in the vector mask. 1032 EVT BitTy = MaskTy.getScalarType(); 1033 1034 Mask = DAG.getSelect(DL, BitTy, Mask, 1035 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, 1036 BitTy), 1037 DAG.getConstant(0, DL, BitTy)); 1038 1039 // Broadcast the mask so that the entire vector is all-one or all zero. 1040 Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask); 1041 1042 // Bitcast the operands to be the same type as the mask. 1043 // This is needed when we select between FP types because 1044 // the mask is a vector of integers. 1045 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 1046 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 1047 1048 SDValue AllOnes = DAG.getConstant( 1049 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy); 1050 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 1051 1052 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 1053 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 1054 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 1055 return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val); 1056 } 1057 1058 SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) { 1059 EVT VT = Node->getValueType(0); 1060 1061 // Make sure that the SRA and SHL instructions are available. 1062 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 1063 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 1064 return DAG.UnrollVectorOp(Node); 1065 1066 SDLoc DL(Node); 1067 EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1068 1069 unsigned BW = VT.getScalarSizeInBits(); 1070 unsigned OrigBW = OrigTy.getScalarSizeInBits(); 1071 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 1072 1073 SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz); 1074 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 1075 } 1076 1077 // Generically expand a vector anyext in register to a shuffle of the relevant 1078 // lanes into the appropriate locations, with other lanes left undef. 1079 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) { 1080 SDLoc DL(Node); 1081 EVT VT = Node->getValueType(0); 1082 int NumElements = VT.getVectorNumElements(); 1083 SDValue Src = Node->getOperand(0); 1084 EVT SrcVT = Src.getValueType(); 1085 int NumSrcElements = SrcVT.getVectorNumElements(); 1086 1087 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 1088 // into a larger vector type. 1089 if (SrcVT.bitsLE(VT)) { 1090 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 1091 "ANY_EXTEND_VECTOR_INREG vector size mismatch"); 1092 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 1093 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 1094 NumSrcElements); 1095 Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), 1096 Src, DAG.getVectorIdxConstant(0, DL)); 1097 } 1098 1099 // Build a base mask of undef shuffles. 1100 SmallVector<int, 16> ShuffleMask; 1101 ShuffleMask.resize(NumSrcElements, -1); 1102 1103 // Place the extended lanes into the correct locations. 1104 int ExtLaneScale = NumSrcElements / NumElements; 1105 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 1106 for (int i = 0; i < NumElements; ++i) 1107 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 1108 1109 return DAG.getNode( 1110 ISD::BITCAST, DL, VT, 1111 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 1112 } 1113 1114 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) { 1115 SDLoc DL(Node); 1116 EVT VT = Node->getValueType(0); 1117 SDValue Src = Node->getOperand(0); 1118 EVT SrcVT = Src.getValueType(); 1119 1120 // First build an any-extend node which can be legalized above when we 1121 // recurse through it. 1122 SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src); 1123 1124 // Now we need sign extend. Do this by shifting the elements. Even if these 1125 // aren't legal operations, they have a better chance of being legalized 1126 // without full scalarization than the sign extension does. 1127 unsigned EltWidth = VT.getScalarSizeInBits(); 1128 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); 1129 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 1130 return DAG.getNode(ISD::SRA, DL, VT, 1131 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 1132 ShiftAmount); 1133 } 1134 1135 // Generically expand a vector zext in register to a shuffle of the relevant 1136 // lanes into the appropriate locations, a blend of zero into the high bits, 1137 // and a bitcast to the wider element type. 1138 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) { 1139 SDLoc DL(Node); 1140 EVT VT = Node->getValueType(0); 1141 int NumElements = VT.getVectorNumElements(); 1142 SDValue Src = Node->getOperand(0); 1143 EVT SrcVT = Src.getValueType(); 1144 int NumSrcElements = SrcVT.getVectorNumElements(); 1145 1146 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 1147 // into a larger vector type. 1148 if (SrcVT.bitsLE(VT)) { 1149 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 1150 "ZERO_EXTEND_VECTOR_INREG vector size mismatch"); 1151 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 1152 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 1153 NumSrcElements); 1154 Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), 1155 Src, DAG.getVectorIdxConstant(0, DL)); 1156 } 1157 1158 // Build up a zero vector to blend into this one. 1159 SDValue Zero = DAG.getConstant(0, DL, SrcVT); 1160 1161 // Shuffle the incoming lanes into the correct position, and pull all other 1162 // lanes from the zero vector. 1163 SmallVector<int, 16> ShuffleMask; 1164 ShuffleMask.reserve(NumSrcElements); 1165 for (int i = 0; i < NumSrcElements; ++i) 1166 ShuffleMask.push_back(i); 1167 1168 int ExtLaneScale = NumSrcElements / NumElements; 1169 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 1170 for (int i = 0; i < NumElements; ++i) 1171 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 1172 1173 return DAG.getNode(ISD::BITCAST, DL, VT, 1174 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 1175 } 1176 1177 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) { 1178 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 1179 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 1180 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 1181 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 1182 } 1183 1184 SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) { 1185 EVT VT = Node->getValueType(0); 1186 1187 // Generate a byte wise shuffle mask for the BSWAP. 1188 SmallVector<int, 16> ShuffleMask; 1189 createBSWAPShuffleMask(VT, ShuffleMask); 1190 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 1191 1192 // Only emit a shuffle if the mask is legal. 1193 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) 1194 return DAG.UnrollVectorOp(Node); 1195 1196 SDLoc DL(Node); 1197 SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0)); 1198 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); 1199 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 1200 } 1201 1202 void VectorLegalizer::ExpandBITREVERSE(SDNode *Node, 1203 SmallVectorImpl<SDValue> &Results) { 1204 EVT VT = Node->getValueType(0); 1205 1206 // If we have the scalar operation, it's probably cheaper to unroll it. 1207 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) { 1208 SDValue Tmp = DAG.UnrollVectorOp(Node); 1209 Results.push_back(Tmp); 1210 return; 1211 } 1212 1213 // If the vector element width is a whole number of bytes, test if its legal 1214 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte 1215 // vector. This greatly reduces the number of bit shifts necessary. 1216 unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); 1217 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { 1218 SmallVector<int, 16> BSWAPMask; 1219 createBSWAPShuffleMask(VT, BSWAPMask); 1220 1221 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); 1222 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && 1223 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || 1224 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && 1225 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && 1226 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && 1227 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { 1228 SDLoc DL(Node); 1229 SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0)); 1230 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 1231 BSWAPMask); 1232 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); 1233 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 1234 Results.push_back(Op); 1235 return; 1236 } 1237 } 1238 1239 // If we have the appropriate vector bit operations, it is better to use them 1240 // than unrolling and expanding each component. 1241 if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 1242 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 1243 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) && 1244 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) 1245 // Let LegalizeDAG handle this later. 1246 return; 1247 1248 // Otherwise unroll. 1249 SDValue Tmp = DAG.UnrollVectorOp(Node); 1250 Results.push_back(Tmp); 1251 } 1252 1253 SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) { 1254 // Implement VSELECT in terms of XOR, AND, OR 1255 // on platforms which do not support blend natively. 1256 SDLoc DL(Node); 1257 1258 SDValue Mask = Node->getOperand(0); 1259 SDValue Op1 = Node->getOperand(1); 1260 SDValue Op2 = Node->getOperand(2); 1261 1262 EVT VT = Mask.getValueType(); 1263 1264 // If we can't even use the basic vector operations of 1265 // AND,OR,XOR, we will have to scalarize the op. 1266 // Notice that the operation may be 'promoted' which means that it is 1267 // 'bitcasted' to another type which is handled. 1268 // This operation also isn't safe with AND, OR, XOR when the boolean 1269 // type is 0/1 as we need an all ones vector constant to mask with. 1270 // FIXME: Sign extend 1 to all ones if thats legal on the target. 1271 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 1272 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 1273 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 1274 TLI.getBooleanContents(Op1.getValueType()) != 1275 TargetLowering::ZeroOrNegativeOneBooleanContent) 1276 return DAG.UnrollVectorOp(Node); 1277 1278 // If the mask and the type are different sizes, unroll the vector op. This 1279 // can occur when getSetCCResultType returns something that is different in 1280 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 1281 if (VT.getSizeInBits() != Op1.getValueSizeInBits()) 1282 return DAG.UnrollVectorOp(Node); 1283 1284 // Bitcast the operands to be the same type as the mask. 1285 // This is needed when we select between FP types because 1286 // the mask is a vector of integers. 1287 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 1288 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 1289 1290 SDValue AllOnes = DAG.getConstant( 1291 APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT); 1292 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 1293 1294 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 1295 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 1296 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 1297 return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val); 1298 } 1299 1300 void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node, 1301 SmallVectorImpl<SDValue> &Results) { 1302 // Attempt to expand using TargetLowering. 1303 SDValue Result, Chain; 1304 if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) { 1305 Results.push_back(Result); 1306 if (Node->isStrictFPOpcode()) 1307 Results.push_back(Chain); 1308 return; 1309 } 1310 1311 // Otherwise go ahead and unroll. 1312 if (Node->isStrictFPOpcode()) { 1313 UnrollStrictFPOp(Node, Results); 1314 return; 1315 } 1316 1317 Results.push_back(DAG.UnrollVectorOp(Node)); 1318 } 1319 1320 void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node, 1321 SmallVectorImpl<SDValue> &Results) { 1322 bool IsStrict = Node->isStrictFPOpcode(); 1323 unsigned OpNo = IsStrict ? 1 : 0; 1324 SDValue Src = Node->getOperand(OpNo); 1325 EVT VT = Src.getValueType(); 1326 SDLoc DL(Node); 1327 1328 // Attempt to expand using TargetLowering. 1329 SDValue Result; 1330 SDValue Chain; 1331 if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) { 1332 Results.push_back(Result); 1333 if (IsStrict) 1334 Results.push_back(Chain); 1335 return; 1336 } 1337 1338 // Make sure that the SINT_TO_FP and SRL instructions are available. 1339 if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) == 1340 TargetLowering::Expand) || 1341 (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) == 1342 TargetLowering::Expand)) || 1343 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) { 1344 if (IsStrict) { 1345 UnrollStrictFPOp(Node, Results); 1346 return; 1347 } 1348 1349 Results.push_back(DAG.UnrollVectorOp(Node)); 1350 return; 1351 } 1352 1353 unsigned BW = VT.getScalarSizeInBits(); 1354 assert((BW == 64 || BW == 32) && 1355 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 1356 1357 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT); 1358 1359 // Constants to clear the upper part of the word. 1360 // Notice that we can also use SHL+SHR, but using a constant is slightly 1361 // faster on x86. 1362 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; 1363 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 1364 1365 // Two to the power of half-word-size. 1366 SDValue TWOHW = 1367 DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0)); 1368 1369 // Clear upper part of LO, lower HI 1370 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord); 1371 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask); 1372 1373 if (IsStrict) { 1374 // Convert hi and lo to floats 1375 // Convert the hi part back to the upper values 1376 // TODO: Can any fast-math-flags be set on these nodes? 1377 SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, 1378 {Node->getValueType(0), MVT::Other}, 1379 {Node->getOperand(0), HI}); 1380 fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other}, 1381 {fHI.getValue(1), fHI, TWOHW}); 1382 SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, 1383 {Node->getValueType(0), MVT::Other}, 1384 {Node->getOperand(0), LO}); 1385 1386 SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1), 1387 fLO.getValue(1)); 1388 1389 // Add the two halves 1390 SDValue Result = 1391 DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other}, 1392 {TF, fHI, fLO}); 1393 1394 Results.push_back(Result); 1395 Results.push_back(Result.getValue(1)); 1396 return; 1397 } 1398 1399 // Convert hi and lo to floats 1400 // Convert the hi part back to the upper values 1401 // TODO: Can any fast-math-flags be set on these nodes? 1402 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI); 1403 fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW); 1404 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO); 1405 1406 // Add the two halves 1407 Results.push_back( 1408 DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO)); 1409 } 1410 1411 SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) { 1412 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) { 1413 SDLoc DL(Node); 1414 SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0)); 1415 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. 1416 return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero, 1417 Node->getOperand(0)); 1418 } 1419 return DAG.UnrollVectorOp(Node); 1420 } 1421 1422 void VectorLegalizer::ExpandFSUB(SDNode *Node, 1423 SmallVectorImpl<SDValue> &Results) { 1424 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal, 1425 // we can defer this to operation legalization where it will be lowered as 1426 // a+(-b). 1427 EVT VT = Node->getValueType(0); 1428 if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && 1429 TLI.isOperationLegalOrCustom(ISD::FADD, VT)) 1430 return; // Defer to LegalizeDAG 1431 1432 SDValue Tmp = DAG.UnrollVectorOp(Node); 1433 Results.push_back(Tmp); 1434 } 1435 1436 void VectorLegalizer::ExpandUADDSUBO(SDNode *Node, 1437 SmallVectorImpl<SDValue> &Results) { 1438 SDValue Result, Overflow; 1439 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 1440 Results.push_back(Result); 1441 Results.push_back(Overflow); 1442 } 1443 1444 void VectorLegalizer::ExpandSADDSUBO(SDNode *Node, 1445 SmallVectorImpl<SDValue> &Results) { 1446 SDValue Result, Overflow; 1447 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 1448 Results.push_back(Result); 1449 Results.push_back(Overflow); 1450 } 1451 1452 void VectorLegalizer::ExpandMULO(SDNode *Node, 1453 SmallVectorImpl<SDValue> &Results) { 1454 SDValue Result, Overflow; 1455 if (!TLI.expandMULO(Node, Result, Overflow, DAG)) 1456 std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node); 1457 1458 Results.push_back(Result); 1459 Results.push_back(Overflow); 1460 } 1461 1462 void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node, 1463 SmallVectorImpl<SDValue> &Results) { 1464 SDNode *N = Node; 1465 if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N), 1466 N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG)) 1467 Results.push_back(Expanded); 1468 } 1469 1470 void VectorLegalizer::ExpandStrictFPOp(SDNode *Node, 1471 SmallVectorImpl<SDValue> &Results) { 1472 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) { 1473 ExpandUINT_TO_FLOAT(Node, Results); 1474 return; 1475 } 1476 if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) { 1477 ExpandFP_TO_UINT(Node, Results); 1478 return; 1479 } 1480 1481 UnrollStrictFPOp(Node, Results); 1482 } 1483 1484 void VectorLegalizer::UnrollStrictFPOp(SDNode *Node, 1485 SmallVectorImpl<SDValue> &Results) { 1486 EVT VT = Node->getValueType(0); 1487 EVT EltVT = VT.getVectorElementType(); 1488 unsigned NumElems = VT.getVectorNumElements(); 1489 unsigned NumOpers = Node->getNumOperands(); 1490 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1491 1492 EVT TmpEltVT = EltVT; 1493 if (Node->getOpcode() == ISD::STRICT_FSETCC || 1494 Node->getOpcode() == ISD::STRICT_FSETCCS) 1495 TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(), 1496 *DAG.getContext(), TmpEltVT); 1497 1498 EVT ValueVTs[] = {TmpEltVT, MVT::Other}; 1499 SDValue Chain = Node->getOperand(0); 1500 SDLoc dl(Node); 1501 1502 SmallVector<SDValue, 32> OpValues; 1503 SmallVector<SDValue, 32> OpChains; 1504 for (unsigned i = 0; i < NumElems; ++i) { 1505 SmallVector<SDValue, 4> Opers; 1506 SDValue Idx = DAG.getVectorIdxConstant(i, dl); 1507 1508 // The Chain is the first operand. 1509 Opers.push_back(Chain); 1510 1511 // Now process the remaining operands. 1512 for (unsigned j = 1; j < NumOpers; ++j) { 1513 SDValue Oper = Node->getOperand(j); 1514 EVT OperVT = Oper.getValueType(); 1515 1516 if (OperVT.isVector()) 1517 Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 1518 OperVT.getVectorElementType(), Oper, Idx); 1519 1520 Opers.push_back(Oper); 1521 } 1522 1523 SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers); 1524 SDValue ScalarResult = ScalarOp.getValue(0); 1525 SDValue ScalarChain = ScalarOp.getValue(1); 1526 1527 if (Node->getOpcode() == ISD::STRICT_FSETCC || 1528 Node->getOpcode() == ISD::STRICT_FSETCCS) 1529 ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult, 1530 DAG.getConstant(APInt::getAllOnesValue 1531 (EltVT.getSizeInBits()), dl, EltVT), 1532 DAG.getConstant(0, dl, EltVT)); 1533 1534 OpValues.push_back(ScalarResult); 1535 OpChains.push_back(ScalarChain); 1536 } 1537 1538 SDValue Result = DAG.getBuildVector(VT, dl, OpValues); 1539 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains); 1540 1541 Results.push_back(Result); 1542 Results.push_back(NewChain); 1543 } 1544 1545 SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) { 1546 EVT VT = Node->getValueType(0); 1547 unsigned NumElems = VT.getVectorNumElements(); 1548 EVT EltVT = VT.getVectorElementType(); 1549 SDValue LHS = Node->getOperand(0); 1550 SDValue RHS = Node->getOperand(1); 1551 SDValue CC = Node->getOperand(2); 1552 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1553 SDLoc dl(Node); 1554 SmallVector<SDValue, 8> Ops(NumElems); 1555 for (unsigned i = 0; i < NumElems; ++i) { 1556 SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1557 DAG.getVectorIdxConstant(i, dl)); 1558 SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1559 DAG.getVectorIdxConstant(i, dl)); 1560 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1561 TLI.getSetCCResultType(DAG.getDataLayout(), 1562 *DAG.getContext(), TmpEltVT), 1563 LHSElem, RHSElem, CC); 1564 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 1565 DAG.getConstant(APInt::getAllOnesValue 1566 (EltVT.getSizeInBits()), dl, EltVT), 1567 DAG.getConstant(0, dl, EltVT)); 1568 } 1569 return DAG.getBuildVector(VT, dl, Ops); 1570 } 1571 1572 bool SelectionDAG::LegalizeVectors() { 1573 return VectorLegalizer(*this).Run(); 1574 } 1575