1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SelectionDAG::LegalizeVectors method. 11 // 12 // The vector legalizer looks for vector operations which might need to be 13 // scalarized and legalizes them. This is a separate step from Legalize because 14 // scalarizing can introduce illegal types. For example, suppose we have an 15 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 17 // operation, which introduces nodes with the illegal type i64 which must be 18 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 19 // the operation must be unrolled, which introduces nodes with the illegal 20 // type i8 which must be promoted. 21 // 22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 23 // or operations that happen to take a vector which are custom-lowered; 24 // the legalization for such operations never produces nodes 25 // with illegal types, so it's okay to put off legalizing them until 26 // SelectionDAG::Legalize runs. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/ADT/APInt.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/CodeGen/ISDOpcodes.h" 34 #include "llvm/CodeGen/MachineMemOperand.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/SelectionDAGNodes.h" 37 #include "llvm/CodeGen/TargetLowering.h" 38 #include "llvm/CodeGen/ValueTypes.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Compiler.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include <cassert> 46 #include <cstdint> 47 #include <iterator> 48 #include <utility> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "legalizevectorops" 53 54 namespace { 55 56 class VectorLegalizer { 57 SelectionDAG& DAG; 58 const TargetLowering &TLI; 59 bool Changed = false; // Keep track of whether anything changed 60 61 /// For nodes that are of legal width, and that have more than one use, this 62 /// map indicates what regularized operand to use. This allows us to avoid 63 /// legalizing the same thing more than once. 64 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 65 66 /// Adds a node to the translation cache. 67 void AddLegalizedOperand(SDValue From, SDValue To) { 68 LegalizedNodes.insert(std::make_pair(From, To)); 69 // If someone requests legalization of the new node, return itself. 70 if (From != To) 71 LegalizedNodes.insert(std::make_pair(To, To)); 72 } 73 74 /// Legalizes the given node. 75 SDValue LegalizeOp(SDValue Op); 76 77 /// Assuming the node is legal, "legalize" the results. 78 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); 79 80 /// Implements unrolling a VSETCC. 81 SDValue UnrollVSETCC(SDValue Op); 82 83 /// Implement expand-based legalization of vector operations. 84 /// 85 /// This is just a high-level routine to dispatch to specific code paths for 86 /// operations to legalize them. 87 SDValue Expand(SDValue Op); 88 89 /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if 90 /// FP_TO_SINT isn't legal. 91 SDValue ExpandFP_TO_UINT(SDValue Op); 92 93 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 94 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 95 SDValue ExpandUINT_TO_FLOAT(SDValue Op); 96 97 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 98 SDValue ExpandSEXTINREG(SDValue Op); 99 100 /// Implement expansion for ANY_EXTEND_VECTOR_INREG. 101 /// 102 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 103 /// type. The contents of the bits in the extended part of each element are 104 /// undef. 105 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op); 106 107 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG. 108 /// 109 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 110 /// type, then shifts left and arithmetic shifts right to introduce a sign 111 /// extension. 112 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op); 113 114 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG. 115 /// 116 /// Shuffles the low lanes of the operand into place and blends zeros into 117 /// the remaining lanes, finally bitcasting to the proper type. 118 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op); 119 120 /// Expand bswap of vectors into a shuffle if legal. 121 SDValue ExpandBSWAP(SDValue Op); 122 123 /// Implement vselect in terms of XOR, AND, OR when blend is not 124 /// supported by the target. 125 SDValue ExpandVSELECT(SDValue Op); 126 SDValue ExpandSELECT(SDValue Op); 127 SDValue ExpandLoad(SDValue Op); 128 SDValue ExpandStore(SDValue Op); 129 SDValue ExpandFNEG(SDValue Op); 130 SDValue ExpandFSUB(SDValue Op); 131 SDValue ExpandBITREVERSE(SDValue Op); 132 SDValue ExpandCTPOP(SDValue Op); 133 SDValue ExpandCTLZ(SDValue Op); 134 SDValue ExpandCTTZ(SDValue Op); 135 SDValue ExpandFunnelShift(SDValue Op); 136 SDValue ExpandFMINNUM_FMAXNUM(SDValue Op); 137 SDValue ExpandStrictFPOp(SDValue Op); 138 139 /// Implements vector promotion. 140 /// 141 /// This is essentially just bitcasting the operands to a different type and 142 /// bitcasting the result back to the original type. 143 SDValue Promote(SDValue Op); 144 145 /// Implements [SU]INT_TO_FP vector promotion. 146 /// 147 /// This is a [zs]ext of the input operand to a larger integer type. 148 SDValue PromoteINT_TO_FP(SDValue Op); 149 150 /// Implements FP_TO_[SU]INT vector promotion of the result type. 151 /// 152 /// It is promoted to a larger integer type. The result is then 153 /// truncated back to the original type. 154 SDValue PromoteFP_TO_INT(SDValue Op); 155 156 public: 157 VectorLegalizer(SelectionDAG& dag) : 158 DAG(dag), TLI(dag.getTargetLoweringInfo()) {} 159 160 /// Begin legalizer the vector operations in the DAG. 161 bool Run(); 162 }; 163 164 } // end anonymous namespace 165 166 bool VectorLegalizer::Run() { 167 // Before we start legalizing vector nodes, check if there are any vectors. 168 bool HasVectors = false; 169 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 170 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 171 // Check if the values of the nodes contain vectors. We don't need to check 172 // the operands because we are going to check their values at some point. 173 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); 174 J != E; ++J) 175 HasVectors |= J->isVector(); 176 177 // If we found a vector node we can start the legalization. 178 if (HasVectors) 179 break; 180 } 181 182 // If this basic block has no vectors then no need to legalize vectors. 183 if (!HasVectors) 184 return false; 185 186 // The legalize process is inherently a bottom-up recursive process (users 187 // legalize their uses before themselves). Given infinite stack space, we 188 // could just start legalizing on the root and traverse the whole graph. In 189 // practice however, this causes us to run out of stack space on large basic 190 // blocks. To avoid this problem, compute an ordering of the nodes where each 191 // node is only legalized after all of its operands are legalized. 192 DAG.AssignTopologicalOrder(); 193 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 194 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 195 LegalizeOp(SDValue(&*I, 0)); 196 197 // Finally, it's possible the root changed. Get the new root. 198 SDValue OldRoot = DAG.getRoot(); 199 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 200 DAG.setRoot(LegalizedNodes[OldRoot]); 201 202 LegalizedNodes.clear(); 203 204 // Remove dead nodes now. 205 DAG.RemoveDeadNodes(); 206 207 return Changed; 208 } 209 210 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { 211 // Generic legalization: just pass the operand through. 212 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) 213 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 214 return Result.getValue(Op.getResNo()); 215 } 216 217 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 218 // Note that LegalizeOp may be reentered even from single-use nodes, which 219 // means that we always must cache transformed nodes. 220 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 221 if (I != LegalizedNodes.end()) return I->second; 222 223 SDNode* Node = Op.getNode(); 224 225 // Legalize the operands 226 SmallVector<SDValue, 8> Ops; 227 for (const SDValue &Op : Node->op_values()) 228 Ops.push_back(LegalizeOp(Op)); 229 230 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 231 Op.getResNo()); 232 233 if (Op.getOpcode() == ISD::LOAD) { 234 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 235 ISD::LoadExtType ExtType = LD->getExtensionType(); 236 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) { 237 LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: "; 238 Node->dump(&DAG)); 239 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), 240 LD->getMemoryVT())) { 241 default: llvm_unreachable("This action is not supported yet!"); 242 case TargetLowering::Legal: 243 return TranslateLegalizeResults(Op, Result); 244 case TargetLowering::Custom: 245 if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) { 246 assert(Lowered->getNumValues() == Op->getNumValues() && 247 "Unexpected number of results"); 248 if (Lowered != Result) { 249 // Make sure the new code is also legal. 250 Lowered = LegalizeOp(Lowered); 251 Changed = true; 252 } 253 return TranslateLegalizeResults(Op, Lowered); 254 } 255 LLVM_FALLTHROUGH; 256 case TargetLowering::Expand: 257 Changed = true; 258 return LegalizeOp(ExpandLoad(Op)); 259 } 260 } 261 } else if (Op.getOpcode() == ISD::STORE) { 262 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 263 EVT StVT = ST->getMemoryVT(); 264 MVT ValVT = ST->getValue().getSimpleValueType(); 265 if (StVT.isVector() && ST->isTruncatingStore()) { 266 LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: "; 267 Node->dump(&DAG)); 268 switch (TLI.getTruncStoreAction(ValVT, StVT)) { 269 default: llvm_unreachable("This action is not supported yet!"); 270 case TargetLowering::Legal: 271 return TranslateLegalizeResults(Op, Result); 272 case TargetLowering::Custom: { 273 SDValue Lowered = TLI.LowerOperation(Result, DAG); 274 if (Lowered != Result) { 275 // Make sure the new code is also legal. 276 Lowered = LegalizeOp(Lowered); 277 Changed = true; 278 } 279 return TranslateLegalizeResults(Op, Lowered); 280 } 281 case TargetLowering::Expand: 282 Changed = true; 283 return LegalizeOp(ExpandStore(Op)); 284 } 285 } 286 } 287 288 bool HasVectorValue = false; 289 for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end(); 290 J != E; 291 ++J) 292 HasVectorValue |= J->isVector(); 293 if (!HasVectorValue) 294 return TranslateLegalizeResults(Op, Result); 295 296 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 297 switch (Op.getOpcode()) { 298 default: 299 return TranslateLegalizeResults(Op, Result); 300 case ISD::STRICT_FADD: 301 case ISD::STRICT_FSUB: 302 case ISD::STRICT_FMUL: 303 case ISD::STRICT_FDIV: 304 case ISD::STRICT_FREM: 305 case ISD::STRICT_FSQRT: 306 case ISD::STRICT_FMA: 307 case ISD::STRICT_FPOW: 308 case ISD::STRICT_FPOWI: 309 case ISD::STRICT_FSIN: 310 case ISD::STRICT_FCOS: 311 case ISD::STRICT_FEXP: 312 case ISD::STRICT_FEXP2: 313 case ISD::STRICT_FLOG: 314 case ISD::STRICT_FLOG10: 315 case ISD::STRICT_FLOG2: 316 case ISD::STRICT_FRINT: 317 case ISD::STRICT_FNEARBYINT: 318 case ISD::STRICT_FMAXNUM: 319 case ISD::STRICT_FMINNUM: 320 case ISD::STRICT_FCEIL: 321 case ISD::STRICT_FFLOOR: 322 case ISD::STRICT_FROUND: 323 case ISD::STRICT_FTRUNC: 324 // These pseudo-ops get legalized as if they were their non-strict 325 // equivalent. For instance, if ISD::FSQRT is legal then ISD::STRICT_FSQRT 326 // is also legal, but if ISD::FSQRT requires expansion then so does 327 // ISD::STRICT_FSQRT. 328 Action = TLI.getStrictFPOperationAction(Node->getOpcode(), 329 Node->getValueType(0)); 330 break; 331 case ISD::ADD: 332 case ISD::SUB: 333 case ISD::MUL: 334 case ISD::MULHS: 335 case ISD::MULHU: 336 case ISD::SDIV: 337 case ISD::UDIV: 338 case ISD::SREM: 339 case ISD::UREM: 340 case ISD::SDIVREM: 341 case ISD::UDIVREM: 342 case ISD::FADD: 343 case ISD::FSUB: 344 case ISD::FMUL: 345 case ISD::FDIV: 346 case ISD::FREM: 347 case ISD::AND: 348 case ISD::OR: 349 case ISD::XOR: 350 case ISD::SHL: 351 case ISD::SRA: 352 case ISD::SRL: 353 case ISD::ROTL: 354 case ISD::ROTR: 355 case ISD::BSWAP: 356 case ISD::BITREVERSE: 357 case ISD::CTLZ: 358 case ISD::CTTZ: 359 case ISD::CTLZ_ZERO_UNDEF: 360 case ISD::CTTZ_ZERO_UNDEF: 361 case ISD::CTPOP: 362 case ISD::SELECT: 363 case ISD::VSELECT: 364 case ISD::SELECT_CC: 365 case ISD::SETCC: 366 case ISD::ZERO_EXTEND: 367 case ISD::ANY_EXTEND: 368 case ISD::TRUNCATE: 369 case ISD::SIGN_EXTEND: 370 case ISD::FP_TO_SINT: 371 case ISD::FP_TO_UINT: 372 case ISD::FNEG: 373 case ISD::FABS: 374 case ISD::FMINNUM: 375 case ISD::FMAXNUM: 376 case ISD::FMINNUM_IEEE: 377 case ISD::FMAXNUM_IEEE: 378 case ISD::FMINIMUM: 379 case ISD::FMAXIMUM: 380 case ISD::FCOPYSIGN: 381 case ISD::FSQRT: 382 case ISD::FSIN: 383 case ISD::FCOS: 384 case ISD::FPOWI: 385 case ISD::FPOW: 386 case ISD::FLOG: 387 case ISD::FLOG2: 388 case ISD::FLOG10: 389 case ISD::FEXP: 390 case ISD::FEXP2: 391 case ISD::FCEIL: 392 case ISD::FTRUNC: 393 case ISD::FRINT: 394 case ISD::FNEARBYINT: 395 case ISD::FROUND: 396 case ISD::FFLOOR: 397 case ISD::FP_ROUND: 398 case ISD::FP_EXTEND: 399 case ISD::FMA: 400 case ISD::SIGN_EXTEND_INREG: 401 case ISD::ANY_EXTEND_VECTOR_INREG: 402 case ISD::SIGN_EXTEND_VECTOR_INREG: 403 case ISD::ZERO_EXTEND_VECTOR_INREG: 404 case ISD::SMIN: 405 case ISD::SMAX: 406 case ISD::UMIN: 407 case ISD::UMAX: 408 case ISD::SMUL_LOHI: 409 case ISD::UMUL_LOHI: 410 case ISD::FCANONICALIZE: 411 case ISD::SADDSAT: 412 case ISD::UADDSAT: 413 case ISD::SSUBSAT: 414 case ISD::USUBSAT: 415 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 416 break; 417 case ISD::FP_ROUND_INREG: 418 Action = TLI.getOperationAction(Node->getOpcode(), 419 cast<VTSDNode>(Node->getOperand(1))->getVT()); 420 break; 421 case ISD::SINT_TO_FP: 422 case ISD::UINT_TO_FP: 423 Action = TLI.getOperationAction(Node->getOpcode(), 424 Node->getOperand(0).getValueType()); 425 break; 426 } 427 428 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG)); 429 430 switch (Action) { 431 default: llvm_unreachable("This action is not supported yet!"); 432 case TargetLowering::Promote: 433 Result = Promote(Op); 434 Changed = true; 435 break; 436 case TargetLowering::Legal: 437 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 438 break; 439 case TargetLowering::Custom: { 440 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 441 if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) { 442 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 443 Result = Tmp1; 444 break; 445 } 446 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 447 LLVM_FALLTHROUGH; 448 } 449 case TargetLowering::Expand: 450 Result = Expand(Op); 451 } 452 453 // Make sure that the generated code is itself legal. 454 if (Result != Op) { 455 Result = LegalizeOp(Result); 456 Changed = true; 457 } 458 459 // Note that LegalizeOp may be reentered even from single-use nodes, which 460 // means that we always must cache transformed nodes. 461 AddLegalizedOperand(Op, Result); 462 return Result; 463 } 464 465 SDValue VectorLegalizer::Promote(SDValue Op) { 466 // For a few operations there is a specific concept for promotion based on 467 // the operand's type. 468 switch (Op.getOpcode()) { 469 case ISD::SINT_TO_FP: 470 case ISD::UINT_TO_FP: 471 // "Promote" the operation by extending the operand. 472 return PromoteINT_TO_FP(Op); 473 case ISD::FP_TO_UINT: 474 case ISD::FP_TO_SINT: 475 // Promote the operation by extending the operand. 476 return PromoteFP_TO_INT(Op); 477 } 478 479 // There are currently two cases of vector promotion: 480 // 1) Bitcasting a vector of integers to a different type to a vector of the 481 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 482 // 2) Extending a vector of floats to a vector of the same number of larger 483 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 484 MVT VT = Op.getSimpleValueType(); 485 assert(Op.getNode()->getNumValues() == 1 && 486 "Can't promote a vector with multiple results!"); 487 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 488 SDLoc dl(Op); 489 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 490 491 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 492 if (Op.getOperand(j).getValueType().isVector()) 493 if (Op.getOperand(j) 494 .getValueType() 495 .getVectorElementType() 496 .isFloatingPoint() && 497 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 498 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j)); 499 else 500 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); 501 else 502 Operands[j] = Op.getOperand(j); 503 } 504 505 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags()); 506 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 507 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 508 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 509 return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl)); 510 else 511 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 512 } 513 514 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) { 515 // INT_TO_FP operations may require the input operand be promoted even 516 // when the type is otherwise legal. 517 MVT VT = Op.getOperand(0).getSimpleValueType(); 518 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 519 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 520 "Vectors have different number of elements!"); 521 522 SDLoc dl(Op); 523 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 524 525 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : 526 ISD::SIGN_EXTEND; 527 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 528 if (Op.getOperand(j).getValueType().isVector()) 529 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j)); 530 else 531 Operands[j] = Op.getOperand(j); 532 } 533 534 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands); 535 } 536 537 // For FP_TO_INT we promote the result type to a vector type with wider 538 // elements and then truncate the result. This is different from the default 539 // PromoteVector which uses bitcast to promote thus assumning that the 540 // promoted vector type has the same overall size. 541 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op) { 542 MVT VT = Op.getSimpleValueType(); 543 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 544 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 545 "Vectors have different number of elements!"); 546 547 unsigned NewOpc = Op->getOpcode(); 548 // Change FP_TO_UINT to FP_TO_SINT if possible. 549 // TODO: Should we only do this if FP_TO_UINT itself isn't legal? 550 if (NewOpc == ISD::FP_TO_UINT && 551 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT)) 552 NewOpc = ISD::FP_TO_SINT; 553 554 SDLoc dl(Op); 555 SDValue Promoted = DAG.getNode(NewOpc, dl, NVT, Op.getOperand(0)); 556 557 // Assert that the converted value fits in the original type. If it doesn't 558 // (eg: because the value being converted is too big), then the result of the 559 // original operation was undefined anyway, so the assert is still correct. 560 Promoted = DAG.getNode(Op->getOpcode() == ISD::FP_TO_UINT ? ISD::AssertZext 561 : ISD::AssertSext, 562 dl, NVT, Promoted, 563 DAG.getValueType(VT.getScalarType())); 564 return DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted); 565 } 566 567 SDValue VectorLegalizer::ExpandLoad(SDValue Op) { 568 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 569 570 EVT SrcVT = LD->getMemoryVT(); 571 EVT SrcEltVT = SrcVT.getScalarType(); 572 unsigned NumElem = SrcVT.getVectorNumElements(); 573 574 SDValue NewChain; 575 SDValue Value; 576 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { 577 SDLoc dl(Op); 578 579 SmallVector<SDValue, 8> Vals; 580 SmallVector<SDValue, 8> LoadChains; 581 582 EVT DstEltVT = LD->getValueType(0).getScalarType(); 583 SDValue Chain = LD->getChain(); 584 SDValue BasePTR = LD->getBasePtr(); 585 ISD::LoadExtType ExtType = LD->getExtensionType(); 586 587 // When elements in a vector is not byte-addressable, we cannot directly 588 // load each element by advancing pointer, which could only address bytes. 589 // Instead, we load all significant words, mask bits off, and concatenate 590 // them to form each element. Finally, they are extended to destination 591 // scalar type to build the destination vector. 592 EVT WideVT = TLI.getPointerTy(DAG.getDataLayout()); 593 594 assert(WideVT.isRound() && 595 "Could not handle the sophisticated case when the widest integer is" 596 " not power of 2."); 597 assert(WideVT.bitsGE(SrcEltVT) && 598 "Type is not legalized?"); 599 600 unsigned WideBytes = WideVT.getStoreSize(); 601 unsigned Offset = 0; 602 unsigned RemainingBytes = SrcVT.getStoreSize(); 603 SmallVector<SDValue, 8> LoadVals; 604 while (RemainingBytes > 0) { 605 SDValue ScalarLoad; 606 unsigned LoadBytes = WideBytes; 607 608 if (RemainingBytes >= LoadBytes) { 609 ScalarLoad = 610 DAG.getLoad(WideVT, dl, Chain, BasePTR, 611 LD->getPointerInfo().getWithOffset(Offset), 612 MinAlign(LD->getAlignment(), Offset), 613 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 614 } else { 615 EVT LoadVT = WideVT; 616 while (RemainingBytes < LoadBytes) { 617 LoadBytes >>= 1; // Reduce the load size by half. 618 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); 619 } 620 ScalarLoad = 621 DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, 622 LD->getPointerInfo().getWithOffset(Offset), LoadVT, 623 MinAlign(LD->getAlignment(), Offset), 624 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 625 } 626 627 RemainingBytes -= LoadBytes; 628 Offset += LoadBytes; 629 630 BasePTR = DAG.getObjectPtrOffset(dl, BasePTR, LoadBytes); 631 632 LoadVals.push_back(ScalarLoad.getValue(0)); 633 LoadChains.push_back(ScalarLoad.getValue(1)); 634 } 635 636 // Extract bits, pack and extend/trunc them into destination type. 637 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 638 SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT); 639 640 unsigned BitOffset = 0; 641 unsigned WideIdx = 0; 642 unsigned WideBits = WideVT.getSizeInBits(); 643 644 for (unsigned Idx = 0; Idx != NumElem; ++Idx) { 645 SDValue Lo, Hi, ShAmt; 646 647 if (BitOffset < WideBits) { 648 ShAmt = DAG.getConstant( 649 BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 650 Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); 651 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); 652 } 653 654 BitOffset += SrcEltBits; 655 if (BitOffset >= WideBits) { 656 WideIdx++; 657 BitOffset -= WideBits; 658 if (BitOffset > 0) { 659 ShAmt = DAG.getConstant( 660 SrcEltBits - BitOffset, dl, 661 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 662 Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); 663 Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask); 664 } 665 } 666 667 if (Hi.getNode()) 668 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); 669 670 switch (ExtType) { 671 default: llvm_unreachable("Unknown extended-load op!"); 672 case ISD::EXTLOAD: 673 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); 674 break; 675 case ISD::ZEXTLOAD: 676 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); 677 break; 678 case ISD::SEXTLOAD: 679 ShAmt = 680 DAG.getConstant(WideBits - SrcEltBits, dl, 681 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 682 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); 683 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); 684 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); 685 break; 686 } 687 Vals.push_back(Lo); 688 } 689 690 NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 691 Value = DAG.getBuildVector(Op.getNode()->getValueType(0), dl, Vals); 692 } else { 693 SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG); 694 // Skip past MERGE_VALUE node if known. 695 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) { 696 NewChain = Scalarized.getOperand(1); 697 Value = Scalarized.getOperand(0); 698 } else { 699 NewChain = Scalarized.getValue(1); 700 Value = Scalarized.getValue(0); 701 } 702 } 703 704 AddLegalizedOperand(Op.getValue(0), Value); 705 AddLegalizedOperand(Op.getValue(1), NewChain); 706 707 return (Op.getResNo() ? NewChain : Value); 708 } 709 710 SDValue VectorLegalizer::ExpandStore(SDValue Op) { 711 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 712 SDValue TF = TLI.scalarizeVectorStore(ST, DAG); 713 AddLegalizedOperand(Op, TF); 714 return TF; 715 } 716 717 SDValue VectorLegalizer::Expand(SDValue Op) { 718 switch (Op->getOpcode()) { 719 case ISD::SIGN_EXTEND_INREG: 720 return ExpandSEXTINREG(Op); 721 case ISD::ANY_EXTEND_VECTOR_INREG: 722 return ExpandANY_EXTEND_VECTOR_INREG(Op); 723 case ISD::SIGN_EXTEND_VECTOR_INREG: 724 return ExpandSIGN_EXTEND_VECTOR_INREG(Op); 725 case ISD::ZERO_EXTEND_VECTOR_INREG: 726 return ExpandZERO_EXTEND_VECTOR_INREG(Op); 727 case ISD::BSWAP: 728 return ExpandBSWAP(Op); 729 case ISD::VSELECT: 730 return ExpandVSELECT(Op); 731 case ISD::SELECT: 732 return ExpandSELECT(Op); 733 case ISD::FP_TO_UINT: 734 return ExpandFP_TO_UINT(Op); 735 case ISD::UINT_TO_FP: 736 return ExpandUINT_TO_FLOAT(Op); 737 case ISD::FNEG: 738 return ExpandFNEG(Op); 739 case ISD::FSUB: 740 return ExpandFSUB(Op); 741 case ISD::SETCC: 742 return UnrollVSETCC(Op); 743 case ISD::BITREVERSE: 744 return ExpandBITREVERSE(Op); 745 case ISD::CTPOP: 746 return ExpandCTPOP(Op); 747 case ISD::CTLZ: 748 case ISD::CTLZ_ZERO_UNDEF: 749 return ExpandCTLZ(Op); 750 case ISD::CTTZ: 751 case ISD::CTTZ_ZERO_UNDEF: 752 return ExpandCTTZ(Op); 753 case ISD::FSHL: 754 case ISD::FSHR: 755 return ExpandFunnelShift(Op); 756 case ISD::FMINNUM: 757 case ISD::FMAXNUM: 758 return ExpandFMINNUM_FMAXNUM(Op); 759 case ISD::STRICT_FADD: 760 case ISD::STRICT_FSUB: 761 case ISD::STRICT_FMUL: 762 case ISD::STRICT_FDIV: 763 case ISD::STRICT_FREM: 764 case ISD::STRICT_FSQRT: 765 case ISD::STRICT_FMA: 766 case ISD::STRICT_FPOW: 767 case ISD::STRICT_FPOWI: 768 case ISD::STRICT_FSIN: 769 case ISD::STRICT_FCOS: 770 case ISD::STRICT_FEXP: 771 case ISD::STRICT_FEXP2: 772 case ISD::STRICT_FLOG: 773 case ISD::STRICT_FLOG10: 774 case ISD::STRICT_FLOG2: 775 case ISD::STRICT_FRINT: 776 case ISD::STRICT_FNEARBYINT: 777 case ISD::STRICT_FMAXNUM: 778 case ISD::STRICT_FMINNUM: 779 case ISD::STRICT_FCEIL: 780 case ISD::STRICT_FFLOOR: 781 case ISD::STRICT_FROUND: 782 case ISD::STRICT_FTRUNC: 783 return ExpandStrictFPOp(Op); 784 default: 785 return DAG.UnrollVectorOp(Op.getNode()); 786 } 787 } 788 789 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) { 790 // Lower a select instruction where the condition is a scalar and the 791 // operands are vectors. Lower this select to VSELECT and implement it 792 // using XOR AND OR. The selector bit is broadcasted. 793 EVT VT = Op.getValueType(); 794 SDLoc DL(Op); 795 796 SDValue Mask = Op.getOperand(0); 797 SDValue Op1 = Op.getOperand(1); 798 SDValue Op2 = Op.getOperand(2); 799 800 assert(VT.isVector() && !Mask.getValueType().isVector() 801 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 802 803 // If we can't even use the basic vector operations of 804 // AND,OR,XOR, we will have to scalarize the op. 805 // Notice that the operation may be 'promoted' which means that it is 806 // 'bitcasted' to another type which is handled. 807 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 808 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 809 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 810 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 811 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 812 return DAG.UnrollVectorOp(Op.getNode()); 813 814 // Generate a mask operand. 815 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 816 817 // What is the size of each element in the vector mask. 818 EVT BitTy = MaskTy.getScalarType(); 819 820 Mask = DAG.getSelect(DL, BitTy, Mask, 821 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, 822 BitTy), 823 DAG.getConstant(0, DL, BitTy)); 824 825 // Broadcast the mask so that the entire vector is all-one or all zero. 826 Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask); 827 828 // Bitcast the operands to be the same type as the mask. 829 // This is needed when we select between FP types because 830 // the mask is a vector of integers. 831 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 832 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 833 834 SDValue AllOnes = DAG.getConstant( 835 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy); 836 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 837 838 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 839 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 840 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 841 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 842 } 843 844 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) { 845 EVT VT = Op.getValueType(); 846 847 // Make sure that the SRA and SHL instructions are available. 848 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 849 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 850 return DAG.UnrollVectorOp(Op.getNode()); 851 852 SDLoc DL(Op); 853 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT(); 854 855 unsigned BW = VT.getScalarSizeInBits(); 856 unsigned OrigBW = OrigTy.getScalarSizeInBits(); 857 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 858 859 Op = Op.getOperand(0); 860 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz); 861 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 862 } 863 864 // Generically expand a vector anyext in register to a shuffle of the relevant 865 // lanes into the appropriate locations, with other lanes left undef. 866 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) { 867 SDLoc DL(Op); 868 EVT VT = Op.getValueType(); 869 int NumElements = VT.getVectorNumElements(); 870 SDValue Src = Op.getOperand(0); 871 EVT SrcVT = Src.getValueType(); 872 int NumSrcElements = SrcVT.getVectorNumElements(); 873 874 // Build a base mask of undef shuffles. 875 SmallVector<int, 16> ShuffleMask; 876 ShuffleMask.resize(NumSrcElements, -1); 877 878 // Place the extended lanes into the correct locations. 879 int ExtLaneScale = NumSrcElements / NumElements; 880 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 881 for (int i = 0; i < NumElements; ++i) 882 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 883 884 return DAG.getNode( 885 ISD::BITCAST, DL, VT, 886 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 887 } 888 889 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) { 890 SDLoc DL(Op); 891 EVT VT = Op.getValueType(); 892 SDValue Src = Op.getOperand(0); 893 EVT SrcVT = Src.getValueType(); 894 895 // First build an any-extend node which can be legalized above when we 896 // recurse through it. 897 Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src); 898 899 // Now we need sign extend. Do this by shifting the elements. Even if these 900 // aren't legal operations, they have a better chance of being legalized 901 // without full scalarization than the sign extension does. 902 unsigned EltWidth = VT.getScalarSizeInBits(); 903 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); 904 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 905 return DAG.getNode(ISD::SRA, DL, VT, 906 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 907 ShiftAmount); 908 } 909 910 // Generically expand a vector zext in register to a shuffle of the relevant 911 // lanes into the appropriate locations, a blend of zero into the high bits, 912 // and a bitcast to the wider element type. 913 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) { 914 SDLoc DL(Op); 915 EVT VT = Op.getValueType(); 916 int NumElements = VT.getVectorNumElements(); 917 SDValue Src = Op.getOperand(0); 918 EVT SrcVT = Src.getValueType(); 919 int NumSrcElements = SrcVT.getVectorNumElements(); 920 921 // Build up a zero vector to blend into this one. 922 SDValue Zero = DAG.getConstant(0, DL, SrcVT); 923 924 // Shuffle the incoming lanes into the correct position, and pull all other 925 // lanes from the zero vector. 926 SmallVector<int, 16> ShuffleMask; 927 ShuffleMask.reserve(NumSrcElements); 928 for (int i = 0; i < NumSrcElements; ++i) 929 ShuffleMask.push_back(i); 930 931 int ExtLaneScale = NumSrcElements / NumElements; 932 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 933 for (int i = 0; i < NumElements; ++i) 934 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 935 936 return DAG.getNode(ISD::BITCAST, DL, VT, 937 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 938 } 939 940 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) { 941 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 942 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 943 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 944 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 945 } 946 947 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) { 948 EVT VT = Op.getValueType(); 949 950 // Generate a byte wise shuffle mask for the BSWAP. 951 SmallVector<int, 16> ShuffleMask; 952 createBSWAPShuffleMask(VT, ShuffleMask); 953 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 954 955 // Only emit a shuffle if the mask is legal. 956 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) 957 return DAG.UnrollVectorOp(Op.getNode()); 958 959 SDLoc DL(Op); 960 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 961 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); 962 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 963 } 964 965 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) { 966 EVT VT = Op.getValueType(); 967 968 // If we have the scalar operation, it's probably cheaper to unroll it. 969 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) 970 return DAG.UnrollVectorOp(Op.getNode()); 971 972 // If the vector element width is a whole number of bytes, test if its legal 973 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte 974 // vector. This greatly reduces the number of bit shifts necessary. 975 unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); 976 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { 977 SmallVector<int, 16> BSWAPMask; 978 createBSWAPShuffleMask(VT, BSWAPMask); 979 980 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); 981 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && 982 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || 983 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && 984 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && 985 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && 986 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { 987 SDLoc DL(Op); 988 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 989 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 990 BSWAPMask); 991 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); 992 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 993 } 994 } 995 996 // If we have the appropriate vector bit operations, it is better to use them 997 // than unrolling and expanding each component. 998 if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) || 999 !TLI.isOperationLegalOrCustom(ISD::SRL, VT) || 1000 !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 1001 !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) 1002 return DAG.UnrollVectorOp(Op.getNode()); 1003 1004 // Let LegalizeDAG handle this later. 1005 return Op; 1006 } 1007 1008 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { 1009 // Implement VSELECT in terms of XOR, AND, OR 1010 // on platforms which do not support blend natively. 1011 SDLoc DL(Op); 1012 1013 SDValue Mask = Op.getOperand(0); 1014 SDValue Op1 = Op.getOperand(1); 1015 SDValue Op2 = Op.getOperand(2); 1016 1017 EVT VT = Mask.getValueType(); 1018 1019 // If we can't even use the basic vector operations of 1020 // AND,OR,XOR, we will have to scalarize the op. 1021 // Notice that the operation may be 'promoted' which means that it is 1022 // 'bitcasted' to another type which is handled. 1023 // This operation also isn't safe with AND, OR, XOR when the boolean 1024 // type is 0/1 as we need an all ones vector constant to mask with. 1025 // FIXME: Sign extend 1 to all ones if thats legal on the target. 1026 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 1027 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 1028 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 1029 TLI.getBooleanContents(Op1.getValueType()) != 1030 TargetLowering::ZeroOrNegativeOneBooleanContent) 1031 return DAG.UnrollVectorOp(Op.getNode()); 1032 1033 // If the mask and the type are different sizes, unroll the vector op. This 1034 // can occur when getSetCCResultType returns something that is different in 1035 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 1036 if (VT.getSizeInBits() != Op1.getValueSizeInBits()) 1037 return DAG.UnrollVectorOp(Op.getNode()); 1038 1039 // Bitcast the operands to be the same type as the mask. 1040 // This is needed when we select between FP types because 1041 // the mask is a vector of integers. 1042 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 1043 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 1044 1045 SDValue AllOnes = DAG.getConstant( 1046 APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT); 1047 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 1048 1049 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 1050 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 1051 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 1052 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 1053 } 1054 1055 SDValue VectorLegalizer::ExpandFP_TO_UINT(SDValue Op) { 1056 // Attempt to expand using TargetLowering. 1057 SDValue Result; 1058 if (TLI.expandFP_TO_UINT(Op.getNode(), Result, DAG)) 1059 return Result; 1060 1061 // Otherwise go ahead and unroll. 1062 return DAG.UnrollVectorOp(Op.getNode()); 1063 } 1064 1065 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { 1066 EVT VT = Op.getOperand(0).getValueType(); 1067 SDLoc DL(Op); 1068 1069 // Attempt to expand using TargetLowering. 1070 SDValue Result; 1071 if (TLI.expandUINT_TO_FP(Op.getNode(), Result, DAG)) 1072 return Result; 1073 1074 // Make sure that the SINT_TO_FP and SRL instructions are available. 1075 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand || 1076 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) 1077 return DAG.UnrollVectorOp(Op.getNode()); 1078 1079 unsigned BW = VT.getScalarSizeInBits(); 1080 assert((BW == 64 || BW == 32) && 1081 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 1082 1083 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT); 1084 1085 // Constants to clear the upper part of the word. 1086 // Notice that we can also use SHL+SHR, but using a constant is slightly 1087 // faster on x86. 1088 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; 1089 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 1090 1091 // Two to the power of half-word-size. 1092 SDValue TWOHW = DAG.getConstantFP(1ULL << (BW / 2), DL, Op.getValueType()); 1093 1094 // Clear upper part of LO, lower HI 1095 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); 1096 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); 1097 1098 // Convert hi and lo to floats 1099 // Convert the hi part back to the upper values 1100 // TODO: Can any fast-math-flags be set on these nodes? 1101 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); 1102 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); 1103 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); 1104 1105 // Add the two halves 1106 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); 1107 } 1108 1109 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { 1110 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { 1111 SDLoc DL(Op); 1112 SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType()); 1113 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. 1114 return DAG.getNode(ISD::FSUB, DL, Op.getValueType(), 1115 Zero, Op.getOperand(0)); 1116 } 1117 return DAG.UnrollVectorOp(Op.getNode()); 1118 } 1119 1120 SDValue VectorLegalizer::ExpandFSUB(SDValue Op) { 1121 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal, 1122 // we can defer this to operation legalization where it will be lowered as 1123 // a+(-b). 1124 EVT VT = Op.getValueType(); 1125 if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && 1126 TLI.isOperationLegalOrCustom(ISD::FADD, VT)) 1127 return Op; // Defer to LegalizeDAG 1128 1129 return DAG.UnrollVectorOp(Op.getNode()); 1130 } 1131 1132 SDValue VectorLegalizer::ExpandCTPOP(SDValue Op) { 1133 SDValue Result; 1134 if (TLI.expandCTPOP(Op.getNode(), Result, DAG)) 1135 return Result; 1136 1137 return DAG.UnrollVectorOp(Op.getNode()); 1138 } 1139 1140 SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) { 1141 SDValue Result; 1142 if (TLI.expandCTLZ(Op.getNode(), Result, DAG)) 1143 return Result; 1144 1145 return DAG.UnrollVectorOp(Op.getNode()); 1146 } 1147 1148 SDValue VectorLegalizer::ExpandCTTZ(SDValue Op) { 1149 SDValue Result; 1150 if (TLI.expandCTTZ(Op.getNode(), Result, DAG)) 1151 return Result; 1152 1153 return DAG.UnrollVectorOp(Op.getNode()); 1154 } 1155 1156 SDValue VectorLegalizer::ExpandFunnelShift(SDValue Op) { 1157 SDValue Result; 1158 if (TLI.expandFunnelShift(Op.getNode(), Result, DAG)) 1159 return Result; 1160 1161 return DAG.UnrollVectorOp(Op.getNode()); 1162 } 1163 1164 SDValue VectorLegalizer::ExpandFMINNUM_FMAXNUM(SDValue Op) { 1165 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Op.getNode(), DAG)) 1166 return Expanded; 1167 return DAG.UnrollVectorOp(Op.getNode()); 1168 } 1169 1170 SDValue VectorLegalizer::ExpandStrictFPOp(SDValue Op) { 1171 EVT VT = Op.getValueType(); 1172 EVT EltVT = VT.getVectorElementType(); 1173 unsigned NumElems = VT.getVectorNumElements(); 1174 unsigned NumOpers = Op.getNumOperands(); 1175 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1176 EVT ValueVTs[] = {EltVT, MVT::Other}; 1177 SDValue Chain = Op.getOperand(0); 1178 SDLoc dl(Op); 1179 1180 SmallVector<SDValue, 32> OpValues; 1181 SmallVector<SDValue, 32> OpChains; 1182 for (unsigned i = 0; i < NumElems; ++i) { 1183 SmallVector<SDValue, 4> Opers; 1184 SDValue Idx = DAG.getConstant(i, dl, 1185 TLI.getVectorIdxTy(DAG.getDataLayout())); 1186 1187 // The Chain is the first operand. 1188 Opers.push_back(Chain); 1189 1190 // Now process the remaining operands. 1191 for (unsigned j = 1; j < NumOpers; ++j) { 1192 SDValue Oper = Op.getOperand(j); 1193 EVT OperVT = Oper.getValueType(); 1194 1195 if (OperVT.isVector()) 1196 Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 1197 EltVT, Oper, Idx); 1198 1199 Opers.push_back(Oper); 1200 } 1201 1202 SDValue ScalarOp = DAG.getNode(Op->getOpcode(), dl, ValueVTs, Opers); 1203 1204 OpValues.push_back(ScalarOp.getValue(0)); 1205 OpChains.push_back(ScalarOp.getValue(1)); 1206 } 1207 1208 SDValue Result = DAG.getBuildVector(VT, dl, OpValues); 1209 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains); 1210 1211 AddLegalizedOperand(Op.getValue(0), Result); 1212 AddLegalizedOperand(Op.getValue(1), NewChain); 1213 1214 return Op.getResNo() ? NewChain : Result; 1215 } 1216 1217 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { 1218 EVT VT = Op.getValueType(); 1219 unsigned NumElems = VT.getVectorNumElements(); 1220 EVT EltVT = VT.getVectorElementType(); 1221 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); 1222 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1223 SDLoc dl(Op); 1224 SmallVector<SDValue, 8> Ops(NumElems); 1225 for (unsigned i = 0; i < NumElems; ++i) { 1226 SDValue LHSElem = DAG.getNode( 1227 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1228 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1229 SDValue RHSElem = DAG.getNode( 1230 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1231 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1232 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1233 TLI.getSetCCResultType(DAG.getDataLayout(), 1234 *DAG.getContext(), TmpEltVT), 1235 LHSElem, RHSElem, CC); 1236 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 1237 DAG.getConstant(APInt::getAllOnesValue 1238 (EltVT.getSizeInBits()), dl, EltVT), 1239 DAG.getConstant(0, dl, EltVT)); 1240 } 1241 return DAG.getBuildVector(VT, dl, Ops); 1242 } 1243 1244 bool SelectionDAG::LegalizeVectors() { 1245 return VectorLegalizer(*this).Run(); 1246 } 1247