1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SelectionDAG::LegalizeVectors method. 11 // 12 // The vector legalizer looks for vector operations which might need to be 13 // scalarized and legalizes them. This is a separate step from Legalize because 14 // scalarizing can introduce illegal types. For example, suppose we have an 15 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 17 // operation, which introduces nodes with the illegal type i64 which must be 18 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 19 // the operation must be unrolled, which introduces nodes with the illegal 20 // type i8 which must be promoted. 21 // 22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 23 // or operations that happen to take a vector which are custom-lowered; 24 // the legalization for such operations never produces nodes 25 // with illegal types, so it's okay to put off legalizing them until 26 // SelectionDAG::Legalize runs. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/ADT/APInt.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/CodeGen/ISDOpcodes.h" 34 #include "llvm/CodeGen/MachineMemOperand.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/SelectionDAGNodes.h" 37 #include "llvm/CodeGen/TargetLowering.h" 38 #include "llvm/CodeGen/ValueTypes.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Compiler.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include <cassert> 46 #include <cstdint> 47 #include <iterator> 48 #include <utility> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "legalizevectorops" 53 54 namespace { 55 56 class VectorLegalizer { 57 SelectionDAG& DAG; 58 const TargetLowering &TLI; 59 bool Changed = false; // Keep track of whether anything changed 60 61 /// For nodes that are of legal width, and that have more than one use, this 62 /// map indicates what regularized operand to use. This allows us to avoid 63 /// legalizing the same thing more than once. 64 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 65 66 /// Adds a node to the translation cache. 67 void AddLegalizedOperand(SDValue From, SDValue To) { 68 LegalizedNodes.insert(std::make_pair(From, To)); 69 // If someone requests legalization of the new node, return itself. 70 if (From != To) 71 LegalizedNodes.insert(std::make_pair(To, To)); 72 } 73 74 /// Legalizes the given node. 75 SDValue LegalizeOp(SDValue Op); 76 77 /// Assuming the node is legal, "legalize" the results. 78 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); 79 80 /// Implements unrolling a VSETCC. 81 SDValue UnrollVSETCC(SDValue Op); 82 83 /// Implement expand-based legalization of vector operations. 84 /// 85 /// This is just a high-level routine to dispatch to specific code paths for 86 /// operations to legalize them. 87 SDValue Expand(SDValue Op); 88 89 /// Implements expansion for FNEG; falls back to UnrollVectorOp if 90 /// FSUB isn't legal. 91 /// 92 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 93 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 94 SDValue ExpandUINT_TO_FLOAT(SDValue Op); 95 96 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 97 SDValue ExpandSEXTINREG(SDValue Op); 98 99 /// Implement expansion for ANY_EXTEND_VECTOR_INREG. 100 /// 101 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 102 /// type. The contents of the bits in the extended part of each element are 103 /// undef. 104 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op); 105 106 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG. 107 /// 108 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 109 /// type, then shifts left and arithmetic shifts right to introduce a sign 110 /// extension. 111 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op); 112 113 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG. 114 /// 115 /// Shuffles the low lanes of the operand into place and blends zeros into 116 /// the remaining lanes, finally bitcasting to the proper type. 117 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op); 118 119 /// Expand bswap of vectors into a shuffle if legal. 120 SDValue ExpandBSWAP(SDValue Op); 121 122 /// Implement vselect in terms of XOR, AND, OR when blend is not 123 /// supported by the target. 124 SDValue ExpandVSELECT(SDValue Op); 125 SDValue ExpandSELECT(SDValue Op); 126 SDValue ExpandLoad(SDValue Op); 127 SDValue ExpandStore(SDValue Op); 128 SDValue ExpandFNEG(SDValue Op); 129 SDValue ExpandFSUB(SDValue Op); 130 SDValue ExpandBITREVERSE(SDValue Op); 131 SDValue ExpandCTLZ(SDValue Op); 132 SDValue ExpandCTTZ_ZERO_UNDEF(SDValue Op); 133 SDValue ExpandStrictFPOp(SDValue Op); 134 135 /// Implements vector promotion. 136 /// 137 /// This is essentially just bitcasting the operands to a different type and 138 /// bitcasting the result back to the original type. 139 SDValue Promote(SDValue Op); 140 141 /// Implements [SU]INT_TO_FP vector promotion. 142 /// 143 /// This is a [zs]ext of the input operand to a larger integer type. 144 SDValue PromoteINT_TO_FP(SDValue Op); 145 146 /// Implements FP_TO_[SU]INT vector promotion of the result type. 147 /// 148 /// It is promoted to a larger integer type. The result is then 149 /// truncated back to the original type. 150 SDValue PromoteFP_TO_INT(SDValue Op); 151 152 public: 153 VectorLegalizer(SelectionDAG& dag) : 154 DAG(dag), TLI(dag.getTargetLoweringInfo()) {} 155 156 /// Begin legalizer the vector operations in the DAG. 157 bool Run(); 158 }; 159 160 } // end anonymous namespace 161 162 bool VectorLegalizer::Run() { 163 // Before we start legalizing vector nodes, check if there are any vectors. 164 bool HasVectors = false; 165 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 166 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 167 // Check if the values of the nodes contain vectors. We don't need to check 168 // the operands because we are going to check their values at some point. 169 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); 170 J != E; ++J) 171 HasVectors |= J->isVector(); 172 173 // If we found a vector node we can start the legalization. 174 if (HasVectors) 175 break; 176 } 177 178 // If this basic block has no vectors then no need to legalize vectors. 179 if (!HasVectors) 180 return false; 181 182 // The legalize process is inherently a bottom-up recursive process (users 183 // legalize their uses before themselves). Given infinite stack space, we 184 // could just start legalizing on the root and traverse the whole graph. In 185 // practice however, this causes us to run out of stack space on large basic 186 // blocks. To avoid this problem, compute an ordering of the nodes where each 187 // node is only legalized after all of its operands are legalized. 188 DAG.AssignTopologicalOrder(); 189 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 190 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 191 LegalizeOp(SDValue(&*I, 0)); 192 193 // Finally, it's possible the root changed. Get the new root. 194 SDValue OldRoot = DAG.getRoot(); 195 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 196 DAG.setRoot(LegalizedNodes[OldRoot]); 197 198 LegalizedNodes.clear(); 199 200 // Remove dead nodes now. 201 DAG.RemoveDeadNodes(); 202 203 return Changed; 204 } 205 206 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { 207 // Generic legalization: just pass the operand through. 208 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) 209 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 210 return Result.getValue(Op.getResNo()); 211 } 212 213 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 214 // Note that LegalizeOp may be reentered even from single-use nodes, which 215 // means that we always must cache transformed nodes. 216 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 217 if (I != LegalizedNodes.end()) return I->second; 218 219 SDNode* Node = Op.getNode(); 220 221 // Legalize the operands 222 SmallVector<SDValue, 8> Ops; 223 for (const SDValue &Op : Node->op_values()) 224 Ops.push_back(LegalizeOp(Op)); 225 226 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 227 Op.getResNo()); 228 229 bool HasVectorValue = false; 230 if (Op.getOpcode() == ISD::LOAD) { 231 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 232 ISD::LoadExtType ExtType = LD->getExtensionType(); 233 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) { 234 LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: "; 235 Node->dump(&DAG)); 236 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), 237 LD->getMemoryVT())) { 238 default: llvm_unreachable("This action is not supported yet!"); 239 case TargetLowering::Legal: 240 return TranslateLegalizeResults(Op, Result); 241 case TargetLowering::Custom: 242 if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) { 243 if (Lowered == Result) 244 return TranslateLegalizeResults(Op, Lowered); 245 Changed = true; 246 if (Lowered->getNumValues() != Op->getNumValues()) { 247 // This expanded to something other than the load. Assume the 248 // lowering code took care of any chain values, and just handle the 249 // returned value. 250 assert(Result.getValue(1).use_empty() && 251 "There are still live users of the old chain!"); 252 return LegalizeOp(Lowered); 253 } 254 return TranslateLegalizeResults(Op, Lowered); 255 } 256 LLVM_FALLTHROUGH; 257 case TargetLowering::Expand: 258 Changed = true; 259 return LegalizeOp(ExpandLoad(Op)); 260 } 261 } 262 } else if (Op.getOpcode() == ISD::STORE) { 263 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 264 EVT StVT = ST->getMemoryVT(); 265 MVT ValVT = ST->getValue().getSimpleValueType(); 266 if (StVT.isVector() && ST->isTruncatingStore()) { 267 LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: "; 268 Node->dump(&DAG)); 269 switch (TLI.getTruncStoreAction(ValVT, StVT)) { 270 default: llvm_unreachable("This action is not supported yet!"); 271 case TargetLowering::Legal: 272 return TranslateLegalizeResults(Op, Result); 273 case TargetLowering::Custom: { 274 SDValue Lowered = TLI.LowerOperation(Result, DAG); 275 Changed = Lowered != Result; 276 return TranslateLegalizeResults(Op, Lowered); 277 } 278 case TargetLowering::Expand: 279 Changed = true; 280 return LegalizeOp(ExpandStore(Op)); 281 } 282 } 283 } else if (Op.getOpcode() == ISD::MSCATTER || Op.getOpcode() == ISD::MSTORE) 284 HasVectorValue = true; 285 286 for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end(); 287 J != E; 288 ++J) 289 HasVectorValue |= J->isVector(); 290 if (!HasVectorValue) 291 return TranslateLegalizeResults(Op, Result); 292 293 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 294 switch (Op.getOpcode()) { 295 default: 296 return TranslateLegalizeResults(Op, Result); 297 case ISD::STRICT_FADD: 298 case ISD::STRICT_FSUB: 299 case ISD::STRICT_FMUL: 300 case ISD::STRICT_FDIV: 301 case ISD::STRICT_FSQRT: 302 case ISD::STRICT_FMA: 303 case ISD::STRICT_FPOW: 304 case ISD::STRICT_FPOWI: 305 case ISD::STRICT_FSIN: 306 case ISD::STRICT_FCOS: 307 case ISD::STRICT_FEXP: 308 case ISD::STRICT_FEXP2: 309 case ISD::STRICT_FLOG: 310 case ISD::STRICT_FLOG10: 311 case ISD::STRICT_FLOG2: 312 case ISD::STRICT_FRINT: 313 case ISD::STRICT_FNEARBYINT: 314 // These pseudo-ops get legalized as if they were their non-strict 315 // equivalent. For instance, if ISD::FSQRT is legal then ISD::STRICT_FSQRT 316 // is also legal, but if ISD::FSQRT requires expansion then so does 317 // ISD::STRICT_FSQRT. 318 Action = TLI.getStrictFPOperationAction(Node->getOpcode(), 319 Node->getValueType(0)); 320 break; 321 case ISD::ADD: 322 case ISD::SUB: 323 case ISD::MUL: 324 case ISD::SDIV: 325 case ISD::UDIV: 326 case ISD::SREM: 327 case ISD::UREM: 328 case ISD::SDIVREM: 329 case ISD::UDIVREM: 330 case ISD::FADD: 331 case ISD::FSUB: 332 case ISD::FMUL: 333 case ISD::FDIV: 334 case ISD::FREM: 335 case ISD::AND: 336 case ISD::OR: 337 case ISD::XOR: 338 case ISD::SHL: 339 case ISD::SRA: 340 case ISD::SRL: 341 case ISD::ROTL: 342 case ISD::ROTR: 343 case ISD::BSWAP: 344 case ISD::BITREVERSE: 345 case ISD::CTLZ: 346 case ISD::CTTZ: 347 case ISD::CTLZ_ZERO_UNDEF: 348 case ISD::CTTZ_ZERO_UNDEF: 349 case ISD::CTPOP: 350 case ISD::SELECT: 351 case ISD::VSELECT: 352 case ISD::SELECT_CC: 353 case ISD::SETCC: 354 case ISD::ZERO_EXTEND: 355 case ISD::ANY_EXTEND: 356 case ISD::TRUNCATE: 357 case ISD::SIGN_EXTEND: 358 case ISD::FP_TO_SINT: 359 case ISD::FP_TO_UINT: 360 case ISD::FNEG: 361 case ISD::FABS: 362 case ISD::FMINNUM: 363 case ISD::FMAXNUM: 364 case ISD::FMINNAN: 365 case ISD::FMAXNAN: 366 case ISD::FCOPYSIGN: 367 case ISD::FSQRT: 368 case ISD::FSIN: 369 case ISD::FCOS: 370 case ISD::FPOWI: 371 case ISD::FPOW: 372 case ISD::FLOG: 373 case ISD::FLOG2: 374 case ISD::FLOG10: 375 case ISD::FEXP: 376 case ISD::FEXP2: 377 case ISD::FCEIL: 378 case ISD::FTRUNC: 379 case ISD::FRINT: 380 case ISD::FNEARBYINT: 381 case ISD::FROUND: 382 case ISD::FFLOOR: 383 case ISD::FP_ROUND: 384 case ISD::FP_EXTEND: 385 case ISD::FMA: 386 case ISD::SIGN_EXTEND_INREG: 387 case ISD::ANY_EXTEND_VECTOR_INREG: 388 case ISD::SIGN_EXTEND_VECTOR_INREG: 389 case ISD::ZERO_EXTEND_VECTOR_INREG: 390 case ISD::SMIN: 391 case ISD::SMAX: 392 case ISD::UMIN: 393 case ISD::UMAX: 394 case ISD::SMUL_LOHI: 395 case ISD::UMUL_LOHI: 396 case ISD::FCANONICALIZE: 397 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 398 break; 399 case ISD::FP_ROUND_INREG: 400 Action = TLI.getOperationAction(Node->getOpcode(), 401 cast<VTSDNode>(Node->getOperand(1))->getVT()); 402 break; 403 case ISD::SINT_TO_FP: 404 case ISD::UINT_TO_FP: 405 Action = TLI.getOperationAction(Node->getOpcode(), 406 Node->getOperand(0).getValueType()); 407 break; 408 case ISD::MSCATTER: 409 Action = TLI.getOperationAction(Node->getOpcode(), 410 cast<MaskedScatterSDNode>(Node)->getValue().getValueType()); 411 break; 412 case ISD::MSTORE: 413 Action = TLI.getOperationAction(Node->getOpcode(), 414 cast<MaskedStoreSDNode>(Node)->getValue().getValueType()); 415 break; 416 } 417 418 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG)); 419 420 switch (Action) { 421 default: llvm_unreachable("This action is not supported yet!"); 422 case TargetLowering::Promote: 423 Result = Promote(Op); 424 Changed = true; 425 break; 426 case TargetLowering::Legal: 427 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 428 break; 429 case TargetLowering::Custom: { 430 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 431 if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) { 432 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 433 Result = Tmp1; 434 break; 435 } 436 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 437 LLVM_FALLTHROUGH; 438 } 439 case TargetLowering::Expand: 440 Result = Expand(Op); 441 } 442 443 // Make sure that the generated code is itself legal. 444 if (Result != Op) { 445 Result = LegalizeOp(Result); 446 Changed = true; 447 } 448 449 // Note that LegalizeOp may be reentered even from single-use nodes, which 450 // means that we always must cache transformed nodes. 451 AddLegalizedOperand(Op, Result); 452 return Result; 453 } 454 455 SDValue VectorLegalizer::Promote(SDValue Op) { 456 // For a few operations there is a specific concept for promotion based on 457 // the operand's type. 458 switch (Op.getOpcode()) { 459 case ISD::SINT_TO_FP: 460 case ISD::UINT_TO_FP: 461 // "Promote" the operation by extending the operand. 462 return PromoteINT_TO_FP(Op); 463 case ISD::FP_TO_UINT: 464 case ISD::FP_TO_SINT: 465 // Promote the operation by extending the operand. 466 return PromoteFP_TO_INT(Op); 467 } 468 469 // There are currently two cases of vector promotion: 470 // 1) Bitcasting a vector of integers to a different type to a vector of the 471 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 472 // 2) Extending a vector of floats to a vector of the same number of larger 473 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 474 MVT VT = Op.getSimpleValueType(); 475 assert(Op.getNode()->getNumValues() == 1 && 476 "Can't promote a vector with multiple results!"); 477 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 478 SDLoc dl(Op); 479 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 480 481 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 482 if (Op.getOperand(j).getValueType().isVector()) 483 if (Op.getOperand(j) 484 .getValueType() 485 .getVectorElementType() 486 .isFloatingPoint() && 487 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 488 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j)); 489 else 490 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); 491 else 492 Operands[j] = Op.getOperand(j); 493 } 494 495 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags()); 496 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 497 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 498 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 499 return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl)); 500 else 501 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 502 } 503 504 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) { 505 // INT_TO_FP operations may require the input operand be promoted even 506 // when the type is otherwise legal. 507 MVT VT = Op.getOperand(0).getSimpleValueType(); 508 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 509 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 510 "Vectors have different number of elements!"); 511 512 SDLoc dl(Op); 513 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 514 515 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : 516 ISD::SIGN_EXTEND; 517 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 518 if (Op.getOperand(j).getValueType().isVector()) 519 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j)); 520 else 521 Operands[j] = Op.getOperand(j); 522 } 523 524 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands); 525 } 526 527 // For FP_TO_INT we promote the result type to a vector type with wider 528 // elements and then truncate the result. This is different from the default 529 // PromoteVector which uses bitcast to promote thus assumning that the 530 // promoted vector type has the same overall size. 531 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op) { 532 MVT VT = Op.getSimpleValueType(); 533 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 534 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 535 "Vectors have different number of elements!"); 536 537 unsigned NewOpc = Op->getOpcode(); 538 // Change FP_TO_UINT to FP_TO_SINT if possible. 539 // TODO: Should we only do this if FP_TO_UINT itself isn't legal? 540 if (NewOpc == ISD::FP_TO_UINT && 541 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT)) 542 NewOpc = ISD::FP_TO_SINT; 543 544 SDLoc dl(Op); 545 SDValue Promoted = DAG.getNode(NewOpc, dl, NVT, Op.getOperand(0)); 546 547 // Assert that the converted value fits in the original type. If it doesn't 548 // (eg: because the value being converted is too big), then the result of the 549 // original operation was undefined anyway, so the assert is still correct. 550 Promoted = DAG.getNode(Op->getOpcode() == ISD::FP_TO_UINT ? ISD::AssertZext 551 : ISD::AssertSext, 552 dl, NVT, Promoted, 553 DAG.getValueType(VT.getScalarType())); 554 return DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted); 555 } 556 557 SDValue VectorLegalizer::ExpandLoad(SDValue Op) { 558 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 559 560 EVT SrcVT = LD->getMemoryVT(); 561 EVT SrcEltVT = SrcVT.getScalarType(); 562 unsigned NumElem = SrcVT.getVectorNumElements(); 563 564 SDValue NewChain; 565 SDValue Value; 566 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { 567 SDLoc dl(Op); 568 569 SmallVector<SDValue, 8> Vals; 570 SmallVector<SDValue, 8> LoadChains; 571 572 EVT DstEltVT = LD->getValueType(0).getScalarType(); 573 SDValue Chain = LD->getChain(); 574 SDValue BasePTR = LD->getBasePtr(); 575 ISD::LoadExtType ExtType = LD->getExtensionType(); 576 577 // When elements in a vector is not byte-addressable, we cannot directly 578 // load each element by advancing pointer, which could only address bytes. 579 // Instead, we load all significant words, mask bits off, and concatenate 580 // them to form each element. Finally, they are extended to destination 581 // scalar type to build the destination vector. 582 EVT WideVT = TLI.getPointerTy(DAG.getDataLayout()); 583 584 assert(WideVT.isRound() && 585 "Could not handle the sophisticated case when the widest integer is" 586 " not power of 2."); 587 assert(WideVT.bitsGE(SrcEltVT) && 588 "Type is not legalized?"); 589 590 unsigned WideBytes = WideVT.getStoreSize(); 591 unsigned Offset = 0; 592 unsigned RemainingBytes = SrcVT.getStoreSize(); 593 SmallVector<SDValue, 8> LoadVals; 594 while (RemainingBytes > 0) { 595 SDValue ScalarLoad; 596 unsigned LoadBytes = WideBytes; 597 598 if (RemainingBytes >= LoadBytes) { 599 ScalarLoad = 600 DAG.getLoad(WideVT, dl, Chain, BasePTR, 601 LD->getPointerInfo().getWithOffset(Offset), 602 MinAlign(LD->getAlignment(), Offset), 603 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 604 } else { 605 EVT LoadVT = WideVT; 606 while (RemainingBytes < LoadBytes) { 607 LoadBytes >>= 1; // Reduce the load size by half. 608 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); 609 } 610 ScalarLoad = 611 DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, 612 LD->getPointerInfo().getWithOffset(Offset), LoadVT, 613 MinAlign(LD->getAlignment(), Offset), 614 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 615 } 616 617 RemainingBytes -= LoadBytes; 618 Offset += LoadBytes; 619 620 BasePTR = DAG.getObjectPtrOffset(dl, BasePTR, LoadBytes); 621 622 LoadVals.push_back(ScalarLoad.getValue(0)); 623 LoadChains.push_back(ScalarLoad.getValue(1)); 624 } 625 626 // Extract bits, pack and extend/trunc them into destination type. 627 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 628 SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT); 629 630 unsigned BitOffset = 0; 631 unsigned WideIdx = 0; 632 unsigned WideBits = WideVT.getSizeInBits(); 633 634 for (unsigned Idx = 0; Idx != NumElem; ++Idx) { 635 SDValue Lo, Hi, ShAmt; 636 637 if (BitOffset < WideBits) { 638 ShAmt = DAG.getConstant( 639 BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 640 Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); 641 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); 642 } 643 644 BitOffset += SrcEltBits; 645 if (BitOffset >= WideBits) { 646 WideIdx++; 647 BitOffset -= WideBits; 648 if (BitOffset > 0) { 649 ShAmt = DAG.getConstant( 650 SrcEltBits - BitOffset, dl, 651 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 652 Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); 653 Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask); 654 } 655 } 656 657 if (Hi.getNode()) 658 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); 659 660 switch (ExtType) { 661 default: llvm_unreachable("Unknown extended-load op!"); 662 case ISD::EXTLOAD: 663 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); 664 break; 665 case ISD::ZEXTLOAD: 666 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); 667 break; 668 case ISD::SEXTLOAD: 669 ShAmt = 670 DAG.getConstant(WideBits - SrcEltBits, dl, 671 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 672 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); 673 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); 674 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); 675 break; 676 } 677 Vals.push_back(Lo); 678 } 679 680 NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 681 Value = DAG.getBuildVector(Op.getNode()->getValueType(0), dl, Vals); 682 } else { 683 SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG); 684 // Skip past MERGE_VALUE node if known. 685 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) { 686 NewChain = Scalarized.getOperand(1); 687 Value = Scalarized.getOperand(0); 688 } else { 689 NewChain = Scalarized.getValue(1); 690 Value = Scalarized.getValue(0); 691 } 692 } 693 694 AddLegalizedOperand(Op.getValue(0), Value); 695 AddLegalizedOperand(Op.getValue(1), NewChain); 696 697 return (Op.getResNo() ? NewChain : Value); 698 } 699 700 SDValue VectorLegalizer::ExpandStore(SDValue Op) { 701 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 702 SDValue TF = TLI.scalarizeVectorStore(ST, DAG); 703 AddLegalizedOperand(Op, TF); 704 return TF; 705 } 706 707 SDValue VectorLegalizer::Expand(SDValue Op) { 708 switch (Op->getOpcode()) { 709 case ISD::SIGN_EXTEND_INREG: 710 return ExpandSEXTINREG(Op); 711 case ISD::ANY_EXTEND_VECTOR_INREG: 712 return ExpandANY_EXTEND_VECTOR_INREG(Op); 713 case ISD::SIGN_EXTEND_VECTOR_INREG: 714 return ExpandSIGN_EXTEND_VECTOR_INREG(Op); 715 case ISD::ZERO_EXTEND_VECTOR_INREG: 716 return ExpandZERO_EXTEND_VECTOR_INREG(Op); 717 case ISD::BSWAP: 718 return ExpandBSWAP(Op); 719 case ISD::VSELECT: 720 return ExpandVSELECT(Op); 721 case ISD::SELECT: 722 return ExpandSELECT(Op); 723 case ISD::UINT_TO_FP: 724 return ExpandUINT_TO_FLOAT(Op); 725 case ISD::FNEG: 726 return ExpandFNEG(Op); 727 case ISD::FSUB: 728 return ExpandFSUB(Op); 729 case ISD::SETCC: 730 return UnrollVSETCC(Op); 731 case ISD::BITREVERSE: 732 return ExpandBITREVERSE(Op); 733 case ISD::CTLZ: 734 case ISD::CTLZ_ZERO_UNDEF: 735 return ExpandCTLZ(Op); 736 case ISD::CTTZ_ZERO_UNDEF: 737 return ExpandCTTZ_ZERO_UNDEF(Op); 738 case ISD::STRICT_FADD: 739 case ISD::STRICT_FSUB: 740 case ISD::STRICT_FMUL: 741 case ISD::STRICT_FDIV: 742 case ISD::STRICT_FSQRT: 743 case ISD::STRICT_FMA: 744 case ISD::STRICT_FPOW: 745 case ISD::STRICT_FPOWI: 746 case ISD::STRICT_FSIN: 747 case ISD::STRICT_FCOS: 748 case ISD::STRICT_FEXP: 749 case ISD::STRICT_FEXP2: 750 case ISD::STRICT_FLOG: 751 case ISD::STRICT_FLOG10: 752 case ISD::STRICT_FLOG2: 753 case ISD::STRICT_FRINT: 754 case ISD::STRICT_FNEARBYINT: 755 return ExpandStrictFPOp(Op); 756 default: 757 return DAG.UnrollVectorOp(Op.getNode()); 758 } 759 } 760 761 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) { 762 // Lower a select instruction where the condition is a scalar and the 763 // operands are vectors. Lower this select to VSELECT and implement it 764 // using XOR AND OR. The selector bit is broadcasted. 765 EVT VT = Op.getValueType(); 766 SDLoc DL(Op); 767 768 SDValue Mask = Op.getOperand(0); 769 SDValue Op1 = Op.getOperand(1); 770 SDValue Op2 = Op.getOperand(2); 771 772 assert(VT.isVector() && !Mask.getValueType().isVector() 773 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 774 775 // If we can't even use the basic vector operations of 776 // AND,OR,XOR, we will have to scalarize the op. 777 // Notice that the operation may be 'promoted' which means that it is 778 // 'bitcasted' to another type which is handled. 779 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 780 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 781 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 782 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 783 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 784 return DAG.UnrollVectorOp(Op.getNode()); 785 786 // Generate a mask operand. 787 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 788 789 // What is the size of each element in the vector mask. 790 EVT BitTy = MaskTy.getScalarType(); 791 792 Mask = DAG.getSelect(DL, BitTy, Mask, 793 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, 794 BitTy), 795 DAG.getConstant(0, DL, BitTy)); 796 797 // Broadcast the mask so that the entire vector is all-one or all zero. 798 Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask); 799 800 // Bitcast the operands to be the same type as the mask. 801 // This is needed when we select between FP types because 802 // the mask is a vector of integers. 803 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 804 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 805 806 SDValue AllOnes = DAG.getConstant( 807 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy); 808 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 809 810 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 811 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 812 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 813 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 814 } 815 816 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) { 817 EVT VT = Op.getValueType(); 818 819 // Make sure that the SRA and SHL instructions are available. 820 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 821 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 822 return DAG.UnrollVectorOp(Op.getNode()); 823 824 SDLoc DL(Op); 825 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT(); 826 827 unsigned BW = VT.getScalarSizeInBits(); 828 unsigned OrigBW = OrigTy.getScalarSizeInBits(); 829 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 830 831 Op = Op.getOperand(0); 832 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz); 833 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 834 } 835 836 // Generically expand a vector anyext in register to a shuffle of the relevant 837 // lanes into the appropriate locations, with other lanes left undef. 838 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) { 839 SDLoc DL(Op); 840 EVT VT = Op.getValueType(); 841 int NumElements = VT.getVectorNumElements(); 842 SDValue Src = Op.getOperand(0); 843 EVT SrcVT = Src.getValueType(); 844 int NumSrcElements = SrcVT.getVectorNumElements(); 845 846 // Build a base mask of undef shuffles. 847 SmallVector<int, 16> ShuffleMask; 848 ShuffleMask.resize(NumSrcElements, -1); 849 850 // Place the extended lanes into the correct locations. 851 int ExtLaneScale = NumSrcElements / NumElements; 852 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 853 for (int i = 0; i < NumElements; ++i) 854 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 855 856 return DAG.getNode( 857 ISD::BITCAST, DL, VT, 858 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 859 } 860 861 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) { 862 SDLoc DL(Op); 863 EVT VT = Op.getValueType(); 864 SDValue Src = Op.getOperand(0); 865 EVT SrcVT = Src.getValueType(); 866 867 // First build an any-extend node which can be legalized above when we 868 // recurse through it. 869 Op = DAG.getAnyExtendVectorInReg(Src, DL, VT); 870 871 // Now we need sign extend. Do this by shifting the elements. Even if these 872 // aren't legal operations, they have a better chance of being legalized 873 // without full scalarization than the sign extension does. 874 unsigned EltWidth = VT.getScalarSizeInBits(); 875 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); 876 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 877 return DAG.getNode(ISD::SRA, DL, VT, 878 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 879 ShiftAmount); 880 } 881 882 // Generically expand a vector zext in register to a shuffle of the relevant 883 // lanes into the appropriate locations, a blend of zero into the high bits, 884 // and a bitcast to the wider element type. 885 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) { 886 SDLoc DL(Op); 887 EVT VT = Op.getValueType(); 888 int NumElements = VT.getVectorNumElements(); 889 SDValue Src = Op.getOperand(0); 890 EVT SrcVT = Src.getValueType(); 891 int NumSrcElements = SrcVT.getVectorNumElements(); 892 893 // Build up a zero vector to blend into this one. 894 SDValue Zero = DAG.getConstant(0, DL, SrcVT); 895 896 // Shuffle the incoming lanes into the correct position, and pull all other 897 // lanes from the zero vector. 898 SmallVector<int, 16> ShuffleMask; 899 ShuffleMask.reserve(NumSrcElements); 900 for (int i = 0; i < NumSrcElements; ++i) 901 ShuffleMask.push_back(i); 902 903 int ExtLaneScale = NumSrcElements / NumElements; 904 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 905 for (int i = 0; i < NumElements; ++i) 906 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 907 908 return DAG.getNode(ISD::BITCAST, DL, VT, 909 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 910 } 911 912 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) { 913 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 914 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 915 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 916 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 917 } 918 919 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) { 920 EVT VT = Op.getValueType(); 921 922 // Generate a byte wise shuffle mask for the BSWAP. 923 SmallVector<int, 16> ShuffleMask; 924 createBSWAPShuffleMask(VT, ShuffleMask); 925 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 926 927 // Only emit a shuffle if the mask is legal. 928 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) 929 return DAG.UnrollVectorOp(Op.getNode()); 930 931 SDLoc DL(Op); 932 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 933 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); 934 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 935 } 936 937 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) { 938 EVT VT = Op.getValueType(); 939 940 // If we have the scalar operation, it's probably cheaper to unroll it. 941 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) 942 return DAG.UnrollVectorOp(Op.getNode()); 943 944 // If the vector element width is a whole number of bytes, test if its legal 945 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte 946 // vector. This greatly reduces the number of bit shifts necessary. 947 unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); 948 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { 949 SmallVector<int, 16> BSWAPMask; 950 createBSWAPShuffleMask(VT, BSWAPMask); 951 952 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); 953 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && 954 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || 955 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && 956 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && 957 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && 958 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { 959 SDLoc DL(Op); 960 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 961 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 962 BSWAPMask); 963 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); 964 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 965 } 966 } 967 968 // If we have the appropriate vector bit operations, it is better to use them 969 // than unrolling and expanding each component. 970 if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) || 971 !TLI.isOperationLegalOrCustom(ISD::SRL, VT) || 972 !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 973 !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) 974 return DAG.UnrollVectorOp(Op.getNode()); 975 976 // Let LegalizeDAG handle this later. 977 return Op; 978 } 979 980 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { 981 // Implement VSELECT in terms of XOR, AND, OR 982 // on platforms which do not support blend natively. 983 SDLoc DL(Op); 984 985 SDValue Mask = Op.getOperand(0); 986 SDValue Op1 = Op.getOperand(1); 987 SDValue Op2 = Op.getOperand(2); 988 989 EVT VT = Mask.getValueType(); 990 991 // If we can't even use the basic vector operations of 992 // AND,OR,XOR, we will have to scalarize the op. 993 // Notice that the operation may be 'promoted' which means that it is 994 // 'bitcasted' to another type which is handled. 995 // This operation also isn't safe with AND, OR, XOR when the boolean 996 // type is 0/1 as we need an all ones vector constant to mask with. 997 // FIXME: Sign extend 1 to all ones if thats legal on the target. 998 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 999 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 1000 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 1001 TLI.getBooleanContents(Op1.getValueType()) != 1002 TargetLowering::ZeroOrNegativeOneBooleanContent) 1003 return DAG.UnrollVectorOp(Op.getNode()); 1004 1005 // If the mask and the type are different sizes, unroll the vector op. This 1006 // can occur when getSetCCResultType returns something that is different in 1007 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 1008 if (VT.getSizeInBits() != Op1.getValueSizeInBits()) 1009 return DAG.UnrollVectorOp(Op.getNode()); 1010 1011 // Bitcast the operands to be the same type as the mask. 1012 // This is needed when we select between FP types because 1013 // the mask is a vector of integers. 1014 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 1015 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 1016 1017 SDValue AllOnes = DAG.getConstant( 1018 APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT); 1019 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 1020 1021 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 1022 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 1023 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 1024 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 1025 } 1026 1027 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { 1028 EVT VT = Op.getOperand(0).getValueType(); 1029 SDLoc DL(Op); 1030 1031 // Make sure that the SINT_TO_FP and SRL instructions are available. 1032 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand || 1033 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) 1034 return DAG.UnrollVectorOp(Op.getNode()); 1035 1036 unsigned BW = VT.getScalarSizeInBits(); 1037 assert((BW == 64 || BW == 32) && 1038 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 1039 1040 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT); 1041 1042 // Constants to clear the upper part of the word. 1043 // Notice that we can also use SHL+SHR, but using a constant is slightly 1044 // faster on x86. 1045 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; 1046 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 1047 1048 // Two to the power of half-word-size. 1049 SDValue TWOHW = DAG.getConstantFP(1ULL << (BW / 2), DL, Op.getValueType()); 1050 1051 // Clear upper part of LO, lower HI 1052 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); 1053 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); 1054 1055 // Convert hi and lo to floats 1056 // Convert the hi part back to the upper values 1057 // TODO: Can any fast-math-flags be set on these nodes? 1058 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); 1059 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); 1060 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); 1061 1062 // Add the two halves 1063 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); 1064 } 1065 1066 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { 1067 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { 1068 SDLoc DL(Op); 1069 SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType()); 1070 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. 1071 return DAG.getNode(ISD::FSUB, DL, Op.getValueType(), 1072 Zero, Op.getOperand(0)); 1073 } 1074 return DAG.UnrollVectorOp(Op.getNode()); 1075 } 1076 1077 SDValue VectorLegalizer::ExpandFSUB(SDValue Op) { 1078 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal, 1079 // we can defer this to operation legalization where it will be lowered as 1080 // a+(-b). 1081 EVT VT = Op.getValueType(); 1082 if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && 1083 TLI.isOperationLegalOrCustom(ISD::FADD, VT)) 1084 return Op; // Defer to LegalizeDAG 1085 1086 return DAG.UnrollVectorOp(Op.getNode()); 1087 } 1088 1089 SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) { 1090 EVT VT = Op.getValueType(); 1091 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 1092 1093 // If the non-ZERO_UNDEF version is supported we can use that instead. 1094 if (Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF && 1095 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) { 1096 SDLoc DL(Op); 1097 return DAG.getNode(ISD::CTLZ, DL, Op.getValueType(), Op.getOperand(0)); 1098 } 1099 1100 // If CTPOP is available we can lower with a CTPOP based method: 1101 // u16 ctlz(u16 x) { 1102 // x |= (x >> 1); 1103 // x |= (x >> 2); 1104 // x |= (x >> 4); 1105 // x |= (x >> 8); 1106 // return ctpop(~x); 1107 // } 1108 // Ref: "Hacker's Delight" by Henry Warren 1109 if (isPowerOf2_32(NumBitsPerElt) && 1110 TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && 1111 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 1112 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT) && 1113 TLI.isOperationLegalOrCustomOrPromote(ISD::XOR, VT)) { 1114 SDLoc DL(Op); 1115 SDValue Res = Op.getOperand(0); 1116 EVT ShiftTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 1117 1118 for (unsigned i = 1; i != NumBitsPerElt; i *= 2) 1119 Res = DAG.getNode( 1120 ISD::OR, DL, VT, Res, 1121 DAG.getNode(ISD::SRL, DL, VT, Res, DAG.getConstant(i, DL, ShiftTy))); 1122 1123 Res = DAG.getNOT(DL, Res, VT); 1124 return DAG.getNode(ISD::CTPOP, DL, VT, Res); 1125 } 1126 1127 // Otherwise go ahead and unroll. 1128 return DAG.UnrollVectorOp(Op.getNode()); 1129 } 1130 1131 SDValue VectorLegalizer::ExpandCTTZ_ZERO_UNDEF(SDValue Op) { 1132 // If the non-ZERO_UNDEF version is supported we can use that instead. 1133 if (TLI.isOperationLegalOrCustom(ISD::CTTZ, Op.getValueType())) { 1134 SDLoc DL(Op); 1135 return DAG.getNode(ISD::CTTZ, DL, Op.getValueType(), Op.getOperand(0)); 1136 } 1137 1138 // Otherwise go ahead and unroll. 1139 return DAG.UnrollVectorOp(Op.getNode()); 1140 } 1141 1142 SDValue VectorLegalizer::ExpandStrictFPOp(SDValue Op) { 1143 EVT VT = Op.getValueType(); 1144 EVT EltVT = VT.getVectorElementType(); 1145 unsigned NumElems = VT.getVectorNumElements(); 1146 unsigned NumOpers = Op.getNumOperands(); 1147 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1148 EVT ValueVTs[] = {EltVT, MVT::Other}; 1149 SDValue Chain = Op.getOperand(0); 1150 SDLoc dl(Op); 1151 1152 SmallVector<SDValue, 32> OpValues; 1153 SmallVector<SDValue, 32> OpChains; 1154 for (unsigned i = 0; i < NumElems; ++i) { 1155 SmallVector<SDValue, 4> Opers; 1156 SDValue Idx = DAG.getConstant(i, dl, 1157 TLI.getVectorIdxTy(DAG.getDataLayout())); 1158 1159 // The Chain is the first operand. 1160 Opers.push_back(Chain); 1161 1162 // Now process the remaining operands. 1163 for (unsigned j = 1; j < NumOpers; ++j) { 1164 SDValue Oper = Op.getOperand(j); 1165 EVT OperVT = Oper.getValueType(); 1166 1167 if (OperVT.isVector()) 1168 Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 1169 EltVT, Oper, Idx); 1170 1171 Opers.push_back(Oper); 1172 } 1173 1174 SDValue ScalarOp = DAG.getNode(Op->getOpcode(), dl, ValueVTs, Opers); 1175 1176 OpValues.push_back(ScalarOp.getValue(0)); 1177 OpChains.push_back(ScalarOp.getValue(1)); 1178 } 1179 1180 SDValue Result = DAG.getBuildVector(VT, dl, OpValues); 1181 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains); 1182 1183 AddLegalizedOperand(Op.getValue(0), Result); 1184 AddLegalizedOperand(Op.getValue(1), NewChain); 1185 1186 return NewChain; 1187 } 1188 1189 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { 1190 EVT VT = Op.getValueType(); 1191 unsigned NumElems = VT.getVectorNumElements(); 1192 EVT EltVT = VT.getVectorElementType(); 1193 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); 1194 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1195 SDLoc dl(Op); 1196 SmallVector<SDValue, 8> Ops(NumElems); 1197 for (unsigned i = 0; i < NumElems; ++i) { 1198 SDValue LHSElem = DAG.getNode( 1199 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1200 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1201 SDValue RHSElem = DAG.getNode( 1202 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1203 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1204 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1205 TLI.getSetCCResultType(DAG.getDataLayout(), 1206 *DAG.getContext(), TmpEltVT), 1207 LHSElem, RHSElem, CC); 1208 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 1209 DAG.getConstant(APInt::getAllOnesValue 1210 (EltVT.getSizeInBits()), dl, EltVT), 1211 DAG.getConstant(0, dl, EltVT)); 1212 } 1213 return DAG.getBuildVector(VT, dl, Ops); 1214 } 1215 1216 bool SelectionDAG::LegalizeVectors() { 1217 return VectorLegalizer(*this).Run(); 1218 } 1219