1 //===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SelectionDAG::LegalizeVectors method. 11 // 12 // The vector legalizer looks for vector operations which might need to be 13 // scalarized and legalizes them. This is a separate step from Legalize because 14 // scalarizing can introduce illegal types. For example, suppose we have an 15 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 17 // operation, which introduces nodes with the illegal type i64 which must be 18 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 19 // the operation must be unrolled, which introduces nodes with the illegal 20 // type i8 which must be promoted. 21 // 22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 23 // or operations that happen to take a vector which are custom-lowered; 24 // the legalization for such operations never produces nodes 25 // with illegal types, so it's okay to put off legalizing them until 26 // SelectionDAG::Legalize runs. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/Target/TargetLowering.h" 32 using namespace llvm; 33 34 namespace { 35 class VectorLegalizer { 36 SelectionDAG& DAG; 37 const TargetLowering &TLI; 38 bool Changed; // Keep track of whether anything changed 39 40 /// For nodes that are of legal width, and that have more than one use, this 41 /// map indicates what regularized operand to use. This allows us to avoid 42 /// legalizing the same thing more than once. 43 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 44 45 /// \brief Adds a node to the translation cache. 46 void AddLegalizedOperand(SDValue From, SDValue To) { 47 LegalizedNodes.insert(std::make_pair(From, To)); 48 // If someone requests legalization of the new node, return itself. 49 if (From != To) 50 LegalizedNodes.insert(std::make_pair(To, To)); 51 } 52 53 /// \brief Legalizes the given node. 54 SDValue LegalizeOp(SDValue Op); 55 56 /// \brief Assuming the node is legal, "legalize" the results. 57 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); 58 59 /// \brief Implements unrolling a VSETCC. 60 SDValue UnrollVSETCC(SDValue Op); 61 62 /// \brief Implement expand-based legalization of vector operations. 63 /// 64 /// This is just a high-level routine to dispatch to specific code paths for 65 /// operations to legalize them. 66 SDValue Expand(SDValue Op); 67 68 /// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if 69 /// FSUB isn't legal. 70 /// 71 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 72 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 73 SDValue ExpandUINT_TO_FLOAT(SDValue Op); 74 75 /// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 76 SDValue ExpandSEXTINREG(SDValue Op); 77 78 /// \brief Expand bswap of vectors into a shuffle if legal. 79 SDValue ExpandBSWAP(SDValue Op); 80 81 /// \brief Implement vselect in terms of XOR, AND, OR when blend is not 82 /// supported by the target. 83 SDValue ExpandVSELECT(SDValue Op); 84 SDValue ExpandSELECT(SDValue Op); 85 SDValue ExpandLoad(SDValue Op); 86 SDValue ExpandStore(SDValue Op); 87 SDValue ExpandFNEG(SDValue Op); 88 89 /// \brief Implements vector promotion. 90 /// 91 /// This is essentially just bitcasting the operands to a different type and 92 /// bitcasting the result back to the original type. 93 SDValue Promote(SDValue Op); 94 95 /// \brief Implements [SU]INT_TO_FP vector promotion. 96 /// 97 /// This is a [zs]ext of the input operand to the next size up. 98 SDValue PromoteINT_TO_FP(SDValue Op); 99 100 /// \brief Implements FP_TO_[SU]INT vector promotion of the result type. 101 /// 102 /// It is promoted to the next size up integer type. The result is then 103 /// truncated back to the original type. 104 SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned); 105 106 public: 107 /// \brief Begin legalizer the vector operations in the DAG. 108 bool Run(); 109 VectorLegalizer(SelectionDAG& dag) : 110 DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {} 111 }; 112 113 bool VectorLegalizer::Run() { 114 // Before we start legalizing vector nodes, check if there are any vectors. 115 bool HasVectors = false; 116 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 117 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 118 // Check if the values of the nodes contain vectors. We don't need to check 119 // the operands because we are going to check their values at some point. 120 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); 121 J != E; ++J) 122 HasVectors |= J->isVector(); 123 124 // If we found a vector node we can start the legalization. 125 if (HasVectors) 126 break; 127 } 128 129 // If this basic block has no vectors then no need to legalize vectors. 130 if (!HasVectors) 131 return false; 132 133 // The legalize process is inherently a bottom-up recursive process (users 134 // legalize their uses before themselves). Given infinite stack space, we 135 // could just start legalizing on the root and traverse the whole graph. In 136 // practice however, this causes us to run out of stack space on large basic 137 // blocks. To avoid this problem, compute an ordering of the nodes where each 138 // node is only legalized after all of its operands are legalized. 139 DAG.AssignTopologicalOrder(); 140 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 141 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 142 LegalizeOp(SDValue(I, 0)); 143 144 // Finally, it's possible the root changed. Get the new root. 145 SDValue OldRoot = DAG.getRoot(); 146 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 147 DAG.setRoot(LegalizedNodes[OldRoot]); 148 149 LegalizedNodes.clear(); 150 151 // Remove dead nodes now. 152 DAG.RemoveDeadNodes(); 153 154 return Changed; 155 } 156 157 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { 158 // Generic legalization: just pass the operand through. 159 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) 160 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 161 return Result.getValue(Op.getResNo()); 162 } 163 164 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 165 // Note that LegalizeOp may be reentered even from single-use nodes, which 166 // means that we always must cache transformed nodes. 167 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 168 if (I != LegalizedNodes.end()) return I->second; 169 170 SDNode* Node = Op.getNode(); 171 172 // Legalize the operands 173 SmallVector<SDValue, 8> Ops; 174 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 175 Ops.push_back(LegalizeOp(Node->getOperand(i))); 176 177 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0); 178 179 if (Op.getOpcode() == ISD::LOAD) { 180 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 181 ISD::LoadExtType ExtType = LD->getExtensionType(); 182 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) { 183 if (TLI.isLoadExtLegal(LD->getExtensionType(), LD->getMemoryVT())) 184 return TranslateLegalizeResults(Op, Result); 185 Changed = true; 186 return LegalizeOp(ExpandLoad(Op)); 187 } 188 } else if (Op.getOpcode() == ISD::STORE) { 189 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 190 EVT StVT = ST->getMemoryVT(); 191 MVT ValVT = ST->getValue().getSimpleValueType(); 192 if (StVT.isVector() && ST->isTruncatingStore()) 193 switch (TLI.getTruncStoreAction(ValVT, StVT.getSimpleVT())) { 194 default: llvm_unreachable("This action is not supported yet!"); 195 case TargetLowering::Legal: 196 return TranslateLegalizeResults(Op, Result); 197 case TargetLowering::Custom: 198 Changed = true; 199 return TranslateLegalizeResults(Op, TLI.LowerOperation(Result, DAG)); 200 case TargetLowering::Expand: 201 Changed = true; 202 return LegalizeOp(ExpandStore(Op)); 203 } 204 } 205 206 bool HasVectorValue = false; 207 for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end(); 208 J != E; 209 ++J) 210 HasVectorValue |= J->isVector(); 211 if (!HasVectorValue) 212 return TranslateLegalizeResults(Op, Result); 213 214 EVT QueryType; 215 switch (Op.getOpcode()) { 216 default: 217 return TranslateLegalizeResults(Op, Result); 218 case ISD::ADD: 219 case ISD::SUB: 220 case ISD::MUL: 221 case ISD::SDIV: 222 case ISD::UDIV: 223 case ISD::SREM: 224 case ISD::UREM: 225 case ISD::FADD: 226 case ISD::FSUB: 227 case ISD::FMUL: 228 case ISD::FDIV: 229 case ISD::FREM: 230 case ISD::AND: 231 case ISD::OR: 232 case ISD::XOR: 233 case ISD::SHL: 234 case ISD::SRA: 235 case ISD::SRL: 236 case ISD::ROTL: 237 case ISD::ROTR: 238 case ISD::BSWAP: 239 case ISD::CTLZ: 240 case ISD::CTTZ: 241 case ISD::CTLZ_ZERO_UNDEF: 242 case ISD::CTTZ_ZERO_UNDEF: 243 case ISD::CTPOP: 244 case ISD::SELECT: 245 case ISD::VSELECT: 246 case ISD::SELECT_CC: 247 case ISD::SETCC: 248 case ISD::ZERO_EXTEND: 249 case ISD::ANY_EXTEND: 250 case ISD::TRUNCATE: 251 case ISD::SIGN_EXTEND: 252 case ISD::FP_TO_SINT: 253 case ISD::FP_TO_UINT: 254 case ISD::FNEG: 255 case ISD::FABS: 256 case ISD::FCOPYSIGN: 257 case ISD::FSQRT: 258 case ISD::FSIN: 259 case ISD::FCOS: 260 case ISD::FPOWI: 261 case ISD::FPOW: 262 case ISD::FLOG: 263 case ISD::FLOG2: 264 case ISD::FLOG10: 265 case ISD::FEXP: 266 case ISD::FEXP2: 267 case ISD::FCEIL: 268 case ISD::FTRUNC: 269 case ISD::FRINT: 270 case ISD::FNEARBYINT: 271 case ISD::FROUND: 272 case ISD::FFLOOR: 273 case ISD::FP_ROUND: 274 case ISD::FP_EXTEND: 275 case ISD::FMA: 276 case ISD::SIGN_EXTEND_INREG: 277 QueryType = Node->getValueType(0); 278 break; 279 case ISD::FP_ROUND_INREG: 280 QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 281 break; 282 case ISD::SINT_TO_FP: 283 case ISD::UINT_TO_FP: 284 QueryType = Node->getOperand(0).getValueType(); 285 break; 286 } 287 288 switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) { 289 case TargetLowering::Promote: 290 Result = Promote(Op); 291 Changed = true; 292 break; 293 case TargetLowering::Legal: 294 break; 295 case TargetLowering::Custom: { 296 SDValue Tmp1 = TLI.LowerOperation(Op, DAG); 297 if (Tmp1.getNode()) { 298 Result = Tmp1; 299 break; 300 } 301 // FALL THROUGH 302 } 303 case TargetLowering::Expand: 304 Result = Expand(Op); 305 } 306 307 // Make sure that the generated code is itself legal. 308 if (Result != Op) { 309 Result = LegalizeOp(Result); 310 Changed = true; 311 } 312 313 // Note that LegalizeOp may be reentered even from single-use nodes, which 314 // means that we always must cache transformed nodes. 315 AddLegalizedOperand(Op, Result); 316 return Result; 317 } 318 319 SDValue VectorLegalizer::Promote(SDValue Op) { 320 // For a few operations there is a specific concept for promotion based on 321 // the operand's type. 322 switch (Op.getOpcode()) { 323 case ISD::SINT_TO_FP: 324 case ISD::UINT_TO_FP: 325 // "Promote" the operation by extending the operand. 326 return PromoteINT_TO_FP(Op); 327 case ISD::FP_TO_UINT: 328 case ISD::FP_TO_SINT: 329 // Promote the operation by extending the operand. 330 return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT); 331 } 332 333 // The rest of the time, vector "promotion" is basically just bitcasting and 334 // doing the operation in a different type. For example, x86 promotes 335 // ISD::AND on v2i32 to v1i64. 336 MVT VT = Op.getSimpleValueType(); 337 assert(Op.getNode()->getNumValues() == 1 && 338 "Can't promote a vector with multiple results!"); 339 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 340 SDLoc dl(Op); 341 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 342 343 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 344 if (Op.getOperand(j).getValueType().isVector()) 345 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); 346 else 347 Operands[j] = Op.getOperand(j); 348 } 349 350 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands); 351 352 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 353 } 354 355 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) { 356 // INT_TO_FP operations may require the input operand be promoted even 357 // when the type is otherwise legal. 358 EVT VT = Op.getOperand(0).getValueType(); 359 assert(Op.getNode()->getNumValues() == 1 && 360 "Can't promote a vector with multiple results!"); 361 362 // Normal getTypeToPromoteTo() doesn't work here, as that will promote 363 // by widening the vector w/ the same element width and twice the number 364 // of elements. We want the other way around, the same number of elements, 365 // each twice the width. 366 // 367 // Increase the bitwidth of the element to the next pow-of-two 368 // (which is greater than 8 bits). 369 370 EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext()); 371 assert(NVT.isSimple() && "Promoting to a non-simple vector type!"); 372 SDLoc dl(Op); 373 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 374 375 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : 376 ISD::SIGN_EXTEND; 377 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 378 if (Op.getOperand(j).getValueType().isVector()) 379 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j)); 380 else 381 Operands[j] = Op.getOperand(j); 382 } 383 384 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands); 385 } 386 387 // For FP_TO_INT we promote the result type to a vector type with wider 388 // elements and then truncate the result. This is different from the default 389 // PromoteVector which uses bitcast to promote thus assumning that the 390 // promoted vector type has the same overall size. 391 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) { 392 assert(Op.getNode()->getNumValues() == 1 && 393 "Can't promote a vector with multiple results!"); 394 EVT VT = Op.getValueType(); 395 396 EVT NewVT; 397 unsigned NewOpc; 398 while (1) { 399 NewVT = VT.widenIntegerVectorElementType(*DAG.getContext()); 400 assert(NewVT.isSimple() && "Promoting to a non-simple vector type!"); 401 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) { 402 NewOpc = ISD::FP_TO_SINT; 403 break; 404 } 405 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) { 406 NewOpc = ISD::FP_TO_UINT; 407 break; 408 } 409 } 410 411 SDLoc loc(Op); 412 SDValue promoted = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0)); 413 return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted); 414 } 415 416 417 SDValue VectorLegalizer::ExpandLoad(SDValue Op) { 418 SDLoc dl(Op); 419 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 420 SDValue Chain = LD->getChain(); 421 SDValue BasePTR = LD->getBasePtr(); 422 EVT SrcVT = LD->getMemoryVT(); 423 ISD::LoadExtType ExtType = LD->getExtensionType(); 424 425 SmallVector<SDValue, 8> Vals; 426 SmallVector<SDValue, 8> LoadChains; 427 unsigned NumElem = SrcVT.getVectorNumElements(); 428 429 EVT SrcEltVT = SrcVT.getScalarType(); 430 EVT DstEltVT = Op.getNode()->getValueType(0).getScalarType(); 431 432 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { 433 // When elements in a vector is not byte-addressable, we cannot directly 434 // load each element by advancing pointer, which could only address bytes. 435 // Instead, we load all significant words, mask bits off, and concatenate 436 // them to form each element. Finally, they are extended to destination 437 // scalar type to build the destination vector. 438 EVT WideVT = TLI.getPointerTy(); 439 440 assert(WideVT.isRound() && 441 "Could not handle the sophisticated case when the widest integer is" 442 " not power of 2."); 443 assert(WideVT.bitsGE(SrcEltVT) && 444 "Type is not legalized?"); 445 446 unsigned WideBytes = WideVT.getStoreSize(); 447 unsigned Offset = 0; 448 unsigned RemainingBytes = SrcVT.getStoreSize(); 449 SmallVector<SDValue, 8> LoadVals; 450 451 while (RemainingBytes > 0) { 452 SDValue ScalarLoad; 453 unsigned LoadBytes = WideBytes; 454 455 if (RemainingBytes >= LoadBytes) { 456 ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR, 457 LD->getPointerInfo().getWithOffset(Offset), 458 LD->isVolatile(), LD->isNonTemporal(), 459 LD->isInvariant(), LD->getAlignment(), 460 LD->getTBAAInfo()); 461 } else { 462 EVT LoadVT = WideVT; 463 while (RemainingBytes < LoadBytes) { 464 LoadBytes >>= 1; // Reduce the load size by half. 465 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); 466 } 467 ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, 468 LD->getPointerInfo().getWithOffset(Offset), 469 LoadVT, LD->isVolatile(), 470 LD->isNonTemporal(), LD->getAlignment(), 471 LD->getTBAAInfo()); 472 } 473 474 RemainingBytes -= LoadBytes; 475 Offset += LoadBytes; 476 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 477 DAG.getConstant(LoadBytes, BasePTR.getValueType())); 478 479 LoadVals.push_back(ScalarLoad.getValue(0)); 480 LoadChains.push_back(ScalarLoad.getValue(1)); 481 } 482 483 // Extract bits, pack and extend/trunc them into destination type. 484 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 485 SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, WideVT); 486 487 unsigned BitOffset = 0; 488 unsigned WideIdx = 0; 489 unsigned WideBits = WideVT.getSizeInBits(); 490 491 for (unsigned Idx = 0; Idx != NumElem; ++Idx) { 492 SDValue Lo, Hi, ShAmt; 493 494 if (BitOffset < WideBits) { 495 ShAmt = DAG.getConstant(BitOffset, TLI.getShiftAmountTy(WideVT)); 496 Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); 497 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); 498 } 499 500 BitOffset += SrcEltBits; 501 if (BitOffset >= WideBits) { 502 WideIdx++; 503 Offset -= WideBits; 504 if (Offset > 0) { 505 ShAmt = DAG.getConstant(SrcEltBits - Offset, 506 TLI.getShiftAmountTy(WideVT)); 507 Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); 508 Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask); 509 } 510 } 511 512 if (Hi.getNode()) 513 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); 514 515 switch (ExtType) { 516 default: llvm_unreachable("Unknown extended-load op!"); 517 case ISD::EXTLOAD: 518 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); 519 break; 520 case ISD::ZEXTLOAD: 521 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); 522 break; 523 case ISD::SEXTLOAD: 524 ShAmt = DAG.getConstant(WideBits - SrcEltBits, 525 TLI.getShiftAmountTy(WideVT)); 526 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); 527 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); 528 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); 529 break; 530 } 531 Vals.push_back(Lo); 532 } 533 } else { 534 unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8; 535 536 for (unsigned Idx=0; Idx<NumElem; Idx++) { 537 SDValue ScalarLoad = DAG.getExtLoad(ExtType, dl, 538 Op.getNode()->getValueType(0).getScalarType(), 539 Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride), 540 SrcVT.getScalarType(), 541 LD->isVolatile(), LD->isNonTemporal(), 542 LD->getAlignment(), LD->getTBAAInfo()); 543 544 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 545 DAG.getConstant(Stride, BasePTR.getValueType())); 546 547 Vals.push_back(ScalarLoad.getValue(0)); 548 LoadChains.push_back(ScalarLoad.getValue(1)); 549 } 550 } 551 552 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 553 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, 554 Op.getNode()->getValueType(0), Vals); 555 556 AddLegalizedOperand(Op.getValue(0), Value); 557 AddLegalizedOperand(Op.getValue(1), NewChain); 558 559 return (Op.getResNo() ? NewChain : Value); 560 } 561 562 SDValue VectorLegalizer::ExpandStore(SDValue Op) { 563 SDLoc dl(Op); 564 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 565 SDValue Chain = ST->getChain(); 566 SDValue BasePTR = ST->getBasePtr(); 567 SDValue Value = ST->getValue(); 568 EVT StVT = ST->getMemoryVT(); 569 570 unsigned Alignment = ST->getAlignment(); 571 bool isVolatile = ST->isVolatile(); 572 bool isNonTemporal = ST->isNonTemporal(); 573 const MDNode *TBAAInfo = ST->getTBAAInfo(); 574 575 unsigned NumElem = StVT.getVectorNumElements(); 576 // The type of the data we want to save 577 EVT RegVT = Value.getValueType(); 578 EVT RegSclVT = RegVT.getScalarType(); 579 // The type of data as saved in memory. 580 EVT MemSclVT = StVT.getScalarType(); 581 582 // Cast floats into integers 583 unsigned ScalarSize = MemSclVT.getSizeInBits(); 584 585 // Round odd types to the next pow of two. 586 if (!isPowerOf2_32(ScalarSize)) 587 ScalarSize = NextPowerOf2(ScalarSize); 588 589 // Store Stride in bytes 590 unsigned Stride = ScalarSize/8; 591 // Extract each of the elements from the original vector 592 // and save them into memory individually. 593 SmallVector<SDValue, 8> Stores; 594 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 595 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 596 RegSclVT, Value, DAG.getConstant(Idx, TLI.getVectorIdxTy())); 597 598 // This scalar TruncStore may be illegal, but we legalize it later. 599 SDValue Store = DAG.getTruncStore(Chain, dl, Ex, BasePTR, 600 ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT, 601 isVolatile, isNonTemporal, Alignment, TBAAInfo); 602 603 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 604 DAG.getConstant(Stride, BasePTR.getValueType())); 605 606 Stores.push_back(Store); 607 } 608 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 609 AddLegalizedOperand(Op, TF); 610 return TF; 611 } 612 613 SDValue VectorLegalizer::Expand(SDValue Op) { 614 switch (Op->getOpcode()) { 615 case ISD::SIGN_EXTEND_INREG: 616 return ExpandSEXTINREG(Op); 617 case ISD::BSWAP: 618 return ExpandBSWAP(Op); 619 case ISD::VSELECT: 620 return ExpandVSELECT(Op); 621 case ISD::SELECT: 622 return ExpandSELECT(Op); 623 case ISD::UINT_TO_FP: 624 return ExpandUINT_TO_FLOAT(Op); 625 case ISD::FNEG: 626 return ExpandFNEG(Op); 627 case ISD::SETCC: 628 return UnrollVSETCC(Op); 629 default: 630 return DAG.UnrollVectorOp(Op.getNode()); 631 } 632 } 633 634 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) { 635 // Lower a select instruction where the condition is a scalar and the 636 // operands are vectors. Lower this select to VSELECT and implement it 637 // using XOR AND OR. The selector bit is broadcasted. 638 EVT VT = Op.getValueType(); 639 SDLoc DL(Op); 640 641 SDValue Mask = Op.getOperand(0); 642 SDValue Op1 = Op.getOperand(1); 643 SDValue Op2 = Op.getOperand(2); 644 645 assert(VT.isVector() && !Mask.getValueType().isVector() 646 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 647 648 unsigned NumElem = VT.getVectorNumElements(); 649 650 // If we can't even use the basic vector operations of 651 // AND,OR,XOR, we will have to scalarize the op. 652 // Notice that the operation may be 'promoted' which means that it is 653 // 'bitcasted' to another type which is handled. 654 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 655 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 656 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 657 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 658 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 659 return DAG.UnrollVectorOp(Op.getNode()); 660 661 // Generate a mask operand. 662 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 663 664 // What is the size of each element in the vector mask. 665 EVT BitTy = MaskTy.getScalarType(); 666 667 Mask = DAG.getSelect(DL, BitTy, Mask, 668 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), BitTy), 669 DAG.getConstant(0, BitTy)); 670 671 // Broadcast the mask so that the entire vector is all-one or all zero. 672 SmallVector<SDValue, 8> Ops(NumElem, Mask); 673 Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, Ops); 674 675 // Bitcast the operands to be the same type as the mask. 676 // This is needed when we select between FP types because 677 // the mask is a vector of integers. 678 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 679 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 680 681 SDValue AllOnes = DAG.getConstant( 682 APInt::getAllOnesValue(BitTy.getSizeInBits()), MaskTy); 683 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 684 685 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 686 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 687 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 688 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 689 } 690 691 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) { 692 EVT VT = Op.getValueType(); 693 694 // Make sure that the SRA and SHL instructions are available. 695 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 696 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 697 return DAG.UnrollVectorOp(Op.getNode()); 698 699 SDLoc DL(Op); 700 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT(); 701 702 unsigned BW = VT.getScalarType().getSizeInBits(); 703 unsigned OrigBW = OrigTy.getScalarType().getSizeInBits(); 704 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, VT); 705 706 Op = Op.getOperand(0); 707 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz); 708 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 709 } 710 711 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) { 712 EVT VT = Op.getValueType(); 713 714 // Generate a byte wise shuffle mask for the BSWAP. 715 SmallVector<int, 16> ShuffleMask; 716 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 717 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 718 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 719 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 720 721 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 722 723 // Only emit a shuffle if the mask is legal. 724 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) 725 return DAG.UnrollVectorOp(Op.getNode()); 726 727 SDLoc DL(Op); 728 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 729 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 730 ShuffleMask.data()); 731 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 732 } 733 734 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { 735 // Implement VSELECT in terms of XOR, AND, OR 736 // on platforms which do not support blend natively. 737 SDLoc DL(Op); 738 739 SDValue Mask = Op.getOperand(0); 740 SDValue Op1 = Op.getOperand(1); 741 SDValue Op2 = Op.getOperand(2); 742 743 EVT VT = Mask.getValueType(); 744 745 // If we can't even use the basic vector operations of 746 // AND,OR,XOR, we will have to scalarize the op. 747 // Notice that the operation may be 'promoted' which means that it is 748 // 'bitcasted' to another type which is handled. 749 // This operation also isn't safe with AND, OR, XOR when the boolean 750 // type is 0/1 as we need an all ones vector constant to mask with. 751 // FIXME: Sign extend 1 to all ones if thats legal on the target. 752 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 753 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 754 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 755 TLI.getBooleanContents(true) != 756 TargetLowering::ZeroOrNegativeOneBooleanContent) 757 return DAG.UnrollVectorOp(Op.getNode()); 758 759 // If the mask and the type are different sizes, unroll the vector op. This 760 // can occur when getSetCCResultType returns something that is different in 761 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 762 if (VT.getSizeInBits() != Op1.getValueType().getSizeInBits()) 763 return DAG.UnrollVectorOp(Op.getNode()); 764 765 // Bitcast the operands to be the same type as the mask. 766 // This is needed when we select between FP types because 767 // the mask is a vector of integers. 768 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 769 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 770 771 SDValue AllOnes = DAG.getConstant( 772 APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), VT); 773 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 774 775 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 776 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 777 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 778 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 779 } 780 781 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { 782 EVT VT = Op.getOperand(0).getValueType(); 783 SDLoc DL(Op); 784 785 // Make sure that the SINT_TO_FP and SRL instructions are available. 786 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand || 787 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) 788 return DAG.UnrollVectorOp(Op.getNode()); 789 790 EVT SVT = VT.getScalarType(); 791 assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) && 792 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 793 794 unsigned BW = SVT.getSizeInBits(); 795 SDValue HalfWord = DAG.getConstant(BW/2, VT); 796 797 // Constants to clear the upper part of the word. 798 // Notice that we can also use SHL+SHR, but using a constant is slightly 799 // faster on x86. 800 uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF; 801 SDValue HalfWordMask = DAG.getConstant(HWMask, VT); 802 803 // Two to the power of half-word-size. 804 SDValue TWOHW = DAG.getConstantFP((1<<(BW/2)), Op.getValueType()); 805 806 // Clear upper part of LO, lower HI 807 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); 808 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); 809 810 // Convert hi and lo to floats 811 // Convert the hi part back to the upper values 812 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); 813 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); 814 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); 815 816 // Add the two halves 817 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); 818 } 819 820 821 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { 822 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { 823 SDValue Zero = DAG.getConstantFP(-0.0, Op.getValueType()); 824 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 825 Zero, Op.getOperand(0)); 826 } 827 return DAG.UnrollVectorOp(Op.getNode()); 828 } 829 830 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { 831 EVT VT = Op.getValueType(); 832 unsigned NumElems = VT.getVectorNumElements(); 833 EVT EltVT = VT.getVectorElementType(); 834 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); 835 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 836 SDLoc dl(Op); 837 SmallVector<SDValue, 8> Ops(NumElems); 838 for (unsigned i = 0; i < NumElems; ++i) { 839 SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 840 DAG.getConstant(i, TLI.getVectorIdxTy())); 841 SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 842 DAG.getConstant(i, TLI.getVectorIdxTy())); 843 Ops[i] = DAG.getNode(ISD::SETCC, dl, 844 TLI.getSetCCResultType(*DAG.getContext(), TmpEltVT), 845 LHSElem, RHSElem, CC); 846 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 847 DAG.getConstant(APInt::getAllOnesValue 848 (EltVT.getSizeInBits()), EltVT), 849 DAG.getConstant(0, EltVT)); 850 } 851 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 852 } 853 854 } 855 856 bool SelectionDAG::LegalizeVectors() { 857 return VectorLegalizer(*this).Run(); 858 } 859