1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SelectionDAG::LegalizeVectors method. 11 // 12 // The vector legalizer looks for vector operations which might need to be 13 // scalarized and legalizes them. This is a separate step from Legalize because 14 // scalarizing can introduce illegal types. For example, suppose we have an 15 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 17 // operation, which introduces nodes with the illegal type i64 which must be 18 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 19 // the operation must be unrolled, which introduces nodes with the illegal 20 // type i8 which must be promoted. 21 // 22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 23 // or operations that happen to take a vector which are custom-lowered; 24 // the legalization for such operations never produces nodes 25 // with illegal types, so it's okay to put off legalizing them until 26 // SelectionDAG::Legalize runs. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/ADT/APInt.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/CodeGen/ISDOpcodes.h" 34 #include "llvm/CodeGen/MachineMemOperand.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/SelectionDAGNodes.h" 37 #include "llvm/CodeGen/TargetLowering.h" 38 #include "llvm/CodeGen/ValueTypes.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Compiler.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include <cassert> 46 #include <cstdint> 47 #include <iterator> 48 #include <utility> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "legalizevectorops" 53 54 namespace { 55 56 class VectorLegalizer { 57 SelectionDAG& DAG; 58 const TargetLowering &TLI; 59 bool Changed = false; // Keep track of whether anything changed 60 61 /// For nodes that are of legal width, and that have more than one use, this 62 /// map indicates what regularized operand to use. This allows us to avoid 63 /// legalizing the same thing more than once. 64 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 65 66 /// Adds a node to the translation cache. 67 void AddLegalizedOperand(SDValue From, SDValue To) { 68 LegalizedNodes.insert(std::make_pair(From, To)); 69 // If someone requests legalization of the new node, return itself. 70 if (From != To) 71 LegalizedNodes.insert(std::make_pair(To, To)); 72 } 73 74 /// Legalizes the given node. 75 SDValue LegalizeOp(SDValue Op); 76 77 /// Assuming the node is legal, "legalize" the results. 78 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); 79 80 /// Implements unrolling a VSETCC. 81 SDValue UnrollVSETCC(SDValue Op); 82 83 /// Implement expand-based legalization of vector operations. 84 /// 85 /// This is just a high-level routine to dispatch to specific code paths for 86 /// operations to legalize them. 87 SDValue Expand(SDValue Op); 88 89 /// Implements expansion for FNEG; falls back to UnrollVectorOp if 90 /// FSUB isn't legal. 91 /// 92 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 93 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 94 SDValue ExpandUINT_TO_FLOAT(SDValue Op); 95 96 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 97 SDValue ExpandSEXTINREG(SDValue Op); 98 99 /// Implement expansion for ANY_EXTEND_VECTOR_INREG. 100 /// 101 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 102 /// type. The contents of the bits in the extended part of each element are 103 /// undef. 104 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op); 105 106 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG. 107 /// 108 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 109 /// type, then shifts left and arithmetic shifts right to introduce a sign 110 /// extension. 111 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op); 112 113 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG. 114 /// 115 /// Shuffles the low lanes of the operand into place and blends zeros into 116 /// the remaining lanes, finally bitcasting to the proper type. 117 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op); 118 119 /// Expand bswap of vectors into a shuffle if legal. 120 SDValue ExpandBSWAP(SDValue Op); 121 122 /// Implement vselect in terms of XOR, AND, OR when blend is not 123 /// supported by the target. 124 SDValue ExpandVSELECT(SDValue Op); 125 SDValue ExpandSELECT(SDValue Op); 126 SDValue ExpandLoad(SDValue Op); 127 SDValue ExpandStore(SDValue Op); 128 SDValue ExpandFNEG(SDValue Op); 129 SDValue ExpandFSUB(SDValue Op); 130 SDValue ExpandBITREVERSE(SDValue Op); 131 SDValue ExpandCTLZ(SDValue Op); 132 SDValue ExpandCTTZ_ZERO_UNDEF(SDValue Op); 133 134 /// Implements vector promotion. 135 /// 136 /// This is essentially just bitcasting the operands to a different type and 137 /// bitcasting the result back to the original type. 138 SDValue Promote(SDValue Op); 139 140 /// Implements [SU]INT_TO_FP vector promotion. 141 /// 142 /// This is a [zs]ext of the input operand to a larger integer type. 143 SDValue PromoteINT_TO_FP(SDValue Op); 144 145 /// Implements FP_TO_[SU]INT vector promotion of the result type. 146 /// 147 /// It is promoted to a larger integer type. The result is then 148 /// truncated back to the original type. 149 SDValue PromoteFP_TO_INT(SDValue Op); 150 151 public: 152 VectorLegalizer(SelectionDAG& dag) : 153 DAG(dag), TLI(dag.getTargetLoweringInfo()) {} 154 155 /// Begin legalizer the vector operations in the DAG. 156 bool Run(); 157 }; 158 159 } // end anonymous namespace 160 161 bool VectorLegalizer::Run() { 162 // Before we start legalizing vector nodes, check if there are any vectors. 163 bool HasVectors = false; 164 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 165 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 166 // Check if the values of the nodes contain vectors. We don't need to check 167 // the operands because we are going to check their values at some point. 168 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); 169 J != E; ++J) 170 HasVectors |= J->isVector(); 171 172 // If we found a vector node we can start the legalization. 173 if (HasVectors) 174 break; 175 } 176 177 // If this basic block has no vectors then no need to legalize vectors. 178 if (!HasVectors) 179 return false; 180 181 // The legalize process is inherently a bottom-up recursive process (users 182 // legalize their uses before themselves). Given infinite stack space, we 183 // could just start legalizing on the root and traverse the whole graph. In 184 // practice however, this causes us to run out of stack space on large basic 185 // blocks. To avoid this problem, compute an ordering of the nodes where each 186 // node is only legalized after all of its operands are legalized. 187 DAG.AssignTopologicalOrder(); 188 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 189 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 190 LegalizeOp(SDValue(&*I, 0)); 191 192 // Finally, it's possible the root changed. Get the new root. 193 SDValue OldRoot = DAG.getRoot(); 194 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 195 DAG.setRoot(LegalizedNodes[OldRoot]); 196 197 LegalizedNodes.clear(); 198 199 // Remove dead nodes now. 200 DAG.RemoveDeadNodes(); 201 202 return Changed; 203 } 204 205 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { 206 // Generic legalization: just pass the operand through. 207 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) 208 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 209 return Result.getValue(Op.getResNo()); 210 } 211 212 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 213 // Note that LegalizeOp may be reentered even from single-use nodes, which 214 // means that we always must cache transformed nodes. 215 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 216 if (I != LegalizedNodes.end()) return I->second; 217 218 SDNode* Node = Op.getNode(); 219 220 // Legalize the operands 221 SmallVector<SDValue, 8> Ops; 222 for (const SDValue &Op : Node->op_values()) 223 Ops.push_back(LegalizeOp(Op)); 224 225 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0); 226 227 bool HasVectorValue = false; 228 if (Op.getOpcode() == ISD::LOAD) { 229 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 230 ISD::LoadExtType ExtType = LD->getExtensionType(); 231 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) { 232 LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: "; 233 Node->dump(&DAG)); 234 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), 235 LD->getMemoryVT())) { 236 default: llvm_unreachable("This action is not supported yet!"); 237 case TargetLowering::Legal: 238 return TranslateLegalizeResults(Op, Result); 239 case TargetLowering::Custom: 240 if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) { 241 if (Lowered == Result) 242 return TranslateLegalizeResults(Op, Lowered); 243 Changed = true; 244 if (Lowered->getNumValues() != Op->getNumValues()) { 245 // This expanded to something other than the load. Assume the 246 // lowering code took care of any chain values, and just handle the 247 // returned value. 248 assert(Result.getValue(1).use_empty() && 249 "There are still live users of the old chain!"); 250 return LegalizeOp(Lowered); 251 } 252 return TranslateLegalizeResults(Op, Lowered); 253 } 254 LLVM_FALLTHROUGH; 255 case TargetLowering::Expand: 256 Changed = true; 257 return LegalizeOp(ExpandLoad(Op)); 258 } 259 } 260 } else if (Op.getOpcode() == ISD::STORE) { 261 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 262 EVT StVT = ST->getMemoryVT(); 263 MVT ValVT = ST->getValue().getSimpleValueType(); 264 if (StVT.isVector() && ST->isTruncatingStore()) { 265 LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: "; 266 Node->dump(&DAG)); 267 switch (TLI.getTruncStoreAction(ValVT, StVT)) { 268 default: llvm_unreachable("This action is not supported yet!"); 269 case TargetLowering::Legal: 270 return TranslateLegalizeResults(Op, Result); 271 case TargetLowering::Custom: { 272 SDValue Lowered = TLI.LowerOperation(Result, DAG); 273 Changed = Lowered != Result; 274 return TranslateLegalizeResults(Op, Lowered); 275 } 276 case TargetLowering::Expand: 277 Changed = true; 278 return LegalizeOp(ExpandStore(Op)); 279 } 280 } 281 } else if (Op.getOpcode() == ISD::MSCATTER || Op.getOpcode() == ISD::MSTORE) 282 HasVectorValue = true; 283 284 for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end(); 285 J != E; 286 ++J) 287 HasVectorValue |= J->isVector(); 288 if (!HasVectorValue) 289 return TranslateLegalizeResults(Op, Result); 290 291 EVT QueryType; 292 switch (Op.getOpcode()) { 293 default: 294 return TranslateLegalizeResults(Op, Result); 295 case ISD::ADD: 296 case ISD::SUB: 297 case ISD::MUL: 298 case ISD::SDIV: 299 case ISD::UDIV: 300 case ISD::SREM: 301 case ISD::UREM: 302 case ISD::SDIVREM: 303 case ISD::UDIVREM: 304 case ISD::FADD: 305 case ISD::FSUB: 306 case ISD::FMUL: 307 case ISD::FDIV: 308 case ISD::FREM: 309 case ISD::AND: 310 case ISD::OR: 311 case ISD::XOR: 312 case ISD::SHL: 313 case ISD::SRA: 314 case ISD::SRL: 315 case ISD::ROTL: 316 case ISD::ROTR: 317 case ISD::BSWAP: 318 case ISD::BITREVERSE: 319 case ISD::CTLZ: 320 case ISD::CTTZ: 321 case ISD::CTLZ_ZERO_UNDEF: 322 case ISD::CTTZ_ZERO_UNDEF: 323 case ISD::CTPOP: 324 case ISD::SELECT: 325 case ISD::VSELECT: 326 case ISD::SELECT_CC: 327 case ISD::SETCC: 328 case ISD::ZERO_EXTEND: 329 case ISD::ANY_EXTEND: 330 case ISD::TRUNCATE: 331 case ISD::SIGN_EXTEND: 332 case ISD::FP_TO_SINT: 333 case ISD::FP_TO_UINT: 334 case ISD::FNEG: 335 case ISD::FABS: 336 case ISD::FMINNUM: 337 case ISD::FMAXNUM: 338 case ISD::FMINNAN: 339 case ISD::FMAXNAN: 340 case ISD::FCOPYSIGN: 341 case ISD::FSQRT: 342 case ISD::FSIN: 343 case ISD::FCOS: 344 case ISD::FPOWI: 345 case ISD::FPOW: 346 case ISD::FLOG: 347 case ISD::FLOG2: 348 case ISD::FLOG10: 349 case ISD::FEXP: 350 case ISD::FEXP2: 351 case ISD::FCEIL: 352 case ISD::FTRUNC: 353 case ISD::FRINT: 354 case ISD::FNEARBYINT: 355 case ISD::FROUND: 356 case ISD::FFLOOR: 357 case ISD::FP_ROUND: 358 case ISD::FP_EXTEND: 359 case ISD::FMA: 360 case ISD::SIGN_EXTEND_INREG: 361 case ISD::ANY_EXTEND_VECTOR_INREG: 362 case ISD::SIGN_EXTEND_VECTOR_INREG: 363 case ISD::ZERO_EXTEND_VECTOR_INREG: 364 case ISD::SMIN: 365 case ISD::SMAX: 366 case ISD::UMIN: 367 case ISD::UMAX: 368 case ISD::SMUL_LOHI: 369 case ISD::UMUL_LOHI: 370 case ISD::FCANONICALIZE: 371 QueryType = Node->getValueType(0); 372 break; 373 case ISD::FP_ROUND_INREG: 374 QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 375 break; 376 case ISD::SINT_TO_FP: 377 case ISD::UINT_TO_FP: 378 QueryType = Node->getOperand(0).getValueType(); 379 break; 380 case ISD::MSCATTER: 381 QueryType = cast<MaskedScatterSDNode>(Node)->getValue().getValueType(); 382 break; 383 case ISD::MSTORE: 384 QueryType = cast<MaskedStoreSDNode>(Node)->getValue().getValueType(); 385 break; 386 } 387 388 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG)); 389 390 switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) { 391 default: llvm_unreachable("This action is not supported yet!"); 392 case TargetLowering::Promote: 393 Result = Promote(Op); 394 Changed = true; 395 break; 396 case TargetLowering::Legal: 397 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 398 break; 399 case TargetLowering::Custom: { 400 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 401 if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) { 402 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 403 Result = Tmp1; 404 break; 405 } 406 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 407 LLVM_FALLTHROUGH; 408 } 409 case TargetLowering::Expand: 410 Result = Expand(Op); 411 } 412 413 // Make sure that the generated code is itself legal. 414 if (Result != Op) { 415 Result = LegalizeOp(Result); 416 Changed = true; 417 } 418 419 // Note that LegalizeOp may be reentered even from single-use nodes, which 420 // means that we always must cache transformed nodes. 421 AddLegalizedOperand(Op, Result); 422 return Result; 423 } 424 425 SDValue VectorLegalizer::Promote(SDValue Op) { 426 // For a few operations there is a specific concept for promotion based on 427 // the operand's type. 428 switch (Op.getOpcode()) { 429 case ISD::SINT_TO_FP: 430 case ISD::UINT_TO_FP: 431 // "Promote" the operation by extending the operand. 432 return PromoteINT_TO_FP(Op); 433 case ISD::FP_TO_UINT: 434 case ISD::FP_TO_SINT: 435 // Promote the operation by extending the operand. 436 return PromoteFP_TO_INT(Op); 437 } 438 439 // There are currently two cases of vector promotion: 440 // 1) Bitcasting a vector of integers to a different type to a vector of the 441 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 442 // 2) Extending a vector of floats to a vector of the same number of larger 443 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 444 MVT VT = Op.getSimpleValueType(); 445 assert(Op.getNode()->getNumValues() == 1 && 446 "Can't promote a vector with multiple results!"); 447 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 448 SDLoc dl(Op); 449 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 450 451 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 452 if (Op.getOperand(j).getValueType().isVector()) 453 if (Op.getOperand(j) 454 .getValueType() 455 .getVectorElementType() 456 .isFloatingPoint() && 457 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 458 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j)); 459 else 460 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); 461 else 462 Operands[j] = Op.getOperand(j); 463 } 464 465 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags()); 466 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 467 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 468 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 469 return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl)); 470 else 471 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 472 } 473 474 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) { 475 // INT_TO_FP operations may require the input operand be promoted even 476 // when the type is otherwise legal. 477 MVT VT = Op.getOperand(0).getSimpleValueType(); 478 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 479 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 480 "Vectors have different number of elements!"); 481 482 SDLoc dl(Op); 483 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 484 485 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : 486 ISD::SIGN_EXTEND; 487 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 488 if (Op.getOperand(j).getValueType().isVector()) 489 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j)); 490 else 491 Operands[j] = Op.getOperand(j); 492 } 493 494 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands); 495 } 496 497 // For FP_TO_INT we promote the result type to a vector type with wider 498 // elements and then truncate the result. This is different from the default 499 // PromoteVector which uses bitcast to promote thus assumning that the 500 // promoted vector type has the same overall size. 501 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op) { 502 MVT VT = Op.getSimpleValueType(); 503 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 504 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 505 "Vectors have different number of elements!"); 506 507 unsigned NewOpc = Op->getOpcode(); 508 // Change FP_TO_UINT to FP_TO_SINT if possible. 509 // TODO: Should we only do this if FP_TO_UINT itself isn't legal? 510 if (NewOpc == ISD::FP_TO_UINT && 511 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT)) 512 NewOpc = ISD::FP_TO_SINT; 513 514 SDLoc dl(Op); 515 SDValue Promoted = DAG.getNode(NewOpc, dl, NVT, Op.getOperand(0)); 516 517 // Assert that the converted value fits in the original type. If it doesn't 518 // (eg: because the value being converted is too big), then the result of the 519 // original operation was undefined anyway, so the assert is still correct. 520 Promoted = DAG.getNode(Op->getOpcode() == ISD::FP_TO_UINT ? ISD::AssertZext 521 : ISD::AssertSext, 522 dl, NVT, Promoted, 523 DAG.getValueType(VT.getScalarType())); 524 return DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted); 525 } 526 527 SDValue VectorLegalizer::ExpandLoad(SDValue Op) { 528 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 529 530 EVT SrcVT = LD->getMemoryVT(); 531 EVT SrcEltVT = SrcVT.getScalarType(); 532 unsigned NumElem = SrcVT.getVectorNumElements(); 533 534 SDValue NewChain; 535 SDValue Value; 536 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { 537 SDLoc dl(Op); 538 539 SmallVector<SDValue, 8> Vals; 540 SmallVector<SDValue, 8> LoadChains; 541 542 EVT DstEltVT = LD->getValueType(0).getScalarType(); 543 SDValue Chain = LD->getChain(); 544 SDValue BasePTR = LD->getBasePtr(); 545 ISD::LoadExtType ExtType = LD->getExtensionType(); 546 547 // When elements in a vector is not byte-addressable, we cannot directly 548 // load each element by advancing pointer, which could only address bytes. 549 // Instead, we load all significant words, mask bits off, and concatenate 550 // them to form each element. Finally, they are extended to destination 551 // scalar type to build the destination vector. 552 EVT WideVT = TLI.getPointerTy(DAG.getDataLayout()); 553 554 assert(WideVT.isRound() && 555 "Could not handle the sophisticated case when the widest integer is" 556 " not power of 2."); 557 assert(WideVT.bitsGE(SrcEltVT) && 558 "Type is not legalized?"); 559 560 unsigned WideBytes = WideVT.getStoreSize(); 561 unsigned Offset = 0; 562 unsigned RemainingBytes = SrcVT.getStoreSize(); 563 SmallVector<SDValue, 8> LoadVals; 564 while (RemainingBytes > 0) { 565 SDValue ScalarLoad; 566 unsigned LoadBytes = WideBytes; 567 568 if (RemainingBytes >= LoadBytes) { 569 ScalarLoad = 570 DAG.getLoad(WideVT, dl, Chain, BasePTR, 571 LD->getPointerInfo().getWithOffset(Offset), 572 MinAlign(LD->getAlignment(), Offset), 573 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 574 } else { 575 EVT LoadVT = WideVT; 576 while (RemainingBytes < LoadBytes) { 577 LoadBytes >>= 1; // Reduce the load size by half. 578 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); 579 } 580 ScalarLoad = 581 DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, 582 LD->getPointerInfo().getWithOffset(Offset), LoadVT, 583 MinAlign(LD->getAlignment(), Offset), 584 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 585 } 586 587 RemainingBytes -= LoadBytes; 588 Offset += LoadBytes; 589 590 BasePTR = DAG.getObjectPtrOffset(dl, BasePTR, LoadBytes); 591 592 LoadVals.push_back(ScalarLoad.getValue(0)); 593 LoadChains.push_back(ScalarLoad.getValue(1)); 594 } 595 596 // Extract bits, pack and extend/trunc them into destination type. 597 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 598 SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT); 599 600 unsigned BitOffset = 0; 601 unsigned WideIdx = 0; 602 unsigned WideBits = WideVT.getSizeInBits(); 603 604 for (unsigned Idx = 0; Idx != NumElem; ++Idx) { 605 SDValue Lo, Hi, ShAmt; 606 607 if (BitOffset < WideBits) { 608 ShAmt = DAG.getConstant( 609 BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 610 Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); 611 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); 612 } 613 614 BitOffset += SrcEltBits; 615 if (BitOffset >= WideBits) { 616 WideIdx++; 617 BitOffset -= WideBits; 618 if (BitOffset > 0) { 619 ShAmt = DAG.getConstant( 620 SrcEltBits - BitOffset, dl, 621 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 622 Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); 623 Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask); 624 } 625 } 626 627 if (Hi.getNode()) 628 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); 629 630 switch (ExtType) { 631 default: llvm_unreachable("Unknown extended-load op!"); 632 case ISD::EXTLOAD: 633 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); 634 break; 635 case ISD::ZEXTLOAD: 636 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); 637 break; 638 case ISD::SEXTLOAD: 639 ShAmt = 640 DAG.getConstant(WideBits - SrcEltBits, dl, 641 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 642 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); 643 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); 644 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); 645 break; 646 } 647 Vals.push_back(Lo); 648 } 649 650 NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 651 Value = DAG.getBuildVector(Op.getNode()->getValueType(0), dl, Vals); 652 } else { 653 SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG); 654 655 NewChain = Scalarized.getValue(1); 656 Value = Scalarized.getValue(0); 657 } 658 659 AddLegalizedOperand(Op.getValue(0), Value); 660 AddLegalizedOperand(Op.getValue(1), NewChain); 661 662 return (Op.getResNo() ? NewChain : Value); 663 } 664 665 SDValue VectorLegalizer::ExpandStore(SDValue Op) { 666 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 667 SDValue TF = TLI.scalarizeVectorStore(ST, DAG); 668 AddLegalizedOperand(Op, TF); 669 return TF; 670 } 671 672 SDValue VectorLegalizer::Expand(SDValue Op) { 673 switch (Op->getOpcode()) { 674 case ISD::SIGN_EXTEND_INREG: 675 return ExpandSEXTINREG(Op); 676 case ISD::ANY_EXTEND_VECTOR_INREG: 677 return ExpandANY_EXTEND_VECTOR_INREG(Op); 678 case ISD::SIGN_EXTEND_VECTOR_INREG: 679 return ExpandSIGN_EXTEND_VECTOR_INREG(Op); 680 case ISD::ZERO_EXTEND_VECTOR_INREG: 681 return ExpandZERO_EXTEND_VECTOR_INREG(Op); 682 case ISD::BSWAP: 683 return ExpandBSWAP(Op); 684 case ISD::VSELECT: 685 return ExpandVSELECT(Op); 686 case ISD::SELECT: 687 return ExpandSELECT(Op); 688 case ISD::UINT_TO_FP: 689 return ExpandUINT_TO_FLOAT(Op); 690 case ISD::FNEG: 691 return ExpandFNEG(Op); 692 case ISD::FSUB: 693 return ExpandFSUB(Op); 694 case ISD::SETCC: 695 return UnrollVSETCC(Op); 696 case ISD::BITREVERSE: 697 return ExpandBITREVERSE(Op); 698 case ISD::CTLZ: 699 case ISD::CTLZ_ZERO_UNDEF: 700 return ExpandCTLZ(Op); 701 case ISD::CTTZ_ZERO_UNDEF: 702 return ExpandCTTZ_ZERO_UNDEF(Op); 703 default: 704 return DAG.UnrollVectorOp(Op.getNode()); 705 } 706 } 707 708 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) { 709 // Lower a select instruction where the condition is a scalar and the 710 // operands are vectors. Lower this select to VSELECT and implement it 711 // using XOR AND OR. The selector bit is broadcasted. 712 EVT VT = Op.getValueType(); 713 SDLoc DL(Op); 714 715 SDValue Mask = Op.getOperand(0); 716 SDValue Op1 = Op.getOperand(1); 717 SDValue Op2 = Op.getOperand(2); 718 719 assert(VT.isVector() && !Mask.getValueType().isVector() 720 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 721 722 // If we can't even use the basic vector operations of 723 // AND,OR,XOR, we will have to scalarize the op. 724 // Notice that the operation may be 'promoted' which means that it is 725 // 'bitcasted' to another type which is handled. 726 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 727 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 728 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 729 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 730 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 731 return DAG.UnrollVectorOp(Op.getNode()); 732 733 // Generate a mask operand. 734 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 735 736 // What is the size of each element in the vector mask. 737 EVT BitTy = MaskTy.getScalarType(); 738 739 Mask = DAG.getSelect(DL, BitTy, Mask, 740 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, 741 BitTy), 742 DAG.getConstant(0, DL, BitTy)); 743 744 // Broadcast the mask so that the entire vector is all-one or all zero. 745 Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask); 746 747 // Bitcast the operands to be the same type as the mask. 748 // This is needed when we select between FP types because 749 // the mask is a vector of integers. 750 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 751 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 752 753 SDValue AllOnes = DAG.getConstant( 754 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy); 755 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 756 757 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 758 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 759 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 760 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 761 } 762 763 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) { 764 EVT VT = Op.getValueType(); 765 766 // Make sure that the SRA and SHL instructions are available. 767 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 768 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 769 return DAG.UnrollVectorOp(Op.getNode()); 770 771 SDLoc DL(Op); 772 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT(); 773 774 unsigned BW = VT.getScalarSizeInBits(); 775 unsigned OrigBW = OrigTy.getScalarSizeInBits(); 776 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 777 778 Op = Op.getOperand(0); 779 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz); 780 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 781 } 782 783 // Generically expand a vector anyext in register to a shuffle of the relevant 784 // lanes into the appropriate locations, with other lanes left undef. 785 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) { 786 SDLoc DL(Op); 787 EVT VT = Op.getValueType(); 788 int NumElements = VT.getVectorNumElements(); 789 SDValue Src = Op.getOperand(0); 790 EVT SrcVT = Src.getValueType(); 791 int NumSrcElements = SrcVT.getVectorNumElements(); 792 793 // Build a base mask of undef shuffles. 794 SmallVector<int, 16> ShuffleMask; 795 ShuffleMask.resize(NumSrcElements, -1); 796 797 // Place the extended lanes into the correct locations. 798 int ExtLaneScale = NumSrcElements / NumElements; 799 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 800 for (int i = 0; i < NumElements; ++i) 801 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 802 803 return DAG.getNode( 804 ISD::BITCAST, DL, VT, 805 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 806 } 807 808 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) { 809 SDLoc DL(Op); 810 EVT VT = Op.getValueType(); 811 SDValue Src = Op.getOperand(0); 812 EVT SrcVT = Src.getValueType(); 813 814 // First build an any-extend node which can be legalized above when we 815 // recurse through it. 816 Op = DAG.getAnyExtendVectorInReg(Src, DL, VT); 817 818 // Now we need sign extend. Do this by shifting the elements. Even if these 819 // aren't legal operations, they have a better chance of being legalized 820 // without full scalarization than the sign extension does. 821 unsigned EltWidth = VT.getScalarSizeInBits(); 822 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); 823 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 824 return DAG.getNode(ISD::SRA, DL, VT, 825 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 826 ShiftAmount); 827 } 828 829 // Generically expand a vector zext in register to a shuffle of the relevant 830 // lanes into the appropriate locations, a blend of zero into the high bits, 831 // and a bitcast to the wider element type. 832 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) { 833 SDLoc DL(Op); 834 EVT VT = Op.getValueType(); 835 int NumElements = VT.getVectorNumElements(); 836 SDValue Src = Op.getOperand(0); 837 EVT SrcVT = Src.getValueType(); 838 int NumSrcElements = SrcVT.getVectorNumElements(); 839 840 // Build up a zero vector to blend into this one. 841 SDValue Zero = DAG.getConstant(0, DL, SrcVT); 842 843 // Shuffle the incoming lanes into the correct position, and pull all other 844 // lanes from the zero vector. 845 SmallVector<int, 16> ShuffleMask; 846 ShuffleMask.reserve(NumSrcElements); 847 for (int i = 0; i < NumSrcElements; ++i) 848 ShuffleMask.push_back(i); 849 850 int ExtLaneScale = NumSrcElements / NumElements; 851 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 852 for (int i = 0; i < NumElements; ++i) 853 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 854 855 return DAG.getNode(ISD::BITCAST, DL, VT, 856 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 857 } 858 859 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) { 860 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 861 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 862 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 863 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 864 } 865 866 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) { 867 EVT VT = Op.getValueType(); 868 869 // Generate a byte wise shuffle mask for the BSWAP. 870 SmallVector<int, 16> ShuffleMask; 871 createBSWAPShuffleMask(VT, ShuffleMask); 872 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 873 874 // Only emit a shuffle if the mask is legal. 875 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) 876 return DAG.UnrollVectorOp(Op.getNode()); 877 878 SDLoc DL(Op); 879 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 880 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); 881 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 882 } 883 884 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) { 885 EVT VT = Op.getValueType(); 886 887 // If we have the scalar operation, it's probably cheaper to unroll it. 888 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) 889 return DAG.UnrollVectorOp(Op.getNode()); 890 891 // If the vector element width is a whole number of bytes, test if its legal 892 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte 893 // vector. This greatly reduces the number of bit shifts necessary. 894 unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); 895 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { 896 SmallVector<int, 16> BSWAPMask; 897 createBSWAPShuffleMask(VT, BSWAPMask); 898 899 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); 900 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && 901 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || 902 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && 903 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && 904 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && 905 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { 906 SDLoc DL(Op); 907 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 908 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 909 BSWAPMask); 910 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); 911 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 912 } 913 } 914 915 // If we have the appropriate vector bit operations, it is better to use them 916 // than unrolling and expanding each component. 917 if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) || 918 !TLI.isOperationLegalOrCustom(ISD::SRL, VT) || 919 !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 920 !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) 921 return DAG.UnrollVectorOp(Op.getNode()); 922 923 // Let LegalizeDAG handle this later. 924 return Op; 925 } 926 927 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { 928 // Implement VSELECT in terms of XOR, AND, OR 929 // on platforms which do not support blend natively. 930 SDLoc DL(Op); 931 932 SDValue Mask = Op.getOperand(0); 933 SDValue Op1 = Op.getOperand(1); 934 SDValue Op2 = Op.getOperand(2); 935 936 EVT VT = Mask.getValueType(); 937 938 // If we can't even use the basic vector operations of 939 // AND,OR,XOR, we will have to scalarize the op. 940 // Notice that the operation may be 'promoted' which means that it is 941 // 'bitcasted' to another type which is handled. 942 // This operation also isn't safe with AND, OR, XOR when the boolean 943 // type is 0/1 as we need an all ones vector constant to mask with. 944 // FIXME: Sign extend 1 to all ones if thats legal on the target. 945 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 946 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 947 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 948 TLI.getBooleanContents(Op1.getValueType()) != 949 TargetLowering::ZeroOrNegativeOneBooleanContent) 950 return DAG.UnrollVectorOp(Op.getNode()); 951 952 // If the mask and the type are different sizes, unroll the vector op. This 953 // can occur when getSetCCResultType returns something that is different in 954 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 955 if (VT.getSizeInBits() != Op1.getValueSizeInBits()) 956 return DAG.UnrollVectorOp(Op.getNode()); 957 958 // Bitcast the operands to be the same type as the mask. 959 // This is needed when we select between FP types because 960 // the mask is a vector of integers. 961 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 962 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 963 964 SDValue AllOnes = DAG.getConstant( 965 APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT); 966 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 967 968 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 969 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 970 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 971 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 972 } 973 974 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { 975 EVT VT = Op.getOperand(0).getValueType(); 976 SDLoc DL(Op); 977 978 // Make sure that the SINT_TO_FP and SRL instructions are available. 979 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand || 980 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) 981 return DAG.UnrollVectorOp(Op.getNode()); 982 983 unsigned BW = VT.getScalarSizeInBits(); 984 assert((BW == 64 || BW == 32) && 985 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 986 987 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT); 988 989 // Constants to clear the upper part of the word. 990 // Notice that we can also use SHL+SHR, but using a constant is slightly 991 // faster on x86. 992 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; 993 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 994 995 // Two to the power of half-word-size. 996 SDValue TWOHW = DAG.getConstantFP(1ULL << (BW / 2), DL, Op.getValueType()); 997 998 // Clear upper part of LO, lower HI 999 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); 1000 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); 1001 1002 // Convert hi and lo to floats 1003 // Convert the hi part back to the upper values 1004 // TODO: Can any fast-math-flags be set on these nodes? 1005 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); 1006 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); 1007 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); 1008 1009 // Add the two halves 1010 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); 1011 } 1012 1013 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { 1014 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { 1015 SDLoc DL(Op); 1016 SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType()); 1017 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. 1018 return DAG.getNode(ISD::FSUB, DL, Op.getValueType(), 1019 Zero, Op.getOperand(0)); 1020 } 1021 return DAG.UnrollVectorOp(Op.getNode()); 1022 } 1023 1024 SDValue VectorLegalizer::ExpandFSUB(SDValue Op) { 1025 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal, 1026 // we can defer this to operation legalization where it will be lowered as 1027 // a+(-b). 1028 EVT VT = Op.getValueType(); 1029 if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && 1030 TLI.isOperationLegalOrCustom(ISD::FADD, VT)) 1031 return Op; // Defer to LegalizeDAG 1032 1033 return DAG.UnrollVectorOp(Op.getNode()); 1034 } 1035 1036 SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) { 1037 EVT VT = Op.getValueType(); 1038 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 1039 1040 // If the non-ZERO_UNDEF version is supported we can use that instead. 1041 if (Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF && 1042 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) { 1043 SDLoc DL(Op); 1044 return DAG.getNode(ISD::CTLZ, DL, Op.getValueType(), Op.getOperand(0)); 1045 } 1046 1047 // If CTPOP is available we can lower with a CTPOP based method: 1048 // u16 ctlz(u16 x) { 1049 // x |= (x >> 1); 1050 // x |= (x >> 2); 1051 // x |= (x >> 4); 1052 // x |= (x >> 8); 1053 // return ctpop(~x); 1054 // } 1055 // Ref: "Hacker's Delight" by Henry Warren 1056 if (isPowerOf2_32(NumBitsPerElt) && 1057 TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && 1058 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 1059 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT) && 1060 TLI.isOperationLegalOrCustomOrPromote(ISD::XOR, VT)) { 1061 SDLoc DL(Op); 1062 SDValue Res = Op.getOperand(0); 1063 EVT ShiftTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 1064 1065 for (unsigned i = 1; i != NumBitsPerElt; i *= 2) 1066 Res = DAG.getNode( 1067 ISD::OR, DL, VT, Res, 1068 DAG.getNode(ISD::SRL, DL, VT, Res, DAG.getConstant(i, DL, ShiftTy))); 1069 1070 Res = DAG.getNOT(DL, Res, VT); 1071 return DAG.getNode(ISD::CTPOP, DL, VT, Res); 1072 } 1073 1074 // Otherwise go ahead and unroll. 1075 return DAG.UnrollVectorOp(Op.getNode()); 1076 } 1077 1078 SDValue VectorLegalizer::ExpandCTTZ_ZERO_UNDEF(SDValue Op) { 1079 // If the non-ZERO_UNDEF version is supported we can use that instead. 1080 if (TLI.isOperationLegalOrCustom(ISD::CTTZ, Op.getValueType())) { 1081 SDLoc DL(Op); 1082 return DAG.getNode(ISD::CTTZ, DL, Op.getValueType(), Op.getOperand(0)); 1083 } 1084 1085 // Otherwise go ahead and unroll. 1086 return DAG.UnrollVectorOp(Op.getNode()); 1087 } 1088 1089 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { 1090 EVT VT = Op.getValueType(); 1091 unsigned NumElems = VT.getVectorNumElements(); 1092 EVT EltVT = VT.getVectorElementType(); 1093 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); 1094 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1095 SDLoc dl(Op); 1096 SmallVector<SDValue, 8> Ops(NumElems); 1097 for (unsigned i = 0; i < NumElems; ++i) { 1098 SDValue LHSElem = DAG.getNode( 1099 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1100 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1101 SDValue RHSElem = DAG.getNode( 1102 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1103 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1104 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1105 TLI.getSetCCResultType(DAG.getDataLayout(), 1106 *DAG.getContext(), TmpEltVT), 1107 LHSElem, RHSElem, CC); 1108 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 1109 DAG.getConstant(APInt::getAllOnesValue 1110 (EltVT.getSizeInBits()), dl, EltVT), 1111 DAG.getConstant(0, dl, EltVT)); 1112 } 1113 return DAG.getBuildVector(VT, dl, Ops); 1114 } 1115 1116 bool SelectionDAG::LegalizeVectors() { 1117 return VectorLegalizer(*this).Run(); 1118 } 1119