1 //===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SelectionDAG::LegalizeVectors method. 11 // 12 // The vector legalizer looks for vector operations which might need to be 13 // scalarized and legalizes them. This is a separate step from Legalize because 14 // scalarizing can introduce illegal types. For example, suppose we have an 15 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 17 // operation, which introduces nodes with the illegal type i64 which must be 18 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 19 // the operation must be unrolled, which introduces nodes with the illegal 20 // type i8 which must be promoted. 21 // 22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 23 // or operations that happen to take a vector which are custom-lowered; 24 // the legalization for such operations never produces nodes 25 // with illegal types, so it's okay to put off legalizing them until 26 // SelectionDAG::Legalize runs. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/Target/TargetLowering.h" 32 using namespace llvm; 33 34 namespace { 35 class VectorLegalizer { 36 SelectionDAG& DAG; 37 const TargetLowering &TLI; 38 bool Changed; // Keep track of whether anything changed 39 40 /// For nodes that are of legal width, and that have more than one use, this 41 /// map indicates what regularized operand to use. This allows us to avoid 42 /// legalizing the same thing more than once. 43 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 44 45 /// \brief Adds a node to the translation cache. 46 void AddLegalizedOperand(SDValue From, SDValue To) { 47 LegalizedNodes.insert(std::make_pair(From, To)); 48 // If someone requests legalization of the new node, return itself. 49 if (From != To) 50 LegalizedNodes.insert(std::make_pair(To, To)); 51 } 52 53 /// \brief Legalizes the given node. 54 SDValue LegalizeOp(SDValue Op); 55 56 /// \brief Assuming the node is legal, "legalize" the results. 57 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); 58 59 /// \brief Implements unrolling a VSETCC. 60 SDValue UnrollVSETCC(SDValue Op); 61 62 /// \brief Implement expand-based legalization of vector operations. 63 /// 64 /// This is just a high-level routine to dispatch to specific code paths for 65 /// operations to legalize them. 66 SDValue Expand(SDValue Op); 67 68 /// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if 69 /// FSUB isn't legal. 70 /// 71 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 72 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 73 SDValue ExpandUINT_TO_FLOAT(SDValue Op); 74 75 /// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 76 SDValue ExpandSEXTINREG(SDValue Op); 77 78 /// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG. 79 /// 80 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 81 /// type. The contents of the bits in the extended part of each element are 82 /// undef. 83 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op); 84 85 /// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG. 86 /// 87 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 88 /// type, then shifts left and arithmetic shifts right to introduce a sign 89 /// extension. 90 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op); 91 92 /// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG. 93 /// 94 /// Shuffles the low lanes of the operand into place and blends zeros into 95 /// the remaining lanes, finally bitcasting to the proper type. 96 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op); 97 98 /// \brief Expand bswap of vectors into a shuffle if legal. 99 SDValue ExpandBSWAP(SDValue Op); 100 101 /// \brief Implement vselect in terms of XOR, AND, OR when blend is not 102 /// supported by the target. 103 SDValue ExpandVSELECT(SDValue Op); 104 SDValue ExpandSELECT(SDValue Op); 105 SDValue ExpandLoad(SDValue Op); 106 SDValue ExpandStore(SDValue Op); 107 SDValue ExpandFNEG(SDValue Op); 108 109 /// \brief Implements vector promotion. 110 /// 111 /// This is essentially just bitcasting the operands to a different type and 112 /// bitcasting the result back to the original type. 113 SDValue Promote(SDValue Op); 114 115 /// \brief Implements [SU]INT_TO_FP vector promotion. 116 /// 117 /// This is a [zs]ext of the input operand to the next size up. 118 SDValue PromoteINT_TO_FP(SDValue Op); 119 120 /// \brief Implements FP_TO_[SU]INT vector promotion of the result type. 121 /// 122 /// It is promoted to the next size up integer type. The result is then 123 /// truncated back to the original type. 124 SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned); 125 126 public: 127 /// \brief Begin legalizer the vector operations in the DAG. 128 bool Run(); 129 VectorLegalizer(SelectionDAG& dag) : 130 DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {} 131 }; 132 133 bool VectorLegalizer::Run() { 134 // Before we start legalizing vector nodes, check if there are any vectors. 135 bool HasVectors = false; 136 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 137 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 138 // Check if the values of the nodes contain vectors. We don't need to check 139 // the operands because we are going to check their values at some point. 140 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); 141 J != E; ++J) 142 HasVectors |= J->isVector(); 143 144 // If we found a vector node we can start the legalization. 145 if (HasVectors) 146 break; 147 } 148 149 // If this basic block has no vectors then no need to legalize vectors. 150 if (!HasVectors) 151 return false; 152 153 // The legalize process is inherently a bottom-up recursive process (users 154 // legalize their uses before themselves). Given infinite stack space, we 155 // could just start legalizing on the root and traverse the whole graph. In 156 // practice however, this causes us to run out of stack space on large basic 157 // blocks. To avoid this problem, compute an ordering of the nodes where each 158 // node is only legalized after all of its operands are legalized. 159 DAG.AssignTopologicalOrder(); 160 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 161 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 162 LegalizeOp(SDValue(I, 0)); 163 164 // Finally, it's possible the root changed. Get the new root. 165 SDValue OldRoot = DAG.getRoot(); 166 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 167 DAG.setRoot(LegalizedNodes[OldRoot]); 168 169 LegalizedNodes.clear(); 170 171 // Remove dead nodes now. 172 DAG.RemoveDeadNodes(); 173 174 return Changed; 175 } 176 177 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { 178 // Generic legalization: just pass the operand through. 179 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) 180 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 181 return Result.getValue(Op.getResNo()); 182 } 183 184 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 185 // Note that LegalizeOp may be reentered even from single-use nodes, which 186 // means that we always must cache transformed nodes. 187 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 188 if (I != LegalizedNodes.end()) return I->second; 189 190 SDNode* Node = Op.getNode(); 191 192 // Legalize the operands 193 SmallVector<SDValue, 8> Ops; 194 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 195 Ops.push_back(LegalizeOp(Node->getOperand(i))); 196 197 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0); 198 199 if (Op.getOpcode() == ISD::LOAD) { 200 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 201 ISD::LoadExtType ExtType = LD->getExtensionType(); 202 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) 203 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getMemoryVT())) { 204 default: llvm_unreachable("This action is not supported yet!"); 205 case TargetLowering::Legal: 206 return TranslateLegalizeResults(Op, Result); 207 case TargetLowering::Custom: 208 if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) { 209 Changed = true; 210 if (Lowered->getNumValues() != Op->getNumValues()) { 211 // This expanded to something other than the load. Assume the 212 // lowering code took care of any chain values, and just handle the 213 // returned value. 214 assert(Result.getValue(1).use_empty() && 215 "There are still live users of the old chain!"); 216 return LegalizeOp(Lowered); 217 } else { 218 return TranslateLegalizeResults(Op, Lowered); 219 } 220 } 221 case TargetLowering::Expand: 222 Changed = true; 223 return LegalizeOp(ExpandLoad(Op)); 224 } 225 } else if (Op.getOpcode() == ISD::STORE) { 226 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 227 EVT StVT = ST->getMemoryVT(); 228 MVT ValVT = ST->getValue().getSimpleValueType(); 229 if (StVT.isVector() && ST->isTruncatingStore()) 230 switch (TLI.getTruncStoreAction(ValVT, StVT.getSimpleVT())) { 231 default: llvm_unreachable("This action is not supported yet!"); 232 case TargetLowering::Legal: 233 return TranslateLegalizeResults(Op, Result); 234 case TargetLowering::Custom: 235 Changed = true; 236 return TranslateLegalizeResults(Op, TLI.LowerOperation(Result, DAG)); 237 case TargetLowering::Expand: 238 Changed = true; 239 return LegalizeOp(ExpandStore(Op)); 240 } 241 } 242 243 bool HasVectorValue = false; 244 for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end(); 245 J != E; 246 ++J) 247 HasVectorValue |= J->isVector(); 248 if (!HasVectorValue) 249 return TranslateLegalizeResults(Op, Result); 250 251 EVT QueryType; 252 switch (Op.getOpcode()) { 253 default: 254 return TranslateLegalizeResults(Op, Result); 255 case ISD::ADD: 256 case ISD::SUB: 257 case ISD::MUL: 258 case ISD::SDIV: 259 case ISD::UDIV: 260 case ISD::SREM: 261 case ISD::UREM: 262 case ISD::FADD: 263 case ISD::FSUB: 264 case ISD::FMUL: 265 case ISD::FDIV: 266 case ISD::FREM: 267 case ISD::AND: 268 case ISD::OR: 269 case ISD::XOR: 270 case ISD::SHL: 271 case ISD::SRA: 272 case ISD::SRL: 273 case ISD::ROTL: 274 case ISD::ROTR: 275 case ISD::BSWAP: 276 case ISD::CTLZ: 277 case ISD::CTTZ: 278 case ISD::CTLZ_ZERO_UNDEF: 279 case ISD::CTTZ_ZERO_UNDEF: 280 case ISD::CTPOP: 281 case ISD::SELECT: 282 case ISD::VSELECT: 283 case ISD::SELECT_CC: 284 case ISD::SETCC: 285 case ISD::ZERO_EXTEND: 286 case ISD::ANY_EXTEND: 287 case ISD::TRUNCATE: 288 case ISD::SIGN_EXTEND: 289 case ISD::FP_TO_SINT: 290 case ISD::FP_TO_UINT: 291 case ISD::FNEG: 292 case ISD::FABS: 293 case ISD::FCOPYSIGN: 294 case ISD::FSQRT: 295 case ISD::FSIN: 296 case ISD::FCOS: 297 case ISD::FPOWI: 298 case ISD::FPOW: 299 case ISD::FLOG: 300 case ISD::FLOG2: 301 case ISD::FLOG10: 302 case ISD::FEXP: 303 case ISD::FEXP2: 304 case ISD::FCEIL: 305 case ISD::FTRUNC: 306 case ISD::FRINT: 307 case ISD::FNEARBYINT: 308 case ISD::FROUND: 309 case ISD::FFLOOR: 310 case ISD::FP_ROUND: 311 case ISD::FP_EXTEND: 312 case ISD::FMA: 313 case ISD::SIGN_EXTEND_INREG: 314 case ISD::ANY_EXTEND_VECTOR_INREG: 315 case ISD::SIGN_EXTEND_VECTOR_INREG: 316 case ISD::ZERO_EXTEND_VECTOR_INREG: 317 QueryType = Node->getValueType(0); 318 break; 319 case ISD::FP_ROUND_INREG: 320 QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 321 break; 322 case ISD::SINT_TO_FP: 323 case ISD::UINT_TO_FP: 324 QueryType = Node->getOperand(0).getValueType(); 325 break; 326 } 327 328 switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) { 329 case TargetLowering::Promote: 330 Result = Promote(Op); 331 Changed = true; 332 break; 333 case TargetLowering::Legal: 334 break; 335 case TargetLowering::Custom: { 336 SDValue Tmp1 = TLI.LowerOperation(Op, DAG); 337 if (Tmp1.getNode()) { 338 Result = Tmp1; 339 break; 340 } 341 // FALL THROUGH 342 } 343 case TargetLowering::Expand: 344 Result = Expand(Op); 345 } 346 347 // Make sure that the generated code is itself legal. 348 if (Result != Op) { 349 Result = LegalizeOp(Result); 350 Changed = true; 351 } 352 353 // Note that LegalizeOp may be reentered even from single-use nodes, which 354 // means that we always must cache transformed nodes. 355 AddLegalizedOperand(Op, Result); 356 return Result; 357 } 358 359 SDValue VectorLegalizer::Promote(SDValue Op) { 360 // For a few operations there is a specific concept for promotion based on 361 // the operand's type. 362 switch (Op.getOpcode()) { 363 case ISD::SINT_TO_FP: 364 case ISD::UINT_TO_FP: 365 // "Promote" the operation by extending the operand. 366 return PromoteINT_TO_FP(Op); 367 case ISD::FP_TO_UINT: 368 case ISD::FP_TO_SINT: 369 // Promote the operation by extending the operand. 370 return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT); 371 } 372 373 // The rest of the time, vector "promotion" is basically just bitcasting and 374 // doing the operation in a different type. For example, x86 promotes 375 // ISD::AND on v2i32 to v1i64. 376 MVT VT = Op.getSimpleValueType(); 377 assert(Op.getNode()->getNumValues() == 1 && 378 "Can't promote a vector with multiple results!"); 379 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 380 SDLoc dl(Op); 381 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 382 383 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 384 if (Op.getOperand(j).getValueType().isVector()) 385 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); 386 else 387 Operands[j] = Op.getOperand(j); 388 } 389 390 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands); 391 392 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 393 } 394 395 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) { 396 // INT_TO_FP operations may require the input operand be promoted even 397 // when the type is otherwise legal. 398 EVT VT = Op.getOperand(0).getValueType(); 399 assert(Op.getNode()->getNumValues() == 1 && 400 "Can't promote a vector with multiple results!"); 401 402 // Normal getTypeToPromoteTo() doesn't work here, as that will promote 403 // by widening the vector w/ the same element width and twice the number 404 // of elements. We want the other way around, the same number of elements, 405 // each twice the width. 406 // 407 // Increase the bitwidth of the element to the next pow-of-two 408 // (which is greater than 8 bits). 409 410 EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext()); 411 assert(NVT.isSimple() && "Promoting to a non-simple vector type!"); 412 SDLoc dl(Op); 413 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 414 415 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : 416 ISD::SIGN_EXTEND; 417 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 418 if (Op.getOperand(j).getValueType().isVector()) 419 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j)); 420 else 421 Operands[j] = Op.getOperand(j); 422 } 423 424 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands); 425 } 426 427 // For FP_TO_INT we promote the result type to a vector type with wider 428 // elements and then truncate the result. This is different from the default 429 // PromoteVector which uses bitcast to promote thus assumning that the 430 // promoted vector type has the same overall size. 431 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) { 432 assert(Op.getNode()->getNumValues() == 1 && 433 "Can't promote a vector with multiple results!"); 434 EVT VT = Op.getValueType(); 435 436 EVT NewVT; 437 unsigned NewOpc; 438 while (1) { 439 NewVT = VT.widenIntegerVectorElementType(*DAG.getContext()); 440 assert(NewVT.isSimple() && "Promoting to a non-simple vector type!"); 441 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) { 442 NewOpc = ISD::FP_TO_SINT; 443 break; 444 } 445 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) { 446 NewOpc = ISD::FP_TO_UINT; 447 break; 448 } 449 } 450 451 SDLoc loc(Op); 452 SDValue promoted = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0)); 453 return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted); 454 } 455 456 457 SDValue VectorLegalizer::ExpandLoad(SDValue Op) { 458 SDLoc dl(Op); 459 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 460 SDValue Chain = LD->getChain(); 461 SDValue BasePTR = LD->getBasePtr(); 462 EVT SrcVT = LD->getMemoryVT(); 463 ISD::LoadExtType ExtType = LD->getExtensionType(); 464 465 SmallVector<SDValue, 8> Vals; 466 SmallVector<SDValue, 8> LoadChains; 467 unsigned NumElem = SrcVT.getVectorNumElements(); 468 469 EVT SrcEltVT = SrcVT.getScalarType(); 470 EVT DstEltVT = Op.getNode()->getValueType(0).getScalarType(); 471 472 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { 473 // When elements in a vector is not byte-addressable, we cannot directly 474 // load each element by advancing pointer, which could only address bytes. 475 // Instead, we load all significant words, mask bits off, and concatenate 476 // them to form each element. Finally, they are extended to destination 477 // scalar type to build the destination vector. 478 EVT WideVT = TLI.getPointerTy(); 479 480 assert(WideVT.isRound() && 481 "Could not handle the sophisticated case when the widest integer is" 482 " not power of 2."); 483 assert(WideVT.bitsGE(SrcEltVT) && 484 "Type is not legalized?"); 485 486 unsigned WideBytes = WideVT.getStoreSize(); 487 unsigned Offset = 0; 488 unsigned RemainingBytes = SrcVT.getStoreSize(); 489 SmallVector<SDValue, 8> LoadVals; 490 491 while (RemainingBytes > 0) { 492 SDValue ScalarLoad; 493 unsigned LoadBytes = WideBytes; 494 495 if (RemainingBytes >= LoadBytes) { 496 ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR, 497 LD->getPointerInfo().getWithOffset(Offset), 498 LD->isVolatile(), LD->isNonTemporal(), 499 LD->isInvariant(), LD->getAlignment(), 500 LD->getAAInfo()); 501 } else { 502 EVT LoadVT = WideVT; 503 while (RemainingBytes < LoadBytes) { 504 LoadBytes >>= 1; // Reduce the load size by half. 505 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); 506 } 507 ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, 508 LD->getPointerInfo().getWithOffset(Offset), 509 LoadVT, LD->isVolatile(), 510 LD->isNonTemporal(), LD->isInvariant(), 511 LD->getAlignment(), LD->getAAInfo()); 512 } 513 514 RemainingBytes -= LoadBytes; 515 Offset += LoadBytes; 516 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 517 DAG.getConstant(LoadBytes, BasePTR.getValueType())); 518 519 LoadVals.push_back(ScalarLoad.getValue(0)); 520 LoadChains.push_back(ScalarLoad.getValue(1)); 521 } 522 523 // Extract bits, pack and extend/trunc them into destination type. 524 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 525 SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, WideVT); 526 527 unsigned BitOffset = 0; 528 unsigned WideIdx = 0; 529 unsigned WideBits = WideVT.getSizeInBits(); 530 531 for (unsigned Idx = 0; Idx != NumElem; ++Idx) { 532 SDValue Lo, Hi, ShAmt; 533 534 if (BitOffset < WideBits) { 535 ShAmt = DAG.getConstant(BitOffset, TLI.getShiftAmountTy(WideVT)); 536 Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); 537 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); 538 } 539 540 BitOffset += SrcEltBits; 541 if (BitOffset >= WideBits) { 542 WideIdx++; 543 Offset -= WideBits; 544 if (Offset > 0) { 545 ShAmt = DAG.getConstant(SrcEltBits - Offset, 546 TLI.getShiftAmountTy(WideVT)); 547 Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); 548 Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask); 549 } 550 } 551 552 if (Hi.getNode()) 553 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); 554 555 switch (ExtType) { 556 default: llvm_unreachable("Unknown extended-load op!"); 557 case ISD::EXTLOAD: 558 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); 559 break; 560 case ISD::ZEXTLOAD: 561 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); 562 break; 563 case ISD::SEXTLOAD: 564 ShAmt = DAG.getConstant(WideBits - SrcEltBits, 565 TLI.getShiftAmountTy(WideVT)); 566 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); 567 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); 568 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); 569 break; 570 } 571 Vals.push_back(Lo); 572 } 573 } else { 574 unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8; 575 576 for (unsigned Idx=0; Idx<NumElem; Idx++) { 577 SDValue ScalarLoad = DAG.getExtLoad(ExtType, dl, 578 Op.getNode()->getValueType(0).getScalarType(), 579 Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride), 580 SrcVT.getScalarType(), 581 LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), 582 LD->getAlignment(), LD->getAAInfo()); 583 584 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 585 DAG.getConstant(Stride, BasePTR.getValueType())); 586 587 Vals.push_back(ScalarLoad.getValue(0)); 588 LoadChains.push_back(ScalarLoad.getValue(1)); 589 } 590 } 591 592 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 593 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, 594 Op.getNode()->getValueType(0), Vals); 595 596 AddLegalizedOperand(Op.getValue(0), Value); 597 AddLegalizedOperand(Op.getValue(1), NewChain); 598 599 return (Op.getResNo() ? NewChain : Value); 600 } 601 602 SDValue VectorLegalizer::ExpandStore(SDValue Op) { 603 SDLoc dl(Op); 604 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 605 SDValue Chain = ST->getChain(); 606 SDValue BasePTR = ST->getBasePtr(); 607 SDValue Value = ST->getValue(); 608 EVT StVT = ST->getMemoryVT(); 609 610 unsigned Alignment = ST->getAlignment(); 611 bool isVolatile = ST->isVolatile(); 612 bool isNonTemporal = ST->isNonTemporal(); 613 AAMDNodes AAInfo = ST->getAAInfo(); 614 615 unsigned NumElem = StVT.getVectorNumElements(); 616 // The type of the data we want to save 617 EVT RegVT = Value.getValueType(); 618 EVT RegSclVT = RegVT.getScalarType(); 619 // The type of data as saved in memory. 620 EVT MemSclVT = StVT.getScalarType(); 621 622 // Cast floats into integers 623 unsigned ScalarSize = MemSclVT.getSizeInBits(); 624 625 // Round odd types to the next pow of two. 626 if (!isPowerOf2_32(ScalarSize)) 627 ScalarSize = NextPowerOf2(ScalarSize); 628 629 // Store Stride in bytes 630 unsigned Stride = ScalarSize/8; 631 // Extract each of the elements from the original vector 632 // and save them into memory individually. 633 SmallVector<SDValue, 8> Stores; 634 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 635 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 636 RegSclVT, Value, DAG.getConstant(Idx, TLI.getVectorIdxTy())); 637 638 // This scalar TruncStore may be illegal, but we legalize it later. 639 SDValue Store = DAG.getTruncStore(Chain, dl, Ex, BasePTR, 640 ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT, 641 isVolatile, isNonTemporal, Alignment, AAInfo); 642 643 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 644 DAG.getConstant(Stride, BasePTR.getValueType())); 645 646 Stores.push_back(Store); 647 } 648 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 649 AddLegalizedOperand(Op, TF); 650 return TF; 651 } 652 653 SDValue VectorLegalizer::Expand(SDValue Op) { 654 switch (Op->getOpcode()) { 655 case ISD::SIGN_EXTEND_INREG: 656 return ExpandSEXTINREG(Op); 657 case ISD::ANY_EXTEND_VECTOR_INREG: 658 return ExpandANY_EXTEND_VECTOR_INREG(Op); 659 case ISD::SIGN_EXTEND_VECTOR_INREG: 660 return ExpandSIGN_EXTEND_VECTOR_INREG(Op); 661 case ISD::ZERO_EXTEND_VECTOR_INREG: 662 return ExpandZERO_EXTEND_VECTOR_INREG(Op); 663 case ISD::BSWAP: 664 return ExpandBSWAP(Op); 665 case ISD::VSELECT: 666 return ExpandVSELECT(Op); 667 case ISD::SELECT: 668 return ExpandSELECT(Op); 669 case ISD::UINT_TO_FP: 670 return ExpandUINT_TO_FLOAT(Op); 671 case ISD::FNEG: 672 return ExpandFNEG(Op); 673 case ISD::SETCC: 674 return UnrollVSETCC(Op); 675 default: 676 return DAG.UnrollVectorOp(Op.getNode()); 677 } 678 } 679 680 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) { 681 // Lower a select instruction where the condition is a scalar and the 682 // operands are vectors. Lower this select to VSELECT and implement it 683 // using XOR AND OR. The selector bit is broadcasted. 684 EVT VT = Op.getValueType(); 685 SDLoc DL(Op); 686 687 SDValue Mask = Op.getOperand(0); 688 SDValue Op1 = Op.getOperand(1); 689 SDValue Op2 = Op.getOperand(2); 690 691 assert(VT.isVector() && !Mask.getValueType().isVector() 692 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 693 694 unsigned NumElem = VT.getVectorNumElements(); 695 696 // If we can't even use the basic vector operations of 697 // AND,OR,XOR, we will have to scalarize the op. 698 // Notice that the operation may be 'promoted' which means that it is 699 // 'bitcasted' to another type which is handled. 700 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 701 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 702 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 703 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 704 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 705 return DAG.UnrollVectorOp(Op.getNode()); 706 707 // Generate a mask operand. 708 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 709 710 // What is the size of each element in the vector mask. 711 EVT BitTy = MaskTy.getScalarType(); 712 713 Mask = DAG.getSelect(DL, BitTy, Mask, 714 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), BitTy), 715 DAG.getConstant(0, BitTy)); 716 717 // Broadcast the mask so that the entire vector is all-one or all zero. 718 SmallVector<SDValue, 8> Ops(NumElem, Mask); 719 Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, Ops); 720 721 // Bitcast the operands to be the same type as the mask. 722 // This is needed when we select between FP types because 723 // the mask is a vector of integers. 724 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 725 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 726 727 SDValue AllOnes = DAG.getConstant( 728 APInt::getAllOnesValue(BitTy.getSizeInBits()), MaskTy); 729 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 730 731 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 732 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 733 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 734 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 735 } 736 737 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) { 738 EVT VT = Op.getValueType(); 739 740 // Make sure that the SRA and SHL instructions are available. 741 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 742 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 743 return DAG.UnrollVectorOp(Op.getNode()); 744 745 SDLoc DL(Op); 746 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT(); 747 748 unsigned BW = VT.getScalarType().getSizeInBits(); 749 unsigned OrigBW = OrigTy.getScalarType().getSizeInBits(); 750 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, VT); 751 752 Op = Op.getOperand(0); 753 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz); 754 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 755 } 756 757 // Generically expand a vector anyext in register to a shuffle of the relevant 758 // lanes into the appropriate locations, with other lanes left undef. 759 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) { 760 SDLoc DL(Op); 761 EVT VT = Op.getValueType(); 762 int NumElements = VT.getVectorNumElements(); 763 SDValue Src = Op.getOperand(0); 764 EVT SrcVT = Src.getValueType(); 765 int NumSrcElements = SrcVT.getVectorNumElements(); 766 767 // Build a base mask of undef shuffles. 768 SmallVector<int, 16> ShuffleMask; 769 ShuffleMask.resize(NumSrcElements, -1); 770 771 // Place the extended lanes into the correct locations. 772 int ExtLaneScale = NumSrcElements / NumElements; 773 int EndianOffset = TLI.isBigEndian() ? ExtLaneScale - 1 : 0; 774 for (int i = 0; i < NumElements; ++i) 775 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 776 777 return DAG.getNode( 778 ISD::BITCAST, DL, VT, 779 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 780 } 781 782 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) { 783 SDLoc DL(Op); 784 EVT VT = Op.getValueType(); 785 SDValue Src = Op.getOperand(0); 786 EVT SrcVT = Src.getValueType(); 787 788 // First build an any-extend node which can be legalized above when we 789 // recurse through it. 790 Op = DAG.getAnyExtendVectorInReg(Src, DL, VT); 791 792 // Now we need sign extend. Do this by shifting the elements. Even if these 793 // aren't legal operations, they have a better chance of being legalized 794 // without full scalarization than the sign extension does. 795 unsigned EltWidth = VT.getVectorElementType().getSizeInBits(); 796 unsigned SrcEltWidth = SrcVT.getVectorElementType().getSizeInBits(); 797 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, VT); 798 return DAG.getNode(ISD::SRA, DL, VT, 799 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 800 ShiftAmount); 801 } 802 803 // Generically expand a vector zext in register to a shuffle of the relevant 804 // lanes into the appropriate locations, a blend of zero into the high bits, 805 // and a bitcast to the wider element type. 806 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) { 807 SDLoc DL(Op); 808 EVT VT = Op.getValueType(); 809 int NumElements = VT.getVectorNumElements(); 810 SDValue Src = Op.getOperand(0); 811 EVT SrcVT = Src.getValueType(); 812 int NumSrcElements = SrcVT.getVectorNumElements(); 813 814 // Build up a zero vector to blend into this one. 815 EVT SrcScalarVT = SrcVT.getScalarType(); 816 SDValue ScalarZero = DAG.getTargetConstant(0, SrcScalarVT); 817 SmallVector<SDValue, 4> BuildVectorOperands(NumSrcElements, ScalarZero); 818 SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, DL, SrcVT, BuildVectorOperands); 819 820 // Shuffle the incoming lanes into the correct position, and pull all other 821 // lanes from the zero vector. 822 SmallVector<int, 16> ShuffleMask; 823 ShuffleMask.reserve(NumSrcElements); 824 for (int i = 0; i < NumSrcElements; ++i) 825 ShuffleMask.push_back(i); 826 827 int ExtLaneScale = NumSrcElements / NumElements; 828 int EndianOffset = TLI.isBigEndian() ? ExtLaneScale - 1 : 0; 829 for (int i = 0; i < NumElements; ++i) 830 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 831 832 return DAG.getNode(ISD::BITCAST, DL, VT, 833 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 834 } 835 836 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) { 837 EVT VT = Op.getValueType(); 838 839 // Generate a byte wise shuffle mask for the BSWAP. 840 SmallVector<int, 16> ShuffleMask; 841 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 842 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 843 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 844 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 845 846 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 847 848 // Only emit a shuffle if the mask is legal. 849 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) 850 return DAG.UnrollVectorOp(Op.getNode()); 851 852 SDLoc DL(Op); 853 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 854 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 855 ShuffleMask.data()); 856 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 857 } 858 859 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { 860 // Implement VSELECT in terms of XOR, AND, OR 861 // on platforms which do not support blend natively. 862 SDLoc DL(Op); 863 864 SDValue Mask = Op.getOperand(0); 865 SDValue Op1 = Op.getOperand(1); 866 SDValue Op2 = Op.getOperand(2); 867 868 EVT VT = Mask.getValueType(); 869 870 // If we can't even use the basic vector operations of 871 // AND,OR,XOR, we will have to scalarize the op. 872 // Notice that the operation may be 'promoted' which means that it is 873 // 'bitcasted' to another type which is handled. 874 // This operation also isn't safe with AND, OR, XOR when the boolean 875 // type is 0/1 as we need an all ones vector constant to mask with. 876 // FIXME: Sign extend 1 to all ones if thats legal on the target. 877 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 878 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 879 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 880 TLI.getBooleanContents(Op1.getValueType()) != 881 TargetLowering::ZeroOrNegativeOneBooleanContent) 882 return DAG.UnrollVectorOp(Op.getNode()); 883 884 // If the mask and the type are different sizes, unroll the vector op. This 885 // can occur when getSetCCResultType returns something that is different in 886 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 887 if (VT.getSizeInBits() != Op1.getValueType().getSizeInBits()) 888 return DAG.UnrollVectorOp(Op.getNode()); 889 890 // Bitcast the operands to be the same type as the mask. 891 // This is needed when we select between FP types because 892 // the mask is a vector of integers. 893 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 894 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 895 896 SDValue AllOnes = DAG.getConstant( 897 APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), VT); 898 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 899 900 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 901 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 902 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 903 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 904 } 905 906 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { 907 EVT VT = Op.getOperand(0).getValueType(); 908 SDLoc DL(Op); 909 910 // Make sure that the SINT_TO_FP and SRL instructions are available. 911 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand || 912 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) 913 return DAG.UnrollVectorOp(Op.getNode()); 914 915 EVT SVT = VT.getScalarType(); 916 assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) && 917 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 918 919 unsigned BW = SVT.getSizeInBits(); 920 SDValue HalfWord = DAG.getConstant(BW/2, VT); 921 922 // Constants to clear the upper part of the word. 923 // Notice that we can also use SHL+SHR, but using a constant is slightly 924 // faster on x86. 925 uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF; 926 SDValue HalfWordMask = DAG.getConstant(HWMask, VT); 927 928 // Two to the power of half-word-size. 929 SDValue TWOHW = DAG.getConstantFP((1<<(BW/2)), Op.getValueType()); 930 931 // Clear upper part of LO, lower HI 932 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); 933 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); 934 935 // Convert hi and lo to floats 936 // Convert the hi part back to the upper values 937 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); 938 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); 939 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); 940 941 // Add the two halves 942 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); 943 } 944 945 946 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { 947 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { 948 SDValue Zero = DAG.getConstantFP(-0.0, Op.getValueType()); 949 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 950 Zero, Op.getOperand(0)); 951 } 952 return DAG.UnrollVectorOp(Op.getNode()); 953 } 954 955 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { 956 EVT VT = Op.getValueType(); 957 unsigned NumElems = VT.getVectorNumElements(); 958 EVT EltVT = VT.getVectorElementType(); 959 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); 960 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 961 SDLoc dl(Op); 962 SmallVector<SDValue, 8> Ops(NumElems); 963 for (unsigned i = 0; i < NumElems; ++i) { 964 SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 965 DAG.getConstant(i, TLI.getVectorIdxTy())); 966 SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 967 DAG.getConstant(i, TLI.getVectorIdxTy())); 968 Ops[i] = DAG.getNode(ISD::SETCC, dl, 969 TLI.getSetCCResultType(*DAG.getContext(), TmpEltVT), 970 LHSElem, RHSElem, CC); 971 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 972 DAG.getConstant(APInt::getAllOnesValue 973 (EltVT.getSizeInBits()), EltVT), 974 DAG.getConstant(0, EltVT)); 975 } 976 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 977 } 978 979 } 980 981 bool SelectionDAG::LegalizeVectors() { 982 return VectorLegalizer(*this).Run(); 983 } 984