1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::LegalizeVectors method. 10 // 11 // The vector legalizer looks for vector operations which might need to be 12 // scalarized and legalizes them. This is a separate step from Legalize because 13 // scalarizing can introduce illegal types. For example, suppose we have an 14 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 16 // operation, which introduces nodes with the illegal type i64 which must be 17 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 18 // the operation must be unrolled, which introduces nodes with the illegal 19 // type i8 which must be promoted. 20 // 21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 22 // or operations that happen to take a vector which are custom-lowered; 23 // the legalization for such operations never produces nodes 24 // with illegal types, so it's okay to put off legalizing them until 25 // SelectionDAG::Legalize runs. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/SelectionDAGNodes.h" 36 #include "llvm/CodeGen/TargetLowering.h" 37 #include "llvm/CodeGen/ValueTypes.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include <cassert> 46 #include <cstdint> 47 #include <iterator> 48 #include <utility> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "legalizevectorops" 53 54 namespace { 55 56 class VectorLegalizer { 57 SelectionDAG& DAG; 58 const TargetLowering &TLI; 59 bool Changed = false; // Keep track of whether anything changed 60 61 /// For nodes that are of legal width, and that have more than one use, this 62 /// map indicates what regularized operand to use. This allows us to avoid 63 /// legalizing the same thing more than once. 64 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 65 66 /// Adds a node to the translation cache. 67 void AddLegalizedOperand(SDValue From, SDValue To) { 68 LegalizedNodes.insert(std::make_pair(From, To)); 69 // If someone requests legalization of the new node, return itself. 70 if (From != To) 71 LegalizedNodes.insert(std::make_pair(To, To)); 72 } 73 74 /// Legalizes the given node. 75 SDValue LegalizeOp(SDValue Op); 76 77 /// Assuming the node is legal, "legalize" the results. 78 SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result); 79 80 /// Make sure Results are legal and update the translation cache. 81 SDValue RecursivelyLegalizeResults(SDValue Op, 82 MutableArrayRef<SDValue> Results); 83 84 /// Wrapper to interface LowerOperation with a vector of Results. 85 /// Returns false if the target wants to use default expansion. Otherwise 86 /// returns true. If return is true and the Results are empty, then the 87 /// target wants to keep the input node as is. 88 bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results); 89 90 /// Implements unrolling a VSETCC. 91 SDValue UnrollVSETCC(SDNode *Node); 92 93 /// Implement expand-based legalization of vector operations. 94 /// 95 /// This is just a high-level routine to dispatch to specific code paths for 96 /// operations to legalize them. 97 void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results); 98 99 /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if 100 /// FP_TO_SINT isn't legal. 101 void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 102 103 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 104 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 105 void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 106 107 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 108 SDValue ExpandSEXTINREG(SDNode *Node); 109 110 /// Implement expansion for ANY_EXTEND_VECTOR_INREG. 111 /// 112 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 113 /// type. The contents of the bits in the extended part of each element are 114 /// undef. 115 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node); 116 117 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG. 118 /// 119 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 120 /// type, then shifts left and arithmetic shifts right to introduce a sign 121 /// extension. 122 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node); 123 124 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG. 125 /// 126 /// Shuffles the low lanes of the operand into place and blends zeros into 127 /// the remaining lanes, finally bitcasting to the proper type. 128 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node); 129 130 /// Expand bswap of vectors into a shuffle if legal. 131 SDValue ExpandBSWAP(SDNode *Node); 132 133 /// Implement vselect in terms of XOR, AND, OR when blend is not 134 /// supported by the target. 135 SDValue ExpandVSELECT(SDNode *Node); 136 SDValue ExpandSELECT(SDNode *Node); 137 std::pair<SDValue, SDValue> ExpandLoad(SDNode *N); 138 SDValue ExpandStore(SDNode *N); 139 SDValue ExpandFNEG(SDNode *Node); 140 void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results); 141 void ExpandSETCC(SDNode *Node, SmallVectorImpl<SDValue> &Results); 142 void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results); 143 void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 144 void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 145 void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 146 void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results); 147 void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results); 148 void ExpandREM(SDNode *Node, SmallVectorImpl<SDValue> &Results); 149 150 void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results); 151 152 /// Implements vector promotion. 153 /// 154 /// This is essentially just bitcasting the operands to a different type and 155 /// bitcasting the result back to the original type. 156 void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results); 157 158 /// Implements [SU]INT_TO_FP vector promotion. 159 /// 160 /// This is a [zs]ext of the input operand to a larger integer type. 161 void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results); 162 163 /// Implements FP_TO_[SU]INT vector promotion of the result type. 164 /// 165 /// It is promoted to a larger integer type. The result is then 166 /// truncated back to the original type. 167 void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 168 169 public: 170 VectorLegalizer(SelectionDAG& dag) : 171 DAG(dag), TLI(dag.getTargetLoweringInfo()) {} 172 173 /// Begin legalizer the vector operations in the DAG. 174 bool Run(); 175 }; 176 177 } // end anonymous namespace 178 179 bool VectorLegalizer::Run() { 180 // Before we start legalizing vector nodes, check if there are any vectors. 181 bool HasVectors = false; 182 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 183 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 184 // Check if the values of the nodes contain vectors. We don't need to check 185 // the operands because we are going to check their values at some point. 186 HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); }); 187 188 // If we found a vector node we can start the legalization. 189 if (HasVectors) 190 break; 191 } 192 193 // If this basic block has no vectors then no need to legalize vectors. 194 if (!HasVectors) 195 return false; 196 197 // The legalize process is inherently a bottom-up recursive process (users 198 // legalize their uses before themselves). Given infinite stack space, we 199 // could just start legalizing on the root and traverse the whole graph. In 200 // practice however, this causes us to run out of stack space on large basic 201 // blocks. To avoid this problem, compute an ordering of the nodes where each 202 // node is only legalized after all of its operands are legalized. 203 DAG.AssignTopologicalOrder(); 204 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 205 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 206 LegalizeOp(SDValue(&*I, 0)); 207 208 // Finally, it's possible the root changed. Get the new root. 209 SDValue OldRoot = DAG.getRoot(); 210 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 211 DAG.setRoot(LegalizedNodes[OldRoot]); 212 213 LegalizedNodes.clear(); 214 215 // Remove dead nodes now. 216 DAG.RemoveDeadNodes(); 217 218 return Changed; 219 } 220 221 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) { 222 assert(Op->getNumValues() == Result->getNumValues() && 223 "Unexpected number of results"); 224 // Generic legalization: just pass the operand through. 225 for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i) 226 AddLegalizedOperand(Op.getValue(i), SDValue(Result, i)); 227 return SDValue(Result, Op.getResNo()); 228 } 229 230 SDValue 231 VectorLegalizer::RecursivelyLegalizeResults(SDValue Op, 232 MutableArrayRef<SDValue> Results) { 233 assert(Results.size() == Op->getNumValues() && 234 "Unexpected number of results"); 235 // Make sure that the generated code is itself legal. 236 for (unsigned i = 0, e = Results.size(); i != e; ++i) { 237 Results[i] = LegalizeOp(Results[i]); 238 AddLegalizedOperand(Op.getValue(i), Results[i]); 239 } 240 241 return Results[Op.getResNo()]; 242 } 243 244 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 245 // Note that LegalizeOp may be reentered even from single-use nodes, which 246 // means that we always must cache transformed nodes. 247 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 248 if (I != LegalizedNodes.end()) return I->second; 249 250 // Legalize the operands 251 SmallVector<SDValue, 8> Ops; 252 for (const SDValue &Oper : Op->op_values()) 253 Ops.push_back(LegalizeOp(Oper)); 254 255 SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops); 256 257 if (Op.getOpcode() == ISD::LOAD) { 258 LoadSDNode *LD = cast<LoadSDNode>(Node); 259 ISD::LoadExtType ExtType = LD->getExtensionType(); 260 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) { 261 LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: "; 262 Node->dump(&DAG)); 263 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), 264 LD->getMemoryVT())) { 265 default: llvm_unreachable("This action is not supported yet!"); 266 case TargetLowering::Legal: 267 return TranslateLegalizeResults(Op, Node); 268 case TargetLowering::Custom: { 269 SmallVector<SDValue, 2> ResultVals; 270 if (LowerOperationWrapper(Node, ResultVals)) { 271 if (ResultVals.empty()) 272 return TranslateLegalizeResults(Op, Node); 273 274 Changed = true; 275 return RecursivelyLegalizeResults(Op, ResultVals); 276 } 277 LLVM_FALLTHROUGH; 278 } 279 case TargetLowering::Expand: { 280 Changed = true; 281 std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node); 282 AddLegalizedOperand(Op.getValue(0), Tmp.first); 283 AddLegalizedOperand(Op.getValue(1), Tmp.second); 284 return Op.getResNo() ? Tmp.first : Tmp.second; 285 } 286 } 287 } 288 } else if (Op.getOpcode() == ISD::STORE) { 289 StoreSDNode *ST = cast<StoreSDNode>(Node); 290 EVT StVT = ST->getMemoryVT(); 291 MVT ValVT = ST->getValue().getSimpleValueType(); 292 if (StVT.isVector() && ST->isTruncatingStore()) { 293 LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: "; 294 Node->dump(&DAG)); 295 switch (TLI.getTruncStoreAction(ValVT, StVT)) { 296 default: llvm_unreachable("This action is not supported yet!"); 297 case TargetLowering::Legal: 298 return TranslateLegalizeResults(Op, Node); 299 case TargetLowering::Custom: { 300 SmallVector<SDValue, 1> ResultVals; 301 if (LowerOperationWrapper(Node, ResultVals)) { 302 if (ResultVals.empty()) 303 return TranslateLegalizeResults(Op, Node); 304 305 Changed = true; 306 return RecursivelyLegalizeResults(Op, ResultVals); 307 } 308 LLVM_FALLTHROUGH; 309 } 310 case TargetLowering::Expand: { 311 Changed = true; 312 SDValue Chain = ExpandStore(Node); 313 AddLegalizedOperand(Op, Chain); 314 return Chain; 315 } 316 } 317 } 318 } 319 320 bool HasVectorValueOrOp = 321 llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) || 322 llvm::any_of(Node->op_values(), 323 [](SDValue O) { return O.getValueType().isVector(); }); 324 if (!HasVectorValueOrOp) 325 return TranslateLegalizeResults(Op, Node); 326 327 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 328 EVT ValVT; 329 switch (Op.getOpcode()) { 330 default: 331 return TranslateLegalizeResults(Op, Node); 332 case ISD::MERGE_VALUES: 333 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 334 // This operation lies about being legal: when it claims to be legal, 335 // it should actually be expanded. 336 if (Action == TargetLowering::Legal) 337 Action = TargetLowering::Expand; 338 break; 339 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 340 case ISD::STRICT_##DAGN: 341 #include "llvm/IR/ConstrainedOps.def" 342 ValVT = Node->getValueType(0); 343 if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP || 344 Op.getOpcode() == ISD::STRICT_UINT_TO_FP) 345 ValVT = Node->getOperand(1).getValueType(); 346 Action = TLI.getOperationAction(Node->getOpcode(), ValVT); 347 // If we're asked to expand a strict vector floating-point operation, 348 // by default we're going to simply unroll it. That is usually the 349 // best approach, except in the case where the resulting strict (scalar) 350 // operations would themselves use the fallback mutation to non-strict. 351 // In that specific case, just do the fallback on the vector op. 352 if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() && 353 TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) == 354 TargetLowering::Legal) { 355 EVT EltVT = ValVT.getVectorElementType(); 356 if (TLI.getOperationAction(Node->getOpcode(), EltVT) 357 == TargetLowering::Expand && 358 TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT) 359 == TargetLowering::Legal) 360 Action = TargetLowering::Legal; 361 } 362 break; 363 case ISD::ADD: 364 case ISD::SUB: 365 case ISD::MUL: 366 case ISD::MULHS: 367 case ISD::MULHU: 368 case ISD::SDIV: 369 case ISD::UDIV: 370 case ISD::SREM: 371 case ISD::UREM: 372 case ISD::SDIVREM: 373 case ISD::UDIVREM: 374 case ISD::FADD: 375 case ISD::FSUB: 376 case ISD::FMUL: 377 case ISD::FDIV: 378 case ISD::FREM: 379 case ISD::AND: 380 case ISD::OR: 381 case ISD::XOR: 382 case ISD::SHL: 383 case ISD::SRA: 384 case ISD::SRL: 385 case ISD::FSHL: 386 case ISD::FSHR: 387 case ISD::ROTL: 388 case ISD::ROTR: 389 case ISD::ABS: 390 case ISD::BSWAP: 391 case ISD::BITREVERSE: 392 case ISD::CTLZ: 393 case ISD::CTTZ: 394 case ISD::CTLZ_ZERO_UNDEF: 395 case ISD::CTTZ_ZERO_UNDEF: 396 case ISD::CTPOP: 397 case ISD::SELECT: 398 case ISD::VSELECT: 399 case ISD::SELECT_CC: 400 case ISD::ZERO_EXTEND: 401 case ISD::ANY_EXTEND: 402 case ISD::TRUNCATE: 403 case ISD::SIGN_EXTEND: 404 case ISD::FP_TO_SINT: 405 case ISD::FP_TO_UINT: 406 case ISD::FNEG: 407 case ISD::FABS: 408 case ISD::FMINNUM: 409 case ISD::FMAXNUM: 410 case ISD::FMINNUM_IEEE: 411 case ISD::FMAXNUM_IEEE: 412 case ISD::FMINIMUM: 413 case ISD::FMAXIMUM: 414 case ISD::FCOPYSIGN: 415 case ISD::FSQRT: 416 case ISD::FSIN: 417 case ISD::FCOS: 418 case ISD::FPOWI: 419 case ISD::FPOW: 420 case ISD::FLOG: 421 case ISD::FLOG2: 422 case ISD::FLOG10: 423 case ISD::FEXP: 424 case ISD::FEXP2: 425 case ISD::FCEIL: 426 case ISD::FTRUNC: 427 case ISD::FRINT: 428 case ISD::FNEARBYINT: 429 case ISD::FROUND: 430 case ISD::FROUNDEVEN: 431 case ISD::FFLOOR: 432 case ISD::FP_ROUND: 433 case ISD::FP_EXTEND: 434 case ISD::FMA: 435 case ISD::SIGN_EXTEND_INREG: 436 case ISD::ANY_EXTEND_VECTOR_INREG: 437 case ISD::SIGN_EXTEND_VECTOR_INREG: 438 case ISD::ZERO_EXTEND_VECTOR_INREG: 439 case ISD::SMIN: 440 case ISD::SMAX: 441 case ISD::UMIN: 442 case ISD::UMAX: 443 case ISD::SMUL_LOHI: 444 case ISD::UMUL_LOHI: 445 case ISD::SADDO: 446 case ISD::UADDO: 447 case ISD::SSUBO: 448 case ISD::USUBO: 449 case ISD::SMULO: 450 case ISD::UMULO: 451 case ISD::FCANONICALIZE: 452 case ISD::SADDSAT: 453 case ISD::UADDSAT: 454 case ISD::SSUBSAT: 455 case ISD::USUBSAT: 456 case ISD::SSHLSAT: 457 case ISD::USHLSAT: 458 case ISD::FP_TO_SINT_SAT: 459 case ISD::FP_TO_UINT_SAT: 460 case ISD::MGATHER: 461 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 462 break; 463 case ISD::SMULFIX: 464 case ISD::SMULFIXSAT: 465 case ISD::UMULFIX: 466 case ISD::UMULFIXSAT: 467 case ISD::SDIVFIX: 468 case ISD::SDIVFIXSAT: 469 case ISD::UDIVFIX: 470 case ISD::UDIVFIXSAT: { 471 unsigned Scale = Node->getConstantOperandVal(2); 472 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 473 Node->getValueType(0), Scale); 474 break; 475 } 476 case ISD::SINT_TO_FP: 477 case ISD::UINT_TO_FP: 478 case ISD::VECREDUCE_ADD: 479 case ISD::VECREDUCE_MUL: 480 case ISD::VECREDUCE_AND: 481 case ISD::VECREDUCE_OR: 482 case ISD::VECREDUCE_XOR: 483 case ISD::VECREDUCE_SMAX: 484 case ISD::VECREDUCE_SMIN: 485 case ISD::VECREDUCE_UMAX: 486 case ISD::VECREDUCE_UMIN: 487 case ISD::VECREDUCE_FADD: 488 case ISD::VECREDUCE_FMUL: 489 case ISD::VECREDUCE_FMAX: 490 case ISD::VECREDUCE_FMIN: 491 Action = TLI.getOperationAction(Node->getOpcode(), 492 Node->getOperand(0).getValueType()); 493 break; 494 case ISD::VECREDUCE_SEQ_FADD: 495 case ISD::VECREDUCE_SEQ_FMUL: 496 Action = TLI.getOperationAction(Node->getOpcode(), 497 Node->getOperand(1).getValueType()); 498 break; 499 case ISD::SETCC: { 500 MVT OpVT = Node->getOperand(0).getSimpleValueType(); 501 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); 502 Action = TLI.getCondCodeAction(CCCode, OpVT); 503 if (Action == TargetLowering::Legal) 504 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 505 break; 506 } 507 } 508 509 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG)); 510 511 SmallVector<SDValue, 8> ResultVals; 512 switch (Action) { 513 default: llvm_unreachable("This action is not supported yet!"); 514 case TargetLowering::Promote: 515 LLVM_DEBUG(dbgs() << "Promoting\n"); 516 Promote(Node, ResultVals); 517 assert(!ResultVals.empty() && "No results for promotion?"); 518 break; 519 case TargetLowering::Legal: 520 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 521 break; 522 case TargetLowering::Custom: 523 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 524 if (LowerOperationWrapper(Node, ResultVals)) 525 break; 526 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 527 LLVM_FALLTHROUGH; 528 case TargetLowering::Expand: 529 LLVM_DEBUG(dbgs() << "Expanding\n"); 530 Expand(Node, ResultVals); 531 break; 532 } 533 534 if (ResultVals.empty()) 535 return TranslateLegalizeResults(Op, Node); 536 537 Changed = true; 538 return RecursivelyLegalizeResults(Op, ResultVals); 539 } 540 541 // FIXME: This is very similar to TargetLowering::LowerOperationWrapper. Can we 542 // merge them somehow? 543 bool VectorLegalizer::LowerOperationWrapper(SDNode *Node, 544 SmallVectorImpl<SDValue> &Results) { 545 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 546 547 if (!Res.getNode()) 548 return false; 549 550 if (Res == SDValue(Node, 0)) 551 return true; 552 553 // If the original node has one result, take the return value from 554 // LowerOperation as is. It might not be result number 0. 555 if (Node->getNumValues() == 1) { 556 Results.push_back(Res); 557 return true; 558 } 559 560 // If the original node has multiple results, then the return node should 561 // have the same number of results. 562 assert((Node->getNumValues() == Res->getNumValues()) && 563 "Lowering returned the wrong number of results!"); 564 565 // Places new result values base on N result number. 566 for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I) 567 Results.push_back(Res.getValue(I)); 568 569 return true; 570 } 571 572 void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) { 573 // For a few operations there is a specific concept for promotion based on 574 // the operand's type. 575 switch (Node->getOpcode()) { 576 case ISD::SINT_TO_FP: 577 case ISD::UINT_TO_FP: 578 case ISD::STRICT_SINT_TO_FP: 579 case ISD::STRICT_UINT_TO_FP: 580 // "Promote" the operation by extending the operand. 581 PromoteINT_TO_FP(Node, Results); 582 return; 583 case ISD::FP_TO_UINT: 584 case ISD::FP_TO_SINT: 585 case ISD::STRICT_FP_TO_UINT: 586 case ISD::STRICT_FP_TO_SINT: 587 // Promote the operation by extending the operand. 588 PromoteFP_TO_INT(Node, Results); 589 return; 590 case ISD::FP_ROUND: 591 case ISD::FP_EXTEND: 592 // These operations are used to do promotion so they can't be promoted 593 // themselves. 594 llvm_unreachable("Don't know how to promote this operation!"); 595 } 596 597 // There are currently two cases of vector promotion: 598 // 1) Bitcasting a vector of integers to a different type to a vector of the 599 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 600 // 2) Extending a vector of floats to a vector of the same number of larger 601 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 602 assert(Node->getNumValues() == 1 && 603 "Can't promote a vector with multiple results!"); 604 MVT VT = Node->getSimpleValueType(0); 605 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 606 SDLoc dl(Node); 607 SmallVector<SDValue, 4> Operands(Node->getNumOperands()); 608 609 for (unsigned j = 0; j != Node->getNumOperands(); ++j) { 610 if (Node->getOperand(j).getValueType().isVector()) 611 if (Node->getOperand(j) 612 .getValueType() 613 .getVectorElementType() 614 .isFloatingPoint() && 615 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 616 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j)); 617 else 618 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j)); 619 else 620 Operands[j] = Node->getOperand(j); 621 } 622 623 SDValue Res = 624 DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags()); 625 626 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 627 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 628 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 629 Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res, DAG.getIntPtrConstant(0, dl)); 630 else 631 Res = DAG.getNode(ISD::BITCAST, dl, VT, Res); 632 633 Results.push_back(Res); 634 } 635 636 void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node, 637 SmallVectorImpl<SDValue> &Results) { 638 // INT_TO_FP operations may require the input operand be promoted even 639 // when the type is otherwise legal. 640 bool IsStrict = Node->isStrictFPOpcode(); 641 MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType(); 642 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 643 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 644 "Vectors have different number of elements!"); 645 646 SDLoc dl(Node); 647 SmallVector<SDValue, 4> Operands(Node->getNumOperands()); 648 649 unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP || 650 Node->getOpcode() == ISD::STRICT_UINT_TO_FP) 651 ? ISD::ZERO_EXTEND 652 : ISD::SIGN_EXTEND; 653 for (unsigned j = 0; j != Node->getNumOperands(); ++j) { 654 if (Node->getOperand(j).getValueType().isVector()) 655 Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j)); 656 else 657 Operands[j] = Node->getOperand(j); 658 } 659 660 if (IsStrict) { 661 SDValue Res = DAG.getNode(Node->getOpcode(), dl, 662 {Node->getValueType(0), MVT::Other}, Operands); 663 Results.push_back(Res); 664 Results.push_back(Res.getValue(1)); 665 return; 666 } 667 668 SDValue Res = 669 DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands); 670 Results.push_back(Res); 671 } 672 673 // For FP_TO_INT we promote the result type to a vector type with wider 674 // elements and then truncate the result. This is different from the default 675 // PromoteVector which uses bitcast to promote thus assumning that the 676 // promoted vector type has the same overall size. 677 void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node, 678 SmallVectorImpl<SDValue> &Results) { 679 MVT VT = Node->getSimpleValueType(0); 680 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 681 bool IsStrict = Node->isStrictFPOpcode(); 682 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 683 "Vectors have different number of elements!"); 684 685 unsigned NewOpc = Node->getOpcode(); 686 // Change FP_TO_UINT to FP_TO_SINT if possible. 687 // TODO: Should we only do this if FP_TO_UINT itself isn't legal? 688 if (NewOpc == ISD::FP_TO_UINT && 689 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT)) 690 NewOpc = ISD::FP_TO_SINT; 691 692 if (NewOpc == ISD::STRICT_FP_TO_UINT && 693 TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT)) 694 NewOpc = ISD::STRICT_FP_TO_SINT; 695 696 SDLoc dl(Node); 697 SDValue Promoted, Chain; 698 if (IsStrict) { 699 Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other}, 700 {Node->getOperand(0), Node->getOperand(1)}); 701 Chain = Promoted.getValue(1); 702 } else 703 Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0)); 704 705 // Assert that the converted value fits in the original type. If it doesn't 706 // (eg: because the value being converted is too big), then the result of the 707 // original operation was undefined anyway, so the assert is still correct. 708 if (Node->getOpcode() == ISD::FP_TO_UINT || 709 Node->getOpcode() == ISD::STRICT_FP_TO_UINT) 710 NewOpc = ISD::AssertZext; 711 else 712 NewOpc = ISD::AssertSext; 713 714 Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted, 715 DAG.getValueType(VT.getScalarType())); 716 Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted); 717 Results.push_back(Promoted); 718 if (IsStrict) 719 Results.push_back(Chain); 720 } 721 722 std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) { 723 LoadSDNode *LD = cast<LoadSDNode>(N); 724 return TLI.scalarizeVectorLoad(LD, DAG); 725 } 726 727 SDValue VectorLegalizer::ExpandStore(SDNode *N) { 728 StoreSDNode *ST = cast<StoreSDNode>(N); 729 SDValue TF = TLI.scalarizeVectorStore(ST, DAG); 730 return TF; 731 } 732 733 void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) { 734 switch (Node->getOpcode()) { 735 case ISD::MERGE_VALUES: 736 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 737 Results.push_back(Node->getOperand(i)); 738 return; 739 case ISD::SIGN_EXTEND_INREG: 740 Results.push_back(ExpandSEXTINREG(Node)); 741 return; 742 case ISD::ANY_EXTEND_VECTOR_INREG: 743 Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node)); 744 return; 745 case ISD::SIGN_EXTEND_VECTOR_INREG: 746 Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node)); 747 return; 748 case ISD::ZERO_EXTEND_VECTOR_INREG: 749 Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node)); 750 return; 751 case ISD::BSWAP: 752 Results.push_back(ExpandBSWAP(Node)); 753 return; 754 case ISD::VSELECT: 755 Results.push_back(ExpandVSELECT(Node)); 756 return; 757 case ISD::SELECT: 758 Results.push_back(ExpandSELECT(Node)); 759 return; 760 case ISD::FP_TO_UINT: 761 ExpandFP_TO_UINT(Node, Results); 762 return; 763 case ISD::UINT_TO_FP: 764 ExpandUINT_TO_FLOAT(Node, Results); 765 return; 766 case ISD::FNEG: 767 Results.push_back(ExpandFNEG(Node)); 768 return; 769 case ISD::FSUB: 770 ExpandFSUB(Node, Results); 771 return; 772 case ISD::SETCC: 773 ExpandSETCC(Node, Results); 774 return; 775 case ISD::ABS: 776 if (SDValue Expanded = TLI.expandABS(Node, DAG)) { 777 Results.push_back(Expanded); 778 return; 779 } 780 break; 781 case ISD::BITREVERSE: 782 ExpandBITREVERSE(Node, Results); 783 return; 784 case ISD::CTPOP: 785 if (SDValue Expanded = TLI.expandCTPOP(Node, DAG)) { 786 Results.push_back(Expanded); 787 return; 788 } 789 break; 790 case ISD::CTLZ: 791 case ISD::CTLZ_ZERO_UNDEF: 792 if (SDValue Expanded = TLI.expandCTLZ(Node, DAG)) { 793 Results.push_back(Expanded); 794 return; 795 } 796 break; 797 case ISD::CTTZ: 798 case ISD::CTTZ_ZERO_UNDEF: 799 if (SDValue Expanded = TLI.expandCTTZ(Node, DAG)) { 800 Results.push_back(Expanded); 801 return; 802 } 803 break; 804 case ISD::FSHL: 805 case ISD::FSHR: 806 if (SDValue Expanded = TLI.expandFunnelShift(Node, DAG)) { 807 Results.push_back(Expanded); 808 return; 809 } 810 break; 811 case ISD::ROTL: 812 case ISD::ROTR: 813 if (SDValue Expanded = TLI.expandROT(Node, false /*AllowVectorOps*/, DAG)) { 814 Results.push_back(Expanded); 815 return; 816 } 817 break; 818 case ISD::FMINNUM: 819 case ISD::FMAXNUM: 820 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) { 821 Results.push_back(Expanded); 822 return; 823 } 824 break; 825 case ISD::SMIN: 826 case ISD::SMAX: 827 case ISD::UMIN: 828 case ISD::UMAX: 829 if (SDValue Expanded = TLI.expandIntMINMAX(Node, DAG)) { 830 Results.push_back(Expanded); 831 return; 832 } 833 break; 834 case ISD::UADDO: 835 case ISD::USUBO: 836 ExpandUADDSUBO(Node, Results); 837 return; 838 case ISD::SADDO: 839 case ISD::SSUBO: 840 ExpandSADDSUBO(Node, Results); 841 return; 842 case ISD::UMULO: 843 case ISD::SMULO: 844 ExpandMULO(Node, Results); 845 return; 846 case ISD::USUBSAT: 847 case ISD::SSUBSAT: 848 case ISD::UADDSAT: 849 case ISD::SADDSAT: 850 if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) { 851 Results.push_back(Expanded); 852 return; 853 } 854 break; 855 case ISD::SMULFIX: 856 case ISD::UMULFIX: 857 if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) { 858 Results.push_back(Expanded); 859 return; 860 } 861 break; 862 case ISD::SMULFIXSAT: 863 case ISD::UMULFIXSAT: 864 // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly 865 // why. Maybe it results in worse codegen compared to the unroll for some 866 // targets? This should probably be investigated. And if we still prefer to 867 // unroll an explanation could be helpful. 868 break; 869 case ISD::SDIVFIX: 870 case ISD::UDIVFIX: 871 ExpandFixedPointDiv(Node, Results); 872 return; 873 case ISD::SDIVFIXSAT: 874 case ISD::UDIVFIXSAT: 875 break; 876 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 877 case ISD::STRICT_##DAGN: 878 #include "llvm/IR/ConstrainedOps.def" 879 ExpandStrictFPOp(Node, Results); 880 return; 881 case ISD::VECREDUCE_ADD: 882 case ISD::VECREDUCE_MUL: 883 case ISD::VECREDUCE_AND: 884 case ISD::VECREDUCE_OR: 885 case ISD::VECREDUCE_XOR: 886 case ISD::VECREDUCE_SMAX: 887 case ISD::VECREDUCE_SMIN: 888 case ISD::VECREDUCE_UMAX: 889 case ISD::VECREDUCE_UMIN: 890 case ISD::VECREDUCE_FADD: 891 case ISD::VECREDUCE_FMUL: 892 case ISD::VECREDUCE_FMAX: 893 case ISD::VECREDUCE_FMIN: 894 Results.push_back(TLI.expandVecReduce(Node, DAG)); 895 return; 896 case ISD::VECREDUCE_SEQ_FADD: 897 case ISD::VECREDUCE_SEQ_FMUL: 898 Results.push_back(TLI.expandVecReduceSeq(Node, DAG)); 899 return; 900 case ISD::SREM: 901 case ISD::UREM: 902 ExpandREM(Node, Results); 903 return; 904 } 905 906 Results.push_back(DAG.UnrollVectorOp(Node)); 907 } 908 909 SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) { 910 // Lower a select instruction where the condition is a scalar and the 911 // operands are vectors. Lower this select to VSELECT and implement it 912 // using XOR AND OR. The selector bit is broadcasted. 913 EVT VT = Node->getValueType(0); 914 SDLoc DL(Node); 915 916 SDValue Mask = Node->getOperand(0); 917 SDValue Op1 = Node->getOperand(1); 918 SDValue Op2 = Node->getOperand(2); 919 920 assert(VT.isVector() && !Mask.getValueType().isVector() 921 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 922 923 // If we can't even use the basic vector operations of 924 // AND,OR,XOR, we will have to scalarize the op. 925 // Notice that the operation may be 'promoted' which means that it is 926 // 'bitcasted' to another type which is handled. 927 // Also, we need to be able to construct a splat vector using either 928 // BUILD_VECTOR or SPLAT_VECTOR. 929 // FIXME: Should we also permit fixed-length SPLAT_VECTOR as a fallback to 930 // BUILD_VECTOR? 931 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 932 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 933 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 934 TLI.getOperationAction(VT.isFixedLengthVector() ? ISD::BUILD_VECTOR 935 : ISD::SPLAT_VECTOR, 936 VT) == TargetLowering::Expand) 937 return DAG.UnrollVectorOp(Node); 938 939 // Generate a mask operand. 940 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 941 942 // What is the size of each element in the vector mask. 943 EVT BitTy = MaskTy.getScalarType(); 944 945 Mask = DAG.getSelect(DL, BitTy, Mask, DAG.getAllOnesConstant(DL, BitTy), 946 DAG.getConstant(0, DL, BitTy)); 947 948 // Broadcast the mask so that the entire vector is all one or all zero. 949 if (VT.isFixedLengthVector()) 950 Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask); 951 else 952 Mask = DAG.getSplatVector(MaskTy, DL, Mask); 953 954 // Bitcast the operands to be the same type as the mask. 955 // This is needed when we select between FP types because 956 // the mask is a vector of integers. 957 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 958 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 959 960 SDValue NotMask = DAG.getNOT(DL, Mask, MaskTy); 961 962 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 963 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 964 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 965 return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val); 966 } 967 968 SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) { 969 EVT VT = Node->getValueType(0); 970 971 // Make sure that the SRA and SHL instructions are available. 972 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 973 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 974 return DAG.UnrollVectorOp(Node); 975 976 SDLoc DL(Node); 977 EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT(); 978 979 unsigned BW = VT.getScalarSizeInBits(); 980 unsigned OrigBW = OrigTy.getScalarSizeInBits(); 981 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 982 983 SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz); 984 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 985 } 986 987 // Generically expand a vector anyext in register to a shuffle of the relevant 988 // lanes into the appropriate locations, with other lanes left undef. 989 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) { 990 SDLoc DL(Node); 991 EVT VT = Node->getValueType(0); 992 int NumElements = VT.getVectorNumElements(); 993 SDValue Src = Node->getOperand(0); 994 EVT SrcVT = Src.getValueType(); 995 int NumSrcElements = SrcVT.getVectorNumElements(); 996 997 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 998 // into a larger vector type. 999 if (SrcVT.bitsLE(VT)) { 1000 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 1001 "ANY_EXTEND_VECTOR_INREG vector size mismatch"); 1002 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 1003 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 1004 NumSrcElements); 1005 Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), 1006 Src, DAG.getVectorIdxConstant(0, DL)); 1007 } 1008 1009 // Build a base mask of undef shuffles. 1010 SmallVector<int, 16> ShuffleMask; 1011 ShuffleMask.resize(NumSrcElements, -1); 1012 1013 // Place the extended lanes into the correct locations. 1014 int ExtLaneScale = NumSrcElements / NumElements; 1015 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 1016 for (int i = 0; i < NumElements; ++i) 1017 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 1018 1019 return DAG.getNode( 1020 ISD::BITCAST, DL, VT, 1021 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 1022 } 1023 1024 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) { 1025 SDLoc DL(Node); 1026 EVT VT = Node->getValueType(0); 1027 SDValue Src = Node->getOperand(0); 1028 EVT SrcVT = Src.getValueType(); 1029 1030 // First build an any-extend node which can be legalized above when we 1031 // recurse through it. 1032 SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src); 1033 1034 // Now we need sign extend. Do this by shifting the elements. Even if these 1035 // aren't legal operations, they have a better chance of being legalized 1036 // without full scalarization than the sign extension does. 1037 unsigned EltWidth = VT.getScalarSizeInBits(); 1038 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); 1039 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 1040 return DAG.getNode(ISD::SRA, DL, VT, 1041 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 1042 ShiftAmount); 1043 } 1044 1045 // Generically expand a vector zext in register to a shuffle of the relevant 1046 // lanes into the appropriate locations, a blend of zero into the high bits, 1047 // and a bitcast to the wider element type. 1048 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) { 1049 SDLoc DL(Node); 1050 EVT VT = Node->getValueType(0); 1051 int NumElements = VT.getVectorNumElements(); 1052 SDValue Src = Node->getOperand(0); 1053 EVT SrcVT = Src.getValueType(); 1054 int NumSrcElements = SrcVT.getVectorNumElements(); 1055 1056 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 1057 // into a larger vector type. 1058 if (SrcVT.bitsLE(VT)) { 1059 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 1060 "ZERO_EXTEND_VECTOR_INREG vector size mismatch"); 1061 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 1062 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 1063 NumSrcElements); 1064 Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), 1065 Src, DAG.getVectorIdxConstant(0, DL)); 1066 } 1067 1068 // Build up a zero vector to blend into this one. 1069 SDValue Zero = DAG.getConstant(0, DL, SrcVT); 1070 1071 // Shuffle the incoming lanes into the correct position, and pull all other 1072 // lanes from the zero vector. 1073 SmallVector<int, 16> ShuffleMask; 1074 ShuffleMask.reserve(NumSrcElements); 1075 for (int i = 0; i < NumSrcElements; ++i) 1076 ShuffleMask.push_back(i); 1077 1078 int ExtLaneScale = NumSrcElements / NumElements; 1079 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 1080 for (int i = 0; i < NumElements; ++i) 1081 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 1082 1083 return DAG.getNode(ISD::BITCAST, DL, VT, 1084 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 1085 } 1086 1087 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) { 1088 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 1089 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 1090 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 1091 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 1092 } 1093 1094 SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) { 1095 EVT VT = Node->getValueType(0); 1096 1097 // Scalable vectors can't use shuffle expansion. 1098 if (VT.isScalableVector()) 1099 return TLI.expandBSWAP(Node, DAG); 1100 1101 // Generate a byte wise shuffle mask for the BSWAP. 1102 SmallVector<int, 16> ShuffleMask; 1103 createBSWAPShuffleMask(VT, ShuffleMask); 1104 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 1105 1106 // Only emit a shuffle if the mask is legal. 1107 if (TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) { 1108 SDLoc DL(Node); 1109 SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0)); 1110 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); 1111 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 1112 } 1113 1114 // If we have the appropriate vector bit operations, it is better to use them 1115 // than unrolling and expanding each component. 1116 if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 1117 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 1118 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) && 1119 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) 1120 return TLI.expandBSWAP(Node, DAG); 1121 1122 // Otherwise unroll. 1123 return DAG.UnrollVectorOp(Node); 1124 } 1125 1126 void VectorLegalizer::ExpandBITREVERSE(SDNode *Node, 1127 SmallVectorImpl<SDValue> &Results) { 1128 EVT VT = Node->getValueType(0); 1129 1130 // We can't unroll or use shuffles for scalable vectors. 1131 if (VT.isScalableVector()) { 1132 Results.push_back(TLI.expandBITREVERSE(Node, DAG)); 1133 return; 1134 } 1135 1136 // If we have the scalar operation, it's probably cheaper to unroll it. 1137 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) { 1138 SDValue Tmp = DAG.UnrollVectorOp(Node); 1139 Results.push_back(Tmp); 1140 return; 1141 } 1142 1143 // If the vector element width is a whole number of bytes, test if its legal 1144 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte 1145 // vector. This greatly reduces the number of bit shifts necessary. 1146 unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); 1147 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { 1148 SmallVector<int, 16> BSWAPMask; 1149 createBSWAPShuffleMask(VT, BSWAPMask); 1150 1151 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); 1152 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && 1153 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || 1154 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && 1155 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && 1156 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && 1157 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { 1158 SDLoc DL(Node); 1159 SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0)); 1160 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 1161 BSWAPMask); 1162 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); 1163 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 1164 Results.push_back(Op); 1165 return; 1166 } 1167 } 1168 1169 // If we have the appropriate vector bit operations, it is better to use them 1170 // than unrolling and expanding each component. 1171 if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 1172 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 1173 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) && 1174 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) { 1175 Results.push_back(TLI.expandBITREVERSE(Node, DAG)); 1176 return; 1177 } 1178 1179 // Otherwise unroll. 1180 SDValue Tmp = DAG.UnrollVectorOp(Node); 1181 Results.push_back(Tmp); 1182 } 1183 1184 SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) { 1185 // Implement VSELECT in terms of XOR, AND, OR 1186 // on platforms which do not support blend natively. 1187 SDLoc DL(Node); 1188 1189 SDValue Mask = Node->getOperand(0); 1190 SDValue Op1 = Node->getOperand(1); 1191 SDValue Op2 = Node->getOperand(2); 1192 1193 EVT VT = Mask.getValueType(); 1194 1195 // If we can't even use the basic vector operations of 1196 // AND,OR,XOR, we will have to scalarize the op. 1197 // Notice that the operation may be 'promoted' which means that it is 1198 // 'bitcasted' to another type which is handled. 1199 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 1200 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 1201 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand) 1202 return DAG.UnrollVectorOp(Node); 1203 1204 // This operation also isn't safe with AND, OR, XOR when the boolean type is 1205 // 0/1 and the select operands aren't also booleans, as we need an all-ones 1206 // vector constant to mask with. 1207 // FIXME: Sign extend 1 to all ones if that's legal on the target. 1208 auto BoolContents = TLI.getBooleanContents(Op1.getValueType()); 1209 if (BoolContents != TargetLowering::ZeroOrNegativeOneBooleanContent && 1210 !(BoolContents == TargetLowering::ZeroOrOneBooleanContent && 1211 Op1.getValueType().getVectorElementType() == MVT::i1)) 1212 return DAG.UnrollVectorOp(Node); 1213 1214 // If the mask and the type are different sizes, unroll the vector op. This 1215 // can occur when getSetCCResultType returns something that is different in 1216 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 1217 if (VT.getSizeInBits() != Op1.getValueSizeInBits()) 1218 return DAG.UnrollVectorOp(Node); 1219 1220 // Bitcast the operands to be the same type as the mask. 1221 // This is needed when we select between FP types because 1222 // the mask is a vector of integers. 1223 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 1224 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 1225 1226 SDValue NotMask = DAG.getNOT(DL, Mask, VT); 1227 1228 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 1229 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 1230 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 1231 return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val); 1232 } 1233 1234 void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node, 1235 SmallVectorImpl<SDValue> &Results) { 1236 // Attempt to expand using TargetLowering. 1237 SDValue Result, Chain; 1238 if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) { 1239 Results.push_back(Result); 1240 if (Node->isStrictFPOpcode()) 1241 Results.push_back(Chain); 1242 return; 1243 } 1244 1245 // Otherwise go ahead and unroll. 1246 if (Node->isStrictFPOpcode()) { 1247 UnrollStrictFPOp(Node, Results); 1248 return; 1249 } 1250 1251 Results.push_back(DAG.UnrollVectorOp(Node)); 1252 } 1253 1254 void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node, 1255 SmallVectorImpl<SDValue> &Results) { 1256 bool IsStrict = Node->isStrictFPOpcode(); 1257 unsigned OpNo = IsStrict ? 1 : 0; 1258 SDValue Src = Node->getOperand(OpNo); 1259 EVT VT = Src.getValueType(); 1260 SDLoc DL(Node); 1261 1262 // Attempt to expand using TargetLowering. 1263 SDValue Result; 1264 SDValue Chain; 1265 if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) { 1266 Results.push_back(Result); 1267 if (IsStrict) 1268 Results.push_back(Chain); 1269 return; 1270 } 1271 1272 // Make sure that the SINT_TO_FP and SRL instructions are available. 1273 if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) == 1274 TargetLowering::Expand) || 1275 (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) == 1276 TargetLowering::Expand)) || 1277 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) { 1278 if (IsStrict) { 1279 UnrollStrictFPOp(Node, Results); 1280 return; 1281 } 1282 1283 Results.push_back(DAG.UnrollVectorOp(Node)); 1284 return; 1285 } 1286 1287 unsigned BW = VT.getScalarSizeInBits(); 1288 assert((BW == 64 || BW == 32) && 1289 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 1290 1291 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT); 1292 1293 // Constants to clear the upper part of the word. 1294 // Notice that we can also use SHL+SHR, but using a constant is slightly 1295 // faster on x86. 1296 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; 1297 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 1298 1299 // Two to the power of half-word-size. 1300 SDValue TWOHW = 1301 DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0)); 1302 1303 // Clear upper part of LO, lower HI 1304 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord); 1305 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask); 1306 1307 if (IsStrict) { 1308 // Convert hi and lo to floats 1309 // Convert the hi part back to the upper values 1310 // TODO: Can any fast-math-flags be set on these nodes? 1311 SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, 1312 {Node->getValueType(0), MVT::Other}, 1313 {Node->getOperand(0), HI}); 1314 fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other}, 1315 {fHI.getValue(1), fHI, TWOHW}); 1316 SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, 1317 {Node->getValueType(0), MVT::Other}, 1318 {Node->getOperand(0), LO}); 1319 1320 SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1), 1321 fLO.getValue(1)); 1322 1323 // Add the two halves 1324 SDValue Result = 1325 DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other}, 1326 {TF, fHI, fLO}); 1327 1328 Results.push_back(Result); 1329 Results.push_back(Result.getValue(1)); 1330 return; 1331 } 1332 1333 // Convert hi and lo to floats 1334 // Convert the hi part back to the upper values 1335 // TODO: Can any fast-math-flags be set on these nodes? 1336 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI); 1337 fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW); 1338 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO); 1339 1340 // Add the two halves 1341 Results.push_back( 1342 DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO)); 1343 } 1344 1345 SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) { 1346 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) { 1347 SDLoc DL(Node); 1348 SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0)); 1349 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. 1350 return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero, 1351 Node->getOperand(0)); 1352 } 1353 return DAG.UnrollVectorOp(Node); 1354 } 1355 1356 void VectorLegalizer::ExpandFSUB(SDNode *Node, 1357 SmallVectorImpl<SDValue> &Results) { 1358 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal, 1359 // we can defer this to operation legalization where it will be lowered as 1360 // a+(-b). 1361 EVT VT = Node->getValueType(0); 1362 if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && 1363 TLI.isOperationLegalOrCustom(ISD::FADD, VT)) 1364 return; // Defer to LegalizeDAG 1365 1366 SDValue Tmp = DAG.UnrollVectorOp(Node); 1367 Results.push_back(Tmp); 1368 } 1369 1370 void VectorLegalizer::ExpandSETCC(SDNode *Node, 1371 SmallVectorImpl<SDValue> &Results) { 1372 bool NeedInvert = false; 1373 SDLoc dl(Node); 1374 MVT OpVT = Node->getOperand(0).getSimpleValueType(); 1375 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); 1376 1377 if (TLI.getCondCodeAction(CCCode, OpVT) != TargetLowering::Expand) { 1378 Results.push_back(UnrollVSETCC(Node)); 1379 return; 1380 } 1381 1382 SDValue Chain; 1383 SDValue LHS = Node->getOperand(0); 1384 SDValue RHS = Node->getOperand(1); 1385 SDValue CC = Node->getOperand(2); 1386 bool Legalized = TLI.LegalizeSetCCCondCode(DAG, Node->getValueType(0), LHS, 1387 RHS, CC, NeedInvert, dl, Chain); 1388 1389 if (Legalized) { 1390 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 1391 // condition code, create a new SETCC node. 1392 if (CC.getNode()) 1393 LHS = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), LHS, RHS, CC, 1394 Node->getFlags()); 1395 1396 // If we expanded the SETCC by inverting the condition code, then wrap 1397 // the existing SETCC in a NOT to restore the intended condition. 1398 if (NeedInvert) 1399 LHS = DAG.getLogicalNOT(dl, LHS, LHS->getValueType(0)); 1400 } else { 1401 // Otherwise, SETCC for the given comparison type must be completely 1402 // illegal; expand it into a SELECT_CC. 1403 EVT VT = Node->getValueType(0); 1404 LHS = 1405 DAG.getNode(ISD::SELECT_CC, dl, VT, LHS, RHS, 1406 DAG.getBoolConstant(true, dl, VT, LHS.getValueType()), 1407 DAG.getBoolConstant(false, dl, VT, LHS.getValueType()), CC); 1408 LHS->setFlags(Node->getFlags()); 1409 } 1410 1411 Results.push_back(LHS); 1412 } 1413 1414 void VectorLegalizer::ExpandUADDSUBO(SDNode *Node, 1415 SmallVectorImpl<SDValue> &Results) { 1416 SDValue Result, Overflow; 1417 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 1418 Results.push_back(Result); 1419 Results.push_back(Overflow); 1420 } 1421 1422 void VectorLegalizer::ExpandSADDSUBO(SDNode *Node, 1423 SmallVectorImpl<SDValue> &Results) { 1424 SDValue Result, Overflow; 1425 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 1426 Results.push_back(Result); 1427 Results.push_back(Overflow); 1428 } 1429 1430 void VectorLegalizer::ExpandMULO(SDNode *Node, 1431 SmallVectorImpl<SDValue> &Results) { 1432 SDValue Result, Overflow; 1433 if (!TLI.expandMULO(Node, Result, Overflow, DAG)) 1434 std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node); 1435 1436 Results.push_back(Result); 1437 Results.push_back(Overflow); 1438 } 1439 1440 void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node, 1441 SmallVectorImpl<SDValue> &Results) { 1442 SDNode *N = Node; 1443 if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N), 1444 N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG)) 1445 Results.push_back(Expanded); 1446 } 1447 1448 void VectorLegalizer::ExpandStrictFPOp(SDNode *Node, 1449 SmallVectorImpl<SDValue> &Results) { 1450 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) { 1451 ExpandUINT_TO_FLOAT(Node, Results); 1452 return; 1453 } 1454 if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) { 1455 ExpandFP_TO_UINT(Node, Results); 1456 return; 1457 } 1458 1459 UnrollStrictFPOp(Node, Results); 1460 } 1461 1462 void VectorLegalizer::ExpandREM(SDNode *Node, 1463 SmallVectorImpl<SDValue> &Results) { 1464 assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) && 1465 "Expected REM node"); 1466 1467 SDValue Result; 1468 if (!TLI.expandREM(Node, Result, DAG)) 1469 Result = DAG.UnrollVectorOp(Node); 1470 Results.push_back(Result); 1471 } 1472 1473 void VectorLegalizer::UnrollStrictFPOp(SDNode *Node, 1474 SmallVectorImpl<SDValue> &Results) { 1475 EVT VT = Node->getValueType(0); 1476 EVT EltVT = VT.getVectorElementType(); 1477 unsigned NumElems = VT.getVectorNumElements(); 1478 unsigned NumOpers = Node->getNumOperands(); 1479 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1480 1481 EVT TmpEltVT = EltVT; 1482 if (Node->getOpcode() == ISD::STRICT_FSETCC || 1483 Node->getOpcode() == ISD::STRICT_FSETCCS) 1484 TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(), 1485 *DAG.getContext(), TmpEltVT); 1486 1487 EVT ValueVTs[] = {TmpEltVT, MVT::Other}; 1488 SDValue Chain = Node->getOperand(0); 1489 SDLoc dl(Node); 1490 1491 SmallVector<SDValue, 32> OpValues; 1492 SmallVector<SDValue, 32> OpChains; 1493 for (unsigned i = 0; i < NumElems; ++i) { 1494 SmallVector<SDValue, 4> Opers; 1495 SDValue Idx = DAG.getVectorIdxConstant(i, dl); 1496 1497 // The Chain is the first operand. 1498 Opers.push_back(Chain); 1499 1500 // Now process the remaining operands. 1501 for (unsigned j = 1; j < NumOpers; ++j) { 1502 SDValue Oper = Node->getOperand(j); 1503 EVT OperVT = Oper.getValueType(); 1504 1505 if (OperVT.isVector()) 1506 Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 1507 OperVT.getVectorElementType(), Oper, Idx); 1508 1509 Opers.push_back(Oper); 1510 } 1511 1512 SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers); 1513 SDValue ScalarResult = ScalarOp.getValue(0); 1514 SDValue ScalarChain = ScalarOp.getValue(1); 1515 1516 if (Node->getOpcode() == ISD::STRICT_FSETCC || 1517 Node->getOpcode() == ISD::STRICT_FSETCCS) 1518 ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult, 1519 DAG.getAllOnesConstant(dl, EltVT), 1520 DAG.getConstant(0, dl, EltVT)); 1521 1522 OpValues.push_back(ScalarResult); 1523 OpChains.push_back(ScalarChain); 1524 } 1525 1526 SDValue Result = DAG.getBuildVector(VT, dl, OpValues); 1527 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains); 1528 1529 Results.push_back(Result); 1530 Results.push_back(NewChain); 1531 } 1532 1533 SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) { 1534 EVT VT = Node->getValueType(0); 1535 unsigned NumElems = VT.getVectorNumElements(); 1536 EVT EltVT = VT.getVectorElementType(); 1537 SDValue LHS = Node->getOperand(0); 1538 SDValue RHS = Node->getOperand(1); 1539 SDValue CC = Node->getOperand(2); 1540 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1541 SDLoc dl(Node); 1542 SmallVector<SDValue, 8> Ops(NumElems); 1543 for (unsigned i = 0; i < NumElems; ++i) { 1544 SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1545 DAG.getVectorIdxConstant(i, dl)); 1546 SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1547 DAG.getVectorIdxConstant(i, dl)); 1548 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1549 TLI.getSetCCResultType(DAG.getDataLayout(), 1550 *DAG.getContext(), TmpEltVT), 1551 LHSElem, RHSElem, CC); 1552 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], DAG.getAllOnesConstant(dl, EltVT), 1553 DAG.getConstant(0, dl, EltVT)); 1554 } 1555 return DAG.getBuildVector(VT, dl, Ops); 1556 } 1557 1558 bool SelectionDAG::LegalizeVectors() { 1559 return VectorLegalizer(*this).Run(); 1560 } 1561