1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::LegalizeVectors method.
10 //
11 // The vector legalizer looks for vector operations which might need to be
12 // scalarized and legalizes them. This is a separate step from Legalize because
13 // scalarizing can introduce illegal types.  For example, suppose we have an
14 // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
16 // operation, which introduces nodes with the illegal type i64 which must be
17 // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
18 // the operation must be unrolled, which introduces nodes with the illegal
19 // type i8 which must be promoted.
20 //
21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
22 // or operations that happen to take a vector which are custom-lowered;
23 // the legalization for such operations never produces nodes
24 // with illegal types, so it's okay to put off legalizing them until
25 // SelectionDAG::Legalize runs.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/SelectionDAGNodes.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MachineValueType.h"
44 #include "llvm/Support/MathExtras.h"
45 #include <cassert>
46 #include <cstdint>
47 #include <iterator>
48 #include <utility>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "legalizevectorops"
53 
54 namespace {
55 
56 class VectorLegalizer {
57   SelectionDAG& DAG;
58   const TargetLowering &TLI;
59   bool Changed = false; // Keep track of whether anything changed
60 
61   /// For nodes that are of legal width, and that have more than one use, this
62   /// map indicates what regularized operand to use.  This allows us to avoid
63   /// legalizing the same thing more than once.
64   SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
65 
66   /// Adds a node to the translation cache.
67   void AddLegalizedOperand(SDValue From, SDValue To) {
68     LegalizedNodes.insert(std::make_pair(From, To));
69     // If someone requests legalization of the new node, return itself.
70     if (From != To)
71       LegalizedNodes.insert(std::make_pair(To, To));
72   }
73 
74   /// Legalizes the given node.
75   SDValue LegalizeOp(SDValue Op);
76 
77   /// Assuming the node is legal, "legalize" the results.
78   SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
79 
80   /// Implements unrolling a VSETCC.
81   SDValue UnrollVSETCC(SDValue Op);
82 
83   /// Implement expand-based legalization of vector operations.
84   ///
85   /// This is just a high-level routine to dispatch to specific code paths for
86   /// operations to legalize them.
87   SDValue Expand(SDValue Op);
88 
89   /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
90   /// FP_TO_SINT isn't legal.
91   SDValue ExpandFP_TO_UINT(SDValue Op);
92 
93   /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
94   /// SINT_TO_FLOAT and SHR on vectors isn't legal.
95   SDValue ExpandUINT_TO_FLOAT(SDValue Op);
96 
97   /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
98   SDValue ExpandSEXTINREG(SDValue Op);
99 
100   /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
101   ///
102   /// Shuffles the low lanes of the operand into place and bitcasts to the proper
103   /// type. The contents of the bits in the extended part of each element are
104   /// undef.
105   SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op);
106 
107   /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
108   ///
109   /// Shuffles the low lanes of the operand into place, bitcasts to the proper
110   /// type, then shifts left and arithmetic shifts right to introduce a sign
111   /// extension.
112   SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op);
113 
114   /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
115   ///
116   /// Shuffles the low lanes of the operand into place and blends zeros into
117   /// the remaining lanes, finally bitcasting to the proper type.
118   SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op);
119 
120   /// Implement expand-based legalization of ABS vector operations.
121   /// If following expanding is legal/custom then do it:
122   /// (ABS x) --> (XOR (ADD x, (SRA x, sizeof(x)-1)), (SRA x, sizeof(x)-1))
123   /// else unroll the operation.
124   SDValue ExpandABS(SDValue Op);
125 
126   /// Expand bswap of vectors into a shuffle if legal.
127   SDValue ExpandBSWAP(SDValue Op);
128 
129   /// Implement vselect in terms of XOR, AND, OR when blend is not
130   /// supported by the target.
131   SDValue ExpandVSELECT(SDValue Op);
132   SDValue ExpandSELECT(SDValue Op);
133   std::pair<SDValue, SDValue> ExpandLoad(SDValue Op);
134   SDValue ExpandStore(SDValue Op);
135   SDValue ExpandFNEG(SDValue Op);
136   SDValue ExpandFSUB(SDValue Op);
137   SDValue ExpandBITREVERSE(SDValue Op);
138   SDValue ExpandCTPOP(SDValue Op);
139   SDValue ExpandCTLZ(SDValue Op);
140   SDValue ExpandCTTZ(SDValue Op);
141   SDValue ExpandFunnelShift(SDValue Op);
142   SDValue ExpandROT(SDValue Op);
143   SDValue ExpandFMINNUM_FMAXNUM(SDValue Op);
144   SDValue ExpandUADDSUBO(SDValue Op);
145   SDValue ExpandSADDSUBO(SDValue Op);
146   SDValue ExpandMULO(SDValue Op);
147   SDValue ExpandAddSubSat(SDValue Op);
148   SDValue ExpandFixedPointMul(SDValue Op);
149   SDValue ExpandStrictFPOp(SDValue Op);
150 
151   SDValue UnrollStrictFPOp(SDValue Op);
152 
153   /// Implements vector promotion.
154   ///
155   /// This is essentially just bitcasting the operands to a different type and
156   /// bitcasting the result back to the original type.
157   SDValue Promote(SDValue Op);
158 
159   /// Implements [SU]INT_TO_FP vector promotion.
160   ///
161   /// This is a [zs]ext of the input operand to a larger integer type.
162   SDValue PromoteINT_TO_FP(SDValue Op);
163 
164   /// Implements FP_TO_[SU]INT vector promotion of the result type.
165   ///
166   /// It is promoted to a larger integer type.  The result is then
167   /// truncated back to the original type.
168   SDValue PromoteFP_TO_INT(SDValue Op);
169 
170 public:
171   VectorLegalizer(SelectionDAG& dag) :
172       DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
173 
174   /// Begin legalizer the vector operations in the DAG.
175   bool Run();
176 };
177 
178 } // end anonymous namespace
179 
180 bool VectorLegalizer::Run() {
181   // Before we start legalizing vector nodes, check if there are any vectors.
182   bool HasVectors = false;
183   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
184        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
185     // Check if the values of the nodes contain vectors. We don't need to check
186     // the operands because we are going to check their values at some point.
187     for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
188          J != E; ++J)
189       HasVectors |= J->isVector();
190 
191     // If we found a vector node we can start the legalization.
192     if (HasVectors)
193       break;
194   }
195 
196   // If this basic block has no vectors then no need to legalize vectors.
197   if (!HasVectors)
198     return false;
199 
200   // The legalize process is inherently a bottom-up recursive process (users
201   // legalize their uses before themselves).  Given infinite stack space, we
202   // could just start legalizing on the root and traverse the whole graph.  In
203   // practice however, this causes us to run out of stack space on large basic
204   // blocks.  To avoid this problem, compute an ordering of the nodes where each
205   // node is only legalized after all of its operands are legalized.
206   DAG.AssignTopologicalOrder();
207   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
208        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
209     LegalizeOp(SDValue(&*I, 0));
210 
211   // Finally, it's possible the root changed.  Get the new root.
212   SDValue OldRoot = DAG.getRoot();
213   assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
214   DAG.setRoot(LegalizedNodes[OldRoot]);
215 
216   LegalizedNodes.clear();
217 
218   // Remove dead nodes now.
219   DAG.RemoveDeadNodes();
220 
221   return Changed;
222 }
223 
224 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
225   // Generic legalization: just pass the operand through.
226   for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
227     AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
228   return Result.getValue(Op.getResNo());
229 }
230 
231 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
232   // Note that LegalizeOp may be reentered even from single-use nodes, which
233   // means that we always must cache transformed nodes.
234   DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
235   if (I != LegalizedNodes.end()) return I->second;
236 
237   SDNode* Node = Op.getNode();
238 
239   // Legalize the operands
240   SmallVector<SDValue, 8> Ops;
241   for (const SDValue &Op : Node->op_values())
242     Ops.push_back(LegalizeOp(Op));
243 
244   SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops),
245                            Op.getResNo());
246 
247   if (Op.getOpcode() == ISD::LOAD) {
248     LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
249     ISD::LoadExtType ExtType = LD->getExtensionType();
250     if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) {
251       LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: ";
252                  Node->dump(&DAG));
253       switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
254                                    LD->getMemoryVT())) {
255       default: llvm_unreachable("This action is not supported yet!");
256       case TargetLowering::Legal:
257         return TranslateLegalizeResults(Op, Result);
258       case TargetLowering::Custom:
259         if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) {
260           assert(Lowered->getNumValues() == Op->getNumValues() &&
261                  "Unexpected number of results");
262           if (Lowered != Result) {
263             // Make sure the new code is also legal.
264             Lowered = LegalizeOp(Lowered);
265             Changed = true;
266           }
267           return TranslateLegalizeResults(Op, Lowered);
268         }
269         LLVM_FALLTHROUGH;
270       case TargetLowering::Expand: {
271         Changed = true;
272         std::pair<SDValue, SDValue> Tmp = ExpandLoad(Result);
273         AddLegalizedOperand(Op.getValue(0), Tmp.first);
274         AddLegalizedOperand(Op.getValue(1), Tmp.second);
275         return Op.getResNo() ? Tmp.first : Tmp.second;
276       }
277       }
278     }
279   } else if (Op.getOpcode() == ISD::STORE) {
280     StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
281     EVT StVT = ST->getMemoryVT();
282     MVT ValVT = ST->getValue().getSimpleValueType();
283     if (StVT.isVector() && ST->isTruncatingStore()) {
284       LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: ";
285                  Node->dump(&DAG));
286       switch (TLI.getTruncStoreAction(ValVT, StVT)) {
287       default: llvm_unreachable("This action is not supported yet!");
288       case TargetLowering::Legal:
289         return TranslateLegalizeResults(Op, Result);
290       case TargetLowering::Custom: {
291         SDValue Lowered = TLI.LowerOperation(Result, DAG);
292         if (Lowered != Result) {
293           // Make sure the new code is also legal.
294           Lowered = LegalizeOp(Lowered);
295           Changed = true;
296         }
297         return TranslateLegalizeResults(Op, Lowered);
298       }
299       case TargetLowering::Expand: {
300         Changed = true;
301         SDValue Chain = ExpandStore(Result);
302         AddLegalizedOperand(Op, Chain);
303         return Chain;
304       }
305       }
306     }
307   }
308 
309   bool HasVectorValueOrOp = false;
310   for (auto J = Node->value_begin(), E = Node->value_end(); J != E; ++J)
311     HasVectorValueOrOp |= J->isVector();
312   for (const SDValue &Op : Node->op_values())
313     HasVectorValueOrOp |= Op.getValueType().isVector();
314 
315   if (!HasVectorValueOrOp)
316     return TranslateLegalizeResults(Op, Result);
317 
318   TargetLowering::LegalizeAction Action = TargetLowering::Legal;
319   EVT ValVT;
320   switch (Op.getOpcode()) {
321   default:
322     return TranslateLegalizeResults(Op, Result);
323 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)                   \
324   case ISD::STRICT_##DAGN:
325 #include "llvm/IR/ConstrainedOps.def"
326     ValVT = Node->getValueType(0);
327     if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP ||
328         Op.getOpcode() == ISD::STRICT_UINT_TO_FP)
329       ValVT = Node->getOperand(1).getValueType();
330     Action = TLI.getOperationAction(Node->getOpcode(), ValVT);
331     // If we're asked to expand a strict vector floating-point operation,
332     // by default we're going to simply unroll it.  That is usually the
333     // best approach, except in the case where the resulting strict (scalar)
334     // operations would themselves use the fallback mutation to non-strict.
335     // In that specific case, just do the fallback on the vector op.
336     if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() &&
337         TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) ==
338             TargetLowering::Legal) {
339       EVT EltVT = ValVT.getVectorElementType();
340       if (TLI.getOperationAction(Node->getOpcode(), EltVT)
341           == TargetLowering::Expand &&
342           TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT)
343           == TargetLowering::Legal)
344         Action = TargetLowering::Legal;
345     }
346     break;
347   case ISD::ADD:
348   case ISD::SUB:
349   case ISD::MUL:
350   case ISD::MULHS:
351   case ISD::MULHU:
352   case ISD::SDIV:
353   case ISD::UDIV:
354   case ISD::SREM:
355   case ISD::UREM:
356   case ISD::SDIVREM:
357   case ISD::UDIVREM:
358   case ISD::FADD:
359   case ISD::FSUB:
360   case ISD::FMUL:
361   case ISD::FDIV:
362   case ISD::FREM:
363   case ISD::AND:
364   case ISD::OR:
365   case ISD::XOR:
366   case ISD::SHL:
367   case ISD::SRA:
368   case ISD::SRL:
369   case ISD::FSHL:
370   case ISD::FSHR:
371   case ISD::ROTL:
372   case ISD::ROTR:
373   case ISD::ABS:
374   case ISD::BSWAP:
375   case ISD::BITREVERSE:
376   case ISD::CTLZ:
377   case ISD::CTTZ:
378   case ISD::CTLZ_ZERO_UNDEF:
379   case ISD::CTTZ_ZERO_UNDEF:
380   case ISD::CTPOP:
381   case ISD::SELECT:
382   case ISD::VSELECT:
383   case ISD::SELECT_CC:
384   case ISD::SETCC:
385   case ISD::ZERO_EXTEND:
386   case ISD::ANY_EXTEND:
387   case ISD::TRUNCATE:
388   case ISD::SIGN_EXTEND:
389   case ISD::FP_TO_SINT:
390   case ISD::FP_TO_UINT:
391   case ISD::FNEG:
392   case ISD::FABS:
393   case ISD::FMINNUM:
394   case ISD::FMAXNUM:
395   case ISD::FMINNUM_IEEE:
396   case ISD::FMAXNUM_IEEE:
397   case ISD::FMINIMUM:
398   case ISD::FMAXIMUM:
399   case ISD::FCOPYSIGN:
400   case ISD::FSQRT:
401   case ISD::FSIN:
402   case ISD::FCOS:
403   case ISD::FPOWI:
404   case ISD::FPOW:
405   case ISD::FLOG:
406   case ISD::FLOG2:
407   case ISD::FLOG10:
408   case ISD::FEXP:
409   case ISD::FEXP2:
410   case ISD::FCEIL:
411   case ISD::FTRUNC:
412   case ISD::FRINT:
413   case ISD::FNEARBYINT:
414   case ISD::FROUND:
415   case ISD::FFLOOR:
416   case ISD::FP_ROUND:
417   case ISD::FP_EXTEND:
418   case ISD::FMA:
419   case ISD::SIGN_EXTEND_INREG:
420   case ISD::ANY_EXTEND_VECTOR_INREG:
421   case ISD::SIGN_EXTEND_VECTOR_INREG:
422   case ISD::ZERO_EXTEND_VECTOR_INREG:
423   case ISD::SMIN:
424   case ISD::SMAX:
425   case ISD::UMIN:
426   case ISD::UMAX:
427   case ISD::SMUL_LOHI:
428   case ISD::UMUL_LOHI:
429   case ISD::SADDO:
430   case ISD::UADDO:
431   case ISD::SSUBO:
432   case ISD::USUBO:
433   case ISD::SMULO:
434   case ISD::UMULO:
435   case ISD::FCANONICALIZE:
436   case ISD::SADDSAT:
437   case ISD::UADDSAT:
438   case ISD::SSUBSAT:
439   case ISD::USUBSAT:
440     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
441     break;
442   case ISD::SMULFIX:
443   case ISD::SMULFIXSAT:
444   case ISD::UMULFIX:
445   case ISD::UMULFIXSAT: {
446     unsigned Scale = Node->getConstantOperandVal(2);
447     Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
448                                               Node->getValueType(0), Scale);
449     break;
450   }
451   case ISD::SINT_TO_FP:
452   case ISD::UINT_TO_FP:
453   case ISD::VECREDUCE_ADD:
454   case ISD::VECREDUCE_MUL:
455   case ISD::VECREDUCE_AND:
456   case ISD::VECREDUCE_OR:
457   case ISD::VECREDUCE_XOR:
458   case ISD::VECREDUCE_SMAX:
459   case ISD::VECREDUCE_SMIN:
460   case ISD::VECREDUCE_UMAX:
461   case ISD::VECREDUCE_UMIN:
462   case ISD::VECREDUCE_FADD:
463   case ISD::VECREDUCE_FMUL:
464   case ISD::VECREDUCE_FMAX:
465   case ISD::VECREDUCE_FMIN:
466     Action = TLI.getOperationAction(Node->getOpcode(),
467                                     Node->getOperand(0).getValueType());
468     break;
469   }
470 
471   LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
472 
473   switch (Action) {
474   default: llvm_unreachable("This action is not supported yet!");
475   case TargetLowering::Promote:
476     Result = Promote(Op);
477     Changed = true;
478     break;
479   case TargetLowering::Legal:
480     LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
481     break;
482   case TargetLowering::Custom: {
483     LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
484     if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) {
485       LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
486       Result = Tmp1;
487       break;
488     }
489     LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
490     LLVM_FALLTHROUGH;
491   }
492   case TargetLowering::Expand:
493     Result = Expand(Op);
494   }
495 
496   // Make sure that the generated code is itself legal.
497   if (Result != Op) {
498     Result = LegalizeOp(Result);
499     Changed = true;
500   }
501 
502   // Note that LegalizeOp may be reentered even from single-use nodes, which
503   // means that we always must cache transformed nodes.
504   AddLegalizedOperand(Op, Result);
505   return Result;
506 }
507 
508 SDValue VectorLegalizer::Promote(SDValue Op) {
509   // For a few operations there is a specific concept for promotion based on
510   // the operand's type.
511   switch (Op.getOpcode()) {
512   case ISD::SINT_TO_FP:
513   case ISD::UINT_TO_FP:
514   case ISD::STRICT_SINT_TO_FP:
515   case ISD::STRICT_UINT_TO_FP:
516     // "Promote" the operation by extending the operand.
517     return PromoteINT_TO_FP(Op);
518   case ISD::FP_TO_UINT:
519   case ISD::FP_TO_SINT:
520   case ISD::STRICT_FP_TO_UINT:
521   case ISD::STRICT_FP_TO_SINT:
522     // Promote the operation by extending the operand.
523     return PromoteFP_TO_INT(Op);
524   case ISD::FP_ROUND:
525   case ISD::FP_EXTEND:
526     // These operations are used to do promotion so they can't be promoted
527     // themselves.
528     llvm_unreachable("Don't know how to promote this operation!");
529   }
530 
531   // There are currently two cases of vector promotion:
532   // 1) Bitcasting a vector of integers to a different type to a vector of the
533   //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
534   // 2) Extending a vector of floats to a vector of the same number of larger
535   //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
536   MVT VT = Op.getSimpleValueType();
537   assert(Op.getNode()->getNumValues() == 1 &&
538          "Can't promote a vector with multiple results!");
539   MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
540   SDLoc dl(Op);
541   SmallVector<SDValue, 4> Operands(Op.getNumOperands());
542 
543   for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
544     if (Op.getOperand(j).getValueType().isVector())
545       if (Op.getOperand(j)
546               .getValueType()
547               .getVectorElementType()
548               .isFloatingPoint() &&
549           NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
550         Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j));
551       else
552         Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
553     else
554       Operands[j] = Op.getOperand(j);
555   }
556 
557   Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags());
558   if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
559       (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
560        NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
561     return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl));
562   else
563     return DAG.getNode(ISD::BITCAST, dl, VT, Op);
564 }
565 
566 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) {
567   // INT_TO_FP operations may require the input operand be promoted even
568   // when the type is otherwise legal.
569   bool IsStrict = Op->isStrictFPOpcode();
570   MVT VT = Op.getOperand(IsStrict ? 1 : 0).getSimpleValueType();
571   MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
572   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
573          "Vectors have different number of elements!");
574 
575   SDLoc dl(Op);
576   SmallVector<SDValue, 4> Operands(Op.getNumOperands());
577 
578   unsigned Opc = (Op.getOpcode() == ISD::UINT_TO_FP ||
579                   Op.getOpcode() == ISD::STRICT_UINT_TO_FP)
580                      ? ISD::ZERO_EXTEND
581                      : ISD::SIGN_EXTEND;
582   for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
583     if (Op.getOperand(j).getValueType().isVector())
584       Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
585     else
586       Operands[j] = Op.getOperand(j);
587   }
588 
589   if (IsStrict)
590     return DAG.getNode(Op.getOpcode(), dl, {Op.getValueType(), MVT::Other},
591                        Operands);
592 
593   return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands);
594 }
595 
596 // For FP_TO_INT we promote the result type to a vector type with wider
597 // elements and then truncate the result.  This is different from the default
598 // PromoteVector which uses bitcast to promote thus assumning that the
599 // promoted vector type has the same overall size.
600 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op) {
601   MVT VT = Op.getSimpleValueType();
602   MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
603   bool IsStrict = Op->isStrictFPOpcode();
604   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
605          "Vectors have different number of elements!");
606 
607   unsigned NewOpc = Op->getOpcode();
608   // Change FP_TO_UINT to FP_TO_SINT if possible.
609   // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
610   if (NewOpc == ISD::FP_TO_UINT &&
611       TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
612     NewOpc = ISD::FP_TO_SINT;
613 
614   if (NewOpc == ISD::STRICT_FP_TO_UINT &&
615       TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT))
616     NewOpc = ISD::STRICT_FP_TO_SINT;
617 
618   SDLoc dl(Op);
619   SDValue Promoted, Chain;
620   if (IsStrict) {
621     Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other},
622                            {Op.getOperand(0), Op.getOperand(1)});
623     Chain = Promoted.getValue(1);
624   } else
625     Promoted = DAG.getNode(NewOpc, dl, NVT, Op.getOperand(0));
626 
627   // Assert that the converted value fits in the original type.  If it doesn't
628   // (eg: because the value being converted is too big), then the result of the
629   // original operation was undefined anyway, so the assert is still correct.
630   if (Op->getOpcode() == ISD::FP_TO_UINT ||
631       Op->getOpcode() == ISD::STRICT_FP_TO_UINT)
632     NewOpc = ISD::AssertZext;
633   else
634     NewOpc = ISD::AssertSext;
635 
636   Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted,
637                          DAG.getValueType(VT.getScalarType()));
638   Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
639   if (IsStrict)
640     return DAG.getMergeValues({Promoted, Chain}, dl);
641 
642   return Promoted;
643 }
644 
645 std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDValue Op) {
646   LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
647 
648   EVT SrcVT = LD->getMemoryVT();
649   EVT SrcEltVT = SrcVT.getScalarType();
650   unsigned NumElem = SrcVT.getVectorNumElements();
651 
652   SDValue NewChain;
653   SDValue Value;
654   if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
655     SDLoc dl(Op);
656 
657     SmallVector<SDValue, 8> Vals;
658     SmallVector<SDValue, 8> LoadChains;
659 
660     EVT DstEltVT = LD->getValueType(0).getScalarType();
661     SDValue Chain = LD->getChain();
662     SDValue BasePTR = LD->getBasePtr();
663     ISD::LoadExtType ExtType = LD->getExtensionType();
664 
665     // When elements in a vector is not byte-addressable, we cannot directly
666     // load each element by advancing pointer, which could only address bytes.
667     // Instead, we load all significant words, mask bits off, and concatenate
668     // them to form each element. Finally, they are extended to destination
669     // scalar type to build the destination vector.
670     EVT WideVT = TLI.getPointerTy(DAG.getDataLayout());
671 
672     assert(WideVT.isRound() &&
673            "Could not handle the sophisticated case when the widest integer is"
674            " not power of 2.");
675     assert(WideVT.bitsGE(SrcEltVT) &&
676            "Type is not legalized?");
677 
678     unsigned WideBytes = WideVT.getStoreSize();
679     unsigned Offset = 0;
680     unsigned RemainingBytes = SrcVT.getStoreSize();
681     SmallVector<SDValue, 8> LoadVals;
682     while (RemainingBytes > 0) {
683       SDValue ScalarLoad;
684       unsigned LoadBytes = WideBytes;
685 
686       if (RemainingBytes >= LoadBytes) {
687         ScalarLoad =
688             DAG.getLoad(WideVT, dl, Chain, BasePTR,
689                         LD->getPointerInfo().getWithOffset(Offset),
690                         MinAlign(LD->getAlignment(), Offset),
691                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
692       } else {
693         EVT LoadVT = WideVT;
694         while (RemainingBytes < LoadBytes) {
695           LoadBytes >>= 1; // Reduce the load size by half.
696           LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
697         }
698         ScalarLoad =
699             DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
700                            LD->getPointerInfo().getWithOffset(Offset), LoadVT,
701                            MinAlign(LD->getAlignment(), Offset),
702                            LD->getMemOperand()->getFlags(), LD->getAAInfo());
703       }
704 
705       RemainingBytes -= LoadBytes;
706       Offset += LoadBytes;
707 
708       BasePTR = DAG.getObjectPtrOffset(dl, BasePTR, LoadBytes);
709 
710       LoadVals.push_back(ScalarLoad.getValue(0));
711       LoadChains.push_back(ScalarLoad.getValue(1));
712     }
713 
714     unsigned BitOffset = 0;
715     unsigned WideIdx = 0;
716     unsigned WideBits = WideVT.getSizeInBits();
717 
718     // Extract bits, pack and extend/trunc them into destination type.
719     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
720     SDValue SrcEltBitMask = DAG.getConstant(
721         APInt::getLowBitsSet(WideBits, SrcEltBits), dl, WideVT);
722 
723     for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
724       assert(BitOffset < WideBits && "Unexpected offset!");
725 
726       SDValue ShAmt = DAG.getConstant(
727           BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
728       SDValue Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
729 
730       BitOffset += SrcEltBits;
731       if (BitOffset >= WideBits) {
732         WideIdx++;
733         BitOffset -= WideBits;
734         if (BitOffset > 0) {
735           ShAmt = DAG.getConstant(
736               SrcEltBits - BitOffset, dl,
737               TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
738           SDValue Hi =
739               DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
740           Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
741         }
742       }
743 
744       Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
745 
746       switch (ExtType) {
747       default: llvm_unreachable("Unknown extended-load op!");
748       case ISD::EXTLOAD:
749         Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
750         break;
751       case ISD::ZEXTLOAD:
752         Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
753         break;
754       case ISD::SEXTLOAD:
755         ShAmt =
756             DAG.getConstant(WideBits - SrcEltBits, dl,
757                             TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
758         Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
759         Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
760         Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
761         break;
762       }
763       Vals.push_back(Lo);
764     }
765 
766     NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
767     Value = DAG.getBuildVector(Op.getNode()->getValueType(0), dl, Vals);
768   } else {
769     std::tie(Value, NewChain) = TLI.scalarizeVectorLoad(LD, DAG);
770   }
771 
772   return std::make_pair(Value, NewChain);
773 }
774 
775 SDValue VectorLegalizer::ExpandStore(SDValue Op) {
776   StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
777   SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
778   return TF;
779 }
780 
781 SDValue VectorLegalizer::Expand(SDValue Op) {
782   switch (Op->getOpcode()) {
783   case ISD::SIGN_EXTEND_INREG:
784     return ExpandSEXTINREG(Op);
785   case ISD::ANY_EXTEND_VECTOR_INREG:
786     return ExpandANY_EXTEND_VECTOR_INREG(Op);
787   case ISD::SIGN_EXTEND_VECTOR_INREG:
788     return ExpandSIGN_EXTEND_VECTOR_INREG(Op);
789   case ISD::ZERO_EXTEND_VECTOR_INREG:
790     return ExpandZERO_EXTEND_VECTOR_INREG(Op);
791   case ISD::BSWAP:
792     return ExpandBSWAP(Op);
793   case ISD::VSELECT:
794     return ExpandVSELECT(Op);
795   case ISD::SELECT:
796     return ExpandSELECT(Op);
797   case ISD::FP_TO_UINT:
798     return ExpandFP_TO_UINT(Op);
799   case ISD::UINT_TO_FP:
800     return ExpandUINT_TO_FLOAT(Op);
801   case ISD::FNEG:
802     return ExpandFNEG(Op);
803   case ISD::FSUB:
804     return ExpandFSUB(Op);
805   case ISD::SETCC:
806     return UnrollVSETCC(Op);
807   case ISD::ABS:
808     return ExpandABS(Op);
809   case ISD::BITREVERSE:
810     return ExpandBITREVERSE(Op);
811   case ISD::CTPOP:
812     return ExpandCTPOP(Op);
813   case ISD::CTLZ:
814   case ISD::CTLZ_ZERO_UNDEF:
815     return ExpandCTLZ(Op);
816   case ISD::CTTZ:
817   case ISD::CTTZ_ZERO_UNDEF:
818     return ExpandCTTZ(Op);
819   case ISD::FSHL:
820   case ISD::FSHR:
821     return ExpandFunnelShift(Op);
822   case ISD::ROTL:
823   case ISD::ROTR:
824     return ExpandROT(Op);
825   case ISD::FMINNUM:
826   case ISD::FMAXNUM:
827     return ExpandFMINNUM_FMAXNUM(Op);
828   case ISD::UADDO:
829   case ISD::USUBO:
830     return ExpandUADDSUBO(Op);
831   case ISD::SADDO:
832   case ISD::SSUBO:
833     return ExpandSADDSUBO(Op);
834   case ISD::UMULO:
835   case ISD::SMULO:
836     return ExpandMULO(Op);
837   case ISD::USUBSAT:
838   case ISD::SSUBSAT:
839   case ISD::UADDSAT:
840   case ISD::SADDSAT:
841     return ExpandAddSubSat(Op);
842   case ISD::SMULFIX:
843   case ISD::UMULFIX:
844     return ExpandFixedPointMul(Op);
845   case ISD::SMULFIXSAT:
846   case ISD::UMULFIXSAT:
847     // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly
848     // why. Maybe it results in worse codegen compared to the unroll for some
849     // targets? This should probably be investigated. And if we still prefer to
850     // unroll an explanation could be helpful.
851     return DAG.UnrollVectorOp(Op.getNode());
852 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)                   \
853   case ISD::STRICT_##DAGN:
854 #include "llvm/IR/ConstrainedOps.def"
855     return ExpandStrictFPOp(Op);
856   case ISD::VECREDUCE_ADD:
857   case ISD::VECREDUCE_MUL:
858   case ISD::VECREDUCE_AND:
859   case ISD::VECREDUCE_OR:
860   case ISD::VECREDUCE_XOR:
861   case ISD::VECREDUCE_SMAX:
862   case ISD::VECREDUCE_SMIN:
863   case ISD::VECREDUCE_UMAX:
864   case ISD::VECREDUCE_UMIN:
865   case ISD::VECREDUCE_FADD:
866   case ISD::VECREDUCE_FMUL:
867   case ISD::VECREDUCE_FMAX:
868   case ISD::VECREDUCE_FMIN:
869     return TLI.expandVecReduce(Op.getNode(), DAG);
870   default:
871     return DAG.UnrollVectorOp(Op.getNode());
872   }
873 }
874 
875 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
876   // Lower a select instruction where the condition is a scalar and the
877   // operands are vectors. Lower this select to VSELECT and implement it
878   // using XOR AND OR. The selector bit is broadcasted.
879   EVT VT = Op.getValueType();
880   SDLoc DL(Op);
881 
882   SDValue Mask = Op.getOperand(0);
883   SDValue Op1 = Op.getOperand(1);
884   SDValue Op2 = Op.getOperand(2);
885 
886   assert(VT.isVector() && !Mask.getValueType().isVector()
887          && Op1.getValueType() == Op2.getValueType() && "Invalid type");
888 
889   // If we can't even use the basic vector operations of
890   // AND,OR,XOR, we will have to scalarize the op.
891   // Notice that the operation may be 'promoted' which means that it is
892   // 'bitcasted' to another type which is handled.
893   // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
894   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
895       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
896       TLI.getOperationAction(ISD::OR,  VT) == TargetLowering::Expand ||
897       TLI.getOperationAction(ISD::BUILD_VECTOR,  VT) == TargetLowering::Expand)
898     return DAG.UnrollVectorOp(Op.getNode());
899 
900   // Generate a mask operand.
901   EVT MaskTy = VT.changeVectorElementTypeToInteger();
902 
903   // What is the size of each element in the vector mask.
904   EVT BitTy = MaskTy.getScalarType();
905 
906   Mask = DAG.getSelect(DL, BitTy, Mask,
907           DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
908                           BitTy),
909           DAG.getConstant(0, DL, BitTy));
910 
911   // Broadcast the mask so that the entire vector is all-one or all zero.
912   Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask);
913 
914   // Bitcast the operands to be the same type as the mask.
915   // This is needed when we select between FP types because
916   // the mask is a vector of integers.
917   Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
918   Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
919 
920   SDValue AllOnes = DAG.getConstant(
921             APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
922   SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
923 
924   Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
925   Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
926   SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
927   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
928 }
929 
930 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
931   EVT VT = Op.getValueType();
932 
933   // Make sure that the SRA and SHL instructions are available.
934   if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
935       TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
936     return DAG.UnrollVectorOp(Op.getNode());
937 
938   SDLoc DL(Op);
939   EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
940 
941   unsigned BW = VT.getScalarSizeInBits();
942   unsigned OrigBW = OrigTy.getScalarSizeInBits();
943   SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
944 
945   Op = Op.getOperand(0);
946   Op =   DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
947   return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
948 }
949 
950 // Generically expand a vector anyext in register to a shuffle of the relevant
951 // lanes into the appropriate locations, with other lanes left undef.
952 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) {
953   SDLoc DL(Op);
954   EVT VT = Op.getValueType();
955   int NumElements = VT.getVectorNumElements();
956   SDValue Src = Op.getOperand(0);
957   EVT SrcVT = Src.getValueType();
958   int NumSrcElements = SrcVT.getVectorNumElements();
959 
960   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
961   // into a larger vector type.
962   if (SrcVT.bitsLE(VT)) {
963     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
964            "ANY_EXTEND_VECTOR_INREG vector size mismatch");
965     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
966     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
967                              NumSrcElements);
968     Src = DAG.getNode(
969         ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), Src,
970         DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
971   }
972 
973   // Build a base mask of undef shuffles.
974   SmallVector<int, 16> ShuffleMask;
975   ShuffleMask.resize(NumSrcElements, -1);
976 
977   // Place the extended lanes into the correct locations.
978   int ExtLaneScale = NumSrcElements / NumElements;
979   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
980   for (int i = 0; i < NumElements; ++i)
981     ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
982 
983   return DAG.getNode(
984       ISD::BITCAST, DL, VT,
985       DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
986 }
987 
988 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) {
989   SDLoc DL(Op);
990   EVT VT = Op.getValueType();
991   SDValue Src = Op.getOperand(0);
992   EVT SrcVT = Src.getValueType();
993 
994   // First build an any-extend node which can be legalized above when we
995   // recurse through it.
996   Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src);
997 
998   // Now we need sign extend. Do this by shifting the elements. Even if these
999   // aren't legal operations, they have a better chance of being legalized
1000   // without full scalarization than the sign extension does.
1001   unsigned EltWidth = VT.getScalarSizeInBits();
1002   unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
1003   SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
1004   return DAG.getNode(ISD::SRA, DL, VT,
1005                      DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
1006                      ShiftAmount);
1007 }
1008 
1009 // Generically expand a vector zext in register to a shuffle of the relevant
1010 // lanes into the appropriate locations, a blend of zero into the high bits,
1011 // and a bitcast to the wider element type.
1012 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) {
1013   SDLoc DL(Op);
1014   EVT VT = Op.getValueType();
1015   int NumElements = VT.getVectorNumElements();
1016   SDValue Src = Op.getOperand(0);
1017   EVT SrcVT = Src.getValueType();
1018   int NumSrcElements = SrcVT.getVectorNumElements();
1019 
1020   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1021   // into a larger vector type.
1022   if (SrcVT.bitsLE(VT)) {
1023     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
1024            "ZERO_EXTEND_VECTOR_INREG vector size mismatch");
1025     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
1026     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
1027                              NumSrcElements);
1028     Src = DAG.getNode(
1029         ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), Src,
1030         DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
1031   }
1032 
1033   // Build up a zero vector to blend into this one.
1034   SDValue Zero = DAG.getConstant(0, DL, SrcVT);
1035 
1036   // Shuffle the incoming lanes into the correct position, and pull all other
1037   // lanes from the zero vector.
1038   SmallVector<int, 16> ShuffleMask;
1039   ShuffleMask.reserve(NumSrcElements);
1040   for (int i = 0; i < NumSrcElements; ++i)
1041     ShuffleMask.push_back(i);
1042 
1043   int ExtLaneScale = NumSrcElements / NumElements;
1044   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
1045   for (int i = 0; i < NumElements; ++i)
1046     ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
1047 
1048   return DAG.getNode(ISD::BITCAST, DL, VT,
1049                      DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
1050 }
1051 
1052 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
1053   int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
1054   for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
1055     for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
1056       ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
1057 }
1058 
1059 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) {
1060   EVT VT = Op.getValueType();
1061 
1062   // Generate a byte wise shuffle mask for the BSWAP.
1063   SmallVector<int, 16> ShuffleMask;
1064   createBSWAPShuffleMask(VT, ShuffleMask);
1065   EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
1066 
1067   // Only emit a shuffle if the mask is legal.
1068   if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
1069     return DAG.UnrollVectorOp(Op.getNode());
1070 
1071   SDLoc DL(Op);
1072   Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
1073   Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
1074   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1075 }
1076 
1077 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) {
1078   EVT VT = Op.getValueType();
1079 
1080   // If we have the scalar operation, it's probably cheaper to unroll it.
1081   if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType()))
1082     return DAG.UnrollVectorOp(Op.getNode());
1083 
1084   // If the vector element width is a whole number of bytes, test if its legal
1085   // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
1086   // vector. This greatly reduces the number of bit shifts necessary.
1087   unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
1088   if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
1089     SmallVector<int, 16> BSWAPMask;
1090     createBSWAPShuffleMask(VT, BSWAPMask);
1091 
1092     EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
1093     if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
1094         (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
1095          (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
1096           TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
1097           TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
1098           TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
1099       SDLoc DL(Op);
1100       Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
1101       Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
1102                                 BSWAPMask);
1103       Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
1104       return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1105     }
1106   }
1107 
1108   // If we have the appropriate vector bit operations, it is better to use them
1109   // than unrolling and expanding each component.
1110   if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) ||
1111       !TLI.isOperationLegalOrCustom(ISD::SRL, VT) ||
1112       !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
1113       !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
1114     return DAG.UnrollVectorOp(Op.getNode());
1115 
1116   // Let LegalizeDAG handle this later.
1117   return Op;
1118 }
1119 
1120 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
1121   // Implement VSELECT in terms of XOR, AND, OR
1122   // on platforms which do not support blend natively.
1123   SDLoc DL(Op);
1124 
1125   SDValue Mask = Op.getOperand(0);
1126   SDValue Op1 = Op.getOperand(1);
1127   SDValue Op2 = Op.getOperand(2);
1128 
1129   EVT VT = Mask.getValueType();
1130 
1131   // If we can't even use the basic vector operations of
1132   // AND,OR,XOR, we will have to scalarize the op.
1133   // Notice that the operation may be 'promoted' which means that it is
1134   // 'bitcasted' to another type which is handled.
1135   // This operation also isn't safe with AND, OR, XOR when the boolean
1136   // type is 0/1 as we need an all ones vector constant to mask with.
1137   // FIXME: Sign extend 1 to all ones if thats legal on the target.
1138   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1139       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1140       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
1141       TLI.getBooleanContents(Op1.getValueType()) !=
1142           TargetLowering::ZeroOrNegativeOneBooleanContent)
1143     return DAG.UnrollVectorOp(Op.getNode());
1144 
1145   // If the mask and the type are different sizes, unroll the vector op. This
1146   // can occur when getSetCCResultType returns something that is different in
1147   // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1148   if (VT.getSizeInBits() != Op1.getValueSizeInBits())
1149     return DAG.UnrollVectorOp(Op.getNode());
1150 
1151   // Bitcast the operands to be the same type as the mask.
1152   // This is needed when we select between FP types because
1153   // the mask is a vector of integers.
1154   Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
1155   Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
1156 
1157   SDValue AllOnes = DAG.getConstant(
1158     APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT);
1159   SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
1160 
1161   Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
1162   Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
1163   SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
1164   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
1165 }
1166 
1167 SDValue VectorLegalizer::ExpandABS(SDValue Op) {
1168   // Attempt to expand using TargetLowering.
1169   SDValue Result;
1170   if (TLI.expandABS(Op.getNode(), Result, DAG))
1171     return Result;
1172 
1173   // Otherwise go ahead and unroll.
1174   return DAG.UnrollVectorOp(Op.getNode());
1175 }
1176 
1177 SDValue VectorLegalizer::ExpandFP_TO_UINT(SDValue Op) {
1178   // Attempt to expand using TargetLowering.
1179   SDValue Result, Chain;
1180   if (TLI.expandFP_TO_UINT(Op.getNode(), Result, Chain, DAG)) {
1181     if (Op->isStrictFPOpcode())
1182       // Relink the chain
1183       DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Chain);
1184     return Result;
1185   }
1186 
1187   // Otherwise go ahead and unroll.
1188   if (Op->isStrictFPOpcode())
1189     return UnrollStrictFPOp(Op);
1190   return DAG.UnrollVectorOp(Op.getNode());
1191 }
1192 
1193 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
1194   bool IsStrict = Op.getNode()->isStrictFPOpcode();
1195   unsigned OpNo = IsStrict ? 1 : 0;
1196   SDValue Src = Op.getOperand(OpNo);
1197   EVT VT = Src.getValueType();
1198   SDLoc DL(Op);
1199 
1200   // Attempt to expand using TargetLowering.
1201   SDValue Result;
1202   SDValue Chain;
1203   if (TLI.expandUINT_TO_FP(Op.getNode(), Result, Chain, DAG)) {
1204     if (IsStrict)
1205       // Relink the chain
1206       DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Chain);
1207     return Result;
1208   }
1209 
1210   // Make sure that the SINT_TO_FP and SRL instructions are available.
1211   if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) ==
1212                          TargetLowering::Expand) ||
1213        (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) ==
1214                         TargetLowering::Expand)) ||
1215       TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) {
1216     if (IsStrict)
1217       return UnrollStrictFPOp(Op);
1218     return DAG.UnrollVectorOp(Op.getNode());
1219   }
1220 
1221   unsigned BW = VT.getScalarSizeInBits();
1222   assert((BW == 64 || BW == 32) &&
1223          "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1224 
1225   SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
1226 
1227   // Constants to clear the upper part of the word.
1228   // Notice that we can also use SHL+SHR, but using a constant is slightly
1229   // faster on x86.
1230   uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1231   SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
1232 
1233   // Two to the power of half-word-size.
1234   SDValue TWOHW = DAG.getConstantFP(1ULL << (BW / 2), DL, Op.getValueType());
1235 
1236   // Clear upper part of LO, lower HI
1237   SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord);
1238   SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask);
1239 
1240   if (IsStrict) {
1241     // Convert hi and lo to floats
1242     // Convert the hi part back to the upper values
1243     // TODO: Can any fast-math-flags be set on these nodes?
1244     SDValue fHI =
1245         DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, {Op.getValueType(), MVT::Other},
1246                     {Op.getOperand(0), HI});
1247     fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Op.getValueType(), MVT::Other},
1248                       {SDValue(fHI.getNode(), 1), fHI, TWOHW});
1249     SDValue fLO =
1250         DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, {Op.getValueType(), MVT::Other},
1251                     {SDValue(fHI.getNode(), 1), LO});
1252 
1253     // Add the two halves
1254     SDValue Result =
1255         DAG.getNode(ISD::STRICT_FADD, DL, {Op.getValueType(), MVT::Other},
1256                     {SDValue(fLO.getNode(), 1), fHI, fLO});
1257 
1258     // Relink the chain
1259     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), SDValue(Result.getNode(), 1));
1260     return Result;
1261   }
1262 
1263   // Convert hi and lo to floats
1264   // Convert the hi part back to the upper values
1265   // TODO: Can any fast-math-flags be set on these nodes?
1266   SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
1267           fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
1268   SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);
1269 
1270   // Add the two halves
1271   return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
1272 }
1273 
1274 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
1275   if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
1276     SDLoc DL(Op);
1277     SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType());
1278     // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1279     return DAG.getNode(ISD::FSUB, DL, Op.getValueType(),
1280                        Zero, Op.getOperand(0));
1281   }
1282   return DAG.UnrollVectorOp(Op.getNode());
1283 }
1284 
1285 SDValue VectorLegalizer::ExpandFSUB(SDValue Op) {
1286   // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1287   // we can defer this to operation legalization where it will be lowered as
1288   // a+(-b).
1289   EVT VT = Op.getValueType();
1290   if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
1291       TLI.isOperationLegalOrCustom(ISD::FADD, VT))
1292     return Op; // Defer to LegalizeDAG
1293 
1294   return DAG.UnrollVectorOp(Op.getNode());
1295 }
1296 
1297 SDValue VectorLegalizer::ExpandCTPOP(SDValue Op) {
1298   SDValue Result;
1299   if (TLI.expandCTPOP(Op.getNode(), Result, DAG))
1300     return Result;
1301 
1302   return DAG.UnrollVectorOp(Op.getNode());
1303 }
1304 
1305 SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) {
1306   SDValue Result;
1307   if (TLI.expandCTLZ(Op.getNode(), Result, DAG))
1308     return Result;
1309 
1310   return DAG.UnrollVectorOp(Op.getNode());
1311 }
1312 
1313 SDValue VectorLegalizer::ExpandCTTZ(SDValue Op) {
1314   SDValue Result;
1315   if (TLI.expandCTTZ(Op.getNode(), Result, DAG))
1316     return Result;
1317 
1318   return DAG.UnrollVectorOp(Op.getNode());
1319 }
1320 
1321 SDValue VectorLegalizer::ExpandFunnelShift(SDValue Op) {
1322   SDValue Result;
1323   if (TLI.expandFunnelShift(Op.getNode(), Result, DAG))
1324     return Result;
1325 
1326   return DAG.UnrollVectorOp(Op.getNode());
1327 }
1328 
1329 SDValue VectorLegalizer::ExpandROT(SDValue Op) {
1330   SDValue Result;
1331   if (TLI.expandROT(Op.getNode(), Result, DAG))
1332     return Result;
1333 
1334   return DAG.UnrollVectorOp(Op.getNode());
1335 }
1336 
1337 SDValue VectorLegalizer::ExpandFMINNUM_FMAXNUM(SDValue Op) {
1338   if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Op.getNode(), DAG))
1339     return Expanded;
1340   return DAG.UnrollVectorOp(Op.getNode());
1341 }
1342 
1343 SDValue VectorLegalizer::ExpandUADDSUBO(SDValue Op) {
1344   SDValue Result, Overflow;
1345   TLI.expandUADDSUBO(Op.getNode(), Result, Overflow, DAG);
1346 
1347   if (Op.getResNo() == 0) {
1348     AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow));
1349     return Result;
1350   } else {
1351     AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result));
1352     return Overflow;
1353   }
1354 }
1355 
1356 SDValue VectorLegalizer::ExpandSADDSUBO(SDValue Op) {
1357   SDValue Result, Overflow;
1358   TLI.expandSADDSUBO(Op.getNode(), Result, Overflow, DAG);
1359 
1360   if (Op.getResNo() == 0) {
1361     AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow));
1362     return Result;
1363   } else {
1364     AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result));
1365     return Overflow;
1366   }
1367 }
1368 
1369 SDValue VectorLegalizer::ExpandMULO(SDValue Op) {
1370   SDValue Result, Overflow;
1371   if (!TLI.expandMULO(Op.getNode(), Result, Overflow, DAG))
1372     std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Op.getNode());
1373 
1374   if (Op.getResNo() == 0) {
1375     AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow));
1376     return Result;
1377   } else {
1378     AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result));
1379     return Overflow;
1380   }
1381 }
1382 
1383 SDValue VectorLegalizer::ExpandAddSubSat(SDValue Op) {
1384   if (SDValue Expanded = TLI.expandAddSubSat(Op.getNode(), DAG))
1385     return Expanded;
1386   return DAG.UnrollVectorOp(Op.getNode());
1387 }
1388 
1389 SDValue VectorLegalizer::ExpandFixedPointMul(SDValue Op) {
1390   if (SDValue Expanded = TLI.expandFixedPointMul(Op.getNode(), DAG))
1391     return Expanded;
1392   return DAG.UnrollVectorOp(Op.getNode());
1393 }
1394 
1395 SDValue VectorLegalizer::ExpandStrictFPOp(SDValue Op) {
1396   if (Op.getOpcode() == ISD::STRICT_UINT_TO_FP)
1397     return ExpandUINT_TO_FLOAT(Op);
1398   if (Op.getOpcode() == ISD::STRICT_FP_TO_UINT)
1399     return ExpandFP_TO_UINT(Op);
1400 
1401   return UnrollStrictFPOp(Op);
1402 }
1403 
1404 SDValue VectorLegalizer::UnrollStrictFPOp(SDValue Op) {
1405   EVT VT = Op.getValue(0).getValueType();
1406   EVT EltVT = VT.getVectorElementType();
1407   unsigned NumElems = VT.getVectorNumElements();
1408   unsigned NumOpers = Op.getNumOperands();
1409   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1410 
1411   EVT TmpEltVT = EltVT;
1412   if (Op->getOpcode() == ISD::STRICT_FSETCC ||
1413       Op->getOpcode() == ISD::STRICT_FSETCCS)
1414     TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(),
1415                                       *DAG.getContext(), TmpEltVT);
1416 
1417   EVT ValueVTs[] = {TmpEltVT, MVT::Other};
1418   SDValue Chain = Op.getOperand(0);
1419   SDLoc dl(Op);
1420 
1421   SmallVector<SDValue, 32> OpValues;
1422   SmallVector<SDValue, 32> OpChains;
1423   for (unsigned i = 0; i < NumElems; ++i) {
1424     SmallVector<SDValue, 4> Opers;
1425     SDValue Idx = DAG.getConstant(i, dl,
1426                                   TLI.getVectorIdxTy(DAG.getDataLayout()));
1427 
1428     // The Chain is the first operand.
1429     Opers.push_back(Chain);
1430 
1431     // Now process the remaining operands.
1432     for (unsigned j = 1; j < NumOpers; ++j) {
1433       SDValue Oper = Op.getOperand(j);
1434       EVT OperVT = Oper.getValueType();
1435 
1436       if (OperVT.isVector())
1437         Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1438                            OperVT.getVectorElementType(), Oper, Idx);
1439 
1440       Opers.push_back(Oper);
1441     }
1442 
1443     SDValue ScalarOp = DAG.getNode(Op->getOpcode(), dl, ValueVTs, Opers);
1444     SDValue ScalarResult = ScalarOp.getValue(0);
1445     SDValue ScalarChain = ScalarOp.getValue(1);
1446 
1447     if (Op->getOpcode() == ISD::STRICT_FSETCC ||
1448         Op->getOpcode() == ISD::STRICT_FSETCCS)
1449       ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult,
1450                            DAG.getConstant(APInt::getAllOnesValue
1451                                            (EltVT.getSizeInBits()), dl, EltVT),
1452                            DAG.getConstant(0, dl, EltVT));
1453 
1454     OpValues.push_back(ScalarResult);
1455     OpChains.push_back(ScalarChain);
1456   }
1457 
1458   SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
1459   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
1460 
1461   AddLegalizedOperand(Op.getValue(0), Result);
1462   AddLegalizedOperand(Op.getValue(1), NewChain);
1463 
1464   return Op.getResNo() ? NewChain : Result;
1465 }
1466 
1467 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
1468   EVT VT = Op.getValueType();
1469   unsigned NumElems = VT.getVectorNumElements();
1470   EVT EltVT = VT.getVectorElementType();
1471   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
1472   EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1473   SDLoc dl(Op);
1474   SmallVector<SDValue, 8> Ops(NumElems);
1475   for (unsigned i = 0; i < NumElems; ++i) {
1476     SDValue LHSElem = DAG.getNode(
1477         ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1478         DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1479     SDValue RHSElem = DAG.getNode(
1480         ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1481         DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1482     Ops[i] = DAG.getNode(ISD::SETCC, dl,
1483                          TLI.getSetCCResultType(DAG.getDataLayout(),
1484                                                 *DAG.getContext(), TmpEltVT),
1485                          LHSElem, RHSElem, CC);
1486     Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
1487                            DAG.getConstant(APInt::getAllOnesValue
1488                                            (EltVT.getSizeInBits()), dl, EltVT),
1489                            DAG.getConstant(0, dl, EltVT));
1490   }
1491   return DAG.getBuildVector(VT, dl, Ops);
1492 }
1493 
1494 bool SelectionDAG::LegalizeVectors() {
1495   return VectorLegalizer(*this).Run();
1496 }
1497