1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::LegalizeVectors method. 10 // 11 // The vector legalizer looks for vector operations which might need to be 12 // scalarized and legalizes them. This is a separate step from Legalize because 13 // scalarizing can introduce illegal types. For example, suppose we have an 14 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 16 // operation, which introduces nodes with the illegal type i64 which must be 17 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 18 // the operation must be unrolled, which introduces nodes with the illegal 19 // type i8 which must be promoted. 20 // 21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 22 // or operations that happen to take a vector which are custom-lowered; 23 // the legalization for such operations never produces nodes 24 // with illegal types, so it's okay to put off legalizing them until 25 // SelectionDAG::Legalize runs. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/SelectionDAGNodes.h" 36 #include "llvm/CodeGen/TargetLowering.h" 37 #include "llvm/CodeGen/ValueTypes.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include <cassert> 46 #include <cstdint> 47 #include <iterator> 48 #include <utility> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "legalizevectorops" 53 54 namespace { 55 56 class VectorLegalizer { 57 SelectionDAG& DAG; 58 const TargetLowering &TLI; 59 bool Changed = false; // Keep track of whether anything changed 60 61 /// For nodes that are of legal width, and that have more than one use, this 62 /// map indicates what regularized operand to use. This allows us to avoid 63 /// legalizing the same thing more than once. 64 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 65 66 /// Adds a node to the translation cache. 67 void AddLegalizedOperand(SDValue From, SDValue To) { 68 LegalizedNodes.insert(std::make_pair(From, To)); 69 // If someone requests legalization of the new node, return itself. 70 if (From != To) 71 LegalizedNodes.insert(std::make_pair(To, To)); 72 } 73 74 /// Legalizes the given node. 75 SDValue LegalizeOp(SDValue Op); 76 77 /// Assuming the node is legal, "legalize" the results. 78 SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result); 79 80 /// Make sure Results are legal and update the translation cache. 81 SDValue RecursivelyLegalizeResults(SDValue Op, 82 MutableArrayRef<SDValue> Results); 83 84 /// Wrapper to interface LowerOperation with a vector of Results. 85 /// Returns false if the target wants to use default expansion. Otherwise 86 /// returns true. If return is true and the Results are empty, then the 87 /// target wants to keep the input node as is. 88 bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results); 89 90 /// Implements unrolling a VSETCC. 91 SDValue UnrollVSETCC(SDNode *Node); 92 93 /// Implement expand-based legalization of vector operations. 94 /// 95 /// This is just a high-level routine to dispatch to specific code paths for 96 /// operations to legalize them. 97 void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results); 98 99 /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if 100 /// FP_TO_SINT isn't legal. 101 void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 102 103 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 104 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 105 void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 106 107 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 108 SDValue ExpandSEXTINREG(SDNode *Node); 109 110 /// Implement expansion for ANY_EXTEND_VECTOR_INREG. 111 /// 112 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 113 /// type. The contents of the bits in the extended part of each element are 114 /// undef. 115 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node); 116 117 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG. 118 /// 119 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 120 /// type, then shifts left and arithmetic shifts right to introduce a sign 121 /// extension. 122 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node); 123 124 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG. 125 /// 126 /// Shuffles the low lanes of the operand into place and blends zeros into 127 /// the remaining lanes, finally bitcasting to the proper type. 128 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node); 129 130 /// Expand bswap of vectors into a shuffle if legal. 131 SDValue ExpandBSWAP(SDNode *Node); 132 133 /// Implement vselect in terms of XOR, AND, OR when blend is not 134 /// supported by the target. 135 SDValue ExpandVSELECT(SDNode *Node); 136 SDValue ExpandVP_SELECT(SDNode *Node); 137 SDValue ExpandSELECT(SDNode *Node); 138 std::pair<SDValue, SDValue> ExpandLoad(SDNode *N); 139 SDValue ExpandStore(SDNode *N); 140 SDValue ExpandFNEG(SDNode *Node); 141 void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results); 142 void ExpandSETCC(SDNode *Node, SmallVectorImpl<SDValue> &Results); 143 void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results); 144 void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 145 void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 146 void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 147 void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results); 148 void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results); 149 void ExpandREM(SDNode *Node, SmallVectorImpl<SDValue> &Results); 150 151 void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results); 152 153 /// Implements vector promotion. 154 /// 155 /// This is essentially just bitcasting the operands to a different type and 156 /// bitcasting the result back to the original type. 157 void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results); 158 159 /// Implements [SU]INT_TO_FP vector promotion. 160 /// 161 /// This is a [zs]ext of the input operand to a larger integer type. 162 void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results); 163 164 /// Implements FP_TO_[SU]INT vector promotion of the result type. 165 /// 166 /// It is promoted to a larger integer type. The result is then 167 /// truncated back to the original type. 168 void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 169 170 public: 171 VectorLegalizer(SelectionDAG& dag) : 172 DAG(dag), TLI(dag.getTargetLoweringInfo()) {} 173 174 /// Begin legalizer the vector operations in the DAG. 175 bool Run(); 176 }; 177 178 } // end anonymous namespace 179 180 bool VectorLegalizer::Run() { 181 // Before we start legalizing vector nodes, check if there are any vectors. 182 bool HasVectors = false; 183 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 184 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 185 // Check if the values of the nodes contain vectors. We don't need to check 186 // the operands because we are going to check their values at some point. 187 HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); }); 188 189 // If we found a vector node we can start the legalization. 190 if (HasVectors) 191 break; 192 } 193 194 // If this basic block has no vectors then no need to legalize vectors. 195 if (!HasVectors) 196 return false; 197 198 // The legalize process is inherently a bottom-up recursive process (users 199 // legalize their uses before themselves). Given infinite stack space, we 200 // could just start legalizing on the root and traverse the whole graph. In 201 // practice however, this causes us to run out of stack space on large basic 202 // blocks. To avoid this problem, compute an ordering of the nodes where each 203 // node is only legalized after all of its operands are legalized. 204 DAG.AssignTopologicalOrder(); 205 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 206 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 207 LegalizeOp(SDValue(&*I, 0)); 208 209 // Finally, it's possible the root changed. Get the new root. 210 SDValue OldRoot = DAG.getRoot(); 211 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 212 DAG.setRoot(LegalizedNodes[OldRoot]); 213 214 LegalizedNodes.clear(); 215 216 // Remove dead nodes now. 217 DAG.RemoveDeadNodes(); 218 219 return Changed; 220 } 221 222 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) { 223 assert(Op->getNumValues() == Result->getNumValues() && 224 "Unexpected number of results"); 225 // Generic legalization: just pass the operand through. 226 for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i) 227 AddLegalizedOperand(Op.getValue(i), SDValue(Result, i)); 228 return SDValue(Result, Op.getResNo()); 229 } 230 231 SDValue 232 VectorLegalizer::RecursivelyLegalizeResults(SDValue Op, 233 MutableArrayRef<SDValue> Results) { 234 assert(Results.size() == Op->getNumValues() && 235 "Unexpected number of results"); 236 // Make sure that the generated code is itself legal. 237 for (unsigned i = 0, e = Results.size(); i != e; ++i) { 238 Results[i] = LegalizeOp(Results[i]); 239 AddLegalizedOperand(Op.getValue(i), Results[i]); 240 } 241 242 return Results[Op.getResNo()]; 243 } 244 245 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 246 // Note that LegalizeOp may be reentered even from single-use nodes, which 247 // means that we always must cache transformed nodes. 248 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 249 if (I != LegalizedNodes.end()) return I->second; 250 251 // Legalize the operands 252 SmallVector<SDValue, 8> Ops; 253 for (const SDValue &Oper : Op->op_values()) 254 Ops.push_back(LegalizeOp(Oper)); 255 256 SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops); 257 258 bool HasVectorValueOrOp = 259 llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) || 260 llvm::any_of(Node->op_values(), 261 [](SDValue O) { return O.getValueType().isVector(); }); 262 if (!HasVectorValueOrOp) 263 return TranslateLegalizeResults(Op, Node); 264 265 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 266 EVT ValVT; 267 switch (Op.getOpcode()) { 268 default: 269 return TranslateLegalizeResults(Op, Node); 270 case ISD::LOAD: { 271 LoadSDNode *LD = cast<LoadSDNode>(Node); 272 ISD::LoadExtType ExtType = LD->getExtensionType(); 273 EVT LoadedVT = LD->getMemoryVT(); 274 if (LoadedVT.isVector() && ExtType != ISD::NON_EXTLOAD) 275 Action = TLI.getLoadExtAction(ExtType, LD->getValueType(0), LoadedVT); 276 break; 277 } 278 case ISD::STORE: { 279 StoreSDNode *ST = cast<StoreSDNode>(Node); 280 EVT StVT = ST->getMemoryVT(); 281 MVT ValVT = ST->getValue().getSimpleValueType(); 282 if (StVT.isVector() && ST->isTruncatingStore()) 283 Action = TLI.getTruncStoreAction(ValVT, StVT); 284 break; 285 } 286 case ISD::MERGE_VALUES: 287 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 288 // This operation lies about being legal: when it claims to be legal, 289 // it should actually be expanded. 290 if (Action == TargetLowering::Legal) 291 Action = TargetLowering::Expand; 292 break; 293 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 294 case ISD::STRICT_##DAGN: 295 #include "llvm/IR/ConstrainedOps.def" 296 ValVT = Node->getValueType(0); 297 if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP || 298 Op.getOpcode() == ISD::STRICT_UINT_TO_FP) 299 ValVT = Node->getOperand(1).getValueType(); 300 Action = TLI.getOperationAction(Node->getOpcode(), ValVT); 301 // If we're asked to expand a strict vector floating-point operation, 302 // by default we're going to simply unroll it. That is usually the 303 // best approach, except in the case where the resulting strict (scalar) 304 // operations would themselves use the fallback mutation to non-strict. 305 // In that specific case, just do the fallback on the vector op. 306 if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() && 307 TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) == 308 TargetLowering::Legal) { 309 EVT EltVT = ValVT.getVectorElementType(); 310 if (TLI.getOperationAction(Node->getOpcode(), EltVT) 311 == TargetLowering::Expand && 312 TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT) 313 == TargetLowering::Legal) 314 Action = TargetLowering::Legal; 315 } 316 break; 317 case ISD::ADD: 318 case ISD::SUB: 319 case ISD::MUL: 320 case ISD::MULHS: 321 case ISD::MULHU: 322 case ISD::SDIV: 323 case ISD::UDIV: 324 case ISD::SREM: 325 case ISD::UREM: 326 case ISD::SDIVREM: 327 case ISD::UDIVREM: 328 case ISD::FADD: 329 case ISD::FSUB: 330 case ISD::FMUL: 331 case ISD::FDIV: 332 case ISD::FREM: 333 case ISD::AND: 334 case ISD::OR: 335 case ISD::XOR: 336 case ISD::SHL: 337 case ISD::SRA: 338 case ISD::SRL: 339 case ISD::FSHL: 340 case ISD::FSHR: 341 case ISD::ROTL: 342 case ISD::ROTR: 343 case ISD::ABS: 344 case ISD::BSWAP: 345 case ISD::BITREVERSE: 346 case ISD::CTLZ: 347 case ISD::CTTZ: 348 case ISD::CTLZ_ZERO_UNDEF: 349 case ISD::CTTZ_ZERO_UNDEF: 350 case ISD::CTPOP: 351 case ISD::SELECT: 352 case ISD::VSELECT: 353 case ISD::VP_SELECT: 354 case ISD::SELECT_CC: 355 case ISD::ZERO_EXTEND: 356 case ISD::ANY_EXTEND: 357 case ISD::TRUNCATE: 358 case ISD::SIGN_EXTEND: 359 case ISD::FP_TO_SINT: 360 case ISD::FP_TO_UINT: 361 case ISD::FNEG: 362 case ISD::FABS: 363 case ISD::FMINNUM: 364 case ISD::FMAXNUM: 365 case ISD::FMINNUM_IEEE: 366 case ISD::FMAXNUM_IEEE: 367 case ISD::FMINIMUM: 368 case ISD::FMAXIMUM: 369 case ISD::FCOPYSIGN: 370 case ISD::FSQRT: 371 case ISD::FSIN: 372 case ISD::FCOS: 373 case ISD::FPOWI: 374 case ISD::FPOW: 375 case ISD::FLOG: 376 case ISD::FLOG2: 377 case ISD::FLOG10: 378 case ISD::FEXP: 379 case ISD::FEXP2: 380 case ISD::FCEIL: 381 case ISD::FTRUNC: 382 case ISD::FRINT: 383 case ISD::FNEARBYINT: 384 case ISD::FROUND: 385 case ISD::FROUNDEVEN: 386 case ISD::FFLOOR: 387 case ISD::FP_ROUND: 388 case ISD::FP_EXTEND: 389 case ISD::FMA: 390 case ISD::SIGN_EXTEND_INREG: 391 case ISD::ANY_EXTEND_VECTOR_INREG: 392 case ISD::SIGN_EXTEND_VECTOR_INREG: 393 case ISD::ZERO_EXTEND_VECTOR_INREG: 394 case ISD::SMIN: 395 case ISD::SMAX: 396 case ISD::UMIN: 397 case ISD::UMAX: 398 case ISD::SMUL_LOHI: 399 case ISD::UMUL_LOHI: 400 case ISD::SADDO: 401 case ISD::UADDO: 402 case ISD::SSUBO: 403 case ISD::USUBO: 404 case ISD::SMULO: 405 case ISD::UMULO: 406 case ISD::FCANONICALIZE: 407 case ISD::SADDSAT: 408 case ISD::UADDSAT: 409 case ISD::SSUBSAT: 410 case ISD::USUBSAT: 411 case ISD::SSHLSAT: 412 case ISD::USHLSAT: 413 case ISD::FP_TO_SINT_SAT: 414 case ISD::FP_TO_UINT_SAT: 415 case ISD::MGATHER: 416 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 417 break; 418 case ISD::SMULFIX: 419 case ISD::SMULFIXSAT: 420 case ISD::UMULFIX: 421 case ISD::UMULFIXSAT: 422 case ISD::SDIVFIX: 423 case ISD::SDIVFIXSAT: 424 case ISD::UDIVFIX: 425 case ISD::UDIVFIXSAT: { 426 unsigned Scale = Node->getConstantOperandVal(2); 427 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 428 Node->getValueType(0), Scale); 429 break; 430 } 431 case ISD::SINT_TO_FP: 432 case ISD::UINT_TO_FP: 433 case ISD::VECREDUCE_ADD: 434 case ISD::VECREDUCE_MUL: 435 case ISD::VECREDUCE_AND: 436 case ISD::VECREDUCE_OR: 437 case ISD::VECREDUCE_XOR: 438 case ISD::VECREDUCE_SMAX: 439 case ISD::VECREDUCE_SMIN: 440 case ISD::VECREDUCE_UMAX: 441 case ISD::VECREDUCE_UMIN: 442 case ISD::VECREDUCE_FADD: 443 case ISD::VECREDUCE_FMUL: 444 case ISD::VECREDUCE_FMAX: 445 case ISD::VECREDUCE_FMIN: 446 Action = TLI.getOperationAction(Node->getOpcode(), 447 Node->getOperand(0).getValueType()); 448 break; 449 case ISD::VECREDUCE_SEQ_FADD: 450 case ISD::VECREDUCE_SEQ_FMUL: 451 Action = TLI.getOperationAction(Node->getOpcode(), 452 Node->getOperand(1).getValueType()); 453 break; 454 case ISD::SETCC: { 455 MVT OpVT = Node->getOperand(0).getSimpleValueType(); 456 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); 457 Action = TLI.getCondCodeAction(CCCode, OpVT); 458 if (Action == TargetLowering::Legal) 459 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 460 break; 461 } 462 } 463 464 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG)); 465 466 SmallVector<SDValue, 8> ResultVals; 467 switch (Action) { 468 default: llvm_unreachable("This action is not supported yet!"); 469 case TargetLowering::Promote: 470 assert((Op.getOpcode() != ISD::LOAD && Op.getOpcode() != ISD::STORE) && 471 "This action is not supported yet!"); 472 LLVM_DEBUG(dbgs() << "Promoting\n"); 473 Promote(Node, ResultVals); 474 assert(!ResultVals.empty() && "No results for promotion?"); 475 break; 476 case TargetLowering::Legal: 477 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 478 break; 479 case TargetLowering::Custom: 480 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 481 if (LowerOperationWrapper(Node, ResultVals)) 482 break; 483 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 484 LLVM_FALLTHROUGH; 485 case TargetLowering::Expand: 486 LLVM_DEBUG(dbgs() << "Expanding\n"); 487 Expand(Node, ResultVals); 488 break; 489 } 490 491 if (ResultVals.empty()) 492 return TranslateLegalizeResults(Op, Node); 493 494 Changed = true; 495 return RecursivelyLegalizeResults(Op, ResultVals); 496 } 497 498 // FIXME: This is very similar to TargetLowering::LowerOperationWrapper. Can we 499 // merge them somehow? 500 bool VectorLegalizer::LowerOperationWrapper(SDNode *Node, 501 SmallVectorImpl<SDValue> &Results) { 502 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 503 504 if (!Res.getNode()) 505 return false; 506 507 if (Res == SDValue(Node, 0)) 508 return true; 509 510 // If the original node has one result, take the return value from 511 // LowerOperation as is. It might not be result number 0. 512 if (Node->getNumValues() == 1) { 513 Results.push_back(Res); 514 return true; 515 } 516 517 // If the original node has multiple results, then the return node should 518 // have the same number of results. 519 assert((Node->getNumValues() == Res->getNumValues()) && 520 "Lowering returned the wrong number of results!"); 521 522 // Places new result values base on N result number. 523 for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I) 524 Results.push_back(Res.getValue(I)); 525 526 return true; 527 } 528 529 void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) { 530 // For a few operations there is a specific concept for promotion based on 531 // the operand's type. 532 switch (Node->getOpcode()) { 533 case ISD::SINT_TO_FP: 534 case ISD::UINT_TO_FP: 535 case ISD::STRICT_SINT_TO_FP: 536 case ISD::STRICT_UINT_TO_FP: 537 // "Promote" the operation by extending the operand. 538 PromoteINT_TO_FP(Node, Results); 539 return; 540 case ISD::FP_TO_UINT: 541 case ISD::FP_TO_SINT: 542 case ISD::STRICT_FP_TO_UINT: 543 case ISD::STRICT_FP_TO_SINT: 544 // Promote the operation by extending the operand. 545 PromoteFP_TO_INT(Node, Results); 546 return; 547 case ISD::FP_ROUND: 548 case ISD::FP_EXTEND: 549 // These operations are used to do promotion so they can't be promoted 550 // themselves. 551 llvm_unreachable("Don't know how to promote this operation!"); 552 } 553 554 // There are currently two cases of vector promotion: 555 // 1) Bitcasting a vector of integers to a different type to a vector of the 556 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 557 // 2) Extending a vector of floats to a vector of the same number of larger 558 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 559 assert(Node->getNumValues() == 1 && 560 "Can't promote a vector with multiple results!"); 561 MVT VT = Node->getSimpleValueType(0); 562 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 563 SDLoc dl(Node); 564 SmallVector<SDValue, 4> Operands(Node->getNumOperands()); 565 566 for (unsigned j = 0; j != Node->getNumOperands(); ++j) { 567 if (Node->getOperand(j).getValueType().isVector()) 568 if (Node->getOperand(j) 569 .getValueType() 570 .getVectorElementType() 571 .isFloatingPoint() && 572 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 573 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j)); 574 else 575 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j)); 576 else 577 Operands[j] = Node->getOperand(j); 578 } 579 580 SDValue Res = 581 DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags()); 582 583 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 584 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 585 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 586 Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res, DAG.getIntPtrConstant(0, dl)); 587 else 588 Res = DAG.getNode(ISD::BITCAST, dl, VT, Res); 589 590 Results.push_back(Res); 591 } 592 593 void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node, 594 SmallVectorImpl<SDValue> &Results) { 595 // INT_TO_FP operations may require the input operand be promoted even 596 // when the type is otherwise legal. 597 bool IsStrict = Node->isStrictFPOpcode(); 598 MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType(); 599 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 600 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 601 "Vectors have different number of elements!"); 602 603 SDLoc dl(Node); 604 SmallVector<SDValue, 4> Operands(Node->getNumOperands()); 605 606 unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP || 607 Node->getOpcode() == ISD::STRICT_UINT_TO_FP) 608 ? ISD::ZERO_EXTEND 609 : ISD::SIGN_EXTEND; 610 for (unsigned j = 0; j != Node->getNumOperands(); ++j) { 611 if (Node->getOperand(j).getValueType().isVector()) 612 Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j)); 613 else 614 Operands[j] = Node->getOperand(j); 615 } 616 617 if (IsStrict) { 618 SDValue Res = DAG.getNode(Node->getOpcode(), dl, 619 {Node->getValueType(0), MVT::Other}, Operands); 620 Results.push_back(Res); 621 Results.push_back(Res.getValue(1)); 622 return; 623 } 624 625 SDValue Res = 626 DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands); 627 Results.push_back(Res); 628 } 629 630 // For FP_TO_INT we promote the result type to a vector type with wider 631 // elements and then truncate the result. This is different from the default 632 // PromoteVector which uses bitcast to promote thus assumning that the 633 // promoted vector type has the same overall size. 634 void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node, 635 SmallVectorImpl<SDValue> &Results) { 636 MVT VT = Node->getSimpleValueType(0); 637 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 638 bool IsStrict = Node->isStrictFPOpcode(); 639 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 640 "Vectors have different number of elements!"); 641 642 unsigned NewOpc = Node->getOpcode(); 643 // Change FP_TO_UINT to FP_TO_SINT if possible. 644 // TODO: Should we only do this if FP_TO_UINT itself isn't legal? 645 if (NewOpc == ISD::FP_TO_UINT && 646 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT)) 647 NewOpc = ISD::FP_TO_SINT; 648 649 if (NewOpc == ISD::STRICT_FP_TO_UINT && 650 TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT)) 651 NewOpc = ISD::STRICT_FP_TO_SINT; 652 653 SDLoc dl(Node); 654 SDValue Promoted, Chain; 655 if (IsStrict) { 656 Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other}, 657 {Node->getOperand(0), Node->getOperand(1)}); 658 Chain = Promoted.getValue(1); 659 } else 660 Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0)); 661 662 // Assert that the converted value fits in the original type. If it doesn't 663 // (eg: because the value being converted is too big), then the result of the 664 // original operation was undefined anyway, so the assert is still correct. 665 if (Node->getOpcode() == ISD::FP_TO_UINT || 666 Node->getOpcode() == ISD::STRICT_FP_TO_UINT) 667 NewOpc = ISD::AssertZext; 668 else 669 NewOpc = ISD::AssertSext; 670 671 Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted, 672 DAG.getValueType(VT.getScalarType())); 673 Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted); 674 Results.push_back(Promoted); 675 if (IsStrict) 676 Results.push_back(Chain); 677 } 678 679 std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) { 680 LoadSDNode *LD = cast<LoadSDNode>(N); 681 return TLI.scalarizeVectorLoad(LD, DAG); 682 } 683 684 SDValue VectorLegalizer::ExpandStore(SDNode *N) { 685 StoreSDNode *ST = cast<StoreSDNode>(N); 686 SDValue TF = TLI.scalarizeVectorStore(ST, DAG); 687 return TF; 688 } 689 690 void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) { 691 switch (Node->getOpcode()) { 692 case ISD::LOAD: { 693 std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node); 694 Results.push_back(Tmp.first); 695 Results.push_back(Tmp.second); 696 return; 697 } 698 case ISD::STORE: 699 Results.push_back(ExpandStore(Node)); 700 return; 701 case ISD::MERGE_VALUES: 702 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 703 Results.push_back(Node->getOperand(i)); 704 return; 705 case ISD::SIGN_EXTEND_INREG: 706 Results.push_back(ExpandSEXTINREG(Node)); 707 return; 708 case ISD::ANY_EXTEND_VECTOR_INREG: 709 Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node)); 710 return; 711 case ISD::SIGN_EXTEND_VECTOR_INREG: 712 Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node)); 713 return; 714 case ISD::ZERO_EXTEND_VECTOR_INREG: 715 Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node)); 716 return; 717 case ISD::BSWAP: 718 Results.push_back(ExpandBSWAP(Node)); 719 return; 720 case ISD::VSELECT: 721 Results.push_back(ExpandVSELECT(Node)); 722 return; 723 case ISD::VP_SELECT: 724 Results.push_back(ExpandVP_SELECT(Node)); 725 return; 726 case ISD::SELECT: 727 Results.push_back(ExpandSELECT(Node)); 728 return; 729 case ISD::FP_TO_UINT: 730 ExpandFP_TO_UINT(Node, Results); 731 return; 732 case ISD::UINT_TO_FP: 733 ExpandUINT_TO_FLOAT(Node, Results); 734 return; 735 case ISD::FNEG: 736 Results.push_back(ExpandFNEG(Node)); 737 return; 738 case ISD::FSUB: 739 ExpandFSUB(Node, Results); 740 return; 741 case ISD::SETCC: 742 ExpandSETCC(Node, Results); 743 return; 744 case ISD::ABS: 745 if (SDValue Expanded = TLI.expandABS(Node, DAG)) { 746 Results.push_back(Expanded); 747 return; 748 } 749 break; 750 case ISD::BITREVERSE: 751 ExpandBITREVERSE(Node, Results); 752 return; 753 case ISD::CTPOP: 754 if (SDValue Expanded = TLI.expandCTPOP(Node, DAG)) { 755 Results.push_back(Expanded); 756 return; 757 } 758 break; 759 case ISD::CTLZ: 760 case ISD::CTLZ_ZERO_UNDEF: 761 if (SDValue Expanded = TLI.expandCTLZ(Node, DAG)) { 762 Results.push_back(Expanded); 763 return; 764 } 765 break; 766 case ISD::CTTZ: 767 case ISD::CTTZ_ZERO_UNDEF: 768 if (SDValue Expanded = TLI.expandCTTZ(Node, DAG)) { 769 Results.push_back(Expanded); 770 return; 771 } 772 break; 773 case ISD::FSHL: 774 case ISD::FSHR: 775 if (SDValue Expanded = TLI.expandFunnelShift(Node, DAG)) { 776 Results.push_back(Expanded); 777 return; 778 } 779 break; 780 case ISD::ROTL: 781 case ISD::ROTR: 782 if (SDValue Expanded = TLI.expandROT(Node, false /*AllowVectorOps*/, DAG)) { 783 Results.push_back(Expanded); 784 return; 785 } 786 break; 787 case ISD::FMINNUM: 788 case ISD::FMAXNUM: 789 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) { 790 Results.push_back(Expanded); 791 return; 792 } 793 break; 794 case ISD::SMIN: 795 case ISD::SMAX: 796 case ISD::UMIN: 797 case ISD::UMAX: 798 if (SDValue Expanded = TLI.expandIntMINMAX(Node, DAG)) { 799 Results.push_back(Expanded); 800 return; 801 } 802 break; 803 case ISD::UADDO: 804 case ISD::USUBO: 805 ExpandUADDSUBO(Node, Results); 806 return; 807 case ISD::SADDO: 808 case ISD::SSUBO: 809 ExpandSADDSUBO(Node, Results); 810 return; 811 case ISD::UMULO: 812 case ISD::SMULO: 813 ExpandMULO(Node, Results); 814 return; 815 case ISD::USUBSAT: 816 case ISD::SSUBSAT: 817 case ISD::UADDSAT: 818 case ISD::SADDSAT: 819 if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) { 820 Results.push_back(Expanded); 821 return; 822 } 823 break; 824 case ISD::SMULFIX: 825 case ISD::UMULFIX: 826 if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) { 827 Results.push_back(Expanded); 828 return; 829 } 830 break; 831 case ISD::SMULFIXSAT: 832 case ISD::UMULFIXSAT: 833 // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly 834 // why. Maybe it results in worse codegen compared to the unroll for some 835 // targets? This should probably be investigated. And if we still prefer to 836 // unroll an explanation could be helpful. 837 break; 838 case ISD::SDIVFIX: 839 case ISD::UDIVFIX: 840 ExpandFixedPointDiv(Node, Results); 841 return; 842 case ISD::SDIVFIXSAT: 843 case ISD::UDIVFIXSAT: 844 break; 845 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 846 case ISD::STRICT_##DAGN: 847 #include "llvm/IR/ConstrainedOps.def" 848 ExpandStrictFPOp(Node, Results); 849 return; 850 case ISD::VECREDUCE_ADD: 851 case ISD::VECREDUCE_MUL: 852 case ISD::VECREDUCE_AND: 853 case ISD::VECREDUCE_OR: 854 case ISD::VECREDUCE_XOR: 855 case ISD::VECREDUCE_SMAX: 856 case ISD::VECREDUCE_SMIN: 857 case ISD::VECREDUCE_UMAX: 858 case ISD::VECREDUCE_UMIN: 859 case ISD::VECREDUCE_FADD: 860 case ISD::VECREDUCE_FMUL: 861 case ISD::VECREDUCE_FMAX: 862 case ISD::VECREDUCE_FMIN: 863 Results.push_back(TLI.expandVecReduce(Node, DAG)); 864 return; 865 case ISD::VECREDUCE_SEQ_FADD: 866 case ISD::VECREDUCE_SEQ_FMUL: 867 Results.push_back(TLI.expandVecReduceSeq(Node, DAG)); 868 return; 869 case ISD::SREM: 870 case ISD::UREM: 871 ExpandREM(Node, Results); 872 return; 873 } 874 875 Results.push_back(DAG.UnrollVectorOp(Node)); 876 } 877 878 SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) { 879 // Lower a select instruction where the condition is a scalar and the 880 // operands are vectors. Lower this select to VSELECT and implement it 881 // using XOR AND OR. The selector bit is broadcasted. 882 EVT VT = Node->getValueType(0); 883 SDLoc DL(Node); 884 885 SDValue Mask = Node->getOperand(0); 886 SDValue Op1 = Node->getOperand(1); 887 SDValue Op2 = Node->getOperand(2); 888 889 assert(VT.isVector() && !Mask.getValueType().isVector() 890 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 891 892 // If we can't even use the basic vector operations of 893 // AND,OR,XOR, we will have to scalarize the op. 894 // Notice that the operation may be 'promoted' which means that it is 895 // 'bitcasted' to another type which is handled. 896 // Also, we need to be able to construct a splat vector using either 897 // BUILD_VECTOR or SPLAT_VECTOR. 898 // FIXME: Should we also permit fixed-length SPLAT_VECTOR as a fallback to 899 // BUILD_VECTOR? 900 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 901 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 902 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 903 TLI.getOperationAction(VT.isFixedLengthVector() ? ISD::BUILD_VECTOR 904 : ISD::SPLAT_VECTOR, 905 VT) == TargetLowering::Expand) 906 return DAG.UnrollVectorOp(Node); 907 908 // Generate a mask operand. 909 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 910 911 // What is the size of each element in the vector mask. 912 EVT BitTy = MaskTy.getScalarType(); 913 914 Mask = DAG.getSelect(DL, BitTy, Mask, DAG.getAllOnesConstant(DL, BitTy), 915 DAG.getConstant(0, DL, BitTy)); 916 917 // Broadcast the mask so that the entire vector is all one or all zero. 918 if (VT.isFixedLengthVector()) 919 Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask); 920 else 921 Mask = DAG.getSplatVector(MaskTy, DL, Mask); 922 923 // Bitcast the operands to be the same type as the mask. 924 // This is needed when we select between FP types because 925 // the mask is a vector of integers. 926 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 927 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 928 929 SDValue NotMask = DAG.getNOT(DL, Mask, MaskTy); 930 931 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 932 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 933 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 934 return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val); 935 } 936 937 SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) { 938 EVT VT = Node->getValueType(0); 939 940 // Make sure that the SRA and SHL instructions are available. 941 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 942 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 943 return DAG.UnrollVectorOp(Node); 944 945 SDLoc DL(Node); 946 EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT(); 947 948 unsigned BW = VT.getScalarSizeInBits(); 949 unsigned OrigBW = OrigTy.getScalarSizeInBits(); 950 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 951 952 SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz); 953 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 954 } 955 956 // Generically expand a vector anyext in register to a shuffle of the relevant 957 // lanes into the appropriate locations, with other lanes left undef. 958 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) { 959 SDLoc DL(Node); 960 EVT VT = Node->getValueType(0); 961 int NumElements = VT.getVectorNumElements(); 962 SDValue Src = Node->getOperand(0); 963 EVT SrcVT = Src.getValueType(); 964 int NumSrcElements = SrcVT.getVectorNumElements(); 965 966 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 967 // into a larger vector type. 968 if (SrcVT.bitsLE(VT)) { 969 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 970 "ANY_EXTEND_VECTOR_INREG vector size mismatch"); 971 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 972 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 973 NumSrcElements); 974 Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), 975 Src, DAG.getVectorIdxConstant(0, DL)); 976 } 977 978 // Build a base mask of undef shuffles. 979 SmallVector<int, 16> ShuffleMask; 980 ShuffleMask.resize(NumSrcElements, -1); 981 982 // Place the extended lanes into the correct locations. 983 int ExtLaneScale = NumSrcElements / NumElements; 984 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 985 for (int i = 0; i < NumElements; ++i) 986 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 987 988 return DAG.getNode( 989 ISD::BITCAST, DL, VT, 990 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 991 } 992 993 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) { 994 SDLoc DL(Node); 995 EVT VT = Node->getValueType(0); 996 SDValue Src = Node->getOperand(0); 997 EVT SrcVT = Src.getValueType(); 998 999 // First build an any-extend node which can be legalized above when we 1000 // recurse through it. 1001 SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src); 1002 1003 // Now we need sign extend. Do this by shifting the elements. Even if these 1004 // aren't legal operations, they have a better chance of being legalized 1005 // without full scalarization than the sign extension does. 1006 unsigned EltWidth = VT.getScalarSizeInBits(); 1007 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); 1008 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 1009 return DAG.getNode(ISD::SRA, DL, VT, 1010 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 1011 ShiftAmount); 1012 } 1013 1014 // Generically expand a vector zext in register to a shuffle of the relevant 1015 // lanes into the appropriate locations, a blend of zero into the high bits, 1016 // and a bitcast to the wider element type. 1017 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) { 1018 SDLoc DL(Node); 1019 EVT VT = Node->getValueType(0); 1020 int NumElements = VT.getVectorNumElements(); 1021 SDValue Src = Node->getOperand(0); 1022 EVT SrcVT = Src.getValueType(); 1023 int NumSrcElements = SrcVT.getVectorNumElements(); 1024 1025 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 1026 // into a larger vector type. 1027 if (SrcVT.bitsLE(VT)) { 1028 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 1029 "ZERO_EXTEND_VECTOR_INREG vector size mismatch"); 1030 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 1031 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 1032 NumSrcElements); 1033 Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), 1034 Src, DAG.getVectorIdxConstant(0, DL)); 1035 } 1036 1037 // Build up a zero vector to blend into this one. 1038 SDValue Zero = DAG.getConstant(0, DL, SrcVT); 1039 1040 // Shuffle the incoming lanes into the correct position, and pull all other 1041 // lanes from the zero vector. 1042 SmallVector<int, 16> ShuffleMask; 1043 ShuffleMask.reserve(NumSrcElements); 1044 for (int i = 0; i < NumSrcElements; ++i) 1045 ShuffleMask.push_back(i); 1046 1047 int ExtLaneScale = NumSrcElements / NumElements; 1048 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 1049 for (int i = 0; i < NumElements; ++i) 1050 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 1051 1052 return DAG.getNode(ISD::BITCAST, DL, VT, 1053 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 1054 } 1055 1056 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) { 1057 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 1058 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 1059 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 1060 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 1061 } 1062 1063 SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) { 1064 EVT VT = Node->getValueType(0); 1065 1066 // Scalable vectors can't use shuffle expansion. 1067 if (VT.isScalableVector()) 1068 return TLI.expandBSWAP(Node, DAG); 1069 1070 // Generate a byte wise shuffle mask for the BSWAP. 1071 SmallVector<int, 16> ShuffleMask; 1072 createBSWAPShuffleMask(VT, ShuffleMask); 1073 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 1074 1075 // Only emit a shuffle if the mask is legal. 1076 if (TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) { 1077 SDLoc DL(Node); 1078 SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0)); 1079 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); 1080 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 1081 } 1082 1083 // If we have the appropriate vector bit operations, it is better to use them 1084 // than unrolling and expanding each component. 1085 if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 1086 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 1087 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) && 1088 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) 1089 return TLI.expandBSWAP(Node, DAG); 1090 1091 // Otherwise unroll. 1092 return DAG.UnrollVectorOp(Node); 1093 } 1094 1095 void VectorLegalizer::ExpandBITREVERSE(SDNode *Node, 1096 SmallVectorImpl<SDValue> &Results) { 1097 EVT VT = Node->getValueType(0); 1098 1099 // We can't unroll or use shuffles for scalable vectors. 1100 if (VT.isScalableVector()) { 1101 Results.push_back(TLI.expandBITREVERSE(Node, DAG)); 1102 return; 1103 } 1104 1105 // If we have the scalar operation, it's probably cheaper to unroll it. 1106 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) { 1107 SDValue Tmp = DAG.UnrollVectorOp(Node); 1108 Results.push_back(Tmp); 1109 return; 1110 } 1111 1112 // If the vector element width is a whole number of bytes, test if its legal 1113 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte 1114 // vector. This greatly reduces the number of bit shifts necessary. 1115 unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); 1116 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { 1117 SmallVector<int, 16> BSWAPMask; 1118 createBSWAPShuffleMask(VT, BSWAPMask); 1119 1120 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); 1121 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && 1122 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || 1123 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && 1124 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && 1125 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && 1126 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { 1127 SDLoc DL(Node); 1128 SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0)); 1129 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 1130 BSWAPMask); 1131 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); 1132 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 1133 Results.push_back(Op); 1134 return; 1135 } 1136 } 1137 1138 // If we have the appropriate vector bit operations, it is better to use them 1139 // than unrolling and expanding each component. 1140 if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 1141 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 1142 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) && 1143 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) { 1144 Results.push_back(TLI.expandBITREVERSE(Node, DAG)); 1145 return; 1146 } 1147 1148 // Otherwise unroll. 1149 SDValue Tmp = DAG.UnrollVectorOp(Node); 1150 Results.push_back(Tmp); 1151 } 1152 1153 SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) { 1154 // Implement VSELECT in terms of XOR, AND, OR 1155 // on platforms which do not support blend natively. 1156 SDLoc DL(Node); 1157 1158 SDValue Mask = Node->getOperand(0); 1159 SDValue Op1 = Node->getOperand(1); 1160 SDValue Op2 = Node->getOperand(2); 1161 1162 EVT VT = Mask.getValueType(); 1163 1164 // If we can't even use the basic vector operations of 1165 // AND,OR,XOR, we will have to scalarize the op. 1166 // Notice that the operation may be 'promoted' which means that it is 1167 // 'bitcasted' to another type which is handled. 1168 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 1169 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 1170 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand) 1171 return DAG.UnrollVectorOp(Node); 1172 1173 // This operation also isn't safe with AND, OR, XOR when the boolean type is 1174 // 0/1 and the select operands aren't also booleans, as we need an all-ones 1175 // vector constant to mask with. 1176 // FIXME: Sign extend 1 to all ones if that's legal on the target. 1177 auto BoolContents = TLI.getBooleanContents(Op1.getValueType()); 1178 if (BoolContents != TargetLowering::ZeroOrNegativeOneBooleanContent && 1179 !(BoolContents == TargetLowering::ZeroOrOneBooleanContent && 1180 Op1.getValueType().getVectorElementType() == MVT::i1)) 1181 return DAG.UnrollVectorOp(Node); 1182 1183 // If the mask and the type are different sizes, unroll the vector op. This 1184 // can occur when getSetCCResultType returns something that is different in 1185 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 1186 if (VT.getSizeInBits() != Op1.getValueSizeInBits()) 1187 return DAG.UnrollVectorOp(Node); 1188 1189 // Bitcast the operands to be the same type as the mask. 1190 // This is needed when we select between FP types because 1191 // the mask is a vector of integers. 1192 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 1193 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 1194 1195 SDValue NotMask = DAG.getNOT(DL, Mask, VT); 1196 1197 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 1198 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 1199 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 1200 return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val); 1201 } 1202 1203 SDValue VectorLegalizer::ExpandVP_SELECT(SDNode *Node) { 1204 // Implement VP_SELECT in terms of VP_XOR, VP_AND and VP_OR on platforms which 1205 // do not support it natively. 1206 SDLoc DL(Node); 1207 1208 SDValue Mask = Node->getOperand(0); 1209 SDValue Op1 = Node->getOperand(1); 1210 SDValue Op2 = Node->getOperand(2); 1211 SDValue EVL = Node->getOperand(3); 1212 1213 EVT VT = Mask.getValueType(); 1214 1215 // If we can't even use the basic vector operations of 1216 // VP_AND,VP_OR,VP_XOR, we will have to scalarize the op. 1217 if (TLI.getOperationAction(ISD::VP_AND, VT) == TargetLowering::Expand || 1218 TLI.getOperationAction(ISD::VP_XOR, VT) == TargetLowering::Expand || 1219 TLI.getOperationAction(ISD::VP_OR, VT) == TargetLowering::Expand) 1220 return DAG.UnrollVectorOp(Node); 1221 1222 // This operation also isn't safe when the operands aren't also booleans. 1223 if (Op1.getValueType().getVectorElementType() != MVT::i1) 1224 return DAG.UnrollVectorOp(Node); 1225 1226 SDValue Ones = DAG.getAllOnesConstant(DL, VT); 1227 SDValue NotMask = DAG.getNode(ISD::VP_XOR, DL, VT, Mask, Ones, Mask, EVL); 1228 1229 Op1 = DAG.getNode(ISD::VP_AND, DL, VT, Op1, Mask, Mask, EVL); 1230 Op2 = DAG.getNode(ISD::VP_AND, DL, VT, Op2, NotMask, Mask, EVL); 1231 return DAG.getNode(ISD::VP_OR, DL, VT, Op1, Op2, Mask, EVL); 1232 } 1233 1234 void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node, 1235 SmallVectorImpl<SDValue> &Results) { 1236 // Attempt to expand using TargetLowering. 1237 SDValue Result, Chain; 1238 if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) { 1239 Results.push_back(Result); 1240 if (Node->isStrictFPOpcode()) 1241 Results.push_back(Chain); 1242 return; 1243 } 1244 1245 // Otherwise go ahead and unroll. 1246 if (Node->isStrictFPOpcode()) { 1247 UnrollStrictFPOp(Node, Results); 1248 return; 1249 } 1250 1251 Results.push_back(DAG.UnrollVectorOp(Node)); 1252 } 1253 1254 void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node, 1255 SmallVectorImpl<SDValue> &Results) { 1256 bool IsStrict = Node->isStrictFPOpcode(); 1257 unsigned OpNo = IsStrict ? 1 : 0; 1258 SDValue Src = Node->getOperand(OpNo); 1259 EVT VT = Src.getValueType(); 1260 SDLoc DL(Node); 1261 1262 // Attempt to expand using TargetLowering. 1263 SDValue Result; 1264 SDValue Chain; 1265 if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) { 1266 Results.push_back(Result); 1267 if (IsStrict) 1268 Results.push_back(Chain); 1269 return; 1270 } 1271 1272 // Make sure that the SINT_TO_FP and SRL instructions are available. 1273 if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) == 1274 TargetLowering::Expand) || 1275 (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) == 1276 TargetLowering::Expand)) || 1277 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) { 1278 if (IsStrict) { 1279 UnrollStrictFPOp(Node, Results); 1280 return; 1281 } 1282 1283 Results.push_back(DAG.UnrollVectorOp(Node)); 1284 return; 1285 } 1286 1287 unsigned BW = VT.getScalarSizeInBits(); 1288 assert((BW == 64 || BW == 32) && 1289 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 1290 1291 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT); 1292 1293 // Constants to clear the upper part of the word. 1294 // Notice that we can also use SHL+SHR, but using a constant is slightly 1295 // faster on x86. 1296 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; 1297 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 1298 1299 // Two to the power of half-word-size. 1300 SDValue TWOHW = 1301 DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0)); 1302 1303 // Clear upper part of LO, lower HI 1304 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord); 1305 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask); 1306 1307 if (IsStrict) { 1308 // Convert hi and lo to floats 1309 // Convert the hi part back to the upper values 1310 // TODO: Can any fast-math-flags be set on these nodes? 1311 SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, 1312 {Node->getValueType(0), MVT::Other}, 1313 {Node->getOperand(0), HI}); 1314 fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other}, 1315 {fHI.getValue(1), fHI, TWOHW}); 1316 SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, 1317 {Node->getValueType(0), MVT::Other}, 1318 {Node->getOperand(0), LO}); 1319 1320 SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1), 1321 fLO.getValue(1)); 1322 1323 // Add the two halves 1324 SDValue Result = 1325 DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other}, 1326 {TF, fHI, fLO}); 1327 1328 Results.push_back(Result); 1329 Results.push_back(Result.getValue(1)); 1330 return; 1331 } 1332 1333 // Convert hi and lo to floats 1334 // Convert the hi part back to the upper values 1335 // TODO: Can any fast-math-flags be set on these nodes? 1336 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI); 1337 fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW); 1338 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO); 1339 1340 // Add the two halves 1341 Results.push_back( 1342 DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO)); 1343 } 1344 1345 SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) { 1346 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) { 1347 SDLoc DL(Node); 1348 SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0)); 1349 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. 1350 return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero, 1351 Node->getOperand(0)); 1352 } 1353 return DAG.UnrollVectorOp(Node); 1354 } 1355 1356 void VectorLegalizer::ExpandFSUB(SDNode *Node, 1357 SmallVectorImpl<SDValue> &Results) { 1358 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal, 1359 // we can defer this to operation legalization where it will be lowered as 1360 // a+(-b). 1361 EVT VT = Node->getValueType(0); 1362 if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && 1363 TLI.isOperationLegalOrCustom(ISD::FADD, VT)) 1364 return; // Defer to LegalizeDAG 1365 1366 SDValue Tmp = DAG.UnrollVectorOp(Node); 1367 Results.push_back(Tmp); 1368 } 1369 1370 void VectorLegalizer::ExpandSETCC(SDNode *Node, 1371 SmallVectorImpl<SDValue> &Results) { 1372 bool NeedInvert = false; 1373 SDLoc dl(Node); 1374 MVT OpVT = Node->getOperand(0).getSimpleValueType(); 1375 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); 1376 1377 if (TLI.getCondCodeAction(CCCode, OpVT) != TargetLowering::Expand) { 1378 Results.push_back(UnrollVSETCC(Node)); 1379 return; 1380 } 1381 1382 SDValue Chain; 1383 SDValue LHS = Node->getOperand(0); 1384 SDValue RHS = Node->getOperand(1); 1385 SDValue CC = Node->getOperand(2); 1386 bool Legalized = TLI.LegalizeSetCCCondCode(DAG, Node->getValueType(0), LHS, 1387 RHS, CC, NeedInvert, dl, Chain); 1388 1389 if (Legalized) { 1390 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 1391 // condition code, create a new SETCC node. 1392 if (CC.getNode()) 1393 LHS = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), LHS, RHS, CC, 1394 Node->getFlags()); 1395 1396 // If we expanded the SETCC by inverting the condition code, then wrap 1397 // the existing SETCC in a NOT to restore the intended condition. 1398 if (NeedInvert) 1399 LHS = DAG.getLogicalNOT(dl, LHS, LHS->getValueType(0)); 1400 } else { 1401 // Otherwise, SETCC for the given comparison type must be completely 1402 // illegal; expand it into a SELECT_CC. 1403 EVT VT = Node->getValueType(0); 1404 LHS = 1405 DAG.getNode(ISD::SELECT_CC, dl, VT, LHS, RHS, 1406 DAG.getBoolConstant(true, dl, VT, LHS.getValueType()), 1407 DAG.getBoolConstant(false, dl, VT, LHS.getValueType()), CC); 1408 LHS->setFlags(Node->getFlags()); 1409 } 1410 1411 Results.push_back(LHS); 1412 } 1413 1414 void VectorLegalizer::ExpandUADDSUBO(SDNode *Node, 1415 SmallVectorImpl<SDValue> &Results) { 1416 SDValue Result, Overflow; 1417 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 1418 Results.push_back(Result); 1419 Results.push_back(Overflow); 1420 } 1421 1422 void VectorLegalizer::ExpandSADDSUBO(SDNode *Node, 1423 SmallVectorImpl<SDValue> &Results) { 1424 SDValue Result, Overflow; 1425 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 1426 Results.push_back(Result); 1427 Results.push_back(Overflow); 1428 } 1429 1430 void VectorLegalizer::ExpandMULO(SDNode *Node, 1431 SmallVectorImpl<SDValue> &Results) { 1432 SDValue Result, Overflow; 1433 if (!TLI.expandMULO(Node, Result, Overflow, DAG)) 1434 std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node); 1435 1436 Results.push_back(Result); 1437 Results.push_back(Overflow); 1438 } 1439 1440 void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node, 1441 SmallVectorImpl<SDValue> &Results) { 1442 SDNode *N = Node; 1443 if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N), 1444 N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG)) 1445 Results.push_back(Expanded); 1446 } 1447 1448 void VectorLegalizer::ExpandStrictFPOp(SDNode *Node, 1449 SmallVectorImpl<SDValue> &Results) { 1450 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) { 1451 ExpandUINT_TO_FLOAT(Node, Results); 1452 return; 1453 } 1454 if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) { 1455 ExpandFP_TO_UINT(Node, Results); 1456 return; 1457 } 1458 1459 UnrollStrictFPOp(Node, Results); 1460 } 1461 1462 void VectorLegalizer::ExpandREM(SDNode *Node, 1463 SmallVectorImpl<SDValue> &Results) { 1464 assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) && 1465 "Expected REM node"); 1466 1467 SDValue Result; 1468 if (!TLI.expandREM(Node, Result, DAG)) 1469 Result = DAG.UnrollVectorOp(Node); 1470 Results.push_back(Result); 1471 } 1472 1473 void VectorLegalizer::UnrollStrictFPOp(SDNode *Node, 1474 SmallVectorImpl<SDValue> &Results) { 1475 EVT VT = Node->getValueType(0); 1476 EVT EltVT = VT.getVectorElementType(); 1477 unsigned NumElems = VT.getVectorNumElements(); 1478 unsigned NumOpers = Node->getNumOperands(); 1479 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1480 1481 EVT TmpEltVT = EltVT; 1482 if (Node->getOpcode() == ISD::STRICT_FSETCC || 1483 Node->getOpcode() == ISD::STRICT_FSETCCS) 1484 TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(), 1485 *DAG.getContext(), TmpEltVT); 1486 1487 EVT ValueVTs[] = {TmpEltVT, MVT::Other}; 1488 SDValue Chain = Node->getOperand(0); 1489 SDLoc dl(Node); 1490 1491 SmallVector<SDValue, 32> OpValues; 1492 SmallVector<SDValue, 32> OpChains; 1493 for (unsigned i = 0; i < NumElems; ++i) { 1494 SmallVector<SDValue, 4> Opers; 1495 SDValue Idx = DAG.getVectorIdxConstant(i, dl); 1496 1497 // The Chain is the first operand. 1498 Opers.push_back(Chain); 1499 1500 // Now process the remaining operands. 1501 for (unsigned j = 1; j < NumOpers; ++j) { 1502 SDValue Oper = Node->getOperand(j); 1503 EVT OperVT = Oper.getValueType(); 1504 1505 if (OperVT.isVector()) 1506 Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 1507 OperVT.getVectorElementType(), Oper, Idx); 1508 1509 Opers.push_back(Oper); 1510 } 1511 1512 SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers); 1513 SDValue ScalarResult = ScalarOp.getValue(0); 1514 SDValue ScalarChain = ScalarOp.getValue(1); 1515 1516 if (Node->getOpcode() == ISD::STRICT_FSETCC || 1517 Node->getOpcode() == ISD::STRICT_FSETCCS) 1518 ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult, 1519 DAG.getAllOnesConstant(dl, EltVT), 1520 DAG.getConstant(0, dl, EltVT)); 1521 1522 OpValues.push_back(ScalarResult); 1523 OpChains.push_back(ScalarChain); 1524 } 1525 1526 SDValue Result = DAG.getBuildVector(VT, dl, OpValues); 1527 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains); 1528 1529 Results.push_back(Result); 1530 Results.push_back(NewChain); 1531 } 1532 1533 SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) { 1534 EVT VT = Node->getValueType(0); 1535 unsigned NumElems = VT.getVectorNumElements(); 1536 EVT EltVT = VT.getVectorElementType(); 1537 SDValue LHS = Node->getOperand(0); 1538 SDValue RHS = Node->getOperand(1); 1539 SDValue CC = Node->getOperand(2); 1540 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1541 SDLoc dl(Node); 1542 SmallVector<SDValue, 8> Ops(NumElems); 1543 for (unsigned i = 0; i < NumElems; ++i) { 1544 SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1545 DAG.getVectorIdxConstant(i, dl)); 1546 SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1547 DAG.getVectorIdxConstant(i, dl)); 1548 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1549 TLI.getSetCCResultType(DAG.getDataLayout(), 1550 *DAG.getContext(), TmpEltVT), 1551 LHSElem, RHSElem, CC); 1552 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], DAG.getAllOnesConstant(dl, EltVT), 1553 DAG.getConstant(0, dl, EltVT)); 1554 } 1555 return DAG.getBuildVector(VT, dl, Ops); 1556 } 1557 1558 bool SelectionDAG::LegalizeVectors() { 1559 return VectorLegalizer(*this).Run(); 1560 } 1561