1 //===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SelectionDAG::LegalizeVectors method. 11 // 12 // The vector legalizer looks for vector operations which might need to be 13 // scalarized and legalizes them. This is a separate step from Legalize because 14 // scalarizing can introduce illegal types. For example, suppose we have an 15 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 17 // operation, which introduces nodes with the illegal type i64 which must be 18 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 19 // the operation must be unrolled, which introduces nodes with the illegal 20 // type i8 which must be promoted. 21 // 22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 23 // or operations that happen to take a vector which are custom-lowered; 24 // the legalization for such operations never produces nodes 25 // with illegal types, so it's okay to put off legalizing them until 26 // SelectionDAG::Legalize runs. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/Target/TargetLowering.h" 32 using namespace llvm; 33 34 namespace { 35 class VectorLegalizer { 36 SelectionDAG& DAG; 37 const TargetLowering &TLI; 38 bool Changed; // Keep track of whether anything changed 39 40 /// For nodes that are of legal width, and that have more than one use, this 41 /// map indicates what regularized operand to use. This allows us to avoid 42 /// legalizing the same thing more than once. 43 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 44 45 /// \brief Adds a node to the translation cache. 46 void AddLegalizedOperand(SDValue From, SDValue To) { 47 LegalizedNodes.insert(std::make_pair(From, To)); 48 // If someone requests legalization of the new node, return itself. 49 if (From != To) 50 LegalizedNodes.insert(std::make_pair(To, To)); 51 } 52 53 /// \brief Legalizes the given node. 54 SDValue LegalizeOp(SDValue Op); 55 56 /// \brief Assuming the node is legal, "legalize" the results. 57 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); 58 59 /// \brief Implements unrolling a VSETCC. 60 SDValue UnrollVSETCC(SDValue Op); 61 62 /// \brief Implement expand-based legalization of vector operations. 63 /// 64 /// This is just a high-level routine to dispatch to specific code paths for 65 /// operations to legalize them. 66 SDValue Expand(SDValue Op); 67 68 /// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if 69 /// FSUB isn't legal. 70 /// 71 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 72 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 73 SDValue ExpandUINT_TO_FLOAT(SDValue Op); 74 75 /// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 76 SDValue ExpandSEXTINREG(SDValue Op); 77 78 /// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG. 79 /// 80 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 81 /// type. The contents of the bits in the extended part of each element are 82 /// undef. 83 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op); 84 85 /// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG. 86 /// 87 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 88 /// type, then shifts left and arithmetic shifts right to introduce a sign 89 /// extension. 90 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op); 91 92 /// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG. 93 /// 94 /// Shuffles the low lanes of the operand into place and blends zeros into 95 /// the remaining lanes, finally bitcasting to the proper type. 96 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op); 97 98 /// \brief Expand bswap of vectors into a shuffle if legal. 99 SDValue ExpandBSWAP(SDValue Op); 100 101 /// \brief Implement vselect in terms of XOR, AND, OR when blend is not 102 /// supported by the target. 103 SDValue ExpandVSELECT(SDValue Op); 104 SDValue ExpandSELECT(SDValue Op); 105 SDValue ExpandLoad(SDValue Op); 106 SDValue ExpandStore(SDValue Op); 107 SDValue ExpandFNEG(SDValue Op); 108 SDValue ExpandABSDIFF(SDValue Op); 109 110 /// \brief Implements vector promotion. 111 /// 112 /// This is essentially just bitcasting the operands to a different type and 113 /// bitcasting the result back to the original type. 114 SDValue Promote(SDValue Op); 115 116 /// \brief Implements [SU]INT_TO_FP vector promotion. 117 /// 118 /// This is a [zs]ext of the input operand to the next size up. 119 SDValue PromoteINT_TO_FP(SDValue Op); 120 121 /// \brief Implements FP_TO_[SU]INT vector promotion of the result type. 122 /// 123 /// It is promoted to the next size up integer type. The result is then 124 /// truncated back to the original type. 125 SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned); 126 127 public: 128 /// \brief Begin legalizer the vector operations in the DAG. 129 bool Run(); 130 VectorLegalizer(SelectionDAG& dag) : 131 DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {} 132 }; 133 134 bool VectorLegalizer::Run() { 135 // Before we start legalizing vector nodes, check if there are any vectors. 136 bool HasVectors = false; 137 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 138 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 139 // Check if the values of the nodes contain vectors. We don't need to check 140 // the operands because we are going to check their values at some point. 141 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); 142 J != E; ++J) 143 HasVectors |= J->isVector(); 144 145 // If we found a vector node we can start the legalization. 146 if (HasVectors) 147 break; 148 } 149 150 // If this basic block has no vectors then no need to legalize vectors. 151 if (!HasVectors) 152 return false; 153 154 // The legalize process is inherently a bottom-up recursive process (users 155 // legalize their uses before themselves). Given infinite stack space, we 156 // could just start legalizing on the root and traverse the whole graph. In 157 // practice however, this causes us to run out of stack space on large basic 158 // blocks. To avoid this problem, compute an ordering of the nodes where each 159 // node is only legalized after all of its operands are legalized. 160 DAG.AssignTopologicalOrder(); 161 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 162 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 163 LegalizeOp(SDValue(&*I, 0)); 164 165 // Finally, it's possible the root changed. Get the new root. 166 SDValue OldRoot = DAG.getRoot(); 167 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 168 DAG.setRoot(LegalizedNodes[OldRoot]); 169 170 LegalizedNodes.clear(); 171 172 // Remove dead nodes now. 173 DAG.RemoveDeadNodes(); 174 175 return Changed; 176 } 177 178 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { 179 // Generic legalization: just pass the operand through. 180 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) 181 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 182 return Result.getValue(Op.getResNo()); 183 } 184 185 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 186 // Note that LegalizeOp may be reentered even from single-use nodes, which 187 // means that we always must cache transformed nodes. 188 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 189 if (I != LegalizedNodes.end()) return I->second; 190 191 SDNode* Node = Op.getNode(); 192 193 // Legalize the operands 194 SmallVector<SDValue, 8> Ops; 195 for (const SDValue &Op : Node->op_values()) 196 Ops.push_back(LegalizeOp(Op)); 197 198 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0); 199 200 bool HasVectorValue = false; 201 if (Op.getOpcode() == ISD::LOAD) { 202 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 203 ISD::LoadExtType ExtType = LD->getExtensionType(); 204 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) 205 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), 206 LD->getMemoryVT())) { 207 default: llvm_unreachable("This action is not supported yet!"); 208 case TargetLowering::Legal: 209 return TranslateLegalizeResults(Op, Result); 210 case TargetLowering::Custom: 211 if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) { 212 if (Lowered == Result) 213 return TranslateLegalizeResults(Op, Lowered); 214 Changed = true; 215 if (Lowered->getNumValues() != Op->getNumValues()) { 216 // This expanded to something other than the load. Assume the 217 // lowering code took care of any chain values, and just handle the 218 // returned value. 219 assert(Result.getValue(1).use_empty() && 220 "There are still live users of the old chain!"); 221 return LegalizeOp(Lowered); 222 } else { 223 return TranslateLegalizeResults(Op, Lowered); 224 } 225 } 226 case TargetLowering::Expand: 227 Changed = true; 228 return LegalizeOp(ExpandLoad(Op)); 229 } 230 } else if (Op.getOpcode() == ISD::STORE) { 231 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 232 EVT StVT = ST->getMemoryVT(); 233 MVT ValVT = ST->getValue().getSimpleValueType(); 234 if (StVT.isVector() && ST->isTruncatingStore()) 235 switch (TLI.getTruncStoreAction(ValVT, StVT.getSimpleVT())) { 236 default: llvm_unreachable("This action is not supported yet!"); 237 case TargetLowering::Legal: 238 return TranslateLegalizeResults(Op, Result); 239 case TargetLowering::Custom: { 240 SDValue Lowered = TLI.LowerOperation(Result, DAG); 241 Changed = Lowered != Result; 242 return TranslateLegalizeResults(Op, Lowered); 243 } 244 case TargetLowering::Expand: 245 Changed = true; 246 return LegalizeOp(ExpandStore(Op)); 247 } 248 } else if (Op.getOpcode() == ISD::MSCATTER) 249 HasVectorValue = true; 250 251 for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end(); 252 J != E; 253 ++J) 254 HasVectorValue |= J->isVector(); 255 if (!HasVectorValue) 256 return TranslateLegalizeResults(Op, Result); 257 258 EVT QueryType; 259 switch (Op.getOpcode()) { 260 default: 261 return TranslateLegalizeResults(Op, Result); 262 case ISD::ADD: 263 case ISD::SUB: 264 case ISD::MUL: 265 case ISD::SDIV: 266 case ISD::UDIV: 267 case ISD::SREM: 268 case ISD::UREM: 269 case ISD::SDIVREM: 270 case ISD::UDIVREM: 271 case ISD::FADD: 272 case ISD::FSUB: 273 case ISD::FMUL: 274 case ISD::FDIV: 275 case ISD::FREM: 276 case ISD::AND: 277 case ISD::OR: 278 case ISD::XOR: 279 case ISD::SHL: 280 case ISD::SRA: 281 case ISD::SRL: 282 case ISD::ROTL: 283 case ISD::ROTR: 284 case ISD::BSWAP: 285 case ISD::CTLZ: 286 case ISD::CTTZ: 287 case ISD::CTLZ_ZERO_UNDEF: 288 case ISD::CTTZ_ZERO_UNDEF: 289 case ISD::CTPOP: 290 case ISD::SELECT: 291 case ISD::VSELECT: 292 case ISD::SELECT_CC: 293 case ISD::SETCC: 294 case ISD::ZERO_EXTEND: 295 case ISD::ANY_EXTEND: 296 case ISD::TRUNCATE: 297 case ISD::SIGN_EXTEND: 298 case ISD::FP_TO_SINT: 299 case ISD::FP_TO_UINT: 300 case ISD::FNEG: 301 case ISD::FABS: 302 case ISD::FMINNUM: 303 case ISD::FMAXNUM: 304 case ISD::FMINNAN: 305 case ISD::FMAXNAN: 306 case ISD::FCOPYSIGN: 307 case ISD::FSQRT: 308 case ISD::FSIN: 309 case ISD::FCOS: 310 case ISD::FPOWI: 311 case ISD::FPOW: 312 case ISD::FLOG: 313 case ISD::FLOG2: 314 case ISD::FLOG10: 315 case ISD::FEXP: 316 case ISD::FEXP2: 317 case ISD::FCEIL: 318 case ISD::FTRUNC: 319 case ISD::FRINT: 320 case ISD::FNEARBYINT: 321 case ISD::FROUND: 322 case ISD::FFLOOR: 323 case ISD::FP_ROUND: 324 case ISD::FP_EXTEND: 325 case ISD::FMA: 326 case ISD::SIGN_EXTEND_INREG: 327 case ISD::ANY_EXTEND_VECTOR_INREG: 328 case ISD::SIGN_EXTEND_VECTOR_INREG: 329 case ISD::ZERO_EXTEND_VECTOR_INREG: 330 case ISD::SMIN: 331 case ISD::SMAX: 332 case ISD::UMIN: 333 case ISD::UMAX: 334 case ISD::UABSDIFF: 335 case ISD::SABSDIFF: 336 QueryType = Node->getValueType(0); 337 break; 338 case ISD::FP_ROUND_INREG: 339 QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 340 break; 341 case ISD::SINT_TO_FP: 342 case ISD::UINT_TO_FP: 343 QueryType = Node->getOperand(0).getValueType(); 344 break; 345 case ISD::MSCATTER: 346 QueryType = cast<MaskedScatterSDNode>(Node)->getValue().getValueType(); 347 break; 348 } 349 350 switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) { 351 default: llvm_unreachable("This action is not supported yet!"); 352 case TargetLowering::Promote: 353 Result = Promote(Op); 354 Changed = true; 355 break; 356 case TargetLowering::Legal: 357 break; 358 case TargetLowering::Custom: { 359 SDValue Tmp1 = TLI.LowerOperation(Op, DAG); 360 if (Tmp1.getNode()) { 361 Result = Tmp1; 362 break; 363 } 364 // FALL THROUGH 365 } 366 case TargetLowering::Expand: 367 Result = Expand(Op); 368 } 369 370 // Make sure that the generated code is itself legal. 371 if (Result != Op) { 372 Result = LegalizeOp(Result); 373 Changed = true; 374 } 375 376 // Note that LegalizeOp may be reentered even from single-use nodes, which 377 // means that we always must cache transformed nodes. 378 AddLegalizedOperand(Op, Result); 379 return Result; 380 } 381 382 SDValue VectorLegalizer::Promote(SDValue Op) { 383 // For a few operations there is a specific concept for promotion based on 384 // the operand's type. 385 switch (Op.getOpcode()) { 386 case ISD::SINT_TO_FP: 387 case ISD::UINT_TO_FP: 388 // "Promote" the operation by extending the operand. 389 return PromoteINT_TO_FP(Op); 390 case ISD::FP_TO_UINT: 391 case ISD::FP_TO_SINT: 392 // Promote the operation by extending the operand. 393 return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT); 394 } 395 396 // There are currently two cases of vector promotion: 397 // 1) Bitcasting a vector of integers to a different type to a vector of the 398 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 399 // 2) Extending a vector of floats to a vector of the same number of larger 400 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 401 MVT VT = Op.getSimpleValueType(); 402 assert(Op.getNode()->getNumValues() == 1 && 403 "Can't promote a vector with multiple results!"); 404 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 405 SDLoc dl(Op); 406 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 407 408 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 409 if (Op.getOperand(j).getValueType().isVector()) 410 if (Op.getOperand(j) 411 .getValueType() 412 .getVectorElementType() 413 .isFloatingPoint() && 414 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 415 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j)); 416 else 417 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); 418 else 419 Operands[j] = Op.getOperand(j); 420 } 421 422 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags()); 423 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 424 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 425 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 426 return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl)); 427 else 428 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 429 } 430 431 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) { 432 // INT_TO_FP operations may require the input operand be promoted even 433 // when the type is otherwise legal. 434 EVT VT = Op.getOperand(0).getValueType(); 435 assert(Op.getNode()->getNumValues() == 1 && 436 "Can't promote a vector with multiple results!"); 437 438 // Normal getTypeToPromoteTo() doesn't work here, as that will promote 439 // by widening the vector w/ the same element width and twice the number 440 // of elements. We want the other way around, the same number of elements, 441 // each twice the width. 442 // 443 // Increase the bitwidth of the element to the next pow-of-two 444 // (which is greater than 8 bits). 445 446 EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext()); 447 assert(NVT.isSimple() && "Promoting to a non-simple vector type!"); 448 SDLoc dl(Op); 449 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 450 451 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : 452 ISD::SIGN_EXTEND; 453 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 454 if (Op.getOperand(j).getValueType().isVector()) 455 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j)); 456 else 457 Operands[j] = Op.getOperand(j); 458 } 459 460 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands); 461 } 462 463 // For FP_TO_INT we promote the result type to a vector type with wider 464 // elements and then truncate the result. This is different from the default 465 // PromoteVector which uses bitcast to promote thus assumning that the 466 // promoted vector type has the same overall size. 467 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) { 468 assert(Op.getNode()->getNumValues() == 1 && 469 "Can't promote a vector with multiple results!"); 470 EVT VT = Op.getValueType(); 471 472 EVT NewVT; 473 unsigned NewOpc; 474 while (1) { 475 NewVT = VT.widenIntegerVectorElementType(*DAG.getContext()); 476 assert(NewVT.isSimple() && "Promoting to a non-simple vector type!"); 477 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) { 478 NewOpc = ISD::FP_TO_SINT; 479 break; 480 } 481 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) { 482 NewOpc = ISD::FP_TO_UINT; 483 break; 484 } 485 } 486 487 SDLoc loc(Op); 488 SDValue promoted = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0)); 489 return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted); 490 } 491 492 493 SDValue VectorLegalizer::ExpandLoad(SDValue Op) { 494 SDLoc dl(Op); 495 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 496 SDValue Chain = LD->getChain(); 497 SDValue BasePTR = LD->getBasePtr(); 498 EVT SrcVT = LD->getMemoryVT(); 499 ISD::LoadExtType ExtType = LD->getExtensionType(); 500 501 SmallVector<SDValue, 8> Vals; 502 SmallVector<SDValue, 8> LoadChains; 503 unsigned NumElem = SrcVT.getVectorNumElements(); 504 505 EVT SrcEltVT = SrcVT.getScalarType(); 506 EVT DstEltVT = Op.getNode()->getValueType(0).getScalarType(); 507 508 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { 509 // When elements in a vector is not byte-addressable, we cannot directly 510 // load each element by advancing pointer, which could only address bytes. 511 // Instead, we load all significant words, mask bits off, and concatenate 512 // them to form each element. Finally, they are extended to destination 513 // scalar type to build the destination vector. 514 EVT WideVT = TLI.getPointerTy(DAG.getDataLayout()); 515 516 assert(WideVT.isRound() && 517 "Could not handle the sophisticated case when the widest integer is" 518 " not power of 2."); 519 assert(WideVT.bitsGE(SrcEltVT) && 520 "Type is not legalized?"); 521 522 unsigned WideBytes = WideVT.getStoreSize(); 523 unsigned Offset = 0; 524 unsigned RemainingBytes = SrcVT.getStoreSize(); 525 SmallVector<SDValue, 8> LoadVals; 526 527 while (RemainingBytes > 0) { 528 SDValue ScalarLoad; 529 unsigned LoadBytes = WideBytes; 530 531 if (RemainingBytes >= LoadBytes) { 532 ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR, 533 LD->getPointerInfo().getWithOffset(Offset), 534 LD->isVolatile(), LD->isNonTemporal(), 535 LD->isInvariant(), 536 MinAlign(LD->getAlignment(), Offset), 537 LD->getAAInfo()); 538 } else { 539 EVT LoadVT = WideVT; 540 while (RemainingBytes < LoadBytes) { 541 LoadBytes >>= 1; // Reduce the load size by half. 542 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); 543 } 544 ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, 545 LD->getPointerInfo().getWithOffset(Offset), 546 LoadVT, LD->isVolatile(), 547 LD->isNonTemporal(), LD->isInvariant(), 548 MinAlign(LD->getAlignment(), Offset), 549 LD->getAAInfo()); 550 } 551 552 RemainingBytes -= LoadBytes; 553 Offset += LoadBytes; 554 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 555 DAG.getConstant(LoadBytes, dl, 556 BasePTR.getValueType())); 557 558 LoadVals.push_back(ScalarLoad.getValue(0)); 559 LoadChains.push_back(ScalarLoad.getValue(1)); 560 } 561 562 // Extract bits, pack and extend/trunc them into destination type. 563 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 564 SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT); 565 566 unsigned BitOffset = 0; 567 unsigned WideIdx = 0; 568 unsigned WideBits = WideVT.getSizeInBits(); 569 570 for (unsigned Idx = 0; Idx != NumElem; ++Idx) { 571 SDValue Lo, Hi, ShAmt; 572 573 if (BitOffset < WideBits) { 574 ShAmt = DAG.getConstant( 575 BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 576 Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); 577 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); 578 } 579 580 BitOffset += SrcEltBits; 581 if (BitOffset >= WideBits) { 582 WideIdx++; 583 BitOffset -= WideBits; 584 if (BitOffset > 0) { 585 ShAmt = DAG.getConstant( 586 SrcEltBits - BitOffset, dl, 587 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 588 Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); 589 Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask); 590 } 591 } 592 593 if (Hi.getNode()) 594 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); 595 596 switch (ExtType) { 597 default: llvm_unreachable("Unknown extended-load op!"); 598 case ISD::EXTLOAD: 599 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); 600 break; 601 case ISD::ZEXTLOAD: 602 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); 603 break; 604 case ISD::SEXTLOAD: 605 ShAmt = 606 DAG.getConstant(WideBits - SrcEltBits, dl, 607 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 608 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); 609 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); 610 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); 611 break; 612 } 613 Vals.push_back(Lo); 614 } 615 } else { 616 unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8; 617 618 for (unsigned Idx=0; Idx<NumElem; Idx++) { 619 SDValue ScalarLoad = DAG.getExtLoad(ExtType, dl, 620 Op.getNode()->getValueType(0).getScalarType(), 621 Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride), 622 SrcVT.getScalarType(), 623 LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), 624 MinAlign(LD->getAlignment(), Idx * Stride), LD->getAAInfo()); 625 626 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 627 DAG.getConstant(Stride, dl, BasePTR.getValueType())); 628 629 Vals.push_back(ScalarLoad.getValue(0)); 630 LoadChains.push_back(ScalarLoad.getValue(1)); 631 } 632 } 633 634 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 635 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, 636 Op.getNode()->getValueType(0), Vals); 637 638 AddLegalizedOperand(Op.getValue(0), Value); 639 AddLegalizedOperand(Op.getValue(1), NewChain); 640 641 return (Op.getResNo() ? NewChain : Value); 642 } 643 644 SDValue VectorLegalizer::ExpandStore(SDValue Op) { 645 SDLoc dl(Op); 646 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 647 SDValue Chain = ST->getChain(); 648 SDValue BasePTR = ST->getBasePtr(); 649 SDValue Value = ST->getValue(); 650 EVT StVT = ST->getMemoryVT(); 651 652 unsigned Alignment = ST->getAlignment(); 653 bool isVolatile = ST->isVolatile(); 654 bool isNonTemporal = ST->isNonTemporal(); 655 AAMDNodes AAInfo = ST->getAAInfo(); 656 657 unsigned NumElem = StVT.getVectorNumElements(); 658 // The type of the data we want to save 659 EVT RegVT = Value.getValueType(); 660 EVT RegSclVT = RegVT.getScalarType(); 661 // The type of data as saved in memory. 662 EVT MemSclVT = StVT.getScalarType(); 663 664 // Cast floats into integers 665 unsigned ScalarSize = MemSclVT.getSizeInBits(); 666 667 // Round odd types to the next pow of two. 668 if (!isPowerOf2_32(ScalarSize)) 669 ScalarSize = NextPowerOf2(ScalarSize); 670 671 // Store Stride in bytes 672 unsigned Stride = ScalarSize/8; 673 // Extract each of the elements from the original vector 674 // and save them into memory individually. 675 SmallVector<SDValue, 8> Stores; 676 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 677 SDValue Ex = DAG.getNode( 678 ISD::EXTRACT_VECTOR_ELT, dl, RegSclVT, Value, 679 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 680 681 // This scalar TruncStore may be illegal, but we legalize it later. 682 SDValue Store = DAG.getTruncStore(Chain, dl, Ex, BasePTR, 683 ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT, 684 isVolatile, isNonTemporal, MinAlign(Alignment, Idx*Stride), 685 AAInfo); 686 687 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 688 DAG.getConstant(Stride, dl, BasePTR.getValueType())); 689 690 Stores.push_back(Store); 691 } 692 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 693 AddLegalizedOperand(Op, TF); 694 return TF; 695 } 696 697 SDValue VectorLegalizer::Expand(SDValue Op) { 698 switch (Op->getOpcode()) { 699 case ISD::SIGN_EXTEND_INREG: 700 return ExpandSEXTINREG(Op); 701 case ISD::ANY_EXTEND_VECTOR_INREG: 702 return ExpandANY_EXTEND_VECTOR_INREG(Op); 703 case ISD::SIGN_EXTEND_VECTOR_INREG: 704 return ExpandSIGN_EXTEND_VECTOR_INREG(Op); 705 case ISD::ZERO_EXTEND_VECTOR_INREG: 706 return ExpandZERO_EXTEND_VECTOR_INREG(Op); 707 case ISD::BSWAP: 708 return ExpandBSWAP(Op); 709 case ISD::VSELECT: 710 return ExpandVSELECT(Op); 711 case ISD::SELECT: 712 return ExpandSELECT(Op); 713 case ISD::UINT_TO_FP: 714 return ExpandUINT_TO_FLOAT(Op); 715 case ISD::FNEG: 716 return ExpandFNEG(Op); 717 case ISD::SETCC: 718 return UnrollVSETCC(Op); 719 case ISD::UABSDIFF: 720 case ISD::SABSDIFF: 721 return ExpandABSDIFF(Op); 722 default: 723 return DAG.UnrollVectorOp(Op.getNode()); 724 } 725 } 726 727 SDValue VectorLegalizer::ExpandABSDIFF(SDValue Op) { 728 SDLoc dl(Op); 729 SDValue Op0 = Op.getOperand(0); 730 SDValue Op1 = Op.getOperand(1); 731 EVT VT = Op.getValueType(); 732 733 // For unsigned intrinsic, promote the type to handle unsigned overflow. 734 bool isUabsdiff = (Op->getOpcode() == ISD::UABSDIFF); 735 if (isUabsdiff) { 736 VT = VT.widenIntegerVectorElementType(*DAG.getContext()); 737 Op0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op0); 738 Op1 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op1); 739 } 740 741 SDNodeFlags Flags; 742 Flags.setNoSignedWrap(!isUabsdiff); 743 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Op0, Op1, &Flags); 744 if (isUabsdiff) 745 return DAG.getNode(ISD::TRUNCATE, dl, Op.getValueType(), Sub); 746 747 SDValue Cmp = 748 DAG.getNode(ISD::SETCC, dl, TLI.getSetCCResultType(DAG.getDataLayout(), 749 *DAG.getContext(), VT), 750 Sub, DAG.getConstant(0, dl, VT), DAG.getCondCode(ISD::SETGE)); 751 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), Sub, &Flags); 752 return DAG.getNode(ISD::VSELECT, dl, VT, Cmp, Sub, Neg); 753 } 754 755 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) { 756 // Lower a select instruction where the condition is a scalar and the 757 // operands are vectors. Lower this select to VSELECT and implement it 758 // using XOR AND OR. The selector bit is broadcasted. 759 EVT VT = Op.getValueType(); 760 SDLoc DL(Op); 761 762 SDValue Mask = Op.getOperand(0); 763 SDValue Op1 = Op.getOperand(1); 764 SDValue Op2 = Op.getOperand(2); 765 766 assert(VT.isVector() && !Mask.getValueType().isVector() 767 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 768 769 unsigned NumElem = VT.getVectorNumElements(); 770 771 // If we can't even use the basic vector operations of 772 // AND,OR,XOR, we will have to scalarize the op. 773 // Notice that the operation may be 'promoted' which means that it is 774 // 'bitcasted' to another type which is handled. 775 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 776 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 777 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 778 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 779 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 780 return DAG.UnrollVectorOp(Op.getNode()); 781 782 // Generate a mask operand. 783 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 784 785 // What is the size of each element in the vector mask. 786 EVT BitTy = MaskTy.getScalarType(); 787 788 Mask = DAG.getSelect(DL, BitTy, Mask, 789 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, 790 BitTy), 791 DAG.getConstant(0, DL, BitTy)); 792 793 // Broadcast the mask so that the entire vector is all-one or all zero. 794 SmallVector<SDValue, 8> Ops(NumElem, Mask); 795 Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, Ops); 796 797 // Bitcast the operands to be the same type as the mask. 798 // This is needed when we select between FP types because 799 // the mask is a vector of integers. 800 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 801 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 802 803 SDValue AllOnes = DAG.getConstant( 804 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy); 805 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 806 807 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 808 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 809 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 810 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 811 } 812 813 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) { 814 EVT VT = Op.getValueType(); 815 816 // Make sure that the SRA and SHL instructions are available. 817 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 818 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 819 return DAG.UnrollVectorOp(Op.getNode()); 820 821 SDLoc DL(Op); 822 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT(); 823 824 unsigned BW = VT.getScalarType().getSizeInBits(); 825 unsigned OrigBW = OrigTy.getScalarType().getSizeInBits(); 826 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 827 828 Op = Op.getOperand(0); 829 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz); 830 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 831 } 832 833 // Generically expand a vector anyext in register to a shuffle of the relevant 834 // lanes into the appropriate locations, with other lanes left undef. 835 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) { 836 SDLoc DL(Op); 837 EVT VT = Op.getValueType(); 838 int NumElements = VT.getVectorNumElements(); 839 SDValue Src = Op.getOperand(0); 840 EVT SrcVT = Src.getValueType(); 841 int NumSrcElements = SrcVT.getVectorNumElements(); 842 843 // Build a base mask of undef shuffles. 844 SmallVector<int, 16> ShuffleMask; 845 ShuffleMask.resize(NumSrcElements, -1); 846 847 // Place the extended lanes into the correct locations. 848 int ExtLaneScale = NumSrcElements / NumElements; 849 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 850 for (int i = 0; i < NumElements; ++i) 851 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 852 853 return DAG.getNode( 854 ISD::BITCAST, DL, VT, 855 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 856 } 857 858 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) { 859 SDLoc DL(Op); 860 EVT VT = Op.getValueType(); 861 SDValue Src = Op.getOperand(0); 862 EVT SrcVT = Src.getValueType(); 863 864 // First build an any-extend node which can be legalized above when we 865 // recurse through it. 866 Op = DAG.getAnyExtendVectorInReg(Src, DL, VT); 867 868 // Now we need sign extend. Do this by shifting the elements. Even if these 869 // aren't legal operations, they have a better chance of being legalized 870 // without full scalarization than the sign extension does. 871 unsigned EltWidth = VT.getVectorElementType().getSizeInBits(); 872 unsigned SrcEltWidth = SrcVT.getVectorElementType().getSizeInBits(); 873 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 874 return DAG.getNode(ISD::SRA, DL, VT, 875 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 876 ShiftAmount); 877 } 878 879 // Generically expand a vector zext in register to a shuffle of the relevant 880 // lanes into the appropriate locations, a blend of zero into the high bits, 881 // and a bitcast to the wider element type. 882 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) { 883 SDLoc DL(Op); 884 EVT VT = Op.getValueType(); 885 int NumElements = VT.getVectorNumElements(); 886 SDValue Src = Op.getOperand(0); 887 EVT SrcVT = Src.getValueType(); 888 int NumSrcElements = SrcVT.getVectorNumElements(); 889 890 // Build up a zero vector to blend into this one. 891 EVT SrcScalarVT = SrcVT.getScalarType(); 892 SDValue ScalarZero = DAG.getTargetConstant(0, DL, SrcScalarVT); 893 SmallVector<SDValue, 4> BuildVectorOperands(NumSrcElements, ScalarZero); 894 SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, DL, SrcVT, BuildVectorOperands); 895 896 // Shuffle the incoming lanes into the correct position, and pull all other 897 // lanes from the zero vector. 898 SmallVector<int, 16> ShuffleMask; 899 ShuffleMask.reserve(NumSrcElements); 900 for (int i = 0; i < NumSrcElements; ++i) 901 ShuffleMask.push_back(i); 902 903 int ExtLaneScale = NumSrcElements / NumElements; 904 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 905 for (int i = 0; i < NumElements; ++i) 906 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 907 908 return DAG.getNode(ISD::BITCAST, DL, VT, 909 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 910 } 911 912 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) { 913 EVT VT = Op.getValueType(); 914 915 // Generate a byte wise shuffle mask for the BSWAP. 916 SmallVector<int, 16> ShuffleMask; 917 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 918 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 919 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 920 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 921 922 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 923 924 // Only emit a shuffle if the mask is legal. 925 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) 926 return DAG.UnrollVectorOp(Op.getNode()); 927 928 SDLoc DL(Op); 929 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 930 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 931 ShuffleMask.data()); 932 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 933 } 934 935 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { 936 // Implement VSELECT in terms of XOR, AND, OR 937 // on platforms which do not support blend natively. 938 SDLoc DL(Op); 939 940 SDValue Mask = Op.getOperand(0); 941 SDValue Op1 = Op.getOperand(1); 942 SDValue Op2 = Op.getOperand(2); 943 944 EVT VT = Mask.getValueType(); 945 946 // If we can't even use the basic vector operations of 947 // AND,OR,XOR, we will have to scalarize the op. 948 // Notice that the operation may be 'promoted' which means that it is 949 // 'bitcasted' to another type which is handled. 950 // This operation also isn't safe with AND, OR, XOR when the boolean 951 // type is 0/1 as we need an all ones vector constant to mask with. 952 // FIXME: Sign extend 1 to all ones if thats legal on the target. 953 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 954 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 955 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 956 TLI.getBooleanContents(Op1.getValueType()) != 957 TargetLowering::ZeroOrNegativeOneBooleanContent) 958 return DAG.UnrollVectorOp(Op.getNode()); 959 960 // If the mask and the type are different sizes, unroll the vector op. This 961 // can occur when getSetCCResultType returns something that is different in 962 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 963 if (VT.getSizeInBits() != Op1.getValueType().getSizeInBits()) 964 return DAG.UnrollVectorOp(Op.getNode()); 965 966 // Bitcast the operands to be the same type as the mask. 967 // This is needed when we select between FP types because 968 // the mask is a vector of integers. 969 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 970 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 971 972 SDValue AllOnes = DAG.getConstant( 973 APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), DL, VT); 974 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 975 976 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 977 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 978 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 979 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 980 } 981 982 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { 983 EVT VT = Op.getOperand(0).getValueType(); 984 SDLoc DL(Op); 985 986 // Make sure that the SINT_TO_FP and SRL instructions are available. 987 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand || 988 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) 989 return DAG.UnrollVectorOp(Op.getNode()); 990 991 EVT SVT = VT.getScalarType(); 992 assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) && 993 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 994 995 unsigned BW = SVT.getSizeInBits(); 996 SDValue HalfWord = DAG.getConstant(BW/2, DL, VT); 997 998 // Constants to clear the upper part of the word. 999 // Notice that we can also use SHL+SHR, but using a constant is slightly 1000 // faster on x86. 1001 uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF; 1002 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 1003 1004 // Two to the power of half-word-size. 1005 SDValue TWOHW = DAG.getConstantFP(1 << (BW/2), DL, Op.getValueType()); 1006 1007 // Clear upper part of LO, lower HI 1008 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); 1009 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); 1010 1011 // Convert hi and lo to floats 1012 // Convert the hi part back to the upper values 1013 // TODO: Can any fast-math-flags be set on these nodes? 1014 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); 1015 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); 1016 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); 1017 1018 // Add the two halves 1019 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); 1020 } 1021 1022 1023 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { 1024 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { 1025 SDLoc DL(Op); 1026 SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType()); 1027 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. 1028 return DAG.getNode(ISD::FSUB, DL, Op.getValueType(), 1029 Zero, Op.getOperand(0)); 1030 } 1031 return DAG.UnrollVectorOp(Op.getNode()); 1032 } 1033 1034 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { 1035 EVT VT = Op.getValueType(); 1036 unsigned NumElems = VT.getVectorNumElements(); 1037 EVT EltVT = VT.getVectorElementType(); 1038 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); 1039 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1040 SDLoc dl(Op); 1041 SmallVector<SDValue, 8> Ops(NumElems); 1042 for (unsigned i = 0; i < NumElems; ++i) { 1043 SDValue LHSElem = DAG.getNode( 1044 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1045 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1046 SDValue RHSElem = DAG.getNode( 1047 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1048 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1049 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1050 TLI.getSetCCResultType(DAG.getDataLayout(), 1051 *DAG.getContext(), TmpEltVT), 1052 LHSElem, RHSElem, CC); 1053 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 1054 DAG.getConstant(APInt::getAllOnesValue 1055 (EltVT.getSizeInBits()), dl, EltVT), 1056 DAG.getConstant(0, dl, EltVT)); 1057 } 1058 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 1059 } 1060 1061 } 1062 1063 bool SelectionDAG::LegalizeVectors() { 1064 return VectorLegalizer(*this).Run(); 1065 } 1066