1 //===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SelectionDAG::LegalizeVectors method.
11 //
12 // The vector legalizer looks for vector operations which might need to be
13 // scalarized and legalizes them. This is a separate step from Legalize because
14 // scalarizing can introduce illegal types.  For example, suppose we have an
15 // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
17 // operation, which introduces nodes with the illegal type i64 which must be
18 // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
19 // the operation must be unrolled, which introduces nodes with the illegal
20 // type i8 which must be promoted.
21 //
22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
23 // or operations that happen to take a vector which are custom-lowered;
24 // the legalization for such operations never produces nodes
25 // with illegal types, so it's okay to put off legalizing them until
26 // SelectionDAG::Legalize runs.
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #include "llvm/CodeGen/SelectionDAG.h"
31 #include "llvm/Target/TargetLowering.h"
32 using namespace llvm;
33 
34 namespace {
35 class VectorLegalizer {
36   SelectionDAG& DAG;
37   const TargetLowering &TLI;
38   bool Changed; // Keep track of whether anything changed
39 
40   /// For nodes that are of legal width, and that have more than one use, this
41   /// map indicates what regularized operand to use.  This allows us to avoid
42   /// legalizing the same thing more than once.
43   SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
44 
45   /// \brief Adds a node to the translation cache.
46   void AddLegalizedOperand(SDValue From, SDValue To) {
47     LegalizedNodes.insert(std::make_pair(From, To));
48     // If someone requests legalization of the new node, return itself.
49     if (From != To)
50       LegalizedNodes.insert(std::make_pair(To, To));
51   }
52 
53   /// \brief Legalizes the given node.
54   SDValue LegalizeOp(SDValue Op);
55 
56   /// \brief Assuming the node is legal, "legalize" the results.
57   SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
58 
59   /// \brief Implements unrolling a VSETCC.
60   SDValue UnrollVSETCC(SDValue Op);
61 
62   /// \brief Implement expand-based legalization of vector operations.
63   ///
64   /// This is just a high-level routine to dispatch to specific code paths for
65   /// operations to legalize them.
66   SDValue Expand(SDValue Op);
67 
68   /// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if
69   /// FSUB isn't legal.
70   ///
71   /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
72   /// SINT_TO_FLOAT and SHR on vectors isn't legal.
73   SDValue ExpandUINT_TO_FLOAT(SDValue Op);
74 
75   /// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
76   SDValue ExpandSEXTINREG(SDValue Op);
77 
78   /// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG.
79   ///
80   /// Shuffles the low lanes of the operand into place and bitcasts to the proper
81   /// type. The contents of the bits in the extended part of each element are
82   /// undef.
83   SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op);
84 
85   /// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG.
86   ///
87   /// Shuffles the low lanes of the operand into place, bitcasts to the proper
88   /// type, then shifts left and arithmetic shifts right to introduce a sign
89   /// extension.
90   SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op);
91 
92   /// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG.
93   ///
94   /// Shuffles the low lanes of the operand into place and blends zeros into
95   /// the remaining lanes, finally bitcasting to the proper type.
96   SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op);
97 
98   /// \brief Expand bswap of vectors into a shuffle if legal.
99   SDValue ExpandBSWAP(SDValue Op);
100 
101   /// \brief Implement vselect in terms of XOR, AND, OR when blend is not
102   /// supported by the target.
103   SDValue ExpandVSELECT(SDValue Op);
104   SDValue ExpandSELECT(SDValue Op);
105   SDValue ExpandLoad(SDValue Op);
106   SDValue ExpandStore(SDValue Op);
107   SDValue ExpandFNEG(SDValue Op);
108   SDValue ExpandBITREVERSE(SDValue Op);
109   SDValue ExpandCTLZ(SDValue Op);
110   SDValue ExpandCTTZ_ZERO_UNDEF(SDValue Op);
111 
112   /// \brief Implements vector promotion.
113   ///
114   /// This is essentially just bitcasting the operands to a different type and
115   /// bitcasting the result back to the original type.
116   SDValue Promote(SDValue Op);
117 
118   /// \brief Implements [SU]INT_TO_FP vector promotion.
119   ///
120   /// This is a [zs]ext of the input operand to the next size up.
121   SDValue PromoteINT_TO_FP(SDValue Op);
122 
123   /// \brief Implements FP_TO_[SU]INT vector promotion of the result type.
124   ///
125   /// It is promoted to the next size up integer type.  The result is then
126   /// truncated back to the original type.
127   SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned);
128 
129 public:
130   /// \brief Begin legalizer the vector operations in the DAG.
131   bool Run();
132   VectorLegalizer(SelectionDAG& dag) :
133       DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {}
134 };
135 
136 bool VectorLegalizer::Run() {
137   // Before we start legalizing vector nodes, check if there are any vectors.
138   bool HasVectors = false;
139   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
140        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
141     // Check if the values of the nodes contain vectors. We don't need to check
142     // the operands because we are going to check their values at some point.
143     for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
144          J != E; ++J)
145       HasVectors |= J->isVector();
146 
147     // If we found a vector node we can start the legalization.
148     if (HasVectors)
149       break;
150   }
151 
152   // If this basic block has no vectors then no need to legalize vectors.
153   if (!HasVectors)
154     return false;
155 
156   // The legalize process is inherently a bottom-up recursive process (users
157   // legalize their uses before themselves).  Given infinite stack space, we
158   // could just start legalizing on the root and traverse the whole graph.  In
159   // practice however, this causes us to run out of stack space on large basic
160   // blocks.  To avoid this problem, compute an ordering of the nodes where each
161   // node is only legalized after all of its operands are legalized.
162   DAG.AssignTopologicalOrder();
163   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
164        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
165     LegalizeOp(SDValue(&*I, 0));
166 
167   // Finally, it's possible the root changed.  Get the new root.
168   SDValue OldRoot = DAG.getRoot();
169   assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
170   DAG.setRoot(LegalizedNodes[OldRoot]);
171 
172   LegalizedNodes.clear();
173 
174   // Remove dead nodes now.
175   DAG.RemoveDeadNodes();
176 
177   return Changed;
178 }
179 
180 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
181   // Generic legalization: just pass the operand through.
182   for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
183     AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
184   return Result.getValue(Op.getResNo());
185 }
186 
187 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
188   // Note that LegalizeOp may be reentered even from single-use nodes, which
189   // means that we always must cache transformed nodes.
190   DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
191   if (I != LegalizedNodes.end()) return I->second;
192 
193   SDNode* Node = Op.getNode();
194 
195   // Legalize the operands
196   SmallVector<SDValue, 8> Ops;
197   for (const SDValue &Op : Node->op_values())
198     Ops.push_back(LegalizeOp(Op));
199 
200   SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0);
201 
202   bool HasVectorValue = false;
203   if (Op.getOpcode() == ISD::LOAD) {
204     LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
205     ISD::LoadExtType ExtType = LD->getExtensionType();
206     if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD)
207       switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
208                                    LD->getMemoryVT())) {
209       default: llvm_unreachable("This action is not supported yet!");
210       case TargetLowering::Legal:
211         return TranslateLegalizeResults(Op, Result);
212       case TargetLowering::Custom:
213         if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) {
214           if (Lowered == Result)
215             return TranslateLegalizeResults(Op, Lowered);
216           Changed = true;
217           if (Lowered->getNumValues() != Op->getNumValues()) {
218             // This expanded to something other than the load. Assume the
219             // lowering code took care of any chain values, and just handle the
220             // returned value.
221             assert(Result.getValue(1).use_empty() &&
222                    "There are still live users of the old chain!");
223             return LegalizeOp(Lowered);
224           }
225           return TranslateLegalizeResults(Op, Lowered);
226         }
227       case TargetLowering::Expand:
228         Changed = true;
229         return LegalizeOp(ExpandLoad(Op));
230       }
231   } else if (Op.getOpcode() == ISD::STORE) {
232     StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
233     EVT StVT = ST->getMemoryVT();
234     MVT ValVT = ST->getValue().getSimpleValueType();
235     if (StVT.isVector() && ST->isTruncatingStore())
236       switch (TLI.getTruncStoreAction(ValVT, StVT)) {
237       default: llvm_unreachable("This action is not supported yet!");
238       case TargetLowering::Legal:
239         return TranslateLegalizeResults(Op, Result);
240       case TargetLowering::Custom: {
241         SDValue Lowered = TLI.LowerOperation(Result, DAG);
242         Changed = Lowered != Result;
243         return TranslateLegalizeResults(Op, Lowered);
244       }
245       case TargetLowering::Expand:
246         Changed = true;
247         return LegalizeOp(ExpandStore(Op));
248       }
249   } else if (Op.getOpcode() == ISD::MSCATTER || Op.getOpcode() == ISD::MSTORE)
250     HasVectorValue = true;
251 
252   for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end();
253        J != E;
254        ++J)
255     HasVectorValue |= J->isVector();
256   if (!HasVectorValue)
257     return TranslateLegalizeResults(Op, Result);
258 
259   EVT QueryType;
260   switch (Op.getOpcode()) {
261   default:
262     return TranslateLegalizeResults(Op, Result);
263   case ISD::ADD:
264   case ISD::SUB:
265   case ISD::MUL:
266   case ISD::SDIV:
267   case ISD::UDIV:
268   case ISD::SREM:
269   case ISD::UREM:
270   case ISD::SDIVREM:
271   case ISD::UDIVREM:
272   case ISD::FADD:
273   case ISD::FSUB:
274   case ISD::FMUL:
275   case ISD::FDIV:
276   case ISD::FREM:
277   case ISD::AND:
278   case ISD::OR:
279   case ISD::XOR:
280   case ISD::SHL:
281   case ISD::SRA:
282   case ISD::SRL:
283   case ISD::ROTL:
284   case ISD::ROTR:
285   case ISD::BSWAP:
286   case ISD::BITREVERSE:
287   case ISD::CTLZ:
288   case ISD::CTTZ:
289   case ISD::CTLZ_ZERO_UNDEF:
290   case ISD::CTTZ_ZERO_UNDEF:
291   case ISD::CTPOP:
292   case ISD::SELECT:
293   case ISD::VSELECT:
294   case ISD::SELECT_CC:
295   case ISD::SETCC:
296   case ISD::ZERO_EXTEND:
297   case ISD::ANY_EXTEND:
298   case ISD::TRUNCATE:
299   case ISD::SIGN_EXTEND:
300   case ISD::FP_TO_SINT:
301   case ISD::FP_TO_UINT:
302   case ISD::FNEG:
303   case ISD::FABS:
304   case ISD::FMINNUM:
305   case ISD::FMAXNUM:
306   case ISD::FMINNAN:
307   case ISD::FMAXNAN:
308   case ISD::FCOPYSIGN:
309   case ISD::FSQRT:
310   case ISD::FSIN:
311   case ISD::FCOS:
312   case ISD::FPOWI:
313   case ISD::FPOW:
314   case ISD::FLOG:
315   case ISD::FLOG2:
316   case ISD::FLOG10:
317   case ISD::FEXP:
318   case ISD::FEXP2:
319   case ISD::FCEIL:
320   case ISD::FTRUNC:
321   case ISD::FRINT:
322   case ISD::FNEARBYINT:
323   case ISD::FROUND:
324   case ISD::FFLOOR:
325   case ISD::FP_ROUND:
326   case ISD::FP_EXTEND:
327   case ISD::FMA:
328   case ISD::SIGN_EXTEND_INREG:
329   case ISD::ANY_EXTEND_VECTOR_INREG:
330   case ISD::SIGN_EXTEND_VECTOR_INREG:
331   case ISD::ZERO_EXTEND_VECTOR_INREG:
332   case ISD::SMIN:
333   case ISD::SMAX:
334   case ISD::UMIN:
335   case ISD::UMAX:
336   case ISD::SMUL_LOHI:
337   case ISD::UMUL_LOHI:
338     QueryType = Node->getValueType(0);
339     break;
340   case ISD::FP_ROUND_INREG:
341     QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT();
342     break;
343   case ISD::SINT_TO_FP:
344   case ISD::UINT_TO_FP:
345     QueryType = Node->getOperand(0).getValueType();
346     break;
347   case ISD::MSCATTER:
348     QueryType = cast<MaskedScatterSDNode>(Node)->getValue().getValueType();
349     break;
350   case ISD::MSTORE:
351     QueryType = cast<MaskedStoreSDNode>(Node)->getValue().getValueType();
352     break;
353   }
354 
355   switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) {
356   default: llvm_unreachable("This action is not supported yet!");
357   case TargetLowering::Promote:
358     Result = Promote(Op);
359     Changed = true;
360     break;
361   case TargetLowering::Legal:
362     break;
363   case TargetLowering::Custom: {
364     if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) {
365       Result = Tmp1;
366       break;
367     }
368     LLVM_FALLTHROUGH;
369   }
370   case TargetLowering::Expand:
371     Result = Expand(Op);
372   }
373 
374   // Make sure that the generated code is itself legal.
375   if (Result != Op) {
376     Result = LegalizeOp(Result);
377     Changed = true;
378   }
379 
380   // Note that LegalizeOp may be reentered even from single-use nodes, which
381   // means that we always must cache transformed nodes.
382   AddLegalizedOperand(Op, Result);
383   return Result;
384 }
385 
386 SDValue VectorLegalizer::Promote(SDValue Op) {
387   // For a few operations there is a specific concept for promotion based on
388   // the operand's type.
389   switch (Op.getOpcode()) {
390   case ISD::SINT_TO_FP:
391   case ISD::UINT_TO_FP:
392     // "Promote" the operation by extending the operand.
393     return PromoteINT_TO_FP(Op);
394   case ISD::FP_TO_UINT:
395   case ISD::FP_TO_SINT:
396     // Promote the operation by extending the operand.
397     return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT);
398   }
399 
400   // There are currently two cases of vector promotion:
401   // 1) Bitcasting a vector of integers to a different type to a vector of the
402   //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
403   // 2) Extending a vector of floats to a vector of the same number of larger
404   //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
405   MVT VT = Op.getSimpleValueType();
406   assert(Op.getNode()->getNumValues() == 1 &&
407          "Can't promote a vector with multiple results!");
408   MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
409   SDLoc dl(Op);
410   SmallVector<SDValue, 4> Operands(Op.getNumOperands());
411 
412   for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
413     if (Op.getOperand(j).getValueType().isVector())
414       if (Op.getOperand(j)
415               .getValueType()
416               .getVectorElementType()
417               .isFloatingPoint() &&
418           NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
419         Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j));
420       else
421         Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
422     else
423       Operands[j] = Op.getOperand(j);
424   }
425 
426   Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags());
427   if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
428       (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
429        NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
430     return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl));
431   else
432     return DAG.getNode(ISD::BITCAST, dl, VT, Op);
433 }
434 
435 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) {
436   // INT_TO_FP operations may require the input operand be promoted even
437   // when the type is otherwise legal.
438   EVT VT = Op.getOperand(0).getValueType();
439   assert(Op.getNode()->getNumValues() == 1 &&
440          "Can't promote a vector with multiple results!");
441 
442   // Normal getTypeToPromoteTo() doesn't work here, as that will promote
443   // by widening the vector w/ the same element width and twice the number
444   // of elements. We want the other way around, the same number of elements,
445   // each twice the width.
446   //
447   // Increase the bitwidth of the element to the next pow-of-two
448   // (which is greater than 8 bits).
449 
450   EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext());
451   assert(NVT.isSimple() && "Promoting to a non-simple vector type!");
452   SDLoc dl(Op);
453   SmallVector<SDValue, 4> Operands(Op.getNumOperands());
454 
455   unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND :
456     ISD::SIGN_EXTEND;
457   for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
458     if (Op.getOperand(j).getValueType().isVector())
459       Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
460     else
461       Operands[j] = Op.getOperand(j);
462   }
463 
464   return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands);
465 }
466 
467 // For FP_TO_INT we promote the result type to a vector type with wider
468 // elements and then truncate the result.  This is different from the default
469 // PromoteVector which uses bitcast to promote thus assumning that the
470 // promoted vector type has the same overall size.
471 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) {
472   assert(Op.getNode()->getNumValues() == 1 &&
473          "Can't promote a vector with multiple results!");
474   EVT VT = Op.getValueType();
475 
476   EVT NewVT;
477   unsigned NewOpc;
478   while (1) {
479     NewVT = VT.widenIntegerVectorElementType(*DAG.getContext());
480     assert(NewVT.isSimple() && "Promoting to a non-simple vector type!");
481     if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) {
482       NewOpc = ISD::FP_TO_SINT;
483       break;
484     }
485     if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) {
486       NewOpc = ISD::FP_TO_UINT;
487       break;
488     }
489   }
490 
491   SDLoc loc(Op);
492   SDValue promoted  = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0));
493   return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted);
494 }
495 
496 
497 SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
498   LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
499 
500   EVT SrcVT = LD->getMemoryVT();
501   EVT SrcEltVT = SrcVT.getScalarType();
502   unsigned NumElem = SrcVT.getVectorNumElements();
503 
504 
505   SDValue NewChain;
506   SDValue Value;
507   if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
508     SDLoc dl(Op);
509 
510     SmallVector<SDValue, 8> Vals;
511     SmallVector<SDValue, 8> LoadChains;
512 
513     EVT DstEltVT = LD->getValueType(0).getScalarType();
514     SDValue Chain = LD->getChain();
515     SDValue BasePTR = LD->getBasePtr();
516     ISD::LoadExtType ExtType = LD->getExtensionType();
517 
518     // When elements in a vector is not byte-addressable, we cannot directly
519     // load each element by advancing pointer, which could only address bytes.
520     // Instead, we load all significant words, mask bits off, and concatenate
521     // them to form each element. Finally, they are extended to destination
522     // scalar type to build the destination vector.
523     EVT WideVT = TLI.getPointerTy(DAG.getDataLayout());
524 
525     assert(WideVT.isRound() &&
526            "Could not handle the sophisticated case when the widest integer is"
527            " not power of 2.");
528     assert(WideVT.bitsGE(SrcEltVT) &&
529            "Type is not legalized?");
530 
531     unsigned WideBytes = WideVT.getStoreSize();
532     unsigned Offset = 0;
533     unsigned RemainingBytes = SrcVT.getStoreSize();
534     SmallVector<SDValue, 8> LoadVals;
535 
536     while (RemainingBytes > 0) {
537       SDValue ScalarLoad;
538       unsigned LoadBytes = WideBytes;
539 
540       if (RemainingBytes >= LoadBytes) {
541         ScalarLoad =
542             DAG.getLoad(WideVT, dl, Chain, BasePTR,
543                         LD->getPointerInfo().getWithOffset(Offset),
544                         MinAlign(LD->getAlignment(), Offset),
545                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
546       } else {
547         EVT LoadVT = WideVT;
548         while (RemainingBytes < LoadBytes) {
549           LoadBytes >>= 1; // Reduce the load size by half.
550           LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
551         }
552         ScalarLoad =
553             DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
554                            LD->getPointerInfo().getWithOffset(Offset), LoadVT,
555                            MinAlign(LD->getAlignment(), Offset),
556                            LD->getMemOperand()->getFlags(), LD->getAAInfo());
557       }
558 
559       RemainingBytes -= LoadBytes;
560       Offset += LoadBytes;
561       BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
562                             DAG.getConstant(LoadBytes, dl,
563                                             BasePTR.getValueType()));
564 
565       LoadVals.push_back(ScalarLoad.getValue(0));
566       LoadChains.push_back(ScalarLoad.getValue(1));
567     }
568 
569     // Extract bits, pack and extend/trunc them into destination type.
570     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
571     SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT);
572 
573     unsigned BitOffset = 0;
574     unsigned WideIdx = 0;
575     unsigned WideBits = WideVT.getSizeInBits();
576 
577     for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
578       SDValue Lo, Hi, ShAmt;
579 
580       if (BitOffset < WideBits) {
581         ShAmt = DAG.getConstant(
582             BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
583         Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
584         Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
585       }
586 
587       BitOffset += SrcEltBits;
588       if (BitOffset >= WideBits) {
589         WideIdx++;
590         BitOffset -= WideBits;
591         if (BitOffset > 0) {
592           ShAmt = DAG.getConstant(
593               SrcEltBits - BitOffset, dl,
594               TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
595           Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
596           Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask);
597         }
598       }
599 
600       if (Hi.getNode())
601         Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
602 
603       switch (ExtType) {
604       default: llvm_unreachable("Unknown extended-load op!");
605       case ISD::EXTLOAD:
606         Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
607         break;
608       case ISD::ZEXTLOAD:
609         Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
610         break;
611       case ISD::SEXTLOAD:
612         ShAmt =
613             DAG.getConstant(WideBits - SrcEltBits, dl,
614                             TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
615         Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
616         Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
617         Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
618         break;
619       }
620       Vals.push_back(Lo);
621     }
622 
623     NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
624     Value = DAG.getBuildVector(Op.getNode()->getValueType(0), dl, Vals);
625   } else {
626     SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG);
627 
628     NewChain = Scalarized.getValue(1);
629     Value = Scalarized.getValue(0);
630   }
631 
632   AddLegalizedOperand(Op.getValue(0), Value);
633   AddLegalizedOperand(Op.getValue(1), NewChain);
634 
635   return (Op.getResNo() ? NewChain : Value);
636 }
637 
638 SDValue VectorLegalizer::ExpandStore(SDValue Op) {
639   StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
640 
641   EVT StVT = ST->getMemoryVT();
642   EVT MemSclVT = StVT.getScalarType();
643   unsigned ScalarSize = MemSclVT.getSizeInBits();
644 
645   // Round odd types to the next pow of two.
646   if (!isPowerOf2_32(ScalarSize)) {
647     // FIXME: This is completely broken and inconsistent with ExpandLoad
648     // handling.
649 
650     // For sub-byte element sizes, this ends up with 0 stride between elements,
651     // so the same element just gets re-written to the same location. There seem
652     // to be tests explicitly testing for this broken behavior though.  tests
653     // for this broken behavior.
654 
655     LLVMContext &Ctx = *DAG.getContext();
656 
657     EVT NewMemVT
658       = EVT::getVectorVT(Ctx,
659                          MemSclVT.getIntegerVT(Ctx, NextPowerOf2(ScalarSize)),
660                          StVT.getVectorNumElements());
661 
662     SDValue NewVectorStore = DAG.getTruncStore(
663         ST->getChain(), SDLoc(Op), ST->getValue(), ST->getBasePtr(),
664         ST->getPointerInfo(), NewMemVT, ST->getAlignment(),
665         ST->getMemOperand()->getFlags(), ST->getAAInfo());
666     ST = cast<StoreSDNode>(NewVectorStore.getNode());
667   }
668 
669   SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
670   AddLegalizedOperand(Op, TF);
671   return TF;
672 }
673 
674 SDValue VectorLegalizer::Expand(SDValue Op) {
675   switch (Op->getOpcode()) {
676   case ISD::SIGN_EXTEND_INREG:
677     return ExpandSEXTINREG(Op);
678   case ISD::ANY_EXTEND_VECTOR_INREG:
679     return ExpandANY_EXTEND_VECTOR_INREG(Op);
680   case ISD::SIGN_EXTEND_VECTOR_INREG:
681     return ExpandSIGN_EXTEND_VECTOR_INREG(Op);
682   case ISD::ZERO_EXTEND_VECTOR_INREG:
683     return ExpandZERO_EXTEND_VECTOR_INREG(Op);
684   case ISD::BSWAP:
685     return ExpandBSWAP(Op);
686   case ISD::VSELECT:
687     return ExpandVSELECT(Op);
688   case ISD::SELECT:
689     return ExpandSELECT(Op);
690   case ISD::UINT_TO_FP:
691     return ExpandUINT_TO_FLOAT(Op);
692   case ISD::FNEG:
693     return ExpandFNEG(Op);
694   case ISD::SETCC:
695     return UnrollVSETCC(Op);
696   case ISD::BITREVERSE:
697     return ExpandBITREVERSE(Op);
698   case ISD::CTLZ:
699   case ISD::CTLZ_ZERO_UNDEF:
700     return ExpandCTLZ(Op);
701   case ISD::CTTZ_ZERO_UNDEF:
702     return ExpandCTTZ_ZERO_UNDEF(Op);
703   default:
704     return DAG.UnrollVectorOp(Op.getNode());
705   }
706 }
707 
708 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
709   // Lower a select instruction where the condition is a scalar and the
710   // operands are vectors. Lower this select to VSELECT and implement it
711   // using XOR AND OR. The selector bit is broadcasted.
712   EVT VT = Op.getValueType();
713   SDLoc DL(Op);
714 
715   SDValue Mask = Op.getOperand(0);
716   SDValue Op1 = Op.getOperand(1);
717   SDValue Op2 = Op.getOperand(2);
718 
719   assert(VT.isVector() && !Mask.getValueType().isVector()
720          && Op1.getValueType() == Op2.getValueType() && "Invalid type");
721 
722   // If we can't even use the basic vector operations of
723   // AND,OR,XOR, we will have to scalarize the op.
724   // Notice that the operation may be 'promoted' which means that it is
725   // 'bitcasted' to another type which is handled.
726   // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
727   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
728       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
729       TLI.getOperationAction(ISD::OR,  VT) == TargetLowering::Expand ||
730       TLI.getOperationAction(ISD::BUILD_VECTOR,  VT) == TargetLowering::Expand)
731     return DAG.UnrollVectorOp(Op.getNode());
732 
733   // Generate a mask operand.
734   EVT MaskTy = VT.changeVectorElementTypeToInteger();
735 
736   // What is the size of each element in the vector mask.
737   EVT BitTy = MaskTy.getScalarType();
738 
739   Mask = DAG.getSelect(DL, BitTy, Mask,
740           DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
741                           BitTy),
742           DAG.getConstant(0, DL, BitTy));
743 
744   // Broadcast the mask so that the entire vector is all-one or all zero.
745   Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask);
746 
747   // Bitcast the operands to be the same type as the mask.
748   // This is needed when we select between FP types because
749   // the mask is a vector of integers.
750   Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
751   Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
752 
753   SDValue AllOnes = DAG.getConstant(
754             APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
755   SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
756 
757   Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
758   Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
759   SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
760   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
761 }
762 
763 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
764   EVT VT = Op.getValueType();
765 
766   // Make sure that the SRA and SHL instructions are available.
767   if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
768       TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
769     return DAG.UnrollVectorOp(Op.getNode());
770 
771   SDLoc DL(Op);
772   EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
773 
774   unsigned BW = VT.getScalarSizeInBits();
775   unsigned OrigBW = OrigTy.getScalarSizeInBits();
776   SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
777 
778   Op = Op.getOperand(0);
779   Op =   DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
780   return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
781 }
782 
783 // Generically expand a vector anyext in register to a shuffle of the relevant
784 // lanes into the appropriate locations, with other lanes left undef.
785 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) {
786   SDLoc DL(Op);
787   EVT VT = Op.getValueType();
788   int NumElements = VT.getVectorNumElements();
789   SDValue Src = Op.getOperand(0);
790   EVT SrcVT = Src.getValueType();
791   int NumSrcElements = SrcVT.getVectorNumElements();
792 
793   // Build a base mask of undef shuffles.
794   SmallVector<int, 16> ShuffleMask;
795   ShuffleMask.resize(NumSrcElements, -1);
796 
797   // Place the extended lanes into the correct locations.
798   int ExtLaneScale = NumSrcElements / NumElements;
799   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
800   for (int i = 0; i < NumElements; ++i)
801     ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
802 
803   return DAG.getNode(
804       ISD::BITCAST, DL, VT,
805       DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
806 }
807 
808 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) {
809   SDLoc DL(Op);
810   EVT VT = Op.getValueType();
811   SDValue Src = Op.getOperand(0);
812   EVT SrcVT = Src.getValueType();
813 
814   // First build an any-extend node which can be legalized above when we
815   // recurse through it.
816   Op = DAG.getAnyExtendVectorInReg(Src, DL, VT);
817 
818   // Now we need sign extend. Do this by shifting the elements. Even if these
819   // aren't legal operations, they have a better chance of being legalized
820   // without full scalarization than the sign extension does.
821   unsigned EltWidth = VT.getScalarSizeInBits();
822   unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
823   SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
824   return DAG.getNode(ISD::SRA, DL, VT,
825                      DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
826                      ShiftAmount);
827 }
828 
829 // Generically expand a vector zext in register to a shuffle of the relevant
830 // lanes into the appropriate locations, a blend of zero into the high bits,
831 // and a bitcast to the wider element type.
832 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) {
833   SDLoc DL(Op);
834   EVT VT = Op.getValueType();
835   int NumElements = VT.getVectorNumElements();
836   SDValue Src = Op.getOperand(0);
837   EVT SrcVT = Src.getValueType();
838   int NumSrcElements = SrcVT.getVectorNumElements();
839 
840   // Build up a zero vector to blend into this one.
841   SDValue Zero = DAG.getConstant(0, DL, SrcVT);
842 
843   // Shuffle the incoming lanes into the correct position, and pull all other
844   // lanes from the zero vector.
845   SmallVector<int, 16> ShuffleMask;
846   ShuffleMask.reserve(NumSrcElements);
847   for (int i = 0; i < NumSrcElements; ++i)
848     ShuffleMask.push_back(i);
849 
850   int ExtLaneScale = NumSrcElements / NumElements;
851   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
852   for (int i = 0; i < NumElements; ++i)
853     ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
854 
855   return DAG.getNode(ISD::BITCAST, DL, VT,
856                      DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
857 }
858 
859 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
860   int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
861   for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
862     for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
863       ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
864 }
865 
866 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) {
867   EVT VT = Op.getValueType();
868 
869   // Generate a byte wise shuffle mask for the BSWAP.
870   SmallVector<int, 16> ShuffleMask;
871   createBSWAPShuffleMask(VT, ShuffleMask);
872   EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
873 
874   // Only emit a shuffle if the mask is legal.
875   if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
876     return DAG.UnrollVectorOp(Op.getNode());
877 
878   SDLoc DL(Op);
879   Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
880   Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
881   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
882 }
883 
884 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) {
885   EVT VT = Op.getValueType();
886 
887   // If we have the scalar operation, it's probably cheaper to unroll it.
888   if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType()))
889     return DAG.UnrollVectorOp(Op.getNode());
890 
891   // If the vector element width is a whole number of bytes, test if its legal
892   // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
893   // vector. This greatly reduces the number of bit shifts necessary.
894   unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
895   if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
896     SmallVector<int, 16> BSWAPMask;
897     createBSWAPShuffleMask(VT, BSWAPMask);
898 
899     EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
900     if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
901         (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
902          (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
903           TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
904           TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
905           TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
906       SDLoc DL(Op);
907       Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
908       Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
909                                 BSWAPMask);
910       Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
911       return DAG.getNode(ISD::BITCAST, DL, VT, Op);
912     }
913   }
914 
915   // If we have the appropriate vector bit operations, it is better to use them
916   // than unrolling and expanding each component.
917   if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) ||
918       !TLI.isOperationLegalOrCustom(ISD::SRL, VT) ||
919       !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
920       !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
921     return DAG.UnrollVectorOp(Op.getNode());
922 
923   // Let LegalizeDAG handle this later.
924   return Op;
925 }
926 
927 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
928   // Implement VSELECT in terms of XOR, AND, OR
929   // on platforms which do not support blend natively.
930   SDLoc DL(Op);
931 
932   SDValue Mask = Op.getOperand(0);
933   SDValue Op1 = Op.getOperand(1);
934   SDValue Op2 = Op.getOperand(2);
935 
936   EVT VT = Mask.getValueType();
937 
938   // If we can't even use the basic vector operations of
939   // AND,OR,XOR, we will have to scalarize the op.
940   // Notice that the operation may be 'promoted' which means that it is
941   // 'bitcasted' to another type which is handled.
942   // This operation also isn't safe with AND, OR, XOR when the boolean
943   // type is 0/1 as we need an all ones vector constant to mask with.
944   // FIXME: Sign extend 1 to all ones if thats legal on the target.
945   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
946       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
947       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
948       TLI.getBooleanContents(Op1.getValueType()) !=
949           TargetLowering::ZeroOrNegativeOneBooleanContent)
950     return DAG.UnrollVectorOp(Op.getNode());
951 
952   // If the mask and the type are different sizes, unroll the vector op. This
953   // can occur when getSetCCResultType returns something that is different in
954   // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
955   if (VT.getSizeInBits() != Op1.getValueSizeInBits())
956     return DAG.UnrollVectorOp(Op.getNode());
957 
958   // Bitcast the operands to be the same type as the mask.
959   // This is needed when we select between FP types because
960   // the mask is a vector of integers.
961   Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
962   Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
963 
964   SDValue AllOnes = DAG.getConstant(
965     APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT);
966   SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
967 
968   Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
969   Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
970   SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
971   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
972 }
973 
974 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
975   EVT VT = Op.getOperand(0).getValueType();
976   SDLoc DL(Op);
977 
978   // Make sure that the SINT_TO_FP and SRL instructions are available.
979   if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand ||
980       TLI.getOperationAction(ISD::SRL,        VT) == TargetLowering::Expand)
981     return DAG.UnrollVectorOp(Op.getNode());
982 
983   unsigned BW = VT.getScalarSizeInBits();
984   assert((BW == 64 || BW == 32) &&
985          "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
986 
987   SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
988 
989   // Constants to clear the upper part of the word.
990   // Notice that we can also use SHL+SHR, but using a constant is slightly
991   // faster on x86.
992   uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
993   SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
994 
995   // Two to the power of half-word-size.
996   SDValue TWOHW = DAG.getConstantFP(1 << (BW / 2), DL, Op.getValueType());
997 
998   // Clear upper part of LO, lower HI
999   SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
1000   SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask);
1001 
1002   // Convert hi and lo to floats
1003   // Convert the hi part back to the upper values
1004   // TODO: Can any fast-math-flags be set on these nodes?
1005   SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
1006           fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
1007   SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);
1008 
1009   // Add the two halves
1010   return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
1011 }
1012 
1013 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
1014   if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
1015     SDLoc DL(Op);
1016     SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType());
1017     // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1018     return DAG.getNode(ISD::FSUB, DL, Op.getValueType(),
1019                        Zero, Op.getOperand(0));
1020   }
1021   return DAG.UnrollVectorOp(Op.getNode());
1022 }
1023 
1024 SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) {
1025   EVT VT = Op.getValueType();
1026   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
1027 
1028   // If the non-ZERO_UNDEF version is supported we can use that instead.
1029   if (Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
1030       TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) {
1031     SDLoc DL(Op);
1032     return DAG.getNode(ISD::CTLZ, DL, Op.getValueType(), Op.getOperand(0));
1033   }
1034 
1035   // If CTPOP is available we can lower with a CTPOP based method:
1036   // u16 ctlz(u16 x) {
1037   //   x |= (x >> 1);
1038   //   x |= (x >> 2);
1039   //   x |= (x >> 4);
1040   //   x |= (x >> 8);
1041   //   return ctpop(~x);
1042   // }
1043   // Ref: "Hacker's Delight" by Henry Warren
1044   if (isPowerOf2_32(NumBitsPerElt) &&
1045       TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
1046       TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
1047       TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT) &&
1048       TLI.isOperationLegalOrCustomOrPromote(ISD::XOR, VT)) {
1049     SDLoc DL(Op);
1050     SDValue Res = Op.getOperand(0);
1051     EVT ShiftTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
1052 
1053     for (unsigned i = 1; i != NumBitsPerElt; i *= 2)
1054       Res = DAG.getNode(
1055           ISD::OR, DL, VT, Res,
1056           DAG.getNode(ISD::SRL, DL, VT, Res, DAG.getConstant(i, DL, ShiftTy)));
1057 
1058     Res = DAG.getNOT(DL, Res, VT);
1059     return DAG.getNode(ISD::CTPOP, DL, VT, Res);
1060   }
1061 
1062   // Otherwise go ahead and unroll.
1063   return DAG.UnrollVectorOp(Op.getNode());
1064 }
1065 
1066 SDValue VectorLegalizer::ExpandCTTZ_ZERO_UNDEF(SDValue Op) {
1067   // If the non-ZERO_UNDEF version is supported we can use that instead.
1068   if (TLI.isOperationLegalOrCustom(ISD::CTTZ, Op.getValueType())) {
1069     SDLoc DL(Op);
1070     return DAG.getNode(ISD::CTTZ, DL, Op.getValueType(), Op.getOperand(0));
1071   }
1072 
1073   // Otherwise go ahead and unroll.
1074   return DAG.UnrollVectorOp(Op.getNode());
1075 }
1076 
1077 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
1078   EVT VT = Op.getValueType();
1079   unsigned NumElems = VT.getVectorNumElements();
1080   EVT EltVT = VT.getVectorElementType();
1081   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
1082   EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1083   SDLoc dl(Op);
1084   SmallVector<SDValue, 8> Ops(NumElems);
1085   for (unsigned i = 0; i < NumElems; ++i) {
1086     SDValue LHSElem = DAG.getNode(
1087         ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1088         DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1089     SDValue RHSElem = DAG.getNode(
1090         ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1091         DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1092     Ops[i] = DAG.getNode(ISD::SETCC, dl,
1093                          TLI.getSetCCResultType(DAG.getDataLayout(),
1094                                                 *DAG.getContext(), TmpEltVT),
1095                          LHSElem, RHSElem, CC);
1096     Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
1097                            DAG.getConstant(APInt::getAllOnesValue
1098                                            (EltVT.getSizeInBits()), dl, EltVT),
1099                            DAG.getConstant(0, dl, EltVT));
1100   }
1101   return DAG.getBuildVector(VT, dl, Ops);
1102 }
1103 
1104 }
1105 
1106 bool SelectionDAG::LegalizeVectors() {
1107   return VectorLegalizer(*this).Run();
1108 }
1109