1 //===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SelectionDAG::LegalizeVectors method. 11 // 12 // The vector legalizer looks for vector operations which might need to be 13 // scalarized and legalizes them. This is a separate step from Legalize because 14 // scalarizing can introduce illegal types. For example, suppose we have an 15 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 17 // operation, which introduces nodes with the illegal type i64 which must be 18 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 19 // the operation must be unrolled, which introduces nodes with the illegal 20 // type i8 which must be promoted. 21 // 22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 23 // or operations that happen to take a vector which are custom-lowered; 24 // the legalization for such operations never produces nodes 25 // with illegal types, so it's okay to put off legalizing them until 26 // SelectionDAG::Legalize runs. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/Target/TargetLowering.h" 32 using namespace llvm; 33 34 namespace { 35 class VectorLegalizer { 36 SelectionDAG& DAG; 37 const TargetLowering &TLI; 38 bool Changed; // Keep track of whether anything changed 39 40 /// For nodes that are of legal width, and that have more than one use, this 41 /// map indicates what regularized operand to use. This allows us to avoid 42 /// legalizing the same thing more than once. 43 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 44 45 /// \brief Adds a node to the translation cache. 46 void AddLegalizedOperand(SDValue From, SDValue To) { 47 LegalizedNodes.insert(std::make_pair(From, To)); 48 // If someone requests legalization of the new node, return itself. 49 if (From != To) 50 LegalizedNodes.insert(std::make_pair(To, To)); 51 } 52 53 /// \brief Legalizes the given node. 54 SDValue LegalizeOp(SDValue Op); 55 56 /// \brief Assuming the node is legal, "legalize" the results. 57 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); 58 59 /// \brief Implements unrolling a VSETCC. 60 SDValue UnrollVSETCC(SDValue Op); 61 62 /// \brief Implement expand-based legalization of vector operations. 63 /// 64 /// This is just a high-level routine to dispatch to specific code paths for 65 /// operations to legalize them. 66 SDValue Expand(SDValue Op); 67 68 /// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if 69 /// FSUB isn't legal. 70 /// 71 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 72 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 73 SDValue ExpandUINT_TO_FLOAT(SDValue Op); 74 75 /// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 76 SDValue ExpandSEXTINREG(SDValue Op); 77 78 /// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG. 79 /// 80 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 81 /// type. The contents of the bits in the extended part of each element are 82 /// undef. 83 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op); 84 85 /// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG. 86 /// 87 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 88 /// type, then shifts left and arithmetic shifts right to introduce a sign 89 /// extension. 90 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op); 91 92 /// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG. 93 /// 94 /// Shuffles the low lanes of the operand into place and blends zeros into 95 /// the remaining lanes, finally bitcasting to the proper type. 96 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op); 97 98 /// \brief Expand bswap of vectors into a shuffle if legal. 99 SDValue ExpandBSWAP(SDValue Op); 100 101 /// \brief Implement vselect in terms of XOR, AND, OR when blend is not 102 /// supported by the target. 103 SDValue ExpandVSELECT(SDValue Op); 104 SDValue ExpandSELECT(SDValue Op); 105 SDValue ExpandLoad(SDValue Op); 106 SDValue ExpandStore(SDValue Op); 107 SDValue ExpandFNEG(SDValue Op); 108 SDValue ExpandFSUB(SDValue Op); 109 SDValue ExpandBITREVERSE(SDValue Op); 110 SDValue ExpandCTLZ(SDValue Op); 111 SDValue ExpandCTTZ_ZERO_UNDEF(SDValue Op); 112 113 /// \brief Implements vector promotion. 114 /// 115 /// This is essentially just bitcasting the operands to a different type and 116 /// bitcasting the result back to the original type. 117 SDValue Promote(SDValue Op); 118 119 /// \brief Implements [SU]INT_TO_FP vector promotion. 120 /// 121 /// This is a [zs]ext of the input operand to the next size up. 122 SDValue PromoteINT_TO_FP(SDValue Op); 123 124 /// \brief Implements FP_TO_[SU]INT vector promotion of the result type. 125 /// 126 /// It is promoted to the next size up integer type. The result is then 127 /// truncated back to the original type. 128 SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned); 129 130 public: 131 /// \brief Begin legalizer the vector operations in the DAG. 132 bool Run(); 133 VectorLegalizer(SelectionDAG& dag) : 134 DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {} 135 }; 136 137 bool VectorLegalizer::Run() { 138 // Before we start legalizing vector nodes, check if there are any vectors. 139 bool HasVectors = false; 140 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 141 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 142 // Check if the values of the nodes contain vectors. We don't need to check 143 // the operands because we are going to check their values at some point. 144 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); 145 J != E; ++J) 146 HasVectors |= J->isVector(); 147 148 // If we found a vector node we can start the legalization. 149 if (HasVectors) 150 break; 151 } 152 153 // If this basic block has no vectors then no need to legalize vectors. 154 if (!HasVectors) 155 return false; 156 157 // The legalize process is inherently a bottom-up recursive process (users 158 // legalize their uses before themselves). Given infinite stack space, we 159 // could just start legalizing on the root and traverse the whole graph. In 160 // practice however, this causes us to run out of stack space on large basic 161 // blocks. To avoid this problem, compute an ordering of the nodes where each 162 // node is only legalized after all of its operands are legalized. 163 DAG.AssignTopologicalOrder(); 164 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 165 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 166 LegalizeOp(SDValue(&*I, 0)); 167 168 // Finally, it's possible the root changed. Get the new root. 169 SDValue OldRoot = DAG.getRoot(); 170 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 171 DAG.setRoot(LegalizedNodes[OldRoot]); 172 173 LegalizedNodes.clear(); 174 175 // Remove dead nodes now. 176 DAG.RemoveDeadNodes(); 177 178 return Changed; 179 } 180 181 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { 182 // Generic legalization: just pass the operand through. 183 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) 184 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 185 return Result.getValue(Op.getResNo()); 186 } 187 188 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 189 // Note that LegalizeOp may be reentered even from single-use nodes, which 190 // means that we always must cache transformed nodes. 191 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 192 if (I != LegalizedNodes.end()) return I->second; 193 194 SDNode* Node = Op.getNode(); 195 196 // Legalize the operands 197 SmallVector<SDValue, 8> Ops; 198 for (const SDValue &Op : Node->op_values()) 199 Ops.push_back(LegalizeOp(Op)); 200 201 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0); 202 203 bool HasVectorValue = false; 204 if (Op.getOpcode() == ISD::LOAD) { 205 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 206 ISD::LoadExtType ExtType = LD->getExtensionType(); 207 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) 208 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), 209 LD->getMemoryVT())) { 210 default: llvm_unreachable("This action is not supported yet!"); 211 case TargetLowering::Legal: 212 return TranslateLegalizeResults(Op, Result); 213 case TargetLowering::Custom: 214 if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) { 215 if (Lowered == Result) 216 return TranslateLegalizeResults(Op, Lowered); 217 Changed = true; 218 if (Lowered->getNumValues() != Op->getNumValues()) { 219 // This expanded to something other than the load. Assume the 220 // lowering code took care of any chain values, and just handle the 221 // returned value. 222 assert(Result.getValue(1).use_empty() && 223 "There are still live users of the old chain!"); 224 return LegalizeOp(Lowered); 225 } 226 return TranslateLegalizeResults(Op, Lowered); 227 } 228 LLVM_FALLTHROUGH; 229 case TargetLowering::Expand: 230 Changed = true; 231 return LegalizeOp(ExpandLoad(Op)); 232 } 233 } else if (Op.getOpcode() == ISD::STORE) { 234 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 235 EVT StVT = ST->getMemoryVT(); 236 MVT ValVT = ST->getValue().getSimpleValueType(); 237 if (StVT.isVector() && ST->isTruncatingStore()) 238 switch (TLI.getTruncStoreAction(ValVT, StVT)) { 239 default: llvm_unreachable("This action is not supported yet!"); 240 case TargetLowering::Legal: 241 return TranslateLegalizeResults(Op, Result); 242 case TargetLowering::Custom: { 243 SDValue Lowered = TLI.LowerOperation(Result, DAG); 244 Changed = Lowered != Result; 245 return TranslateLegalizeResults(Op, Lowered); 246 } 247 case TargetLowering::Expand: 248 Changed = true; 249 return LegalizeOp(ExpandStore(Op)); 250 } 251 } else if (Op.getOpcode() == ISD::MSCATTER || Op.getOpcode() == ISD::MSTORE) 252 HasVectorValue = true; 253 254 for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end(); 255 J != E; 256 ++J) 257 HasVectorValue |= J->isVector(); 258 if (!HasVectorValue) 259 return TranslateLegalizeResults(Op, Result); 260 261 EVT QueryType; 262 switch (Op.getOpcode()) { 263 default: 264 return TranslateLegalizeResults(Op, Result); 265 case ISD::ADD: 266 case ISD::SUB: 267 case ISD::MUL: 268 case ISD::SDIV: 269 case ISD::UDIV: 270 case ISD::SREM: 271 case ISD::UREM: 272 case ISD::SDIVREM: 273 case ISD::UDIVREM: 274 case ISD::FADD: 275 case ISD::FSUB: 276 case ISD::FMUL: 277 case ISD::FDIV: 278 case ISD::FREM: 279 case ISD::AND: 280 case ISD::OR: 281 case ISD::XOR: 282 case ISD::SHL: 283 case ISD::SRA: 284 case ISD::SRL: 285 case ISD::ROTL: 286 case ISD::ROTR: 287 case ISD::BSWAP: 288 case ISD::BITREVERSE: 289 case ISD::CTLZ: 290 case ISD::CTTZ: 291 case ISD::CTLZ_ZERO_UNDEF: 292 case ISD::CTTZ_ZERO_UNDEF: 293 case ISD::CTPOP: 294 case ISD::SELECT: 295 case ISD::VSELECT: 296 case ISD::SELECT_CC: 297 case ISD::SETCC: 298 case ISD::ZERO_EXTEND: 299 case ISD::ANY_EXTEND: 300 case ISD::TRUNCATE: 301 case ISD::SIGN_EXTEND: 302 case ISD::FP_TO_SINT: 303 case ISD::FP_TO_UINT: 304 case ISD::FNEG: 305 case ISD::FABS: 306 case ISD::FMINNUM: 307 case ISD::FMAXNUM: 308 case ISD::FMINNAN: 309 case ISD::FMAXNAN: 310 case ISD::FCOPYSIGN: 311 case ISD::FSQRT: 312 case ISD::FSIN: 313 case ISD::FCOS: 314 case ISD::FPOWI: 315 case ISD::FPOW: 316 case ISD::FLOG: 317 case ISD::FLOG2: 318 case ISD::FLOG10: 319 case ISD::FEXP: 320 case ISD::FEXP2: 321 case ISD::FCEIL: 322 case ISD::FTRUNC: 323 case ISD::FRINT: 324 case ISD::FNEARBYINT: 325 case ISD::FROUND: 326 case ISD::FFLOOR: 327 case ISD::FP_ROUND: 328 case ISD::FP_EXTEND: 329 case ISD::FMA: 330 case ISD::SIGN_EXTEND_INREG: 331 case ISD::ANY_EXTEND_VECTOR_INREG: 332 case ISD::SIGN_EXTEND_VECTOR_INREG: 333 case ISD::ZERO_EXTEND_VECTOR_INREG: 334 case ISD::SMIN: 335 case ISD::SMAX: 336 case ISD::UMIN: 337 case ISD::UMAX: 338 case ISD::SMUL_LOHI: 339 case ISD::UMUL_LOHI: 340 QueryType = Node->getValueType(0); 341 break; 342 case ISD::FP_ROUND_INREG: 343 QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 344 break; 345 case ISD::SINT_TO_FP: 346 case ISD::UINT_TO_FP: 347 QueryType = Node->getOperand(0).getValueType(); 348 break; 349 case ISD::MSCATTER: 350 QueryType = cast<MaskedScatterSDNode>(Node)->getValue().getValueType(); 351 break; 352 case ISD::MSTORE: 353 QueryType = cast<MaskedStoreSDNode>(Node)->getValue().getValueType(); 354 break; 355 } 356 357 switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) { 358 default: llvm_unreachable("This action is not supported yet!"); 359 case TargetLowering::Promote: 360 Result = Promote(Op); 361 Changed = true; 362 break; 363 case TargetLowering::Legal: 364 break; 365 case TargetLowering::Custom: { 366 if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) { 367 Result = Tmp1; 368 break; 369 } 370 LLVM_FALLTHROUGH; 371 } 372 case TargetLowering::Expand: 373 Result = Expand(Op); 374 } 375 376 // Make sure that the generated code is itself legal. 377 if (Result != Op) { 378 Result = LegalizeOp(Result); 379 Changed = true; 380 } 381 382 // Note that LegalizeOp may be reentered even from single-use nodes, which 383 // means that we always must cache transformed nodes. 384 AddLegalizedOperand(Op, Result); 385 return Result; 386 } 387 388 SDValue VectorLegalizer::Promote(SDValue Op) { 389 // For a few operations there is a specific concept for promotion based on 390 // the operand's type. 391 switch (Op.getOpcode()) { 392 case ISD::SINT_TO_FP: 393 case ISD::UINT_TO_FP: 394 // "Promote" the operation by extending the operand. 395 return PromoteINT_TO_FP(Op); 396 case ISD::FP_TO_UINT: 397 case ISD::FP_TO_SINT: 398 // Promote the operation by extending the operand. 399 return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT); 400 } 401 402 // There are currently two cases of vector promotion: 403 // 1) Bitcasting a vector of integers to a different type to a vector of the 404 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 405 // 2) Extending a vector of floats to a vector of the same number of larger 406 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 407 MVT VT = Op.getSimpleValueType(); 408 assert(Op.getNode()->getNumValues() == 1 && 409 "Can't promote a vector with multiple results!"); 410 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 411 SDLoc dl(Op); 412 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 413 414 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 415 if (Op.getOperand(j).getValueType().isVector()) 416 if (Op.getOperand(j) 417 .getValueType() 418 .getVectorElementType() 419 .isFloatingPoint() && 420 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 421 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j)); 422 else 423 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); 424 else 425 Operands[j] = Op.getOperand(j); 426 } 427 428 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags()); 429 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 430 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 431 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 432 return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl)); 433 else 434 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 435 } 436 437 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) { 438 // INT_TO_FP operations may require the input operand be promoted even 439 // when the type is otherwise legal. 440 EVT VT = Op.getOperand(0).getValueType(); 441 assert(Op.getNode()->getNumValues() == 1 && 442 "Can't promote a vector with multiple results!"); 443 444 // Normal getTypeToPromoteTo() doesn't work here, as that will promote 445 // by widening the vector w/ the same element width and twice the number 446 // of elements. We want the other way around, the same number of elements, 447 // each twice the width. 448 // 449 // Increase the bitwidth of the element to the next pow-of-two 450 // (which is greater than 8 bits). 451 452 EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext()); 453 assert(NVT.isSimple() && "Promoting to a non-simple vector type!"); 454 SDLoc dl(Op); 455 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 456 457 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : 458 ISD::SIGN_EXTEND; 459 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 460 if (Op.getOperand(j).getValueType().isVector()) 461 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j)); 462 else 463 Operands[j] = Op.getOperand(j); 464 } 465 466 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands); 467 } 468 469 // For FP_TO_INT we promote the result type to a vector type with wider 470 // elements and then truncate the result. This is different from the default 471 // PromoteVector which uses bitcast to promote thus assumning that the 472 // promoted vector type has the same overall size. 473 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) { 474 assert(Op.getNode()->getNumValues() == 1 && 475 "Can't promote a vector with multiple results!"); 476 EVT VT = Op.getValueType(); 477 478 EVT NewVT; 479 unsigned NewOpc; 480 while (1) { 481 NewVT = VT.widenIntegerVectorElementType(*DAG.getContext()); 482 assert(NewVT.isSimple() && "Promoting to a non-simple vector type!"); 483 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) { 484 NewOpc = ISD::FP_TO_SINT; 485 break; 486 } 487 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) { 488 NewOpc = ISD::FP_TO_UINT; 489 break; 490 } 491 } 492 493 SDLoc loc(Op); 494 SDValue promoted = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0)); 495 return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted); 496 } 497 498 499 SDValue VectorLegalizer::ExpandLoad(SDValue Op) { 500 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 501 502 EVT SrcVT = LD->getMemoryVT(); 503 EVT SrcEltVT = SrcVT.getScalarType(); 504 unsigned NumElem = SrcVT.getVectorNumElements(); 505 506 507 SDValue NewChain; 508 SDValue Value; 509 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { 510 SDLoc dl(Op); 511 512 SmallVector<SDValue, 8> Vals; 513 SmallVector<SDValue, 8> LoadChains; 514 515 EVT DstEltVT = LD->getValueType(0).getScalarType(); 516 SDValue Chain = LD->getChain(); 517 SDValue BasePTR = LD->getBasePtr(); 518 ISD::LoadExtType ExtType = LD->getExtensionType(); 519 520 // When elements in a vector is not byte-addressable, we cannot directly 521 // load each element by advancing pointer, which could only address bytes. 522 // Instead, we load all significant words, mask bits off, and concatenate 523 // them to form each element. Finally, they are extended to destination 524 // scalar type to build the destination vector. 525 EVT WideVT = TLI.getPointerTy(DAG.getDataLayout()); 526 527 assert(WideVT.isRound() && 528 "Could not handle the sophisticated case when the widest integer is" 529 " not power of 2."); 530 assert(WideVT.bitsGE(SrcEltVT) && 531 "Type is not legalized?"); 532 533 unsigned WideBytes = WideVT.getStoreSize(); 534 unsigned Offset = 0; 535 unsigned RemainingBytes = SrcVT.getStoreSize(); 536 SmallVector<SDValue, 8> LoadVals; 537 538 while (RemainingBytes > 0) { 539 SDValue ScalarLoad; 540 unsigned LoadBytes = WideBytes; 541 542 if (RemainingBytes >= LoadBytes) { 543 ScalarLoad = 544 DAG.getLoad(WideVT, dl, Chain, BasePTR, 545 LD->getPointerInfo().getWithOffset(Offset), 546 MinAlign(LD->getAlignment(), Offset), 547 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 548 } else { 549 EVT LoadVT = WideVT; 550 while (RemainingBytes < LoadBytes) { 551 LoadBytes >>= 1; // Reduce the load size by half. 552 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); 553 } 554 ScalarLoad = 555 DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, 556 LD->getPointerInfo().getWithOffset(Offset), LoadVT, 557 MinAlign(LD->getAlignment(), Offset), 558 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 559 } 560 561 RemainingBytes -= LoadBytes; 562 Offset += LoadBytes; 563 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 564 DAG.getConstant(LoadBytes, dl, 565 BasePTR.getValueType())); 566 567 LoadVals.push_back(ScalarLoad.getValue(0)); 568 LoadChains.push_back(ScalarLoad.getValue(1)); 569 } 570 571 // Extract bits, pack and extend/trunc them into destination type. 572 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 573 SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT); 574 575 unsigned BitOffset = 0; 576 unsigned WideIdx = 0; 577 unsigned WideBits = WideVT.getSizeInBits(); 578 579 for (unsigned Idx = 0; Idx != NumElem; ++Idx) { 580 SDValue Lo, Hi, ShAmt; 581 582 if (BitOffset < WideBits) { 583 ShAmt = DAG.getConstant( 584 BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 585 Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); 586 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); 587 } 588 589 BitOffset += SrcEltBits; 590 if (BitOffset >= WideBits) { 591 WideIdx++; 592 BitOffset -= WideBits; 593 if (BitOffset > 0) { 594 ShAmt = DAG.getConstant( 595 SrcEltBits - BitOffset, dl, 596 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 597 Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); 598 Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask); 599 } 600 } 601 602 if (Hi.getNode()) 603 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); 604 605 switch (ExtType) { 606 default: llvm_unreachable("Unknown extended-load op!"); 607 case ISD::EXTLOAD: 608 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); 609 break; 610 case ISD::ZEXTLOAD: 611 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); 612 break; 613 case ISD::SEXTLOAD: 614 ShAmt = 615 DAG.getConstant(WideBits - SrcEltBits, dl, 616 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 617 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); 618 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); 619 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); 620 break; 621 } 622 Vals.push_back(Lo); 623 } 624 625 NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 626 Value = DAG.getBuildVector(Op.getNode()->getValueType(0), dl, Vals); 627 } else { 628 SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG); 629 630 NewChain = Scalarized.getValue(1); 631 Value = Scalarized.getValue(0); 632 } 633 634 AddLegalizedOperand(Op.getValue(0), Value); 635 AddLegalizedOperand(Op.getValue(1), NewChain); 636 637 return (Op.getResNo() ? NewChain : Value); 638 } 639 640 SDValue VectorLegalizer::ExpandStore(SDValue Op) { 641 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 642 643 EVT StVT = ST->getMemoryVT(); 644 EVT MemSclVT = StVT.getScalarType(); 645 unsigned ScalarSize = MemSclVT.getSizeInBits(); 646 647 // Round odd types to the next pow of two. 648 if (!isPowerOf2_32(ScalarSize)) { 649 // FIXME: This is completely broken and inconsistent with ExpandLoad 650 // handling. 651 652 // For sub-byte element sizes, this ends up with 0 stride between elements, 653 // so the same element just gets re-written to the same location. There seem 654 // to be tests explicitly testing for this broken behavior though. tests 655 // for this broken behavior. 656 657 LLVMContext &Ctx = *DAG.getContext(); 658 659 EVT NewMemVT 660 = EVT::getVectorVT(Ctx, 661 MemSclVT.getIntegerVT(Ctx, NextPowerOf2(ScalarSize)), 662 StVT.getVectorNumElements()); 663 664 SDValue NewVectorStore = DAG.getTruncStore( 665 ST->getChain(), SDLoc(Op), ST->getValue(), ST->getBasePtr(), 666 ST->getPointerInfo(), NewMemVT, ST->getAlignment(), 667 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 668 ST = cast<StoreSDNode>(NewVectorStore.getNode()); 669 } 670 671 SDValue TF = TLI.scalarizeVectorStore(ST, DAG); 672 AddLegalizedOperand(Op, TF); 673 return TF; 674 } 675 676 SDValue VectorLegalizer::Expand(SDValue Op) { 677 switch (Op->getOpcode()) { 678 case ISD::SIGN_EXTEND_INREG: 679 return ExpandSEXTINREG(Op); 680 case ISD::ANY_EXTEND_VECTOR_INREG: 681 return ExpandANY_EXTEND_VECTOR_INREG(Op); 682 case ISD::SIGN_EXTEND_VECTOR_INREG: 683 return ExpandSIGN_EXTEND_VECTOR_INREG(Op); 684 case ISD::ZERO_EXTEND_VECTOR_INREG: 685 return ExpandZERO_EXTEND_VECTOR_INREG(Op); 686 case ISD::BSWAP: 687 return ExpandBSWAP(Op); 688 case ISD::VSELECT: 689 return ExpandVSELECT(Op); 690 case ISD::SELECT: 691 return ExpandSELECT(Op); 692 case ISD::UINT_TO_FP: 693 return ExpandUINT_TO_FLOAT(Op); 694 case ISD::FNEG: 695 return ExpandFNEG(Op); 696 case ISD::FSUB: 697 return ExpandFSUB(Op); 698 case ISD::SETCC: 699 return UnrollVSETCC(Op); 700 case ISD::BITREVERSE: 701 return ExpandBITREVERSE(Op); 702 case ISD::CTLZ: 703 case ISD::CTLZ_ZERO_UNDEF: 704 return ExpandCTLZ(Op); 705 case ISD::CTTZ_ZERO_UNDEF: 706 return ExpandCTTZ_ZERO_UNDEF(Op); 707 default: 708 return DAG.UnrollVectorOp(Op.getNode()); 709 } 710 } 711 712 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) { 713 // Lower a select instruction where the condition is a scalar and the 714 // operands are vectors. Lower this select to VSELECT and implement it 715 // using XOR AND OR. The selector bit is broadcasted. 716 EVT VT = Op.getValueType(); 717 SDLoc DL(Op); 718 719 SDValue Mask = Op.getOperand(0); 720 SDValue Op1 = Op.getOperand(1); 721 SDValue Op2 = Op.getOperand(2); 722 723 assert(VT.isVector() && !Mask.getValueType().isVector() 724 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 725 726 // If we can't even use the basic vector operations of 727 // AND,OR,XOR, we will have to scalarize the op. 728 // Notice that the operation may be 'promoted' which means that it is 729 // 'bitcasted' to another type which is handled. 730 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 731 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 732 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 733 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 734 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 735 return DAG.UnrollVectorOp(Op.getNode()); 736 737 // Generate a mask operand. 738 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 739 740 // What is the size of each element in the vector mask. 741 EVT BitTy = MaskTy.getScalarType(); 742 743 Mask = DAG.getSelect(DL, BitTy, Mask, 744 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, 745 BitTy), 746 DAG.getConstant(0, DL, BitTy)); 747 748 // Broadcast the mask so that the entire vector is all-one or all zero. 749 Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask); 750 751 // Bitcast the operands to be the same type as the mask. 752 // This is needed when we select between FP types because 753 // the mask is a vector of integers. 754 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 755 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 756 757 SDValue AllOnes = DAG.getConstant( 758 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy); 759 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 760 761 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 762 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 763 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 764 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 765 } 766 767 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) { 768 EVT VT = Op.getValueType(); 769 770 // Make sure that the SRA and SHL instructions are available. 771 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 772 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 773 return DAG.UnrollVectorOp(Op.getNode()); 774 775 SDLoc DL(Op); 776 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT(); 777 778 unsigned BW = VT.getScalarSizeInBits(); 779 unsigned OrigBW = OrigTy.getScalarSizeInBits(); 780 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 781 782 Op = Op.getOperand(0); 783 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz); 784 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 785 } 786 787 // Generically expand a vector anyext in register to a shuffle of the relevant 788 // lanes into the appropriate locations, with other lanes left undef. 789 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) { 790 SDLoc DL(Op); 791 EVT VT = Op.getValueType(); 792 int NumElements = VT.getVectorNumElements(); 793 SDValue Src = Op.getOperand(0); 794 EVT SrcVT = Src.getValueType(); 795 int NumSrcElements = SrcVT.getVectorNumElements(); 796 797 // Build a base mask of undef shuffles. 798 SmallVector<int, 16> ShuffleMask; 799 ShuffleMask.resize(NumSrcElements, -1); 800 801 // Place the extended lanes into the correct locations. 802 int ExtLaneScale = NumSrcElements / NumElements; 803 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 804 for (int i = 0; i < NumElements; ++i) 805 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 806 807 return DAG.getNode( 808 ISD::BITCAST, DL, VT, 809 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 810 } 811 812 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) { 813 SDLoc DL(Op); 814 EVT VT = Op.getValueType(); 815 SDValue Src = Op.getOperand(0); 816 EVT SrcVT = Src.getValueType(); 817 818 // First build an any-extend node which can be legalized above when we 819 // recurse through it. 820 Op = DAG.getAnyExtendVectorInReg(Src, DL, VT); 821 822 // Now we need sign extend. Do this by shifting the elements. Even if these 823 // aren't legal operations, they have a better chance of being legalized 824 // without full scalarization than the sign extension does. 825 unsigned EltWidth = VT.getScalarSizeInBits(); 826 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); 827 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 828 return DAG.getNode(ISD::SRA, DL, VT, 829 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 830 ShiftAmount); 831 } 832 833 // Generically expand a vector zext in register to a shuffle of the relevant 834 // lanes into the appropriate locations, a blend of zero into the high bits, 835 // and a bitcast to the wider element type. 836 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) { 837 SDLoc DL(Op); 838 EVT VT = Op.getValueType(); 839 int NumElements = VT.getVectorNumElements(); 840 SDValue Src = Op.getOperand(0); 841 EVT SrcVT = Src.getValueType(); 842 int NumSrcElements = SrcVT.getVectorNumElements(); 843 844 // Build up a zero vector to blend into this one. 845 SDValue Zero = DAG.getConstant(0, DL, SrcVT); 846 847 // Shuffle the incoming lanes into the correct position, and pull all other 848 // lanes from the zero vector. 849 SmallVector<int, 16> ShuffleMask; 850 ShuffleMask.reserve(NumSrcElements); 851 for (int i = 0; i < NumSrcElements; ++i) 852 ShuffleMask.push_back(i); 853 854 int ExtLaneScale = NumSrcElements / NumElements; 855 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 856 for (int i = 0; i < NumElements; ++i) 857 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 858 859 return DAG.getNode(ISD::BITCAST, DL, VT, 860 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 861 } 862 863 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) { 864 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 865 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 866 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 867 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 868 } 869 870 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) { 871 EVT VT = Op.getValueType(); 872 873 // Generate a byte wise shuffle mask for the BSWAP. 874 SmallVector<int, 16> ShuffleMask; 875 createBSWAPShuffleMask(VT, ShuffleMask); 876 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 877 878 // Only emit a shuffle if the mask is legal. 879 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) 880 return DAG.UnrollVectorOp(Op.getNode()); 881 882 SDLoc DL(Op); 883 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 884 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); 885 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 886 } 887 888 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) { 889 EVT VT = Op.getValueType(); 890 891 // If we have the scalar operation, it's probably cheaper to unroll it. 892 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) 893 return DAG.UnrollVectorOp(Op.getNode()); 894 895 // If the vector element width is a whole number of bytes, test if its legal 896 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte 897 // vector. This greatly reduces the number of bit shifts necessary. 898 unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); 899 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { 900 SmallVector<int, 16> BSWAPMask; 901 createBSWAPShuffleMask(VT, BSWAPMask); 902 903 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); 904 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && 905 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || 906 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && 907 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && 908 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && 909 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { 910 SDLoc DL(Op); 911 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 912 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 913 BSWAPMask); 914 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); 915 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 916 } 917 } 918 919 // If we have the appropriate vector bit operations, it is better to use them 920 // than unrolling and expanding each component. 921 if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) || 922 !TLI.isOperationLegalOrCustom(ISD::SRL, VT) || 923 !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 924 !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) 925 return DAG.UnrollVectorOp(Op.getNode()); 926 927 // Let LegalizeDAG handle this later. 928 return Op; 929 } 930 931 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { 932 // Implement VSELECT in terms of XOR, AND, OR 933 // on platforms which do not support blend natively. 934 SDLoc DL(Op); 935 936 SDValue Mask = Op.getOperand(0); 937 SDValue Op1 = Op.getOperand(1); 938 SDValue Op2 = Op.getOperand(2); 939 940 EVT VT = Mask.getValueType(); 941 942 // If we can't even use the basic vector operations of 943 // AND,OR,XOR, we will have to scalarize the op. 944 // Notice that the operation may be 'promoted' which means that it is 945 // 'bitcasted' to another type which is handled. 946 // This operation also isn't safe with AND, OR, XOR when the boolean 947 // type is 0/1 as we need an all ones vector constant to mask with. 948 // FIXME: Sign extend 1 to all ones if thats legal on the target. 949 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 950 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 951 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 952 TLI.getBooleanContents(Op1.getValueType()) != 953 TargetLowering::ZeroOrNegativeOneBooleanContent) 954 return DAG.UnrollVectorOp(Op.getNode()); 955 956 // If the mask and the type are different sizes, unroll the vector op. This 957 // can occur when getSetCCResultType returns something that is different in 958 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 959 if (VT.getSizeInBits() != Op1.getValueSizeInBits()) 960 return DAG.UnrollVectorOp(Op.getNode()); 961 962 // Bitcast the operands to be the same type as the mask. 963 // This is needed when we select between FP types because 964 // the mask is a vector of integers. 965 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 966 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 967 968 SDValue AllOnes = DAG.getConstant( 969 APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT); 970 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 971 972 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 973 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 974 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 975 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 976 } 977 978 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { 979 EVT VT = Op.getOperand(0).getValueType(); 980 SDLoc DL(Op); 981 982 // Make sure that the SINT_TO_FP and SRL instructions are available. 983 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand || 984 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) 985 return DAG.UnrollVectorOp(Op.getNode()); 986 987 unsigned BW = VT.getScalarSizeInBits(); 988 assert((BW == 64 || BW == 32) && 989 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 990 991 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT); 992 993 // Constants to clear the upper part of the word. 994 // Notice that we can also use SHL+SHR, but using a constant is slightly 995 // faster on x86. 996 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; 997 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 998 999 // Two to the power of half-word-size. 1000 SDValue TWOHW = DAG.getConstantFP(1 << (BW / 2), DL, Op.getValueType()); 1001 1002 // Clear upper part of LO, lower HI 1003 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); 1004 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); 1005 1006 // Convert hi and lo to floats 1007 // Convert the hi part back to the upper values 1008 // TODO: Can any fast-math-flags be set on these nodes? 1009 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); 1010 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); 1011 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); 1012 1013 // Add the two halves 1014 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); 1015 } 1016 1017 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { 1018 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { 1019 SDLoc DL(Op); 1020 SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType()); 1021 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. 1022 return DAG.getNode(ISD::FSUB, DL, Op.getValueType(), 1023 Zero, Op.getOperand(0)); 1024 } 1025 return DAG.UnrollVectorOp(Op.getNode()); 1026 } 1027 1028 SDValue VectorLegalizer::ExpandFSUB(SDValue Op) { 1029 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal, 1030 // we can defer this to operation legalization where it will be lowered as 1031 // a+(-b). 1032 EVT VT = Op.getValueType(); 1033 if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && 1034 TLI.isOperationLegalOrCustom(ISD::FADD, VT)) 1035 return Op; // Defer to LegalizeDAG 1036 1037 return DAG.UnrollVectorOp(Op.getNode()); 1038 } 1039 1040 SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) { 1041 EVT VT = Op.getValueType(); 1042 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 1043 1044 // If the non-ZERO_UNDEF version is supported we can use that instead. 1045 if (Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF && 1046 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) { 1047 SDLoc DL(Op); 1048 return DAG.getNode(ISD::CTLZ, DL, Op.getValueType(), Op.getOperand(0)); 1049 } 1050 1051 // If CTPOP is available we can lower with a CTPOP based method: 1052 // u16 ctlz(u16 x) { 1053 // x |= (x >> 1); 1054 // x |= (x >> 2); 1055 // x |= (x >> 4); 1056 // x |= (x >> 8); 1057 // return ctpop(~x); 1058 // } 1059 // Ref: "Hacker's Delight" by Henry Warren 1060 if (isPowerOf2_32(NumBitsPerElt) && 1061 TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && 1062 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 1063 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT) && 1064 TLI.isOperationLegalOrCustomOrPromote(ISD::XOR, VT)) { 1065 SDLoc DL(Op); 1066 SDValue Res = Op.getOperand(0); 1067 EVT ShiftTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 1068 1069 for (unsigned i = 1; i != NumBitsPerElt; i *= 2) 1070 Res = DAG.getNode( 1071 ISD::OR, DL, VT, Res, 1072 DAG.getNode(ISD::SRL, DL, VT, Res, DAG.getConstant(i, DL, ShiftTy))); 1073 1074 Res = DAG.getNOT(DL, Res, VT); 1075 return DAG.getNode(ISD::CTPOP, DL, VT, Res); 1076 } 1077 1078 // Otherwise go ahead and unroll. 1079 return DAG.UnrollVectorOp(Op.getNode()); 1080 } 1081 1082 SDValue VectorLegalizer::ExpandCTTZ_ZERO_UNDEF(SDValue Op) { 1083 // If the non-ZERO_UNDEF version is supported we can use that instead. 1084 if (TLI.isOperationLegalOrCustom(ISD::CTTZ, Op.getValueType())) { 1085 SDLoc DL(Op); 1086 return DAG.getNode(ISD::CTTZ, DL, Op.getValueType(), Op.getOperand(0)); 1087 } 1088 1089 // Otherwise go ahead and unroll. 1090 return DAG.UnrollVectorOp(Op.getNode()); 1091 } 1092 1093 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { 1094 EVT VT = Op.getValueType(); 1095 unsigned NumElems = VT.getVectorNumElements(); 1096 EVT EltVT = VT.getVectorElementType(); 1097 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); 1098 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1099 SDLoc dl(Op); 1100 SmallVector<SDValue, 8> Ops(NumElems); 1101 for (unsigned i = 0; i < NumElems; ++i) { 1102 SDValue LHSElem = DAG.getNode( 1103 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1104 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1105 SDValue RHSElem = DAG.getNode( 1106 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1107 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1108 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1109 TLI.getSetCCResultType(DAG.getDataLayout(), 1110 *DAG.getContext(), TmpEltVT), 1111 LHSElem, RHSElem, CC); 1112 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 1113 DAG.getConstant(APInt::getAllOnesValue 1114 (EltVT.getSizeInBits()), dl, EltVT), 1115 DAG.getConstant(0, dl, EltVT)); 1116 } 1117 return DAG.getBuildVector(VT, dl, Ops); 1118 } 1119 1120 } 1121 1122 bool SelectionDAG::LegalizeVectors() { 1123 return VectorLegalizer(*this).Run(); 1124 } 1125