1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SelectionDAG::LegalizeVectors method.
11 //
12 // The vector legalizer looks for vector operations which might need to be
13 // scalarized and legalizes them. This is a separate step from Legalize because
14 // scalarizing can introduce illegal types.  For example, suppose we have an
15 // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
17 // operation, which introduces nodes with the illegal type i64 which must be
18 // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
19 // the operation must be unrolled, which introduces nodes with the illegal
20 // type i8 which must be promoted.
21 //
22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
23 // or operations that happen to take a vector which are custom-lowered;
24 // the legalization for such operations never produces nodes
25 // with illegal types, so it's okay to put off legalizing them until
26 // SelectionDAG::Legalize runs.
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #include "llvm/ADT/APInt.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/SelectionDAG.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/ValueTypes.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MachineValueType.h"
44 #include "llvm/Support/MathExtras.h"
45 #include <cassert>
46 #include <cstdint>
47 #include <iterator>
48 #include <utility>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "legalizevectorops"
53 
54 namespace {
55 
56 class VectorLegalizer {
57   SelectionDAG& DAG;
58   const TargetLowering &TLI;
59   bool Changed = false; // Keep track of whether anything changed
60 
61   /// For nodes that are of legal width, and that have more than one use, this
62   /// map indicates what regularized operand to use.  This allows us to avoid
63   /// legalizing the same thing more than once.
64   SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
65 
66   /// Adds a node to the translation cache.
67   void AddLegalizedOperand(SDValue From, SDValue To) {
68     LegalizedNodes.insert(std::make_pair(From, To));
69     // If someone requests legalization of the new node, return itself.
70     if (From != To)
71       LegalizedNodes.insert(std::make_pair(To, To));
72   }
73 
74   /// Legalizes the given node.
75   SDValue LegalizeOp(SDValue Op);
76 
77   /// Assuming the node is legal, "legalize" the results.
78   SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
79 
80   /// Implements unrolling a VSETCC.
81   SDValue UnrollVSETCC(SDValue Op);
82 
83   /// Implement expand-based legalization of vector operations.
84   ///
85   /// This is just a high-level routine to dispatch to specific code paths for
86   /// operations to legalize them.
87   SDValue Expand(SDValue Op);
88 
89   /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
90   /// FP_TO_SINT isn't legal.
91   SDValue ExpandFP_TO_UINT(SDValue Op);
92 
93   /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
94   /// SINT_TO_FLOAT and SHR on vectors isn't legal.
95   SDValue ExpandUINT_TO_FLOAT(SDValue Op);
96 
97   /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
98   SDValue ExpandSEXTINREG(SDValue Op);
99 
100   /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
101   ///
102   /// Shuffles the low lanes of the operand into place and bitcasts to the proper
103   /// type. The contents of the bits in the extended part of each element are
104   /// undef.
105   SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op);
106 
107   /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
108   ///
109   /// Shuffles the low lanes of the operand into place, bitcasts to the proper
110   /// type, then shifts left and arithmetic shifts right to introduce a sign
111   /// extension.
112   SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op);
113 
114   /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
115   ///
116   /// Shuffles the low lanes of the operand into place and blends zeros into
117   /// the remaining lanes, finally bitcasting to the proper type.
118   SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op);
119 
120   /// Expand bswap of vectors into a shuffle if legal.
121   SDValue ExpandBSWAP(SDValue Op);
122 
123   /// Implement vselect in terms of XOR, AND, OR when blend is not
124   /// supported by the target.
125   SDValue ExpandVSELECT(SDValue Op);
126   SDValue ExpandSELECT(SDValue Op);
127   SDValue ExpandLoad(SDValue Op);
128   SDValue ExpandStore(SDValue Op);
129   SDValue ExpandFNEG(SDValue Op);
130   SDValue ExpandFSUB(SDValue Op);
131   SDValue ExpandBITREVERSE(SDValue Op);
132   SDValue ExpandCTPOP(SDValue Op);
133   SDValue ExpandCTLZ(SDValue Op);
134   SDValue ExpandCTTZ(SDValue Op);
135   SDValue ExpandFunnelShift(SDValue Op);
136   SDValue ExpandROT(SDValue Op);
137   SDValue ExpandFMINNUM_FMAXNUM(SDValue Op);
138   SDValue ExpandStrictFPOp(SDValue Op);
139 
140   /// Implements vector promotion.
141   ///
142   /// This is essentially just bitcasting the operands to a different type and
143   /// bitcasting the result back to the original type.
144   SDValue Promote(SDValue Op);
145 
146   /// Implements [SU]INT_TO_FP vector promotion.
147   ///
148   /// This is a [zs]ext of the input operand to a larger integer type.
149   SDValue PromoteINT_TO_FP(SDValue Op);
150 
151   /// Implements FP_TO_[SU]INT vector promotion of the result type.
152   ///
153   /// It is promoted to a larger integer type.  The result is then
154   /// truncated back to the original type.
155   SDValue PromoteFP_TO_INT(SDValue Op);
156 
157 public:
158   VectorLegalizer(SelectionDAG& dag) :
159       DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
160 
161   /// Begin legalizer the vector operations in the DAG.
162   bool Run();
163 };
164 
165 } // end anonymous namespace
166 
167 bool VectorLegalizer::Run() {
168   // Before we start legalizing vector nodes, check if there are any vectors.
169   bool HasVectors = false;
170   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
171        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
172     // Check if the values of the nodes contain vectors. We don't need to check
173     // the operands because we are going to check their values at some point.
174     for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
175          J != E; ++J)
176       HasVectors |= J->isVector();
177 
178     // If we found a vector node we can start the legalization.
179     if (HasVectors)
180       break;
181   }
182 
183   // If this basic block has no vectors then no need to legalize vectors.
184   if (!HasVectors)
185     return false;
186 
187   // The legalize process is inherently a bottom-up recursive process (users
188   // legalize their uses before themselves).  Given infinite stack space, we
189   // could just start legalizing on the root and traverse the whole graph.  In
190   // practice however, this causes us to run out of stack space on large basic
191   // blocks.  To avoid this problem, compute an ordering of the nodes where each
192   // node is only legalized after all of its operands are legalized.
193   DAG.AssignTopologicalOrder();
194   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
195        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
196     LegalizeOp(SDValue(&*I, 0));
197 
198   // Finally, it's possible the root changed.  Get the new root.
199   SDValue OldRoot = DAG.getRoot();
200   assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
201   DAG.setRoot(LegalizedNodes[OldRoot]);
202 
203   LegalizedNodes.clear();
204 
205   // Remove dead nodes now.
206   DAG.RemoveDeadNodes();
207 
208   return Changed;
209 }
210 
211 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
212   // Generic legalization: just pass the operand through.
213   for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
214     AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
215   return Result.getValue(Op.getResNo());
216 }
217 
218 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
219   // Note that LegalizeOp may be reentered even from single-use nodes, which
220   // means that we always must cache transformed nodes.
221   DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
222   if (I != LegalizedNodes.end()) return I->second;
223 
224   SDNode* Node = Op.getNode();
225 
226   // Legalize the operands
227   SmallVector<SDValue, 8> Ops;
228   for (const SDValue &Op : Node->op_values())
229     Ops.push_back(LegalizeOp(Op));
230 
231   SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops),
232                            Op.getResNo());
233 
234   if (Op.getOpcode() == ISD::LOAD) {
235     LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
236     ISD::LoadExtType ExtType = LD->getExtensionType();
237     if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) {
238       LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: ";
239                  Node->dump(&DAG));
240       switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
241                                    LD->getMemoryVT())) {
242       default: llvm_unreachable("This action is not supported yet!");
243       case TargetLowering::Legal:
244         return TranslateLegalizeResults(Op, Result);
245       case TargetLowering::Custom:
246         if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) {
247           assert(Lowered->getNumValues() == Op->getNumValues() &&
248                  "Unexpected number of results");
249           if (Lowered != Result) {
250             // Make sure the new code is also legal.
251             Lowered = LegalizeOp(Lowered);
252             Changed = true;
253           }
254           return TranslateLegalizeResults(Op, Lowered);
255         }
256         LLVM_FALLTHROUGH;
257       case TargetLowering::Expand:
258         Changed = true;
259         return LegalizeOp(ExpandLoad(Op));
260       }
261     }
262   } else if (Op.getOpcode() == ISD::STORE) {
263     StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
264     EVT StVT = ST->getMemoryVT();
265     MVT ValVT = ST->getValue().getSimpleValueType();
266     if (StVT.isVector() && ST->isTruncatingStore()) {
267       LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: ";
268                  Node->dump(&DAG));
269       switch (TLI.getTruncStoreAction(ValVT, StVT)) {
270       default: llvm_unreachable("This action is not supported yet!");
271       case TargetLowering::Legal:
272         return TranslateLegalizeResults(Op, Result);
273       case TargetLowering::Custom: {
274         SDValue Lowered = TLI.LowerOperation(Result, DAG);
275         if (Lowered != Result) {
276           // Make sure the new code is also legal.
277           Lowered = LegalizeOp(Lowered);
278           Changed = true;
279         }
280         return TranslateLegalizeResults(Op, Lowered);
281       }
282       case TargetLowering::Expand:
283         Changed = true;
284         return LegalizeOp(ExpandStore(Op));
285       }
286     }
287   }
288 
289   bool HasVectorValue = false;
290   for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end();
291        J != E;
292        ++J)
293     HasVectorValue |= J->isVector();
294   if (!HasVectorValue)
295     return TranslateLegalizeResults(Op, Result);
296 
297   TargetLowering::LegalizeAction Action = TargetLowering::Legal;
298   switch (Op.getOpcode()) {
299   default:
300     return TranslateLegalizeResults(Op, Result);
301   case ISD::STRICT_FADD:
302   case ISD::STRICT_FSUB:
303   case ISD::STRICT_FMUL:
304   case ISD::STRICT_FDIV:
305   case ISD::STRICT_FREM:
306   case ISD::STRICT_FSQRT:
307   case ISD::STRICT_FMA:
308   case ISD::STRICT_FPOW:
309   case ISD::STRICT_FPOWI:
310   case ISD::STRICT_FSIN:
311   case ISD::STRICT_FCOS:
312   case ISD::STRICT_FEXP:
313   case ISD::STRICT_FEXP2:
314   case ISD::STRICT_FLOG:
315   case ISD::STRICT_FLOG10:
316   case ISD::STRICT_FLOG2:
317   case ISD::STRICT_FRINT:
318   case ISD::STRICT_FNEARBYINT:
319   case ISD::STRICT_FMAXNUM:
320   case ISD::STRICT_FMINNUM:
321   case ISD::STRICT_FCEIL:
322   case ISD::STRICT_FFLOOR:
323   case ISD::STRICT_FROUND:
324   case ISD::STRICT_FTRUNC:
325     // These pseudo-ops get legalized as if they were their non-strict
326     // equivalent.  For instance, if ISD::FSQRT is legal then ISD::STRICT_FSQRT
327     // is also legal, but if ISD::FSQRT requires expansion then so does
328     // ISD::STRICT_FSQRT.
329     Action = TLI.getStrictFPOperationAction(Node->getOpcode(),
330                                             Node->getValueType(0));
331     break;
332   case ISD::ADD:
333   case ISD::SUB:
334   case ISD::MUL:
335   case ISD::MULHS:
336   case ISD::MULHU:
337   case ISD::SDIV:
338   case ISD::UDIV:
339   case ISD::SREM:
340   case ISD::UREM:
341   case ISD::SDIVREM:
342   case ISD::UDIVREM:
343   case ISD::FADD:
344   case ISD::FSUB:
345   case ISD::FMUL:
346   case ISD::FDIV:
347   case ISD::FREM:
348   case ISD::AND:
349   case ISD::OR:
350   case ISD::XOR:
351   case ISD::SHL:
352   case ISD::SRA:
353   case ISD::SRL:
354   case ISD::FSHL:
355   case ISD::FSHR:
356   case ISD::ROTL:
357   case ISD::ROTR:
358   case ISD::BSWAP:
359   case ISD::BITREVERSE:
360   case ISD::CTLZ:
361   case ISD::CTTZ:
362   case ISD::CTLZ_ZERO_UNDEF:
363   case ISD::CTTZ_ZERO_UNDEF:
364   case ISD::CTPOP:
365   case ISD::SELECT:
366   case ISD::VSELECT:
367   case ISD::SELECT_CC:
368   case ISD::SETCC:
369   case ISD::ZERO_EXTEND:
370   case ISD::ANY_EXTEND:
371   case ISD::TRUNCATE:
372   case ISD::SIGN_EXTEND:
373   case ISD::FP_TO_SINT:
374   case ISD::FP_TO_UINT:
375   case ISD::FNEG:
376   case ISD::FABS:
377   case ISD::FMINNUM:
378   case ISD::FMAXNUM:
379   case ISD::FMINNUM_IEEE:
380   case ISD::FMAXNUM_IEEE:
381   case ISD::FMINIMUM:
382   case ISD::FMAXIMUM:
383   case ISD::FCOPYSIGN:
384   case ISD::FSQRT:
385   case ISD::FSIN:
386   case ISD::FCOS:
387   case ISD::FPOWI:
388   case ISD::FPOW:
389   case ISD::FLOG:
390   case ISD::FLOG2:
391   case ISD::FLOG10:
392   case ISD::FEXP:
393   case ISD::FEXP2:
394   case ISD::FCEIL:
395   case ISD::FTRUNC:
396   case ISD::FRINT:
397   case ISD::FNEARBYINT:
398   case ISD::FROUND:
399   case ISD::FFLOOR:
400   case ISD::FP_ROUND:
401   case ISD::FP_EXTEND:
402   case ISD::FMA:
403   case ISD::SIGN_EXTEND_INREG:
404   case ISD::ANY_EXTEND_VECTOR_INREG:
405   case ISD::SIGN_EXTEND_VECTOR_INREG:
406   case ISD::ZERO_EXTEND_VECTOR_INREG:
407   case ISD::SMIN:
408   case ISD::SMAX:
409   case ISD::UMIN:
410   case ISD::UMAX:
411   case ISD::SMUL_LOHI:
412   case ISD::UMUL_LOHI:
413   case ISD::FCANONICALIZE:
414   case ISD::SADDSAT:
415   case ISD::UADDSAT:
416   case ISD::SSUBSAT:
417   case ISD::USUBSAT:
418     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
419     break;
420   case ISD::SMULFIX: {
421     unsigned Scale = Node->getConstantOperandVal(2);
422     Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
423                                               Node->getValueType(0), Scale);
424     break;
425   }
426   case ISD::FP_ROUND_INREG:
427     Action = TLI.getOperationAction(Node->getOpcode(),
428                cast<VTSDNode>(Node->getOperand(1))->getVT());
429     break;
430   case ISD::SINT_TO_FP:
431   case ISD::UINT_TO_FP:
432     Action = TLI.getOperationAction(Node->getOpcode(),
433                                     Node->getOperand(0).getValueType());
434     break;
435   }
436 
437   LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
438 
439   switch (Action) {
440   default: llvm_unreachable("This action is not supported yet!");
441   case TargetLowering::Promote:
442     Result = Promote(Op);
443     Changed = true;
444     break;
445   case TargetLowering::Legal:
446     LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
447     break;
448   case TargetLowering::Custom: {
449     LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
450     if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) {
451       LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
452       Result = Tmp1;
453       break;
454     }
455     LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
456     LLVM_FALLTHROUGH;
457   }
458   case TargetLowering::Expand:
459     Result = Expand(Op);
460   }
461 
462   // Make sure that the generated code is itself legal.
463   if (Result != Op) {
464     Result = LegalizeOp(Result);
465     Changed = true;
466   }
467 
468   // Note that LegalizeOp may be reentered even from single-use nodes, which
469   // means that we always must cache transformed nodes.
470   AddLegalizedOperand(Op, Result);
471   return Result;
472 }
473 
474 SDValue VectorLegalizer::Promote(SDValue Op) {
475   // For a few operations there is a specific concept for promotion based on
476   // the operand's type.
477   switch (Op.getOpcode()) {
478   case ISD::SINT_TO_FP:
479   case ISD::UINT_TO_FP:
480     // "Promote" the operation by extending the operand.
481     return PromoteINT_TO_FP(Op);
482   case ISD::FP_TO_UINT:
483   case ISD::FP_TO_SINT:
484     // Promote the operation by extending the operand.
485     return PromoteFP_TO_INT(Op);
486   }
487 
488   // There are currently two cases of vector promotion:
489   // 1) Bitcasting a vector of integers to a different type to a vector of the
490   //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
491   // 2) Extending a vector of floats to a vector of the same number of larger
492   //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
493   MVT VT = Op.getSimpleValueType();
494   assert(Op.getNode()->getNumValues() == 1 &&
495          "Can't promote a vector with multiple results!");
496   MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
497   SDLoc dl(Op);
498   SmallVector<SDValue, 4> Operands(Op.getNumOperands());
499 
500   for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
501     if (Op.getOperand(j).getValueType().isVector())
502       if (Op.getOperand(j)
503               .getValueType()
504               .getVectorElementType()
505               .isFloatingPoint() &&
506           NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
507         Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j));
508       else
509         Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
510     else
511       Operands[j] = Op.getOperand(j);
512   }
513 
514   Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags());
515   if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
516       (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
517        NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
518     return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl));
519   else
520     return DAG.getNode(ISD::BITCAST, dl, VT, Op);
521 }
522 
523 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) {
524   // INT_TO_FP operations may require the input operand be promoted even
525   // when the type is otherwise legal.
526   MVT VT = Op.getOperand(0).getSimpleValueType();
527   MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
528   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
529          "Vectors have different number of elements!");
530 
531   SDLoc dl(Op);
532   SmallVector<SDValue, 4> Operands(Op.getNumOperands());
533 
534   unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND :
535     ISD::SIGN_EXTEND;
536   for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
537     if (Op.getOperand(j).getValueType().isVector())
538       Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
539     else
540       Operands[j] = Op.getOperand(j);
541   }
542 
543   return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands);
544 }
545 
546 // For FP_TO_INT we promote the result type to a vector type with wider
547 // elements and then truncate the result.  This is different from the default
548 // PromoteVector which uses bitcast to promote thus assumning that the
549 // promoted vector type has the same overall size.
550 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op) {
551   MVT VT = Op.getSimpleValueType();
552   MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
553   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
554          "Vectors have different number of elements!");
555 
556   unsigned NewOpc = Op->getOpcode();
557   // Change FP_TO_UINT to FP_TO_SINT if possible.
558   // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
559   if (NewOpc == ISD::FP_TO_UINT &&
560       TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
561     NewOpc = ISD::FP_TO_SINT;
562 
563   SDLoc dl(Op);
564   SDValue Promoted  = DAG.getNode(NewOpc, dl, NVT, Op.getOperand(0));
565 
566   // Assert that the converted value fits in the original type.  If it doesn't
567   // (eg: because the value being converted is too big), then the result of the
568   // original operation was undefined anyway, so the assert is still correct.
569   Promoted = DAG.getNode(Op->getOpcode() == ISD::FP_TO_UINT ? ISD::AssertZext
570                                                             : ISD::AssertSext,
571                          dl, NVT, Promoted,
572                          DAG.getValueType(VT.getScalarType()));
573   return DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
574 }
575 
576 SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
577   LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
578 
579   EVT SrcVT = LD->getMemoryVT();
580   EVT SrcEltVT = SrcVT.getScalarType();
581   unsigned NumElem = SrcVT.getVectorNumElements();
582 
583   SDValue NewChain;
584   SDValue Value;
585   if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
586     SDLoc dl(Op);
587 
588     SmallVector<SDValue, 8> Vals;
589     SmallVector<SDValue, 8> LoadChains;
590 
591     EVT DstEltVT = LD->getValueType(0).getScalarType();
592     SDValue Chain = LD->getChain();
593     SDValue BasePTR = LD->getBasePtr();
594     ISD::LoadExtType ExtType = LD->getExtensionType();
595 
596     // When elements in a vector is not byte-addressable, we cannot directly
597     // load each element by advancing pointer, which could only address bytes.
598     // Instead, we load all significant words, mask bits off, and concatenate
599     // them to form each element. Finally, they are extended to destination
600     // scalar type to build the destination vector.
601     EVT WideVT = TLI.getPointerTy(DAG.getDataLayout());
602 
603     assert(WideVT.isRound() &&
604            "Could not handle the sophisticated case when the widest integer is"
605            " not power of 2.");
606     assert(WideVT.bitsGE(SrcEltVT) &&
607            "Type is not legalized?");
608 
609     unsigned WideBytes = WideVT.getStoreSize();
610     unsigned Offset = 0;
611     unsigned RemainingBytes = SrcVT.getStoreSize();
612     SmallVector<SDValue, 8> LoadVals;
613     while (RemainingBytes > 0) {
614       SDValue ScalarLoad;
615       unsigned LoadBytes = WideBytes;
616 
617       if (RemainingBytes >= LoadBytes) {
618         ScalarLoad =
619             DAG.getLoad(WideVT, dl, Chain, BasePTR,
620                         LD->getPointerInfo().getWithOffset(Offset),
621                         MinAlign(LD->getAlignment(), Offset),
622                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
623       } else {
624         EVT LoadVT = WideVT;
625         while (RemainingBytes < LoadBytes) {
626           LoadBytes >>= 1; // Reduce the load size by half.
627           LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
628         }
629         ScalarLoad =
630             DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
631                            LD->getPointerInfo().getWithOffset(Offset), LoadVT,
632                            MinAlign(LD->getAlignment(), Offset),
633                            LD->getMemOperand()->getFlags(), LD->getAAInfo());
634       }
635 
636       RemainingBytes -= LoadBytes;
637       Offset += LoadBytes;
638 
639       BasePTR = DAG.getObjectPtrOffset(dl, BasePTR, LoadBytes);
640 
641       LoadVals.push_back(ScalarLoad.getValue(0));
642       LoadChains.push_back(ScalarLoad.getValue(1));
643     }
644 
645     // Extract bits, pack and extend/trunc them into destination type.
646     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
647     SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT);
648 
649     unsigned BitOffset = 0;
650     unsigned WideIdx = 0;
651     unsigned WideBits = WideVT.getSizeInBits();
652 
653     for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
654       SDValue Lo, Hi, ShAmt;
655 
656       if (BitOffset < WideBits) {
657         ShAmt = DAG.getConstant(
658             BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
659         Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
660         Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
661       }
662 
663       BitOffset += SrcEltBits;
664       if (BitOffset >= WideBits) {
665         WideIdx++;
666         BitOffset -= WideBits;
667         if (BitOffset > 0) {
668           ShAmt = DAG.getConstant(
669               SrcEltBits - BitOffset, dl,
670               TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
671           Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
672           Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask);
673         }
674       }
675 
676       if (Hi.getNode())
677         Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
678 
679       switch (ExtType) {
680       default: llvm_unreachable("Unknown extended-load op!");
681       case ISD::EXTLOAD:
682         Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
683         break;
684       case ISD::ZEXTLOAD:
685         Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
686         break;
687       case ISD::SEXTLOAD:
688         ShAmt =
689             DAG.getConstant(WideBits - SrcEltBits, dl,
690                             TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
691         Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
692         Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
693         Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
694         break;
695       }
696       Vals.push_back(Lo);
697     }
698 
699     NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
700     Value = DAG.getBuildVector(Op.getNode()->getValueType(0), dl, Vals);
701   } else {
702     SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG);
703     // Skip past MERGE_VALUE node if known.
704     if (Scalarized->getOpcode() == ISD::MERGE_VALUES) {
705       NewChain = Scalarized.getOperand(1);
706       Value = Scalarized.getOperand(0);
707     } else {
708       NewChain = Scalarized.getValue(1);
709       Value = Scalarized.getValue(0);
710     }
711   }
712 
713   AddLegalizedOperand(Op.getValue(0), Value);
714   AddLegalizedOperand(Op.getValue(1), NewChain);
715 
716   return (Op.getResNo() ? NewChain : Value);
717 }
718 
719 SDValue VectorLegalizer::ExpandStore(SDValue Op) {
720   StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
721   SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
722   AddLegalizedOperand(Op, TF);
723   return TF;
724 }
725 
726 SDValue VectorLegalizer::Expand(SDValue Op) {
727   switch (Op->getOpcode()) {
728   case ISD::SIGN_EXTEND_INREG:
729     return ExpandSEXTINREG(Op);
730   case ISD::ANY_EXTEND_VECTOR_INREG:
731     return ExpandANY_EXTEND_VECTOR_INREG(Op);
732   case ISD::SIGN_EXTEND_VECTOR_INREG:
733     return ExpandSIGN_EXTEND_VECTOR_INREG(Op);
734   case ISD::ZERO_EXTEND_VECTOR_INREG:
735     return ExpandZERO_EXTEND_VECTOR_INREG(Op);
736   case ISD::BSWAP:
737     return ExpandBSWAP(Op);
738   case ISD::VSELECT:
739     return ExpandVSELECT(Op);
740   case ISD::SELECT:
741     return ExpandSELECT(Op);
742   case ISD::FP_TO_UINT:
743     return ExpandFP_TO_UINT(Op);
744   case ISD::UINT_TO_FP:
745     return ExpandUINT_TO_FLOAT(Op);
746   case ISD::FNEG:
747     return ExpandFNEG(Op);
748   case ISD::FSUB:
749     return ExpandFSUB(Op);
750   case ISD::SETCC:
751     return UnrollVSETCC(Op);
752   case ISD::BITREVERSE:
753     return ExpandBITREVERSE(Op);
754   case ISD::CTPOP:
755     return ExpandCTPOP(Op);
756   case ISD::CTLZ:
757   case ISD::CTLZ_ZERO_UNDEF:
758     return ExpandCTLZ(Op);
759   case ISD::CTTZ:
760   case ISD::CTTZ_ZERO_UNDEF:
761     return ExpandCTTZ(Op);
762   case ISD::FSHL:
763   case ISD::FSHR:
764     return ExpandFunnelShift(Op);
765   case ISD::ROTL:
766   case ISD::ROTR:
767     return ExpandROT(Op);
768   case ISD::FMINNUM:
769   case ISD::FMAXNUM:
770     return ExpandFMINNUM_FMAXNUM(Op);
771   case ISD::STRICT_FADD:
772   case ISD::STRICT_FSUB:
773   case ISD::STRICT_FMUL:
774   case ISD::STRICT_FDIV:
775   case ISD::STRICT_FREM:
776   case ISD::STRICT_FSQRT:
777   case ISD::STRICT_FMA:
778   case ISD::STRICT_FPOW:
779   case ISD::STRICT_FPOWI:
780   case ISD::STRICT_FSIN:
781   case ISD::STRICT_FCOS:
782   case ISD::STRICT_FEXP:
783   case ISD::STRICT_FEXP2:
784   case ISD::STRICT_FLOG:
785   case ISD::STRICT_FLOG10:
786   case ISD::STRICT_FLOG2:
787   case ISD::STRICT_FRINT:
788   case ISD::STRICT_FNEARBYINT:
789   case ISD::STRICT_FMAXNUM:
790   case ISD::STRICT_FMINNUM:
791   case ISD::STRICT_FCEIL:
792   case ISD::STRICT_FFLOOR:
793   case ISD::STRICT_FROUND:
794   case ISD::STRICT_FTRUNC:
795     return ExpandStrictFPOp(Op);
796   default:
797     return DAG.UnrollVectorOp(Op.getNode());
798   }
799 }
800 
801 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
802   // Lower a select instruction where the condition is a scalar and the
803   // operands are vectors. Lower this select to VSELECT and implement it
804   // using XOR AND OR. The selector bit is broadcasted.
805   EVT VT = Op.getValueType();
806   SDLoc DL(Op);
807 
808   SDValue Mask = Op.getOperand(0);
809   SDValue Op1 = Op.getOperand(1);
810   SDValue Op2 = Op.getOperand(2);
811 
812   assert(VT.isVector() && !Mask.getValueType().isVector()
813          && Op1.getValueType() == Op2.getValueType() && "Invalid type");
814 
815   // If we can't even use the basic vector operations of
816   // AND,OR,XOR, we will have to scalarize the op.
817   // Notice that the operation may be 'promoted' which means that it is
818   // 'bitcasted' to another type which is handled.
819   // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
820   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
821       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
822       TLI.getOperationAction(ISD::OR,  VT) == TargetLowering::Expand ||
823       TLI.getOperationAction(ISD::BUILD_VECTOR,  VT) == TargetLowering::Expand)
824     return DAG.UnrollVectorOp(Op.getNode());
825 
826   // Generate a mask operand.
827   EVT MaskTy = VT.changeVectorElementTypeToInteger();
828 
829   // What is the size of each element in the vector mask.
830   EVT BitTy = MaskTy.getScalarType();
831 
832   Mask = DAG.getSelect(DL, BitTy, Mask,
833           DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
834                           BitTy),
835           DAG.getConstant(0, DL, BitTy));
836 
837   // Broadcast the mask so that the entire vector is all-one or all zero.
838   Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask);
839 
840   // Bitcast the operands to be the same type as the mask.
841   // This is needed when we select between FP types because
842   // the mask is a vector of integers.
843   Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
844   Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
845 
846   SDValue AllOnes = DAG.getConstant(
847             APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
848   SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
849 
850   Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
851   Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
852   SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
853   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
854 }
855 
856 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
857   EVT VT = Op.getValueType();
858 
859   // Make sure that the SRA and SHL instructions are available.
860   if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
861       TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
862     return DAG.UnrollVectorOp(Op.getNode());
863 
864   SDLoc DL(Op);
865   EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
866 
867   unsigned BW = VT.getScalarSizeInBits();
868   unsigned OrigBW = OrigTy.getScalarSizeInBits();
869   SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
870 
871   Op = Op.getOperand(0);
872   Op =   DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
873   return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
874 }
875 
876 // Generically expand a vector anyext in register to a shuffle of the relevant
877 // lanes into the appropriate locations, with other lanes left undef.
878 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) {
879   SDLoc DL(Op);
880   EVT VT = Op.getValueType();
881   int NumElements = VT.getVectorNumElements();
882   SDValue Src = Op.getOperand(0);
883   EVT SrcVT = Src.getValueType();
884   int NumSrcElements = SrcVT.getVectorNumElements();
885 
886   // Build a base mask of undef shuffles.
887   SmallVector<int, 16> ShuffleMask;
888   ShuffleMask.resize(NumSrcElements, -1);
889 
890   // Place the extended lanes into the correct locations.
891   int ExtLaneScale = NumSrcElements / NumElements;
892   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
893   for (int i = 0; i < NumElements; ++i)
894     ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
895 
896   return DAG.getNode(
897       ISD::BITCAST, DL, VT,
898       DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
899 }
900 
901 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) {
902   SDLoc DL(Op);
903   EVT VT = Op.getValueType();
904   SDValue Src = Op.getOperand(0);
905   EVT SrcVT = Src.getValueType();
906 
907   // First build an any-extend node which can be legalized above when we
908   // recurse through it.
909   Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src);
910 
911   // Now we need sign extend. Do this by shifting the elements. Even if these
912   // aren't legal operations, they have a better chance of being legalized
913   // without full scalarization than the sign extension does.
914   unsigned EltWidth = VT.getScalarSizeInBits();
915   unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
916   SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
917   return DAG.getNode(ISD::SRA, DL, VT,
918                      DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
919                      ShiftAmount);
920 }
921 
922 // Generically expand a vector zext in register to a shuffle of the relevant
923 // lanes into the appropriate locations, a blend of zero into the high bits,
924 // and a bitcast to the wider element type.
925 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) {
926   SDLoc DL(Op);
927   EVT VT = Op.getValueType();
928   int NumElements = VT.getVectorNumElements();
929   SDValue Src = Op.getOperand(0);
930   EVT SrcVT = Src.getValueType();
931   int NumSrcElements = SrcVT.getVectorNumElements();
932 
933   // Build up a zero vector to blend into this one.
934   SDValue Zero = DAG.getConstant(0, DL, SrcVT);
935 
936   // Shuffle the incoming lanes into the correct position, and pull all other
937   // lanes from the zero vector.
938   SmallVector<int, 16> ShuffleMask;
939   ShuffleMask.reserve(NumSrcElements);
940   for (int i = 0; i < NumSrcElements; ++i)
941     ShuffleMask.push_back(i);
942 
943   int ExtLaneScale = NumSrcElements / NumElements;
944   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
945   for (int i = 0; i < NumElements; ++i)
946     ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
947 
948   return DAG.getNode(ISD::BITCAST, DL, VT,
949                      DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
950 }
951 
952 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
953   int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
954   for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
955     for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
956       ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
957 }
958 
959 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) {
960   EVT VT = Op.getValueType();
961 
962   // Generate a byte wise shuffle mask for the BSWAP.
963   SmallVector<int, 16> ShuffleMask;
964   createBSWAPShuffleMask(VT, ShuffleMask);
965   EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
966 
967   // Only emit a shuffle if the mask is legal.
968   if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
969     return DAG.UnrollVectorOp(Op.getNode());
970 
971   SDLoc DL(Op);
972   Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
973   Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
974   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
975 }
976 
977 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) {
978   EVT VT = Op.getValueType();
979 
980   // If we have the scalar operation, it's probably cheaper to unroll it.
981   if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType()))
982     return DAG.UnrollVectorOp(Op.getNode());
983 
984   // If the vector element width is a whole number of bytes, test if its legal
985   // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
986   // vector. This greatly reduces the number of bit shifts necessary.
987   unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
988   if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
989     SmallVector<int, 16> BSWAPMask;
990     createBSWAPShuffleMask(VT, BSWAPMask);
991 
992     EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
993     if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
994         (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
995          (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
996           TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
997           TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
998           TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
999       SDLoc DL(Op);
1000       Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
1001       Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
1002                                 BSWAPMask);
1003       Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
1004       return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1005     }
1006   }
1007 
1008   // If we have the appropriate vector bit operations, it is better to use them
1009   // than unrolling and expanding each component.
1010   if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) ||
1011       !TLI.isOperationLegalOrCustom(ISD::SRL, VT) ||
1012       !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
1013       !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
1014     return DAG.UnrollVectorOp(Op.getNode());
1015 
1016   // Let LegalizeDAG handle this later.
1017   return Op;
1018 }
1019 
1020 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
1021   // Implement VSELECT in terms of XOR, AND, OR
1022   // on platforms which do not support blend natively.
1023   SDLoc DL(Op);
1024 
1025   SDValue Mask = Op.getOperand(0);
1026   SDValue Op1 = Op.getOperand(1);
1027   SDValue Op2 = Op.getOperand(2);
1028 
1029   EVT VT = Mask.getValueType();
1030 
1031   // If we can't even use the basic vector operations of
1032   // AND,OR,XOR, we will have to scalarize the op.
1033   // Notice that the operation may be 'promoted' which means that it is
1034   // 'bitcasted' to another type which is handled.
1035   // This operation also isn't safe with AND, OR, XOR when the boolean
1036   // type is 0/1 as we need an all ones vector constant to mask with.
1037   // FIXME: Sign extend 1 to all ones if thats legal on the target.
1038   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1039       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1040       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
1041       TLI.getBooleanContents(Op1.getValueType()) !=
1042           TargetLowering::ZeroOrNegativeOneBooleanContent)
1043     return DAG.UnrollVectorOp(Op.getNode());
1044 
1045   // If the mask and the type are different sizes, unroll the vector op. This
1046   // can occur when getSetCCResultType returns something that is different in
1047   // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1048   if (VT.getSizeInBits() != Op1.getValueSizeInBits())
1049     return DAG.UnrollVectorOp(Op.getNode());
1050 
1051   // Bitcast the operands to be the same type as the mask.
1052   // This is needed when we select between FP types because
1053   // the mask is a vector of integers.
1054   Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
1055   Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
1056 
1057   SDValue AllOnes = DAG.getConstant(
1058     APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT);
1059   SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
1060 
1061   Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
1062   Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
1063   SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
1064   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
1065 }
1066 
1067 SDValue VectorLegalizer::ExpandFP_TO_UINT(SDValue Op) {
1068   // Attempt to expand using TargetLowering.
1069   SDValue Result;
1070   if (TLI.expandFP_TO_UINT(Op.getNode(), Result, DAG))
1071     return Result;
1072 
1073   // Otherwise go ahead and unroll.
1074   return DAG.UnrollVectorOp(Op.getNode());
1075 }
1076 
1077 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
1078   EVT VT = Op.getOperand(0).getValueType();
1079   SDLoc DL(Op);
1080 
1081   // Attempt to expand using TargetLowering.
1082   SDValue Result;
1083   if (TLI.expandUINT_TO_FP(Op.getNode(), Result, DAG))
1084     return Result;
1085 
1086   // Make sure that the SINT_TO_FP and SRL instructions are available.
1087   if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand ||
1088       TLI.getOperationAction(ISD::SRL,        VT) == TargetLowering::Expand)
1089     return DAG.UnrollVectorOp(Op.getNode());
1090 
1091   unsigned BW = VT.getScalarSizeInBits();
1092   assert((BW == 64 || BW == 32) &&
1093          "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1094 
1095   SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
1096 
1097   // Constants to clear the upper part of the word.
1098   // Notice that we can also use SHL+SHR, but using a constant is slightly
1099   // faster on x86.
1100   uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1101   SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
1102 
1103   // Two to the power of half-word-size.
1104   SDValue TWOHW = DAG.getConstantFP(1ULL << (BW / 2), DL, Op.getValueType());
1105 
1106   // Clear upper part of LO, lower HI
1107   SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
1108   SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask);
1109 
1110   // Convert hi and lo to floats
1111   // Convert the hi part back to the upper values
1112   // TODO: Can any fast-math-flags be set on these nodes?
1113   SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
1114           fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
1115   SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);
1116 
1117   // Add the two halves
1118   return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
1119 }
1120 
1121 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
1122   if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
1123     SDLoc DL(Op);
1124     SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType());
1125     // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1126     return DAG.getNode(ISD::FSUB, DL, Op.getValueType(),
1127                        Zero, Op.getOperand(0));
1128   }
1129   return DAG.UnrollVectorOp(Op.getNode());
1130 }
1131 
1132 SDValue VectorLegalizer::ExpandFSUB(SDValue Op) {
1133   // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1134   // we can defer this to operation legalization where it will be lowered as
1135   // a+(-b).
1136   EVT VT = Op.getValueType();
1137   if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
1138       TLI.isOperationLegalOrCustom(ISD::FADD, VT))
1139     return Op; // Defer to LegalizeDAG
1140 
1141   return DAG.UnrollVectorOp(Op.getNode());
1142 }
1143 
1144 SDValue VectorLegalizer::ExpandCTPOP(SDValue Op) {
1145   SDValue Result;
1146   if (TLI.expandCTPOP(Op.getNode(), Result, DAG))
1147     return Result;
1148 
1149   return DAG.UnrollVectorOp(Op.getNode());
1150 }
1151 
1152 SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) {
1153   SDValue Result;
1154   if (TLI.expandCTLZ(Op.getNode(), Result, DAG))
1155     return Result;
1156 
1157   return DAG.UnrollVectorOp(Op.getNode());
1158 }
1159 
1160 SDValue VectorLegalizer::ExpandCTTZ(SDValue Op) {
1161   SDValue Result;
1162   if (TLI.expandCTTZ(Op.getNode(), Result, DAG))
1163     return Result;
1164 
1165   return DAG.UnrollVectorOp(Op.getNode());
1166 }
1167 
1168 SDValue VectorLegalizer::ExpandFunnelShift(SDValue Op) {
1169   SDValue Result;
1170   if (TLI.expandFunnelShift(Op.getNode(), Result, DAG))
1171     return Result;
1172 
1173   return DAG.UnrollVectorOp(Op.getNode());
1174 }
1175 
1176 SDValue VectorLegalizer::ExpandROT(SDValue Op) {
1177   SDValue Result;
1178   if (TLI.expandROT(Op.getNode(), Result, DAG))
1179     return Result;
1180 
1181   return DAG.UnrollVectorOp(Op.getNode());
1182 }
1183 
1184 SDValue VectorLegalizer::ExpandFMINNUM_FMAXNUM(SDValue Op) {
1185   if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Op.getNode(), DAG))
1186     return Expanded;
1187   return DAG.UnrollVectorOp(Op.getNode());
1188 }
1189 
1190 SDValue VectorLegalizer::ExpandStrictFPOp(SDValue Op) {
1191   EVT VT = Op.getValueType();
1192   EVT EltVT = VT.getVectorElementType();
1193   unsigned NumElems = VT.getVectorNumElements();
1194   unsigned NumOpers = Op.getNumOperands();
1195   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1196   EVT ValueVTs[] = {EltVT, MVT::Other};
1197   SDValue Chain = Op.getOperand(0);
1198   SDLoc dl(Op);
1199 
1200   SmallVector<SDValue, 32> OpValues;
1201   SmallVector<SDValue, 32> OpChains;
1202   for (unsigned i = 0; i < NumElems; ++i) {
1203     SmallVector<SDValue, 4> Opers;
1204     SDValue Idx = DAG.getConstant(i, dl,
1205                                   TLI.getVectorIdxTy(DAG.getDataLayout()));
1206 
1207     // The Chain is the first operand.
1208     Opers.push_back(Chain);
1209 
1210     // Now process the remaining operands.
1211     for (unsigned j = 1; j < NumOpers; ++j) {
1212       SDValue Oper = Op.getOperand(j);
1213       EVT OperVT = Oper.getValueType();
1214 
1215       if (OperVT.isVector())
1216         Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1217                            EltVT, Oper, Idx);
1218 
1219       Opers.push_back(Oper);
1220     }
1221 
1222     SDValue ScalarOp = DAG.getNode(Op->getOpcode(), dl, ValueVTs, Opers);
1223 
1224     OpValues.push_back(ScalarOp.getValue(0));
1225     OpChains.push_back(ScalarOp.getValue(1));
1226   }
1227 
1228   SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
1229   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
1230 
1231   AddLegalizedOperand(Op.getValue(0), Result);
1232   AddLegalizedOperand(Op.getValue(1), NewChain);
1233 
1234   return Op.getResNo() ? NewChain : Result;
1235 }
1236 
1237 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
1238   EVT VT = Op.getValueType();
1239   unsigned NumElems = VT.getVectorNumElements();
1240   EVT EltVT = VT.getVectorElementType();
1241   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
1242   EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1243   SDLoc dl(Op);
1244   SmallVector<SDValue, 8> Ops(NumElems);
1245   for (unsigned i = 0; i < NumElems; ++i) {
1246     SDValue LHSElem = DAG.getNode(
1247         ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1248         DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1249     SDValue RHSElem = DAG.getNode(
1250         ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1251         DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1252     Ops[i] = DAG.getNode(ISD::SETCC, dl,
1253                          TLI.getSetCCResultType(DAG.getDataLayout(),
1254                                                 *DAG.getContext(), TmpEltVT),
1255                          LHSElem, RHSElem, CC);
1256     Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
1257                            DAG.getConstant(APInt::getAllOnesValue
1258                                            (EltVT.getSizeInBits()), dl, EltVT),
1259                            DAG.getConstant(0, dl, EltVT));
1260   }
1261   return DAG.getBuildVector(VT, dl, Ops);
1262 }
1263 
1264 bool SelectionDAG::LegalizeVectors() {
1265   return VectorLegalizer(*this).Run();
1266 }
1267