1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::LegalizeVectors method. 10 // 11 // The vector legalizer looks for vector operations which might need to be 12 // scalarized and legalizes them. This is a separate step from Legalize because 13 // scalarizing can introduce illegal types. For example, suppose we have an 14 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 16 // operation, which introduces nodes with the illegal type i64 which must be 17 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 18 // the operation must be unrolled, which introduces nodes with the illegal 19 // type i8 which must be promoted. 20 // 21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 22 // or operations that happen to take a vector which are custom-lowered; 23 // the legalization for such operations never produces nodes 24 // with illegal types, so it's okay to put off legalizing them until 25 // SelectionDAG::Legalize runs. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/SelectionDAGNodes.h" 36 #include "llvm/CodeGen/TargetLowering.h" 37 #include "llvm/CodeGen/ValueTypes.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include <cassert> 46 #include <cstdint> 47 #include <iterator> 48 #include <utility> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "legalizevectorops" 53 54 namespace { 55 56 class VectorLegalizer { 57 SelectionDAG& DAG; 58 const TargetLowering &TLI; 59 bool Changed = false; // Keep track of whether anything changed 60 61 /// For nodes that are of legal width, and that have more than one use, this 62 /// map indicates what regularized operand to use. This allows us to avoid 63 /// legalizing the same thing more than once. 64 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 65 66 /// Adds a node to the translation cache. 67 void AddLegalizedOperand(SDValue From, SDValue To) { 68 LegalizedNodes.insert(std::make_pair(From, To)); 69 // If someone requests legalization of the new node, return itself. 70 if (From != To) 71 LegalizedNodes.insert(std::make_pair(To, To)); 72 } 73 74 /// Legalizes the given node. 75 SDValue LegalizeOp(SDValue Op); 76 77 /// Assuming the node is legal, "legalize" the results. 78 SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result); 79 80 /// Make sure Results are legal and update the translation cache. 81 SDValue RecursivelyLegalizeResults(SDValue Op, 82 MutableArrayRef<SDValue> Results); 83 84 /// Wrapper to interface LowerOperation with a vector of Results. 85 /// Returns false if the target wants to use default expansion. Otherwise 86 /// returns true. If return is true and the Results are empty, then the 87 /// target wants to keep the input node as is. 88 bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results); 89 90 /// Implements unrolling a VSETCC. 91 SDValue UnrollVSETCC(SDNode *Node); 92 93 /// Implement expand-based legalization of vector operations. 94 /// 95 /// This is just a high-level routine to dispatch to specific code paths for 96 /// operations to legalize them. 97 void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results); 98 99 /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if 100 /// FP_TO_SINT isn't legal. 101 void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 102 103 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 104 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 105 void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 106 107 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 108 SDValue ExpandSEXTINREG(SDNode *Node); 109 110 /// Implement expansion for ANY_EXTEND_VECTOR_INREG. 111 /// 112 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 113 /// type. The contents of the bits in the extended part of each element are 114 /// undef. 115 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node); 116 117 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG. 118 /// 119 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 120 /// type, then shifts left and arithmetic shifts right to introduce a sign 121 /// extension. 122 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node); 123 124 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG. 125 /// 126 /// Shuffles the low lanes of the operand into place and blends zeros into 127 /// the remaining lanes, finally bitcasting to the proper type. 128 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node); 129 130 /// Expand bswap of vectors into a shuffle if legal. 131 SDValue ExpandBSWAP(SDNode *Node); 132 133 /// Implement vselect in terms of XOR, AND, OR when blend is not 134 /// supported by the target. 135 SDValue ExpandVSELECT(SDNode *Node); 136 SDValue ExpandSELECT(SDNode *Node); 137 std::pair<SDValue, SDValue> ExpandLoad(SDNode *N); 138 SDValue ExpandStore(SDNode *N); 139 SDValue ExpandFNEG(SDNode *Node); 140 void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results); 141 void ExpandSETCC(SDNode *Node, SmallVectorImpl<SDValue> &Results); 142 void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results); 143 void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 144 void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 145 void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 146 void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results); 147 void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results); 148 void ExpandREM(SDNode *Node, SmallVectorImpl<SDValue> &Results); 149 150 void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results); 151 152 /// Implements vector promotion. 153 /// 154 /// This is essentially just bitcasting the operands to a different type and 155 /// bitcasting the result back to the original type. 156 void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results); 157 158 /// Implements [SU]INT_TO_FP vector promotion. 159 /// 160 /// This is a [zs]ext of the input operand to a larger integer type. 161 void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results); 162 163 /// Implements FP_TO_[SU]INT vector promotion of the result type. 164 /// 165 /// It is promoted to a larger integer type. The result is then 166 /// truncated back to the original type. 167 void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 168 169 public: 170 VectorLegalizer(SelectionDAG& dag) : 171 DAG(dag), TLI(dag.getTargetLoweringInfo()) {} 172 173 /// Begin legalizer the vector operations in the DAG. 174 bool Run(); 175 }; 176 177 } // end anonymous namespace 178 179 bool VectorLegalizer::Run() { 180 // Before we start legalizing vector nodes, check if there are any vectors. 181 bool HasVectors = false; 182 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 183 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 184 // Check if the values of the nodes contain vectors. We don't need to check 185 // the operands because we are going to check their values at some point. 186 HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); }); 187 188 // If we found a vector node we can start the legalization. 189 if (HasVectors) 190 break; 191 } 192 193 // If this basic block has no vectors then no need to legalize vectors. 194 if (!HasVectors) 195 return false; 196 197 // The legalize process is inherently a bottom-up recursive process (users 198 // legalize their uses before themselves). Given infinite stack space, we 199 // could just start legalizing on the root and traverse the whole graph. In 200 // practice however, this causes us to run out of stack space on large basic 201 // blocks. To avoid this problem, compute an ordering of the nodes where each 202 // node is only legalized after all of its operands are legalized. 203 DAG.AssignTopologicalOrder(); 204 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 205 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 206 LegalizeOp(SDValue(&*I, 0)); 207 208 // Finally, it's possible the root changed. Get the new root. 209 SDValue OldRoot = DAG.getRoot(); 210 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 211 DAG.setRoot(LegalizedNodes[OldRoot]); 212 213 LegalizedNodes.clear(); 214 215 // Remove dead nodes now. 216 DAG.RemoveDeadNodes(); 217 218 return Changed; 219 } 220 221 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) { 222 assert(Op->getNumValues() == Result->getNumValues() && 223 "Unexpected number of results"); 224 // Generic legalization: just pass the operand through. 225 for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i) 226 AddLegalizedOperand(Op.getValue(i), SDValue(Result, i)); 227 return SDValue(Result, Op.getResNo()); 228 } 229 230 SDValue 231 VectorLegalizer::RecursivelyLegalizeResults(SDValue Op, 232 MutableArrayRef<SDValue> Results) { 233 assert(Results.size() == Op->getNumValues() && 234 "Unexpected number of results"); 235 // Make sure that the generated code is itself legal. 236 for (unsigned i = 0, e = Results.size(); i != e; ++i) { 237 Results[i] = LegalizeOp(Results[i]); 238 AddLegalizedOperand(Op.getValue(i), Results[i]); 239 } 240 241 return Results[Op.getResNo()]; 242 } 243 244 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 245 // Note that LegalizeOp may be reentered even from single-use nodes, which 246 // means that we always must cache transformed nodes. 247 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 248 if (I != LegalizedNodes.end()) return I->second; 249 250 // Legalize the operands 251 SmallVector<SDValue, 8> Ops; 252 for (const SDValue &Oper : Op->op_values()) 253 Ops.push_back(LegalizeOp(Oper)); 254 255 SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops); 256 257 if (Op.getOpcode() == ISD::LOAD) { 258 LoadSDNode *LD = cast<LoadSDNode>(Node); 259 ISD::LoadExtType ExtType = LD->getExtensionType(); 260 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) { 261 LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: "; 262 Node->dump(&DAG)); 263 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), 264 LD->getMemoryVT())) { 265 default: llvm_unreachable("This action is not supported yet!"); 266 case TargetLowering::Legal: 267 return TranslateLegalizeResults(Op, Node); 268 case TargetLowering::Custom: { 269 SmallVector<SDValue, 2> ResultVals; 270 if (LowerOperationWrapper(Node, ResultVals)) { 271 if (ResultVals.empty()) 272 return TranslateLegalizeResults(Op, Node); 273 274 Changed = true; 275 return RecursivelyLegalizeResults(Op, ResultVals); 276 } 277 LLVM_FALLTHROUGH; 278 } 279 case TargetLowering::Expand: { 280 Changed = true; 281 std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node); 282 AddLegalizedOperand(Op.getValue(0), Tmp.first); 283 AddLegalizedOperand(Op.getValue(1), Tmp.second); 284 return Op.getResNo() ? Tmp.first : Tmp.second; 285 } 286 } 287 } 288 } else if (Op.getOpcode() == ISD::STORE) { 289 StoreSDNode *ST = cast<StoreSDNode>(Node); 290 EVT StVT = ST->getMemoryVT(); 291 MVT ValVT = ST->getValue().getSimpleValueType(); 292 if (StVT.isVector() && ST->isTruncatingStore()) { 293 LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: "; 294 Node->dump(&DAG)); 295 switch (TLI.getTruncStoreAction(ValVT, StVT)) { 296 default: llvm_unreachable("This action is not supported yet!"); 297 case TargetLowering::Legal: 298 return TranslateLegalizeResults(Op, Node); 299 case TargetLowering::Custom: { 300 SmallVector<SDValue, 1> ResultVals; 301 if (LowerOperationWrapper(Node, ResultVals)) { 302 if (ResultVals.empty()) 303 return TranslateLegalizeResults(Op, Node); 304 305 Changed = true; 306 return RecursivelyLegalizeResults(Op, ResultVals); 307 } 308 LLVM_FALLTHROUGH; 309 } 310 case TargetLowering::Expand: { 311 Changed = true; 312 SDValue Chain = ExpandStore(Node); 313 AddLegalizedOperand(Op, Chain); 314 return Chain; 315 } 316 } 317 } 318 } 319 320 bool HasVectorValueOrOp = 321 llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) || 322 llvm::any_of(Node->op_values(), 323 [](SDValue O) { return O.getValueType().isVector(); }); 324 if (!HasVectorValueOrOp) 325 return TranslateLegalizeResults(Op, Node); 326 327 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 328 EVT ValVT; 329 switch (Op.getOpcode()) { 330 default: 331 return TranslateLegalizeResults(Op, Node); 332 case ISD::MERGE_VALUES: 333 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 334 // This operation lies about being legal: when it claims to be legal, 335 // it should actually be expanded. 336 if (Action == TargetLowering::Legal) 337 Action = TargetLowering::Expand; 338 break; 339 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 340 case ISD::STRICT_##DAGN: 341 #include "llvm/IR/ConstrainedOps.def" 342 ValVT = Node->getValueType(0); 343 if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP || 344 Op.getOpcode() == ISD::STRICT_UINT_TO_FP) 345 ValVT = Node->getOperand(1).getValueType(); 346 Action = TLI.getOperationAction(Node->getOpcode(), ValVT); 347 // If we're asked to expand a strict vector floating-point operation, 348 // by default we're going to simply unroll it. That is usually the 349 // best approach, except in the case where the resulting strict (scalar) 350 // operations would themselves use the fallback mutation to non-strict. 351 // In that specific case, just do the fallback on the vector op. 352 if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() && 353 TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) == 354 TargetLowering::Legal) { 355 EVT EltVT = ValVT.getVectorElementType(); 356 if (TLI.getOperationAction(Node->getOpcode(), EltVT) 357 == TargetLowering::Expand && 358 TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT) 359 == TargetLowering::Legal) 360 Action = TargetLowering::Legal; 361 } 362 break; 363 case ISD::ADD: 364 case ISD::SUB: 365 case ISD::MUL: 366 case ISD::MULHS: 367 case ISD::MULHU: 368 case ISD::SDIV: 369 case ISD::UDIV: 370 case ISD::SREM: 371 case ISD::UREM: 372 case ISD::SDIVREM: 373 case ISD::UDIVREM: 374 case ISD::FADD: 375 case ISD::FSUB: 376 case ISD::FMUL: 377 case ISD::FDIV: 378 case ISD::FREM: 379 case ISD::AND: 380 case ISD::OR: 381 case ISD::XOR: 382 case ISD::SHL: 383 case ISD::SRA: 384 case ISD::SRL: 385 case ISD::FSHL: 386 case ISD::FSHR: 387 case ISD::ROTL: 388 case ISD::ROTR: 389 case ISD::ABS: 390 case ISD::BSWAP: 391 case ISD::BITREVERSE: 392 case ISD::CTLZ: 393 case ISD::CTTZ: 394 case ISD::CTLZ_ZERO_UNDEF: 395 case ISD::CTTZ_ZERO_UNDEF: 396 case ISD::CTPOP: 397 case ISD::SELECT: 398 case ISD::VSELECT: 399 case ISD::SELECT_CC: 400 case ISD::ZERO_EXTEND: 401 case ISD::ANY_EXTEND: 402 case ISD::TRUNCATE: 403 case ISD::SIGN_EXTEND: 404 case ISD::FP_TO_SINT: 405 case ISD::FP_TO_UINT: 406 case ISD::FNEG: 407 case ISD::FABS: 408 case ISD::FMINNUM: 409 case ISD::FMAXNUM: 410 case ISD::FMINNUM_IEEE: 411 case ISD::FMAXNUM_IEEE: 412 case ISD::FMINIMUM: 413 case ISD::FMAXIMUM: 414 case ISD::FCOPYSIGN: 415 case ISD::FSQRT: 416 case ISD::FSIN: 417 case ISD::FCOS: 418 case ISD::FPOWI: 419 case ISD::FPOW: 420 case ISD::FLOG: 421 case ISD::FLOG2: 422 case ISD::FLOG10: 423 case ISD::FEXP: 424 case ISD::FEXP2: 425 case ISD::FCEIL: 426 case ISD::FTRUNC: 427 case ISD::FRINT: 428 case ISD::FNEARBYINT: 429 case ISD::FROUND: 430 case ISD::FROUNDEVEN: 431 case ISD::FFLOOR: 432 case ISD::FP_ROUND: 433 case ISD::FP_EXTEND: 434 case ISD::FMA: 435 case ISD::SIGN_EXTEND_INREG: 436 case ISD::ANY_EXTEND_VECTOR_INREG: 437 case ISD::SIGN_EXTEND_VECTOR_INREG: 438 case ISD::ZERO_EXTEND_VECTOR_INREG: 439 case ISD::SMIN: 440 case ISD::SMAX: 441 case ISD::UMIN: 442 case ISD::UMAX: 443 case ISD::SMUL_LOHI: 444 case ISD::UMUL_LOHI: 445 case ISD::SADDO: 446 case ISD::UADDO: 447 case ISD::SSUBO: 448 case ISD::USUBO: 449 case ISD::SMULO: 450 case ISD::UMULO: 451 case ISD::FCANONICALIZE: 452 case ISD::SADDSAT: 453 case ISD::UADDSAT: 454 case ISD::SSUBSAT: 455 case ISD::USUBSAT: 456 case ISD::SSHLSAT: 457 case ISD::USHLSAT: 458 case ISD::FP_TO_SINT_SAT: 459 case ISD::FP_TO_UINT_SAT: 460 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 461 break; 462 case ISD::SMULFIX: 463 case ISD::SMULFIXSAT: 464 case ISD::UMULFIX: 465 case ISD::UMULFIXSAT: 466 case ISD::SDIVFIX: 467 case ISD::SDIVFIXSAT: 468 case ISD::UDIVFIX: 469 case ISD::UDIVFIXSAT: { 470 unsigned Scale = Node->getConstantOperandVal(2); 471 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 472 Node->getValueType(0), Scale); 473 break; 474 } 475 case ISD::SINT_TO_FP: 476 case ISD::UINT_TO_FP: 477 case ISD::VECREDUCE_ADD: 478 case ISD::VECREDUCE_MUL: 479 case ISD::VECREDUCE_AND: 480 case ISD::VECREDUCE_OR: 481 case ISD::VECREDUCE_XOR: 482 case ISD::VECREDUCE_SMAX: 483 case ISD::VECREDUCE_SMIN: 484 case ISD::VECREDUCE_UMAX: 485 case ISD::VECREDUCE_UMIN: 486 case ISD::VECREDUCE_FADD: 487 case ISD::VECREDUCE_FMUL: 488 case ISD::VECREDUCE_FMAX: 489 case ISD::VECREDUCE_FMIN: 490 Action = TLI.getOperationAction(Node->getOpcode(), 491 Node->getOperand(0).getValueType()); 492 break; 493 case ISD::VECREDUCE_SEQ_FADD: 494 case ISD::VECREDUCE_SEQ_FMUL: 495 Action = TLI.getOperationAction(Node->getOpcode(), 496 Node->getOperand(1).getValueType()); 497 break; 498 case ISD::SETCC: { 499 MVT OpVT = Node->getOperand(0).getSimpleValueType(); 500 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); 501 Action = TLI.getCondCodeAction(CCCode, OpVT); 502 if (Action == TargetLowering::Legal) 503 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 504 break; 505 } 506 } 507 508 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG)); 509 510 SmallVector<SDValue, 8> ResultVals; 511 switch (Action) { 512 default: llvm_unreachable("This action is not supported yet!"); 513 case TargetLowering::Promote: 514 LLVM_DEBUG(dbgs() << "Promoting\n"); 515 Promote(Node, ResultVals); 516 assert(!ResultVals.empty() && "No results for promotion?"); 517 break; 518 case TargetLowering::Legal: 519 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 520 break; 521 case TargetLowering::Custom: 522 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 523 if (LowerOperationWrapper(Node, ResultVals)) 524 break; 525 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 526 LLVM_FALLTHROUGH; 527 case TargetLowering::Expand: 528 LLVM_DEBUG(dbgs() << "Expanding\n"); 529 Expand(Node, ResultVals); 530 break; 531 } 532 533 if (ResultVals.empty()) 534 return TranslateLegalizeResults(Op, Node); 535 536 Changed = true; 537 return RecursivelyLegalizeResults(Op, ResultVals); 538 } 539 540 // FIXME: This is very similar to the X86 override of 541 // TargetLowering::LowerOperationWrapper. Can we merge them somehow? 542 bool VectorLegalizer::LowerOperationWrapper(SDNode *Node, 543 SmallVectorImpl<SDValue> &Results) { 544 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 545 546 if (!Res.getNode()) 547 return false; 548 549 if (Res == SDValue(Node, 0)) 550 return true; 551 552 // If the original node has one result, take the return value from 553 // LowerOperation as is. It might not be result number 0. 554 if (Node->getNumValues() == 1) { 555 Results.push_back(Res); 556 return true; 557 } 558 559 // If the original node has multiple results, then the return node should 560 // have the same number of results. 561 assert((Node->getNumValues() == Res->getNumValues()) && 562 "Lowering returned the wrong number of results!"); 563 564 // Places new result values base on N result number. 565 for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I) 566 Results.push_back(Res.getValue(I)); 567 568 return true; 569 } 570 571 void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) { 572 // For a few operations there is a specific concept for promotion based on 573 // the operand's type. 574 switch (Node->getOpcode()) { 575 case ISD::SINT_TO_FP: 576 case ISD::UINT_TO_FP: 577 case ISD::STRICT_SINT_TO_FP: 578 case ISD::STRICT_UINT_TO_FP: 579 // "Promote" the operation by extending the operand. 580 PromoteINT_TO_FP(Node, Results); 581 return; 582 case ISD::FP_TO_UINT: 583 case ISD::FP_TO_SINT: 584 case ISD::STRICT_FP_TO_UINT: 585 case ISD::STRICT_FP_TO_SINT: 586 // Promote the operation by extending the operand. 587 PromoteFP_TO_INT(Node, Results); 588 return; 589 case ISD::FP_ROUND: 590 case ISD::FP_EXTEND: 591 // These operations are used to do promotion so they can't be promoted 592 // themselves. 593 llvm_unreachable("Don't know how to promote this operation!"); 594 } 595 596 // There are currently two cases of vector promotion: 597 // 1) Bitcasting a vector of integers to a different type to a vector of the 598 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 599 // 2) Extending a vector of floats to a vector of the same number of larger 600 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 601 assert(Node->getNumValues() == 1 && 602 "Can't promote a vector with multiple results!"); 603 MVT VT = Node->getSimpleValueType(0); 604 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 605 SDLoc dl(Node); 606 SmallVector<SDValue, 4> Operands(Node->getNumOperands()); 607 608 for (unsigned j = 0; j != Node->getNumOperands(); ++j) { 609 if (Node->getOperand(j).getValueType().isVector()) 610 if (Node->getOperand(j) 611 .getValueType() 612 .getVectorElementType() 613 .isFloatingPoint() && 614 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 615 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j)); 616 else 617 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j)); 618 else 619 Operands[j] = Node->getOperand(j); 620 } 621 622 SDValue Res = 623 DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags()); 624 625 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 626 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 627 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 628 Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res, DAG.getIntPtrConstant(0, dl)); 629 else 630 Res = DAG.getNode(ISD::BITCAST, dl, VT, Res); 631 632 Results.push_back(Res); 633 } 634 635 void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node, 636 SmallVectorImpl<SDValue> &Results) { 637 // INT_TO_FP operations may require the input operand be promoted even 638 // when the type is otherwise legal. 639 bool IsStrict = Node->isStrictFPOpcode(); 640 MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType(); 641 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 642 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 643 "Vectors have different number of elements!"); 644 645 SDLoc dl(Node); 646 SmallVector<SDValue, 4> Operands(Node->getNumOperands()); 647 648 unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP || 649 Node->getOpcode() == ISD::STRICT_UINT_TO_FP) 650 ? ISD::ZERO_EXTEND 651 : ISD::SIGN_EXTEND; 652 for (unsigned j = 0; j != Node->getNumOperands(); ++j) { 653 if (Node->getOperand(j).getValueType().isVector()) 654 Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j)); 655 else 656 Operands[j] = Node->getOperand(j); 657 } 658 659 if (IsStrict) { 660 SDValue Res = DAG.getNode(Node->getOpcode(), dl, 661 {Node->getValueType(0), MVT::Other}, Operands); 662 Results.push_back(Res); 663 Results.push_back(Res.getValue(1)); 664 return; 665 } 666 667 SDValue Res = 668 DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands); 669 Results.push_back(Res); 670 } 671 672 // For FP_TO_INT we promote the result type to a vector type with wider 673 // elements and then truncate the result. This is different from the default 674 // PromoteVector which uses bitcast to promote thus assumning that the 675 // promoted vector type has the same overall size. 676 void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node, 677 SmallVectorImpl<SDValue> &Results) { 678 MVT VT = Node->getSimpleValueType(0); 679 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 680 bool IsStrict = Node->isStrictFPOpcode(); 681 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 682 "Vectors have different number of elements!"); 683 684 unsigned NewOpc = Node->getOpcode(); 685 // Change FP_TO_UINT to FP_TO_SINT if possible. 686 // TODO: Should we only do this if FP_TO_UINT itself isn't legal? 687 if (NewOpc == ISD::FP_TO_UINT && 688 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT)) 689 NewOpc = ISD::FP_TO_SINT; 690 691 if (NewOpc == ISD::STRICT_FP_TO_UINT && 692 TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT)) 693 NewOpc = ISD::STRICT_FP_TO_SINT; 694 695 SDLoc dl(Node); 696 SDValue Promoted, Chain; 697 if (IsStrict) { 698 Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other}, 699 {Node->getOperand(0), Node->getOperand(1)}); 700 Chain = Promoted.getValue(1); 701 } else 702 Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0)); 703 704 // Assert that the converted value fits in the original type. If it doesn't 705 // (eg: because the value being converted is too big), then the result of the 706 // original operation was undefined anyway, so the assert is still correct. 707 if (Node->getOpcode() == ISD::FP_TO_UINT || 708 Node->getOpcode() == ISD::STRICT_FP_TO_UINT) 709 NewOpc = ISD::AssertZext; 710 else 711 NewOpc = ISD::AssertSext; 712 713 Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted, 714 DAG.getValueType(VT.getScalarType())); 715 Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted); 716 Results.push_back(Promoted); 717 if (IsStrict) 718 Results.push_back(Chain); 719 } 720 721 std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) { 722 LoadSDNode *LD = cast<LoadSDNode>(N); 723 return TLI.scalarizeVectorLoad(LD, DAG); 724 } 725 726 SDValue VectorLegalizer::ExpandStore(SDNode *N) { 727 StoreSDNode *ST = cast<StoreSDNode>(N); 728 SDValue TF = TLI.scalarizeVectorStore(ST, DAG); 729 return TF; 730 } 731 732 void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) { 733 SDValue Tmp; 734 switch (Node->getOpcode()) { 735 case ISD::MERGE_VALUES: 736 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 737 Results.push_back(Node->getOperand(i)); 738 return; 739 case ISD::SIGN_EXTEND_INREG: 740 Results.push_back(ExpandSEXTINREG(Node)); 741 return; 742 case ISD::ANY_EXTEND_VECTOR_INREG: 743 Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node)); 744 return; 745 case ISD::SIGN_EXTEND_VECTOR_INREG: 746 Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node)); 747 return; 748 case ISD::ZERO_EXTEND_VECTOR_INREG: 749 Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node)); 750 return; 751 case ISD::BSWAP: 752 Results.push_back(ExpandBSWAP(Node)); 753 return; 754 case ISD::VSELECT: 755 Results.push_back(ExpandVSELECT(Node)); 756 return; 757 case ISD::SELECT: 758 Results.push_back(ExpandSELECT(Node)); 759 return; 760 case ISD::FP_TO_UINT: 761 ExpandFP_TO_UINT(Node, Results); 762 return; 763 case ISD::UINT_TO_FP: 764 ExpandUINT_TO_FLOAT(Node, Results); 765 return; 766 case ISD::FNEG: 767 Results.push_back(ExpandFNEG(Node)); 768 return; 769 case ISD::FSUB: 770 ExpandFSUB(Node, Results); 771 return; 772 case ISD::SETCC: 773 ExpandSETCC(Node, Results); 774 return; 775 case ISD::ABS: 776 if (TLI.expandABS(Node, Tmp, DAG)) { 777 Results.push_back(Tmp); 778 return; 779 } 780 break; 781 case ISD::BITREVERSE: 782 ExpandBITREVERSE(Node, Results); 783 return; 784 case ISD::CTPOP: 785 if (TLI.expandCTPOP(Node, Tmp, DAG)) { 786 Results.push_back(Tmp); 787 return; 788 } 789 break; 790 case ISD::CTLZ: 791 case ISD::CTLZ_ZERO_UNDEF: 792 if (TLI.expandCTLZ(Node, Tmp, DAG)) { 793 Results.push_back(Tmp); 794 return; 795 } 796 break; 797 case ISD::CTTZ: 798 case ISD::CTTZ_ZERO_UNDEF: 799 if (TLI.expandCTTZ(Node, Tmp, DAG)) { 800 Results.push_back(Tmp); 801 return; 802 } 803 break; 804 case ISD::FSHL: 805 case ISD::FSHR: 806 if (TLI.expandFunnelShift(Node, Tmp, DAG)) { 807 Results.push_back(Tmp); 808 return; 809 } 810 break; 811 case ISD::ROTL: 812 case ISD::ROTR: 813 if (TLI.expandROT(Node, false /*AllowVectorOps*/, Tmp, DAG)) { 814 Results.push_back(Tmp); 815 return; 816 } 817 break; 818 case ISD::FMINNUM: 819 case ISD::FMAXNUM: 820 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) { 821 Results.push_back(Expanded); 822 return; 823 } 824 break; 825 case ISD::SMIN: 826 case ISD::SMAX: 827 case ISD::UMIN: 828 case ISD::UMAX: 829 if (SDValue Expanded = TLI.expandIntMINMAX(Node, DAG)) { 830 Results.push_back(Expanded); 831 return; 832 } 833 break; 834 case ISD::UADDO: 835 case ISD::USUBO: 836 ExpandUADDSUBO(Node, Results); 837 return; 838 case ISD::SADDO: 839 case ISD::SSUBO: 840 ExpandSADDSUBO(Node, Results); 841 return; 842 case ISD::UMULO: 843 case ISD::SMULO: 844 ExpandMULO(Node, Results); 845 return; 846 case ISD::USUBSAT: 847 case ISD::SSUBSAT: 848 case ISD::UADDSAT: 849 case ISD::SADDSAT: 850 if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) { 851 Results.push_back(Expanded); 852 return; 853 } 854 break; 855 case ISD::SMULFIX: 856 case ISD::UMULFIX: 857 if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) { 858 Results.push_back(Expanded); 859 return; 860 } 861 break; 862 case ISD::SMULFIXSAT: 863 case ISD::UMULFIXSAT: 864 // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly 865 // why. Maybe it results in worse codegen compared to the unroll for some 866 // targets? This should probably be investigated. And if we still prefer to 867 // unroll an explanation could be helpful. 868 break; 869 case ISD::SDIVFIX: 870 case ISD::UDIVFIX: 871 ExpandFixedPointDiv(Node, Results); 872 return; 873 case ISD::SDIVFIXSAT: 874 case ISD::UDIVFIXSAT: 875 break; 876 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 877 case ISD::STRICT_##DAGN: 878 #include "llvm/IR/ConstrainedOps.def" 879 ExpandStrictFPOp(Node, Results); 880 return; 881 case ISD::VECREDUCE_ADD: 882 case ISD::VECREDUCE_MUL: 883 case ISD::VECREDUCE_AND: 884 case ISD::VECREDUCE_OR: 885 case ISD::VECREDUCE_XOR: 886 case ISD::VECREDUCE_SMAX: 887 case ISD::VECREDUCE_SMIN: 888 case ISD::VECREDUCE_UMAX: 889 case ISD::VECREDUCE_UMIN: 890 case ISD::VECREDUCE_FADD: 891 case ISD::VECREDUCE_FMUL: 892 case ISD::VECREDUCE_FMAX: 893 case ISD::VECREDUCE_FMIN: 894 Results.push_back(TLI.expandVecReduce(Node, DAG)); 895 return; 896 case ISD::VECREDUCE_SEQ_FADD: 897 case ISD::VECREDUCE_SEQ_FMUL: 898 Results.push_back(TLI.expandVecReduceSeq(Node, DAG)); 899 return; 900 case ISD::SREM: 901 case ISD::UREM: 902 ExpandREM(Node, Results); 903 return; 904 } 905 906 Results.push_back(DAG.UnrollVectorOp(Node)); 907 } 908 909 SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) { 910 // Lower a select instruction where the condition is a scalar and the 911 // operands are vectors. Lower this select to VSELECT and implement it 912 // using XOR AND OR. The selector bit is broadcasted. 913 EVT VT = Node->getValueType(0); 914 SDLoc DL(Node); 915 916 SDValue Mask = Node->getOperand(0); 917 SDValue Op1 = Node->getOperand(1); 918 SDValue Op2 = Node->getOperand(2); 919 920 assert(VT.isVector() && !Mask.getValueType().isVector() 921 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 922 923 // If we can't even use the basic vector operations of 924 // AND,OR,XOR, we will have to scalarize the op. 925 // Notice that the operation may be 'promoted' which means that it is 926 // 'bitcasted' to another type which is handled. 927 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 928 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 929 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 930 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 931 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 932 return DAG.UnrollVectorOp(Node); 933 934 // Generate a mask operand. 935 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 936 937 // What is the size of each element in the vector mask. 938 EVT BitTy = MaskTy.getScalarType(); 939 940 Mask = DAG.getSelect(DL, BitTy, Mask, 941 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, 942 BitTy), 943 DAG.getConstant(0, DL, BitTy)); 944 945 // Broadcast the mask so that the entire vector is all-one or all zero. 946 Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask); 947 948 // Bitcast the operands to be the same type as the mask. 949 // This is needed when we select between FP types because 950 // the mask is a vector of integers. 951 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 952 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 953 954 SDValue AllOnes = DAG.getConstant( 955 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy); 956 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 957 958 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 959 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 960 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 961 return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val); 962 } 963 964 SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) { 965 EVT VT = Node->getValueType(0); 966 967 // Make sure that the SRA and SHL instructions are available. 968 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 969 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 970 return DAG.UnrollVectorOp(Node); 971 972 SDLoc DL(Node); 973 EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT(); 974 975 unsigned BW = VT.getScalarSizeInBits(); 976 unsigned OrigBW = OrigTy.getScalarSizeInBits(); 977 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 978 979 SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz); 980 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 981 } 982 983 // Generically expand a vector anyext in register to a shuffle of the relevant 984 // lanes into the appropriate locations, with other lanes left undef. 985 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) { 986 SDLoc DL(Node); 987 EVT VT = Node->getValueType(0); 988 int NumElements = VT.getVectorNumElements(); 989 SDValue Src = Node->getOperand(0); 990 EVT SrcVT = Src.getValueType(); 991 int NumSrcElements = SrcVT.getVectorNumElements(); 992 993 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 994 // into a larger vector type. 995 if (SrcVT.bitsLE(VT)) { 996 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 997 "ANY_EXTEND_VECTOR_INREG vector size mismatch"); 998 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 999 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 1000 NumSrcElements); 1001 Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), 1002 Src, DAG.getVectorIdxConstant(0, DL)); 1003 } 1004 1005 // Build a base mask of undef shuffles. 1006 SmallVector<int, 16> ShuffleMask; 1007 ShuffleMask.resize(NumSrcElements, -1); 1008 1009 // Place the extended lanes into the correct locations. 1010 int ExtLaneScale = NumSrcElements / NumElements; 1011 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 1012 for (int i = 0; i < NumElements; ++i) 1013 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 1014 1015 return DAG.getNode( 1016 ISD::BITCAST, DL, VT, 1017 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 1018 } 1019 1020 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) { 1021 SDLoc DL(Node); 1022 EVT VT = Node->getValueType(0); 1023 SDValue Src = Node->getOperand(0); 1024 EVT SrcVT = Src.getValueType(); 1025 1026 // First build an any-extend node which can be legalized above when we 1027 // recurse through it. 1028 SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src); 1029 1030 // Now we need sign extend. Do this by shifting the elements. Even if these 1031 // aren't legal operations, they have a better chance of being legalized 1032 // without full scalarization than the sign extension does. 1033 unsigned EltWidth = VT.getScalarSizeInBits(); 1034 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); 1035 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 1036 return DAG.getNode(ISD::SRA, DL, VT, 1037 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 1038 ShiftAmount); 1039 } 1040 1041 // Generically expand a vector zext in register to a shuffle of the relevant 1042 // lanes into the appropriate locations, a blend of zero into the high bits, 1043 // and a bitcast to the wider element type. 1044 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) { 1045 SDLoc DL(Node); 1046 EVT VT = Node->getValueType(0); 1047 int NumElements = VT.getVectorNumElements(); 1048 SDValue Src = Node->getOperand(0); 1049 EVT SrcVT = Src.getValueType(); 1050 int NumSrcElements = SrcVT.getVectorNumElements(); 1051 1052 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 1053 // into a larger vector type. 1054 if (SrcVT.bitsLE(VT)) { 1055 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 1056 "ZERO_EXTEND_VECTOR_INREG vector size mismatch"); 1057 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 1058 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 1059 NumSrcElements); 1060 Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), 1061 Src, DAG.getVectorIdxConstant(0, DL)); 1062 } 1063 1064 // Build up a zero vector to blend into this one. 1065 SDValue Zero = DAG.getConstant(0, DL, SrcVT); 1066 1067 // Shuffle the incoming lanes into the correct position, and pull all other 1068 // lanes from the zero vector. 1069 SmallVector<int, 16> ShuffleMask; 1070 ShuffleMask.reserve(NumSrcElements); 1071 for (int i = 0; i < NumSrcElements; ++i) 1072 ShuffleMask.push_back(i); 1073 1074 int ExtLaneScale = NumSrcElements / NumElements; 1075 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 1076 for (int i = 0; i < NumElements; ++i) 1077 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 1078 1079 return DAG.getNode(ISD::BITCAST, DL, VT, 1080 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 1081 } 1082 1083 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) { 1084 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 1085 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 1086 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 1087 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 1088 } 1089 1090 SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) { 1091 EVT VT = Node->getValueType(0); 1092 1093 // Generate a byte wise shuffle mask for the BSWAP. 1094 SmallVector<int, 16> ShuffleMask; 1095 createBSWAPShuffleMask(VT, ShuffleMask); 1096 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 1097 1098 // Only emit a shuffle if the mask is legal. 1099 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) 1100 return DAG.UnrollVectorOp(Node); 1101 1102 SDLoc DL(Node); 1103 SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0)); 1104 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); 1105 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 1106 } 1107 1108 void VectorLegalizer::ExpandBITREVERSE(SDNode *Node, 1109 SmallVectorImpl<SDValue> &Results) { 1110 EVT VT = Node->getValueType(0); 1111 1112 // If we have the scalar operation, it's probably cheaper to unroll it. 1113 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) { 1114 SDValue Tmp = DAG.UnrollVectorOp(Node); 1115 Results.push_back(Tmp); 1116 return; 1117 } 1118 1119 // If the vector element width is a whole number of bytes, test if its legal 1120 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte 1121 // vector. This greatly reduces the number of bit shifts necessary. 1122 unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); 1123 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { 1124 SmallVector<int, 16> BSWAPMask; 1125 createBSWAPShuffleMask(VT, BSWAPMask); 1126 1127 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); 1128 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && 1129 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || 1130 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && 1131 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && 1132 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && 1133 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { 1134 SDLoc DL(Node); 1135 SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0)); 1136 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 1137 BSWAPMask); 1138 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); 1139 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 1140 Results.push_back(Op); 1141 return; 1142 } 1143 } 1144 1145 // If we have the appropriate vector bit operations, it is better to use them 1146 // than unrolling and expanding each component. 1147 if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 1148 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 1149 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) && 1150 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) 1151 // Let LegalizeDAG handle this later. 1152 return; 1153 1154 // Otherwise unroll. 1155 SDValue Tmp = DAG.UnrollVectorOp(Node); 1156 Results.push_back(Tmp); 1157 } 1158 1159 SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) { 1160 // Implement VSELECT in terms of XOR, AND, OR 1161 // on platforms which do not support blend natively. 1162 SDLoc DL(Node); 1163 1164 SDValue Mask = Node->getOperand(0); 1165 SDValue Op1 = Node->getOperand(1); 1166 SDValue Op2 = Node->getOperand(2); 1167 1168 EVT VT = Mask.getValueType(); 1169 1170 // If we can't even use the basic vector operations of 1171 // AND,OR,XOR, we will have to scalarize the op. 1172 // Notice that the operation may be 'promoted' which means that it is 1173 // 'bitcasted' to another type which is handled. 1174 // This operation also isn't safe with AND, OR, XOR when the boolean 1175 // type is 0/1 as we need an all ones vector constant to mask with. 1176 // FIXME: Sign extend 1 to all ones if thats legal on the target. 1177 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 1178 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 1179 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 1180 TLI.getBooleanContents(Op1.getValueType()) != 1181 TargetLowering::ZeroOrNegativeOneBooleanContent) 1182 return DAG.UnrollVectorOp(Node); 1183 1184 // If the mask and the type are different sizes, unroll the vector op. This 1185 // can occur when getSetCCResultType returns something that is different in 1186 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 1187 if (VT.getSizeInBits() != Op1.getValueSizeInBits()) 1188 return DAG.UnrollVectorOp(Node); 1189 1190 // Bitcast the operands to be the same type as the mask. 1191 // This is needed when we select between FP types because 1192 // the mask is a vector of integers. 1193 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 1194 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 1195 1196 SDValue AllOnes = DAG.getConstant( 1197 APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT); 1198 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 1199 1200 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 1201 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 1202 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 1203 return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val); 1204 } 1205 1206 void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node, 1207 SmallVectorImpl<SDValue> &Results) { 1208 // Attempt to expand using TargetLowering. 1209 SDValue Result, Chain; 1210 if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) { 1211 Results.push_back(Result); 1212 if (Node->isStrictFPOpcode()) 1213 Results.push_back(Chain); 1214 return; 1215 } 1216 1217 // Otherwise go ahead and unroll. 1218 if (Node->isStrictFPOpcode()) { 1219 UnrollStrictFPOp(Node, Results); 1220 return; 1221 } 1222 1223 Results.push_back(DAG.UnrollVectorOp(Node)); 1224 } 1225 1226 void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node, 1227 SmallVectorImpl<SDValue> &Results) { 1228 bool IsStrict = Node->isStrictFPOpcode(); 1229 unsigned OpNo = IsStrict ? 1 : 0; 1230 SDValue Src = Node->getOperand(OpNo); 1231 EVT VT = Src.getValueType(); 1232 SDLoc DL(Node); 1233 1234 // Attempt to expand using TargetLowering. 1235 SDValue Result; 1236 SDValue Chain; 1237 if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) { 1238 Results.push_back(Result); 1239 if (IsStrict) 1240 Results.push_back(Chain); 1241 return; 1242 } 1243 1244 // Make sure that the SINT_TO_FP and SRL instructions are available. 1245 if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) == 1246 TargetLowering::Expand) || 1247 (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) == 1248 TargetLowering::Expand)) || 1249 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) { 1250 if (IsStrict) { 1251 UnrollStrictFPOp(Node, Results); 1252 return; 1253 } 1254 1255 Results.push_back(DAG.UnrollVectorOp(Node)); 1256 return; 1257 } 1258 1259 unsigned BW = VT.getScalarSizeInBits(); 1260 assert((BW == 64 || BW == 32) && 1261 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 1262 1263 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT); 1264 1265 // Constants to clear the upper part of the word. 1266 // Notice that we can also use SHL+SHR, but using a constant is slightly 1267 // faster on x86. 1268 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; 1269 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 1270 1271 // Two to the power of half-word-size. 1272 SDValue TWOHW = 1273 DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0)); 1274 1275 // Clear upper part of LO, lower HI 1276 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord); 1277 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask); 1278 1279 if (IsStrict) { 1280 // Convert hi and lo to floats 1281 // Convert the hi part back to the upper values 1282 // TODO: Can any fast-math-flags be set on these nodes? 1283 SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, 1284 {Node->getValueType(0), MVT::Other}, 1285 {Node->getOperand(0), HI}); 1286 fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other}, 1287 {fHI.getValue(1), fHI, TWOHW}); 1288 SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, 1289 {Node->getValueType(0), MVT::Other}, 1290 {Node->getOperand(0), LO}); 1291 1292 SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1), 1293 fLO.getValue(1)); 1294 1295 // Add the two halves 1296 SDValue Result = 1297 DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other}, 1298 {TF, fHI, fLO}); 1299 1300 Results.push_back(Result); 1301 Results.push_back(Result.getValue(1)); 1302 return; 1303 } 1304 1305 // Convert hi and lo to floats 1306 // Convert the hi part back to the upper values 1307 // TODO: Can any fast-math-flags be set on these nodes? 1308 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI); 1309 fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW); 1310 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO); 1311 1312 // Add the two halves 1313 Results.push_back( 1314 DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO)); 1315 } 1316 1317 SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) { 1318 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) { 1319 SDLoc DL(Node); 1320 SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0)); 1321 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. 1322 return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero, 1323 Node->getOperand(0)); 1324 } 1325 return DAG.UnrollVectorOp(Node); 1326 } 1327 1328 void VectorLegalizer::ExpandFSUB(SDNode *Node, 1329 SmallVectorImpl<SDValue> &Results) { 1330 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal, 1331 // we can defer this to operation legalization where it will be lowered as 1332 // a+(-b). 1333 EVT VT = Node->getValueType(0); 1334 if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && 1335 TLI.isOperationLegalOrCustom(ISD::FADD, VT)) 1336 return; // Defer to LegalizeDAG 1337 1338 SDValue Tmp = DAG.UnrollVectorOp(Node); 1339 Results.push_back(Tmp); 1340 } 1341 1342 void VectorLegalizer::ExpandSETCC(SDNode *Node, 1343 SmallVectorImpl<SDValue> &Results) { 1344 bool NeedInvert = false; 1345 SDLoc dl(Node); 1346 MVT OpVT = Node->getOperand(0).getSimpleValueType(); 1347 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); 1348 1349 if (TLI.getCondCodeAction(CCCode, OpVT) != TargetLowering::Expand) { 1350 Results.push_back(UnrollVSETCC(Node)); 1351 return; 1352 } 1353 1354 SDValue Chain; 1355 SDValue LHS = Node->getOperand(0); 1356 SDValue RHS = Node->getOperand(1); 1357 SDValue CC = Node->getOperand(2); 1358 bool Legalized = TLI.LegalizeSetCCCondCode(DAG, Node->getValueType(0), LHS, 1359 RHS, CC, NeedInvert, dl, Chain); 1360 1361 if (Legalized) { 1362 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 1363 // condition code, create a new SETCC node. 1364 if (CC.getNode()) 1365 LHS = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), LHS, RHS, CC, 1366 Node->getFlags()); 1367 1368 // If we expanded the SETCC by inverting the condition code, then wrap 1369 // the existing SETCC in a NOT to restore the intended condition. 1370 if (NeedInvert) 1371 LHS = DAG.getLogicalNOT(dl, LHS, LHS->getValueType(0)); 1372 } else { 1373 // Otherwise, SETCC for the given comparison type must be completely 1374 // illegal; expand it into a SELECT_CC. 1375 EVT VT = Node->getValueType(0); 1376 LHS = 1377 DAG.getNode(ISD::SELECT_CC, dl, VT, LHS, RHS, 1378 DAG.getBoolConstant(true, dl, VT, LHS.getValueType()), 1379 DAG.getBoolConstant(false, dl, VT, LHS.getValueType()), CC); 1380 LHS->setFlags(Node->getFlags()); 1381 } 1382 1383 Results.push_back(LHS); 1384 } 1385 1386 void VectorLegalizer::ExpandUADDSUBO(SDNode *Node, 1387 SmallVectorImpl<SDValue> &Results) { 1388 SDValue Result, Overflow; 1389 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 1390 Results.push_back(Result); 1391 Results.push_back(Overflow); 1392 } 1393 1394 void VectorLegalizer::ExpandSADDSUBO(SDNode *Node, 1395 SmallVectorImpl<SDValue> &Results) { 1396 SDValue Result, Overflow; 1397 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 1398 Results.push_back(Result); 1399 Results.push_back(Overflow); 1400 } 1401 1402 void VectorLegalizer::ExpandMULO(SDNode *Node, 1403 SmallVectorImpl<SDValue> &Results) { 1404 SDValue Result, Overflow; 1405 if (!TLI.expandMULO(Node, Result, Overflow, DAG)) 1406 std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node); 1407 1408 Results.push_back(Result); 1409 Results.push_back(Overflow); 1410 } 1411 1412 void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node, 1413 SmallVectorImpl<SDValue> &Results) { 1414 SDNode *N = Node; 1415 if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N), 1416 N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG)) 1417 Results.push_back(Expanded); 1418 } 1419 1420 void VectorLegalizer::ExpandStrictFPOp(SDNode *Node, 1421 SmallVectorImpl<SDValue> &Results) { 1422 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) { 1423 ExpandUINT_TO_FLOAT(Node, Results); 1424 return; 1425 } 1426 if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) { 1427 ExpandFP_TO_UINT(Node, Results); 1428 return; 1429 } 1430 1431 UnrollStrictFPOp(Node, Results); 1432 } 1433 1434 void VectorLegalizer::ExpandREM(SDNode *Node, 1435 SmallVectorImpl<SDValue> &Results) { 1436 assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) && 1437 "Expected REM node"); 1438 1439 SDValue Result; 1440 if (!TLI.expandREM(Node, Result, DAG)) 1441 Result = DAG.UnrollVectorOp(Node); 1442 Results.push_back(Result); 1443 } 1444 1445 void VectorLegalizer::UnrollStrictFPOp(SDNode *Node, 1446 SmallVectorImpl<SDValue> &Results) { 1447 EVT VT = Node->getValueType(0); 1448 EVT EltVT = VT.getVectorElementType(); 1449 unsigned NumElems = VT.getVectorNumElements(); 1450 unsigned NumOpers = Node->getNumOperands(); 1451 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1452 1453 EVT TmpEltVT = EltVT; 1454 if (Node->getOpcode() == ISD::STRICT_FSETCC || 1455 Node->getOpcode() == ISD::STRICT_FSETCCS) 1456 TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(), 1457 *DAG.getContext(), TmpEltVT); 1458 1459 EVT ValueVTs[] = {TmpEltVT, MVT::Other}; 1460 SDValue Chain = Node->getOperand(0); 1461 SDLoc dl(Node); 1462 1463 SmallVector<SDValue, 32> OpValues; 1464 SmallVector<SDValue, 32> OpChains; 1465 for (unsigned i = 0; i < NumElems; ++i) { 1466 SmallVector<SDValue, 4> Opers; 1467 SDValue Idx = DAG.getVectorIdxConstant(i, dl); 1468 1469 // The Chain is the first operand. 1470 Opers.push_back(Chain); 1471 1472 // Now process the remaining operands. 1473 for (unsigned j = 1; j < NumOpers; ++j) { 1474 SDValue Oper = Node->getOperand(j); 1475 EVT OperVT = Oper.getValueType(); 1476 1477 if (OperVT.isVector()) 1478 Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 1479 OperVT.getVectorElementType(), Oper, Idx); 1480 1481 Opers.push_back(Oper); 1482 } 1483 1484 SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers); 1485 SDValue ScalarResult = ScalarOp.getValue(0); 1486 SDValue ScalarChain = ScalarOp.getValue(1); 1487 1488 if (Node->getOpcode() == ISD::STRICT_FSETCC || 1489 Node->getOpcode() == ISD::STRICT_FSETCCS) 1490 ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult, 1491 DAG.getConstant(APInt::getAllOnesValue 1492 (EltVT.getSizeInBits()), dl, EltVT), 1493 DAG.getConstant(0, dl, EltVT)); 1494 1495 OpValues.push_back(ScalarResult); 1496 OpChains.push_back(ScalarChain); 1497 } 1498 1499 SDValue Result = DAG.getBuildVector(VT, dl, OpValues); 1500 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains); 1501 1502 Results.push_back(Result); 1503 Results.push_back(NewChain); 1504 } 1505 1506 SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) { 1507 EVT VT = Node->getValueType(0); 1508 unsigned NumElems = VT.getVectorNumElements(); 1509 EVT EltVT = VT.getVectorElementType(); 1510 SDValue LHS = Node->getOperand(0); 1511 SDValue RHS = Node->getOperand(1); 1512 SDValue CC = Node->getOperand(2); 1513 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1514 SDLoc dl(Node); 1515 SmallVector<SDValue, 8> Ops(NumElems); 1516 for (unsigned i = 0; i < NumElems; ++i) { 1517 SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1518 DAG.getVectorIdxConstant(i, dl)); 1519 SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1520 DAG.getVectorIdxConstant(i, dl)); 1521 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1522 TLI.getSetCCResultType(DAG.getDataLayout(), 1523 *DAG.getContext(), TmpEltVT), 1524 LHSElem, RHSElem, CC); 1525 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 1526 DAG.getConstant(APInt::getAllOnesValue 1527 (EltVT.getSizeInBits()), dl, EltVT), 1528 DAG.getConstant(0, dl, EltVT)); 1529 } 1530 return DAG.getBuildVector(VT, dl, Ops); 1531 } 1532 1533 bool SelectionDAG::LegalizeVectors() { 1534 return VectorLegalizer(*this).Run(); 1535 } 1536