1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::LegalizeVectors method. 10 // 11 // The vector legalizer looks for vector operations which might need to be 12 // scalarized and legalizes them. This is a separate step from Legalize because 13 // scalarizing can introduce illegal types. For example, suppose we have an 14 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 16 // operation, which introduces nodes with the illegal type i64 which must be 17 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 18 // the operation must be unrolled, which introduces nodes with the illegal 19 // type i8 which must be promoted. 20 // 21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 22 // or operations that happen to take a vector which are custom-lowered; 23 // the legalization for such operations never produces nodes 24 // with illegal types, so it's okay to put off legalizing them until 25 // SelectionDAG::Legalize runs. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/SelectionDAGNodes.h" 36 #include "llvm/CodeGen/TargetLowering.h" 37 #include "llvm/CodeGen/ValueTypes.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Support/MachineValueType.h" 43 #include "llvm/Support/MathExtras.h" 44 #include <cassert> 45 #include <cstdint> 46 #include <iterator> 47 #include <utility> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "legalizevectorops" 52 53 namespace { 54 55 class VectorLegalizer { 56 SelectionDAG& DAG; 57 const TargetLowering &TLI; 58 bool Changed = false; // Keep track of whether anything changed 59 60 /// For nodes that are of legal width, and that have more than one use, this 61 /// map indicates what regularized operand to use. This allows us to avoid 62 /// legalizing the same thing more than once. 63 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 64 65 /// Adds a node to the translation cache. 66 void AddLegalizedOperand(SDValue From, SDValue To) { 67 LegalizedNodes.insert(std::make_pair(From, To)); 68 // If someone requests legalization of the new node, return itself. 69 if (From != To) 70 LegalizedNodes.insert(std::make_pair(To, To)); 71 } 72 73 /// Legalizes the given node. 74 SDValue LegalizeOp(SDValue Op); 75 76 /// Assuming the node is legal, "legalize" the results. 77 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); 78 79 /// Implements unrolling a VSETCC. 80 SDValue UnrollVSETCC(SDValue Op); 81 82 /// Implement expand-based legalization of vector operations. 83 /// 84 /// This is just a high-level routine to dispatch to specific code paths for 85 /// operations to legalize them. 86 SDValue Expand(SDValue Op); 87 88 /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if 89 /// FP_TO_SINT isn't legal. 90 SDValue ExpandFP_TO_UINT(SDValue Op); 91 92 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 93 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 94 SDValue ExpandUINT_TO_FLOAT(SDValue Op); 95 96 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 97 SDValue ExpandSEXTINREG(SDValue Op); 98 99 /// Implement expansion for ANY_EXTEND_VECTOR_INREG. 100 /// 101 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 102 /// type. The contents of the bits in the extended part of each element are 103 /// undef. 104 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op); 105 106 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG. 107 /// 108 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 109 /// type, then shifts left and arithmetic shifts right to introduce a sign 110 /// extension. 111 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op); 112 113 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG. 114 /// 115 /// Shuffles the low lanes of the operand into place and blends zeros into 116 /// the remaining lanes, finally bitcasting to the proper type. 117 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op); 118 119 /// Implement expand-based legalization of ABS vector operations. 120 /// If following expanding is legal/custom then do it: 121 /// (ABS x) --> (XOR (ADD x, (SRA x, sizeof(x)-1)), (SRA x, sizeof(x)-1)) 122 /// else unroll the operation. 123 SDValue ExpandABS(SDValue Op); 124 125 /// Expand bswap of vectors into a shuffle if legal. 126 SDValue ExpandBSWAP(SDValue Op); 127 128 /// Implement vselect in terms of XOR, AND, OR when blend is not 129 /// supported by the target. 130 SDValue ExpandVSELECT(SDValue Op); 131 SDValue ExpandSELECT(SDValue Op); 132 SDValue ExpandLoad(SDValue Op); 133 SDValue ExpandStore(SDValue Op); 134 SDValue ExpandFNEG(SDValue Op); 135 SDValue ExpandFSUB(SDValue Op); 136 SDValue ExpandBITREVERSE(SDValue Op); 137 SDValue ExpandCTPOP(SDValue Op); 138 SDValue ExpandCTLZ(SDValue Op); 139 SDValue ExpandCTTZ(SDValue Op); 140 SDValue ExpandFunnelShift(SDValue Op); 141 SDValue ExpandROT(SDValue Op); 142 SDValue ExpandFMINNUM_FMAXNUM(SDValue Op); 143 SDValue ExpandMULO(SDValue Op); 144 SDValue ExpandAddSubSat(SDValue Op); 145 SDValue ExpandFixedPointMul(SDValue Op); 146 SDValue ExpandStrictFPOp(SDValue Op); 147 148 /// Implements vector promotion. 149 /// 150 /// This is essentially just bitcasting the operands to a different type and 151 /// bitcasting the result back to the original type. 152 SDValue Promote(SDValue Op); 153 154 /// Implements [SU]INT_TO_FP vector promotion. 155 /// 156 /// This is a [zs]ext of the input operand to a larger integer type. 157 SDValue PromoteINT_TO_FP(SDValue Op); 158 159 /// Implements FP_TO_[SU]INT vector promotion of the result type. 160 /// 161 /// It is promoted to a larger integer type. The result is then 162 /// truncated back to the original type. 163 SDValue PromoteFP_TO_INT(SDValue Op); 164 165 public: 166 VectorLegalizer(SelectionDAG& dag) : 167 DAG(dag), TLI(dag.getTargetLoweringInfo()) {} 168 169 /// Begin legalizer the vector operations in the DAG. 170 bool Run(); 171 }; 172 173 } // end anonymous namespace 174 175 bool VectorLegalizer::Run() { 176 // Before we start legalizing vector nodes, check if there are any vectors. 177 bool HasVectors = false; 178 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 179 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 180 // Check if the values of the nodes contain vectors. We don't need to check 181 // the operands because we are going to check their values at some point. 182 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); 183 J != E; ++J) 184 HasVectors |= J->isVector(); 185 186 // If we found a vector node we can start the legalization. 187 if (HasVectors) 188 break; 189 } 190 191 // If this basic block has no vectors then no need to legalize vectors. 192 if (!HasVectors) 193 return false; 194 195 // The legalize process is inherently a bottom-up recursive process (users 196 // legalize their uses before themselves). Given infinite stack space, we 197 // could just start legalizing on the root and traverse the whole graph. In 198 // practice however, this causes us to run out of stack space on large basic 199 // blocks. To avoid this problem, compute an ordering of the nodes where each 200 // node is only legalized after all of its operands are legalized. 201 DAG.AssignTopologicalOrder(); 202 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 203 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 204 LegalizeOp(SDValue(&*I, 0)); 205 206 // Finally, it's possible the root changed. Get the new root. 207 SDValue OldRoot = DAG.getRoot(); 208 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 209 DAG.setRoot(LegalizedNodes[OldRoot]); 210 211 LegalizedNodes.clear(); 212 213 // Remove dead nodes now. 214 DAG.RemoveDeadNodes(); 215 216 return Changed; 217 } 218 219 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { 220 // Generic legalization: just pass the operand through. 221 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) 222 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 223 return Result.getValue(Op.getResNo()); 224 } 225 226 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 227 // Note that LegalizeOp may be reentered even from single-use nodes, which 228 // means that we always must cache transformed nodes. 229 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 230 if (I != LegalizedNodes.end()) return I->second; 231 232 SDNode* Node = Op.getNode(); 233 234 // Legalize the operands 235 SmallVector<SDValue, 8> Ops; 236 for (const SDValue &Op : Node->op_values()) 237 Ops.push_back(LegalizeOp(Op)); 238 239 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 240 Op.getResNo()); 241 242 if (Op.getOpcode() == ISD::LOAD) { 243 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 244 ISD::LoadExtType ExtType = LD->getExtensionType(); 245 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) { 246 LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: "; 247 Node->dump(&DAG)); 248 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), 249 LD->getMemoryVT())) { 250 default: llvm_unreachable("This action is not supported yet!"); 251 case TargetLowering::Legal: 252 return TranslateLegalizeResults(Op, Result); 253 case TargetLowering::Custom: 254 if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) { 255 assert(Lowered->getNumValues() == Op->getNumValues() && 256 "Unexpected number of results"); 257 if (Lowered != Result) { 258 // Make sure the new code is also legal. 259 Lowered = LegalizeOp(Lowered); 260 Changed = true; 261 } 262 return TranslateLegalizeResults(Op, Lowered); 263 } 264 LLVM_FALLTHROUGH; 265 case TargetLowering::Expand: 266 Changed = true; 267 return LegalizeOp(ExpandLoad(Op)); 268 } 269 } 270 } else if (Op.getOpcode() == ISD::STORE) { 271 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 272 EVT StVT = ST->getMemoryVT(); 273 MVT ValVT = ST->getValue().getSimpleValueType(); 274 if (StVT.isVector() && ST->isTruncatingStore()) { 275 LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: "; 276 Node->dump(&DAG)); 277 switch (TLI.getTruncStoreAction(ValVT, StVT)) { 278 default: llvm_unreachable("This action is not supported yet!"); 279 case TargetLowering::Legal: 280 return TranslateLegalizeResults(Op, Result); 281 case TargetLowering::Custom: { 282 SDValue Lowered = TLI.LowerOperation(Result, DAG); 283 if (Lowered != Result) { 284 // Make sure the new code is also legal. 285 Lowered = LegalizeOp(Lowered); 286 Changed = true; 287 } 288 return TranslateLegalizeResults(Op, Lowered); 289 } 290 case TargetLowering::Expand: 291 Changed = true; 292 return LegalizeOp(ExpandStore(Op)); 293 } 294 } 295 } 296 297 bool HasVectorValue = false; 298 for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end(); 299 J != E; 300 ++J) 301 HasVectorValue |= J->isVector(); 302 if (!HasVectorValue) 303 return TranslateLegalizeResults(Op, Result); 304 305 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 306 switch (Op.getOpcode()) { 307 default: 308 return TranslateLegalizeResults(Op, Result); 309 case ISD::STRICT_FADD: 310 case ISD::STRICT_FSUB: 311 case ISD::STRICT_FMUL: 312 case ISD::STRICT_FDIV: 313 case ISD::STRICT_FREM: 314 case ISD::STRICT_FSQRT: 315 case ISD::STRICT_FMA: 316 case ISD::STRICT_FPOW: 317 case ISD::STRICT_FPOWI: 318 case ISD::STRICT_FSIN: 319 case ISD::STRICT_FCOS: 320 case ISD::STRICT_FEXP: 321 case ISD::STRICT_FEXP2: 322 case ISD::STRICT_FLOG: 323 case ISD::STRICT_FLOG10: 324 case ISD::STRICT_FLOG2: 325 case ISD::STRICT_FRINT: 326 case ISD::STRICT_FNEARBYINT: 327 case ISD::STRICT_FMAXNUM: 328 case ISD::STRICT_FMINNUM: 329 case ISD::STRICT_FCEIL: 330 case ISD::STRICT_FFLOOR: 331 case ISD::STRICT_FROUND: 332 case ISD::STRICT_FTRUNC: 333 // These pseudo-ops get legalized as if they were their non-strict 334 // equivalent. For instance, if ISD::FSQRT is legal then ISD::STRICT_FSQRT 335 // is also legal, but if ISD::FSQRT requires expansion then so does 336 // ISD::STRICT_FSQRT. 337 Action = TLI.getStrictFPOperationAction(Node->getOpcode(), 338 Node->getValueType(0)); 339 break; 340 case ISD::ADD: 341 case ISD::SUB: 342 case ISD::MUL: 343 case ISD::MULHS: 344 case ISD::MULHU: 345 case ISD::SDIV: 346 case ISD::UDIV: 347 case ISD::SREM: 348 case ISD::UREM: 349 case ISD::SDIVREM: 350 case ISD::UDIVREM: 351 case ISD::FADD: 352 case ISD::FSUB: 353 case ISD::FMUL: 354 case ISD::FDIV: 355 case ISD::FREM: 356 case ISD::AND: 357 case ISD::OR: 358 case ISD::XOR: 359 case ISD::SHL: 360 case ISD::SRA: 361 case ISD::SRL: 362 case ISD::FSHL: 363 case ISD::FSHR: 364 case ISD::ROTL: 365 case ISD::ROTR: 366 case ISD::ABS: 367 case ISD::BSWAP: 368 case ISD::BITREVERSE: 369 case ISD::CTLZ: 370 case ISD::CTTZ: 371 case ISD::CTLZ_ZERO_UNDEF: 372 case ISD::CTTZ_ZERO_UNDEF: 373 case ISD::CTPOP: 374 case ISD::SELECT: 375 case ISD::VSELECT: 376 case ISD::SELECT_CC: 377 case ISD::SETCC: 378 case ISD::ZERO_EXTEND: 379 case ISD::ANY_EXTEND: 380 case ISD::TRUNCATE: 381 case ISD::SIGN_EXTEND: 382 case ISD::FP_TO_SINT: 383 case ISD::FP_TO_UINT: 384 case ISD::FNEG: 385 case ISD::FABS: 386 case ISD::FMINNUM: 387 case ISD::FMAXNUM: 388 case ISD::FMINNUM_IEEE: 389 case ISD::FMAXNUM_IEEE: 390 case ISD::FMINIMUM: 391 case ISD::FMAXIMUM: 392 case ISD::FCOPYSIGN: 393 case ISD::FSQRT: 394 case ISD::FSIN: 395 case ISD::FCOS: 396 case ISD::FPOWI: 397 case ISD::FPOW: 398 case ISD::FLOG: 399 case ISD::FLOG2: 400 case ISD::FLOG10: 401 case ISD::FEXP: 402 case ISD::FEXP2: 403 case ISD::FCEIL: 404 case ISD::FTRUNC: 405 case ISD::FRINT: 406 case ISD::FNEARBYINT: 407 case ISD::FROUND: 408 case ISD::FFLOOR: 409 case ISD::FP_ROUND: 410 case ISD::FP_EXTEND: 411 case ISD::FMA: 412 case ISD::SIGN_EXTEND_INREG: 413 case ISD::ANY_EXTEND_VECTOR_INREG: 414 case ISD::SIGN_EXTEND_VECTOR_INREG: 415 case ISD::ZERO_EXTEND_VECTOR_INREG: 416 case ISD::SMIN: 417 case ISD::SMAX: 418 case ISD::UMIN: 419 case ISD::UMAX: 420 case ISD::SMUL_LOHI: 421 case ISD::UMUL_LOHI: 422 case ISD::SMULO: 423 case ISD::UMULO: 424 case ISD::FCANONICALIZE: 425 case ISD::SADDSAT: 426 case ISD::UADDSAT: 427 case ISD::SSUBSAT: 428 case ISD::USUBSAT: 429 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 430 break; 431 case ISD::SMULFIX: 432 case ISD::UMULFIX: { 433 unsigned Scale = Node->getConstantOperandVal(2); 434 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 435 Node->getValueType(0), Scale); 436 break; 437 } 438 case ISD::FP_ROUND_INREG: 439 Action = TLI.getOperationAction(Node->getOpcode(), 440 cast<VTSDNode>(Node->getOperand(1))->getVT()); 441 break; 442 case ISD::SINT_TO_FP: 443 case ISD::UINT_TO_FP: 444 Action = TLI.getOperationAction(Node->getOpcode(), 445 Node->getOperand(0).getValueType()); 446 break; 447 } 448 449 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG)); 450 451 switch (Action) { 452 default: llvm_unreachable("This action is not supported yet!"); 453 case TargetLowering::Promote: 454 Result = Promote(Op); 455 Changed = true; 456 break; 457 case TargetLowering::Legal: 458 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 459 break; 460 case TargetLowering::Custom: { 461 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 462 if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) { 463 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 464 Result = Tmp1; 465 break; 466 } 467 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 468 LLVM_FALLTHROUGH; 469 } 470 case TargetLowering::Expand: 471 Result = Expand(Op); 472 } 473 474 // Make sure that the generated code is itself legal. 475 if (Result != Op) { 476 Result = LegalizeOp(Result); 477 Changed = true; 478 } 479 480 // Note that LegalizeOp may be reentered even from single-use nodes, which 481 // means that we always must cache transformed nodes. 482 AddLegalizedOperand(Op, Result); 483 return Result; 484 } 485 486 SDValue VectorLegalizer::Promote(SDValue Op) { 487 // For a few operations there is a specific concept for promotion based on 488 // the operand's type. 489 switch (Op.getOpcode()) { 490 case ISD::SINT_TO_FP: 491 case ISD::UINT_TO_FP: 492 // "Promote" the operation by extending the operand. 493 return PromoteINT_TO_FP(Op); 494 case ISD::FP_TO_UINT: 495 case ISD::FP_TO_SINT: 496 // Promote the operation by extending the operand. 497 return PromoteFP_TO_INT(Op); 498 } 499 500 // There are currently two cases of vector promotion: 501 // 1) Bitcasting a vector of integers to a different type to a vector of the 502 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 503 // 2) Extending a vector of floats to a vector of the same number of larger 504 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 505 MVT VT = Op.getSimpleValueType(); 506 assert(Op.getNode()->getNumValues() == 1 && 507 "Can't promote a vector with multiple results!"); 508 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 509 SDLoc dl(Op); 510 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 511 512 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 513 if (Op.getOperand(j).getValueType().isVector()) 514 if (Op.getOperand(j) 515 .getValueType() 516 .getVectorElementType() 517 .isFloatingPoint() && 518 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 519 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j)); 520 else 521 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); 522 else 523 Operands[j] = Op.getOperand(j); 524 } 525 526 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags()); 527 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 528 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 529 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 530 return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl)); 531 else 532 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 533 } 534 535 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) { 536 // INT_TO_FP operations may require the input operand be promoted even 537 // when the type is otherwise legal. 538 MVT VT = Op.getOperand(0).getSimpleValueType(); 539 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 540 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 541 "Vectors have different number of elements!"); 542 543 SDLoc dl(Op); 544 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 545 546 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : 547 ISD::SIGN_EXTEND; 548 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 549 if (Op.getOperand(j).getValueType().isVector()) 550 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j)); 551 else 552 Operands[j] = Op.getOperand(j); 553 } 554 555 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands); 556 } 557 558 // For FP_TO_INT we promote the result type to a vector type with wider 559 // elements and then truncate the result. This is different from the default 560 // PromoteVector which uses bitcast to promote thus assumning that the 561 // promoted vector type has the same overall size. 562 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op) { 563 MVT VT = Op.getSimpleValueType(); 564 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 565 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 566 "Vectors have different number of elements!"); 567 568 unsigned NewOpc = Op->getOpcode(); 569 // Change FP_TO_UINT to FP_TO_SINT if possible. 570 // TODO: Should we only do this if FP_TO_UINT itself isn't legal? 571 if (NewOpc == ISD::FP_TO_UINT && 572 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT)) 573 NewOpc = ISD::FP_TO_SINT; 574 575 SDLoc dl(Op); 576 SDValue Promoted = DAG.getNode(NewOpc, dl, NVT, Op.getOperand(0)); 577 578 // Assert that the converted value fits in the original type. If it doesn't 579 // (eg: because the value being converted is too big), then the result of the 580 // original operation was undefined anyway, so the assert is still correct. 581 Promoted = DAG.getNode(Op->getOpcode() == ISD::FP_TO_UINT ? ISD::AssertZext 582 : ISD::AssertSext, 583 dl, NVT, Promoted, 584 DAG.getValueType(VT.getScalarType())); 585 return DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted); 586 } 587 588 SDValue VectorLegalizer::ExpandLoad(SDValue Op) { 589 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 590 591 EVT SrcVT = LD->getMemoryVT(); 592 EVT SrcEltVT = SrcVT.getScalarType(); 593 unsigned NumElem = SrcVT.getVectorNumElements(); 594 595 SDValue NewChain; 596 SDValue Value; 597 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { 598 SDLoc dl(Op); 599 600 SmallVector<SDValue, 8> Vals; 601 SmallVector<SDValue, 8> LoadChains; 602 603 EVT DstEltVT = LD->getValueType(0).getScalarType(); 604 SDValue Chain = LD->getChain(); 605 SDValue BasePTR = LD->getBasePtr(); 606 ISD::LoadExtType ExtType = LD->getExtensionType(); 607 608 // When elements in a vector is not byte-addressable, we cannot directly 609 // load each element by advancing pointer, which could only address bytes. 610 // Instead, we load all significant words, mask bits off, and concatenate 611 // them to form each element. Finally, they are extended to destination 612 // scalar type to build the destination vector. 613 EVT WideVT = TLI.getPointerTy(DAG.getDataLayout()); 614 615 assert(WideVT.isRound() && 616 "Could not handle the sophisticated case when the widest integer is" 617 " not power of 2."); 618 assert(WideVT.bitsGE(SrcEltVT) && 619 "Type is not legalized?"); 620 621 unsigned WideBytes = WideVT.getStoreSize(); 622 unsigned Offset = 0; 623 unsigned RemainingBytes = SrcVT.getStoreSize(); 624 SmallVector<SDValue, 8> LoadVals; 625 while (RemainingBytes > 0) { 626 SDValue ScalarLoad; 627 unsigned LoadBytes = WideBytes; 628 629 if (RemainingBytes >= LoadBytes) { 630 ScalarLoad = 631 DAG.getLoad(WideVT, dl, Chain, BasePTR, 632 LD->getPointerInfo().getWithOffset(Offset), 633 MinAlign(LD->getAlignment(), Offset), 634 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 635 } else { 636 EVT LoadVT = WideVT; 637 while (RemainingBytes < LoadBytes) { 638 LoadBytes >>= 1; // Reduce the load size by half. 639 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); 640 } 641 ScalarLoad = 642 DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, 643 LD->getPointerInfo().getWithOffset(Offset), LoadVT, 644 MinAlign(LD->getAlignment(), Offset), 645 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 646 } 647 648 RemainingBytes -= LoadBytes; 649 Offset += LoadBytes; 650 651 BasePTR = DAG.getObjectPtrOffset(dl, BasePTR, LoadBytes); 652 653 LoadVals.push_back(ScalarLoad.getValue(0)); 654 LoadChains.push_back(ScalarLoad.getValue(1)); 655 } 656 657 unsigned BitOffset = 0; 658 unsigned WideIdx = 0; 659 unsigned WideBits = WideVT.getSizeInBits(); 660 661 // Extract bits, pack and extend/trunc them into destination type. 662 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 663 SDValue SrcEltBitMask = DAG.getConstant( 664 APInt::getLowBitsSet(WideBits, SrcEltBits), dl, WideVT); 665 666 for (unsigned Idx = 0; Idx != NumElem; ++Idx) { 667 assert(BitOffset < WideBits && "Unexpected offset!"); 668 669 SDValue ShAmt = DAG.getConstant( 670 BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 671 SDValue Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); 672 673 BitOffset += SrcEltBits; 674 if (BitOffset >= WideBits) { 675 WideIdx++; 676 BitOffset -= WideBits; 677 if (BitOffset > 0) { 678 ShAmt = DAG.getConstant( 679 SrcEltBits - BitOffset, dl, 680 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 681 SDValue Hi = 682 DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); 683 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); 684 } 685 } 686 687 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); 688 689 switch (ExtType) { 690 default: llvm_unreachable("Unknown extended-load op!"); 691 case ISD::EXTLOAD: 692 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); 693 break; 694 case ISD::ZEXTLOAD: 695 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); 696 break; 697 case ISD::SEXTLOAD: 698 ShAmt = 699 DAG.getConstant(WideBits - SrcEltBits, dl, 700 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 701 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); 702 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); 703 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); 704 break; 705 } 706 Vals.push_back(Lo); 707 } 708 709 NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 710 Value = DAG.getBuildVector(Op.getNode()->getValueType(0), dl, Vals); 711 } else { 712 SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG); 713 // Skip past MERGE_VALUE node if known. 714 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) { 715 NewChain = Scalarized.getOperand(1); 716 Value = Scalarized.getOperand(0); 717 } else { 718 NewChain = Scalarized.getValue(1); 719 Value = Scalarized.getValue(0); 720 } 721 } 722 723 AddLegalizedOperand(Op.getValue(0), Value); 724 AddLegalizedOperand(Op.getValue(1), NewChain); 725 726 return (Op.getResNo() ? NewChain : Value); 727 } 728 729 SDValue VectorLegalizer::ExpandStore(SDValue Op) { 730 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 731 SDValue TF = TLI.scalarizeVectorStore(ST, DAG); 732 AddLegalizedOperand(Op, TF); 733 return TF; 734 } 735 736 SDValue VectorLegalizer::Expand(SDValue Op) { 737 switch (Op->getOpcode()) { 738 case ISD::SIGN_EXTEND_INREG: 739 return ExpandSEXTINREG(Op); 740 case ISD::ANY_EXTEND_VECTOR_INREG: 741 return ExpandANY_EXTEND_VECTOR_INREG(Op); 742 case ISD::SIGN_EXTEND_VECTOR_INREG: 743 return ExpandSIGN_EXTEND_VECTOR_INREG(Op); 744 case ISD::ZERO_EXTEND_VECTOR_INREG: 745 return ExpandZERO_EXTEND_VECTOR_INREG(Op); 746 case ISD::BSWAP: 747 return ExpandBSWAP(Op); 748 case ISD::VSELECT: 749 return ExpandVSELECT(Op); 750 case ISD::SELECT: 751 return ExpandSELECT(Op); 752 case ISD::FP_TO_UINT: 753 return ExpandFP_TO_UINT(Op); 754 case ISD::UINT_TO_FP: 755 return ExpandUINT_TO_FLOAT(Op); 756 case ISD::FNEG: 757 return ExpandFNEG(Op); 758 case ISD::FSUB: 759 return ExpandFSUB(Op); 760 case ISD::SETCC: 761 return UnrollVSETCC(Op); 762 case ISD::ABS: 763 return ExpandABS(Op); 764 case ISD::BITREVERSE: 765 return ExpandBITREVERSE(Op); 766 case ISD::CTPOP: 767 return ExpandCTPOP(Op); 768 case ISD::CTLZ: 769 case ISD::CTLZ_ZERO_UNDEF: 770 return ExpandCTLZ(Op); 771 case ISD::CTTZ: 772 case ISD::CTTZ_ZERO_UNDEF: 773 return ExpandCTTZ(Op); 774 case ISD::FSHL: 775 case ISD::FSHR: 776 return ExpandFunnelShift(Op); 777 case ISD::ROTL: 778 case ISD::ROTR: 779 return ExpandROT(Op); 780 case ISD::FMINNUM: 781 case ISD::FMAXNUM: 782 return ExpandFMINNUM_FMAXNUM(Op); 783 case ISD::UMULO: 784 case ISD::SMULO: 785 return ExpandMULO(Op); 786 case ISD::USUBSAT: 787 case ISD::SSUBSAT: 788 case ISD::UADDSAT: 789 case ISD::SADDSAT: 790 return ExpandAddSubSat(Op); 791 case ISD::SMULFIX: 792 case ISD::UMULFIX: 793 return ExpandFixedPointMul(Op); 794 case ISD::STRICT_FADD: 795 case ISD::STRICT_FSUB: 796 case ISD::STRICT_FMUL: 797 case ISD::STRICT_FDIV: 798 case ISD::STRICT_FREM: 799 case ISD::STRICT_FSQRT: 800 case ISD::STRICT_FMA: 801 case ISD::STRICT_FPOW: 802 case ISD::STRICT_FPOWI: 803 case ISD::STRICT_FSIN: 804 case ISD::STRICT_FCOS: 805 case ISD::STRICT_FEXP: 806 case ISD::STRICT_FEXP2: 807 case ISD::STRICT_FLOG: 808 case ISD::STRICT_FLOG10: 809 case ISD::STRICT_FLOG2: 810 case ISD::STRICT_FRINT: 811 case ISD::STRICT_FNEARBYINT: 812 case ISD::STRICT_FMAXNUM: 813 case ISD::STRICT_FMINNUM: 814 case ISD::STRICT_FCEIL: 815 case ISD::STRICT_FFLOOR: 816 case ISD::STRICT_FROUND: 817 case ISD::STRICT_FTRUNC: 818 return ExpandStrictFPOp(Op); 819 default: 820 return DAG.UnrollVectorOp(Op.getNode()); 821 } 822 } 823 824 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) { 825 // Lower a select instruction where the condition is a scalar and the 826 // operands are vectors. Lower this select to VSELECT and implement it 827 // using XOR AND OR. The selector bit is broadcasted. 828 EVT VT = Op.getValueType(); 829 SDLoc DL(Op); 830 831 SDValue Mask = Op.getOperand(0); 832 SDValue Op1 = Op.getOperand(1); 833 SDValue Op2 = Op.getOperand(2); 834 835 assert(VT.isVector() && !Mask.getValueType().isVector() 836 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 837 838 // If we can't even use the basic vector operations of 839 // AND,OR,XOR, we will have to scalarize the op. 840 // Notice that the operation may be 'promoted' which means that it is 841 // 'bitcasted' to another type which is handled. 842 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 843 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 844 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 845 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 846 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 847 return DAG.UnrollVectorOp(Op.getNode()); 848 849 // Generate a mask operand. 850 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 851 852 // What is the size of each element in the vector mask. 853 EVT BitTy = MaskTy.getScalarType(); 854 855 Mask = DAG.getSelect(DL, BitTy, Mask, 856 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, 857 BitTy), 858 DAG.getConstant(0, DL, BitTy)); 859 860 // Broadcast the mask so that the entire vector is all-one or all zero. 861 Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask); 862 863 // Bitcast the operands to be the same type as the mask. 864 // This is needed when we select between FP types because 865 // the mask is a vector of integers. 866 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 867 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 868 869 SDValue AllOnes = DAG.getConstant( 870 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy); 871 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 872 873 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 874 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 875 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 876 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 877 } 878 879 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) { 880 EVT VT = Op.getValueType(); 881 882 // Make sure that the SRA and SHL instructions are available. 883 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 884 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 885 return DAG.UnrollVectorOp(Op.getNode()); 886 887 SDLoc DL(Op); 888 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT(); 889 890 unsigned BW = VT.getScalarSizeInBits(); 891 unsigned OrigBW = OrigTy.getScalarSizeInBits(); 892 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 893 894 Op = Op.getOperand(0); 895 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz); 896 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 897 } 898 899 // Generically expand a vector anyext in register to a shuffle of the relevant 900 // lanes into the appropriate locations, with other lanes left undef. 901 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) { 902 SDLoc DL(Op); 903 EVT VT = Op.getValueType(); 904 int NumElements = VT.getVectorNumElements(); 905 SDValue Src = Op.getOperand(0); 906 EVT SrcVT = Src.getValueType(); 907 int NumSrcElements = SrcVT.getVectorNumElements(); 908 909 // Build a base mask of undef shuffles. 910 SmallVector<int, 16> ShuffleMask; 911 ShuffleMask.resize(NumSrcElements, -1); 912 913 // Place the extended lanes into the correct locations. 914 int ExtLaneScale = NumSrcElements / NumElements; 915 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 916 for (int i = 0; i < NumElements; ++i) 917 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 918 919 return DAG.getNode( 920 ISD::BITCAST, DL, VT, 921 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 922 } 923 924 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) { 925 SDLoc DL(Op); 926 EVT VT = Op.getValueType(); 927 SDValue Src = Op.getOperand(0); 928 EVT SrcVT = Src.getValueType(); 929 930 // First build an any-extend node which can be legalized above when we 931 // recurse through it. 932 Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src); 933 934 // Now we need sign extend. Do this by shifting the elements. Even if these 935 // aren't legal operations, they have a better chance of being legalized 936 // without full scalarization than the sign extension does. 937 unsigned EltWidth = VT.getScalarSizeInBits(); 938 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); 939 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 940 return DAG.getNode(ISD::SRA, DL, VT, 941 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 942 ShiftAmount); 943 } 944 945 // Generically expand a vector zext in register to a shuffle of the relevant 946 // lanes into the appropriate locations, a blend of zero into the high bits, 947 // and a bitcast to the wider element type. 948 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) { 949 SDLoc DL(Op); 950 EVT VT = Op.getValueType(); 951 int NumElements = VT.getVectorNumElements(); 952 SDValue Src = Op.getOperand(0); 953 EVT SrcVT = Src.getValueType(); 954 int NumSrcElements = SrcVT.getVectorNumElements(); 955 956 // Build up a zero vector to blend into this one. 957 SDValue Zero = DAG.getConstant(0, DL, SrcVT); 958 959 // Shuffle the incoming lanes into the correct position, and pull all other 960 // lanes from the zero vector. 961 SmallVector<int, 16> ShuffleMask; 962 ShuffleMask.reserve(NumSrcElements); 963 for (int i = 0; i < NumSrcElements; ++i) 964 ShuffleMask.push_back(i); 965 966 int ExtLaneScale = NumSrcElements / NumElements; 967 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 968 for (int i = 0; i < NumElements; ++i) 969 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 970 971 return DAG.getNode(ISD::BITCAST, DL, VT, 972 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 973 } 974 975 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) { 976 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 977 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 978 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 979 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 980 } 981 982 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) { 983 EVT VT = Op.getValueType(); 984 985 // Generate a byte wise shuffle mask for the BSWAP. 986 SmallVector<int, 16> ShuffleMask; 987 createBSWAPShuffleMask(VT, ShuffleMask); 988 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 989 990 // Only emit a shuffle if the mask is legal. 991 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) 992 return DAG.UnrollVectorOp(Op.getNode()); 993 994 SDLoc DL(Op); 995 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 996 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); 997 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 998 } 999 1000 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) { 1001 EVT VT = Op.getValueType(); 1002 1003 // If we have the scalar operation, it's probably cheaper to unroll it. 1004 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) 1005 return DAG.UnrollVectorOp(Op.getNode()); 1006 1007 // If the vector element width is a whole number of bytes, test if its legal 1008 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte 1009 // vector. This greatly reduces the number of bit shifts necessary. 1010 unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); 1011 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { 1012 SmallVector<int, 16> BSWAPMask; 1013 createBSWAPShuffleMask(VT, BSWAPMask); 1014 1015 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); 1016 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && 1017 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || 1018 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && 1019 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && 1020 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && 1021 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { 1022 SDLoc DL(Op); 1023 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 1024 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 1025 BSWAPMask); 1026 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); 1027 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 1028 } 1029 } 1030 1031 // If we have the appropriate vector bit operations, it is better to use them 1032 // than unrolling and expanding each component. 1033 if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) || 1034 !TLI.isOperationLegalOrCustom(ISD::SRL, VT) || 1035 !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 1036 !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) 1037 return DAG.UnrollVectorOp(Op.getNode()); 1038 1039 // Let LegalizeDAG handle this later. 1040 return Op; 1041 } 1042 1043 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { 1044 // Implement VSELECT in terms of XOR, AND, OR 1045 // on platforms which do not support blend natively. 1046 SDLoc DL(Op); 1047 1048 SDValue Mask = Op.getOperand(0); 1049 SDValue Op1 = Op.getOperand(1); 1050 SDValue Op2 = Op.getOperand(2); 1051 1052 EVT VT = Mask.getValueType(); 1053 1054 // If we can't even use the basic vector operations of 1055 // AND,OR,XOR, we will have to scalarize the op. 1056 // Notice that the operation may be 'promoted' which means that it is 1057 // 'bitcasted' to another type which is handled. 1058 // This operation also isn't safe with AND, OR, XOR when the boolean 1059 // type is 0/1 as we need an all ones vector constant to mask with. 1060 // FIXME: Sign extend 1 to all ones if thats legal on the target. 1061 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 1062 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 1063 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 1064 TLI.getBooleanContents(Op1.getValueType()) != 1065 TargetLowering::ZeroOrNegativeOneBooleanContent) 1066 return DAG.UnrollVectorOp(Op.getNode()); 1067 1068 // If the mask and the type are different sizes, unroll the vector op. This 1069 // can occur when getSetCCResultType returns something that is different in 1070 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 1071 if (VT.getSizeInBits() != Op1.getValueSizeInBits()) 1072 return DAG.UnrollVectorOp(Op.getNode()); 1073 1074 // Bitcast the operands to be the same type as the mask. 1075 // This is needed when we select between FP types because 1076 // the mask is a vector of integers. 1077 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 1078 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 1079 1080 SDValue AllOnes = DAG.getConstant( 1081 APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT); 1082 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 1083 1084 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 1085 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 1086 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 1087 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 1088 } 1089 1090 SDValue VectorLegalizer::ExpandABS(SDValue Op) { 1091 // Attempt to expand using TargetLowering. 1092 SDValue Result; 1093 if (TLI.expandABS(Op.getNode(), Result, DAG)) 1094 return Result; 1095 1096 // Otherwise go ahead and unroll. 1097 return DAG.UnrollVectorOp(Op.getNode()); 1098 } 1099 1100 SDValue VectorLegalizer::ExpandFP_TO_UINT(SDValue Op) { 1101 // Attempt to expand using TargetLowering. 1102 SDValue Result; 1103 if (TLI.expandFP_TO_UINT(Op.getNode(), Result, DAG)) 1104 return Result; 1105 1106 // Otherwise go ahead and unroll. 1107 return DAG.UnrollVectorOp(Op.getNode()); 1108 } 1109 1110 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { 1111 EVT VT = Op.getOperand(0).getValueType(); 1112 SDLoc DL(Op); 1113 1114 // Attempt to expand using TargetLowering. 1115 SDValue Result; 1116 if (TLI.expandUINT_TO_FP(Op.getNode(), Result, DAG)) 1117 return Result; 1118 1119 // Make sure that the SINT_TO_FP and SRL instructions are available. 1120 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand || 1121 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) 1122 return DAG.UnrollVectorOp(Op.getNode()); 1123 1124 unsigned BW = VT.getScalarSizeInBits(); 1125 assert((BW == 64 || BW == 32) && 1126 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 1127 1128 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT); 1129 1130 // Constants to clear the upper part of the word. 1131 // Notice that we can also use SHL+SHR, but using a constant is slightly 1132 // faster on x86. 1133 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; 1134 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 1135 1136 // Two to the power of half-word-size. 1137 SDValue TWOHW = DAG.getConstantFP(1ULL << (BW / 2), DL, Op.getValueType()); 1138 1139 // Clear upper part of LO, lower HI 1140 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); 1141 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); 1142 1143 // Convert hi and lo to floats 1144 // Convert the hi part back to the upper values 1145 // TODO: Can any fast-math-flags be set on these nodes? 1146 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); 1147 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); 1148 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); 1149 1150 // Add the two halves 1151 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); 1152 } 1153 1154 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { 1155 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { 1156 SDLoc DL(Op); 1157 SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType()); 1158 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. 1159 return DAG.getNode(ISD::FSUB, DL, Op.getValueType(), 1160 Zero, Op.getOperand(0)); 1161 } 1162 return DAG.UnrollVectorOp(Op.getNode()); 1163 } 1164 1165 SDValue VectorLegalizer::ExpandFSUB(SDValue Op) { 1166 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal, 1167 // we can defer this to operation legalization where it will be lowered as 1168 // a+(-b). 1169 EVT VT = Op.getValueType(); 1170 if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && 1171 TLI.isOperationLegalOrCustom(ISD::FADD, VT)) 1172 return Op; // Defer to LegalizeDAG 1173 1174 return DAG.UnrollVectorOp(Op.getNode()); 1175 } 1176 1177 SDValue VectorLegalizer::ExpandCTPOP(SDValue Op) { 1178 SDValue Result; 1179 if (TLI.expandCTPOP(Op.getNode(), Result, DAG)) 1180 return Result; 1181 1182 return DAG.UnrollVectorOp(Op.getNode()); 1183 } 1184 1185 SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) { 1186 SDValue Result; 1187 if (TLI.expandCTLZ(Op.getNode(), Result, DAG)) 1188 return Result; 1189 1190 return DAG.UnrollVectorOp(Op.getNode()); 1191 } 1192 1193 SDValue VectorLegalizer::ExpandCTTZ(SDValue Op) { 1194 SDValue Result; 1195 if (TLI.expandCTTZ(Op.getNode(), Result, DAG)) 1196 return Result; 1197 1198 return DAG.UnrollVectorOp(Op.getNode()); 1199 } 1200 1201 SDValue VectorLegalizer::ExpandFunnelShift(SDValue Op) { 1202 SDValue Result; 1203 if (TLI.expandFunnelShift(Op.getNode(), Result, DAG)) 1204 return Result; 1205 1206 return DAG.UnrollVectorOp(Op.getNode()); 1207 } 1208 1209 SDValue VectorLegalizer::ExpandROT(SDValue Op) { 1210 SDValue Result; 1211 if (TLI.expandROT(Op.getNode(), Result, DAG)) 1212 return Result; 1213 1214 return DAG.UnrollVectorOp(Op.getNode()); 1215 } 1216 1217 SDValue VectorLegalizer::ExpandFMINNUM_FMAXNUM(SDValue Op) { 1218 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Op.getNode(), DAG)) 1219 return Expanded; 1220 return DAG.UnrollVectorOp(Op.getNode()); 1221 } 1222 1223 SDValue VectorLegalizer::ExpandMULO(SDValue Op) { 1224 SDValue Result, Overflow; 1225 if (!TLI.expandMULO(Op.getNode(), Result, Overflow, DAG)) 1226 std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Op.getNode()); 1227 1228 AddLegalizedOperand(Op.getValue(0), Result); 1229 AddLegalizedOperand(Op.getValue(1), Overflow); 1230 return Op.getResNo() ? Overflow : Result; 1231 } 1232 1233 SDValue VectorLegalizer::ExpandAddSubSat(SDValue Op) { 1234 if (SDValue Expanded = TLI.expandAddSubSat(Op.getNode(), DAG)) 1235 return Expanded; 1236 return DAG.UnrollVectorOp(Op.getNode()); 1237 } 1238 1239 SDValue VectorLegalizer::ExpandFixedPointMul(SDValue Op) { 1240 if (SDValue Expanded = TLI.expandFixedPointMul(Op.getNode(), DAG)) 1241 return Expanded; 1242 return DAG.UnrollVectorOp(Op.getNode()); 1243 } 1244 1245 SDValue VectorLegalizer::ExpandStrictFPOp(SDValue Op) { 1246 EVT VT = Op.getValueType(); 1247 EVT EltVT = VT.getVectorElementType(); 1248 unsigned NumElems = VT.getVectorNumElements(); 1249 unsigned NumOpers = Op.getNumOperands(); 1250 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1251 EVT ValueVTs[] = {EltVT, MVT::Other}; 1252 SDValue Chain = Op.getOperand(0); 1253 SDLoc dl(Op); 1254 1255 SmallVector<SDValue, 32> OpValues; 1256 SmallVector<SDValue, 32> OpChains; 1257 for (unsigned i = 0; i < NumElems; ++i) { 1258 SmallVector<SDValue, 4> Opers; 1259 SDValue Idx = DAG.getConstant(i, dl, 1260 TLI.getVectorIdxTy(DAG.getDataLayout())); 1261 1262 // The Chain is the first operand. 1263 Opers.push_back(Chain); 1264 1265 // Now process the remaining operands. 1266 for (unsigned j = 1; j < NumOpers; ++j) { 1267 SDValue Oper = Op.getOperand(j); 1268 EVT OperVT = Oper.getValueType(); 1269 1270 if (OperVT.isVector()) 1271 Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 1272 EltVT, Oper, Idx); 1273 1274 Opers.push_back(Oper); 1275 } 1276 1277 SDValue ScalarOp = DAG.getNode(Op->getOpcode(), dl, ValueVTs, Opers); 1278 1279 OpValues.push_back(ScalarOp.getValue(0)); 1280 OpChains.push_back(ScalarOp.getValue(1)); 1281 } 1282 1283 SDValue Result = DAG.getBuildVector(VT, dl, OpValues); 1284 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains); 1285 1286 AddLegalizedOperand(Op.getValue(0), Result); 1287 AddLegalizedOperand(Op.getValue(1), NewChain); 1288 1289 return Op.getResNo() ? NewChain : Result; 1290 } 1291 1292 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { 1293 EVT VT = Op.getValueType(); 1294 unsigned NumElems = VT.getVectorNumElements(); 1295 EVT EltVT = VT.getVectorElementType(); 1296 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); 1297 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1298 SDLoc dl(Op); 1299 SmallVector<SDValue, 8> Ops(NumElems); 1300 for (unsigned i = 0; i < NumElems; ++i) { 1301 SDValue LHSElem = DAG.getNode( 1302 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1303 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1304 SDValue RHSElem = DAG.getNode( 1305 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1306 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1307 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1308 TLI.getSetCCResultType(DAG.getDataLayout(), 1309 *DAG.getContext(), TmpEltVT), 1310 LHSElem, RHSElem, CC); 1311 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 1312 DAG.getConstant(APInt::getAllOnesValue 1313 (EltVT.getSizeInBits()), dl, EltVT), 1314 DAG.getConstant(0, dl, EltVT)); 1315 } 1316 return DAG.getBuildVector(VT, dl, Ops); 1317 } 1318 1319 bool SelectionDAG::LegalizeVectors() { 1320 return VectorLegalizer(*this).Run(); 1321 } 1322