1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::LegalizeVectors method. 10 // 11 // The vector legalizer looks for vector operations which might need to be 12 // scalarized and legalizes them. This is a separate step from Legalize because 13 // scalarizing can introduce illegal types. For example, suppose we have an 14 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 16 // operation, which introduces nodes with the illegal type i64 which must be 17 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 18 // the operation must be unrolled, which introduces nodes with the illegal 19 // type i8 which must be promoted. 20 // 21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 22 // or operations that happen to take a vector which are custom-lowered; 23 // the legalization for such operations never produces nodes 24 // with illegal types, so it's okay to put off legalizing them until 25 // SelectionDAG::Legalize runs. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/SelectionDAGNodes.h" 36 #include "llvm/CodeGen/TargetLowering.h" 37 #include "llvm/CodeGen/ValueTypes.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Support/MachineValueType.h" 43 #include "llvm/Support/MathExtras.h" 44 #include <cassert> 45 #include <cstdint> 46 #include <iterator> 47 #include <utility> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "legalizevectorops" 52 53 namespace { 54 55 class VectorLegalizer { 56 SelectionDAG& DAG; 57 const TargetLowering &TLI; 58 bool Changed = false; // Keep track of whether anything changed 59 60 /// For nodes that are of legal width, and that have more than one use, this 61 /// map indicates what regularized operand to use. This allows us to avoid 62 /// legalizing the same thing more than once. 63 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 64 65 /// Adds a node to the translation cache. 66 void AddLegalizedOperand(SDValue From, SDValue To) { 67 LegalizedNodes.insert(std::make_pair(From, To)); 68 // If someone requests legalization of the new node, return itself. 69 if (From != To) 70 LegalizedNodes.insert(std::make_pair(To, To)); 71 } 72 73 /// Legalizes the given node. 74 SDValue LegalizeOp(SDValue Op); 75 76 /// Assuming the node is legal, "legalize" the results. 77 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); 78 79 /// Implements unrolling a VSETCC. 80 SDValue UnrollVSETCC(SDValue Op); 81 82 /// Implement expand-based legalization of vector operations. 83 /// 84 /// This is just a high-level routine to dispatch to specific code paths for 85 /// operations to legalize them. 86 SDValue Expand(SDValue Op); 87 88 /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if 89 /// FP_TO_SINT isn't legal. 90 SDValue ExpandFP_TO_UINT(SDValue Op); 91 92 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 93 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 94 SDValue ExpandUINT_TO_FLOAT(SDValue Op); 95 96 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 97 SDValue ExpandSEXTINREG(SDValue Op); 98 99 /// Implement expansion for ANY_EXTEND_VECTOR_INREG. 100 /// 101 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 102 /// type. The contents of the bits in the extended part of each element are 103 /// undef. 104 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op); 105 106 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG. 107 /// 108 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 109 /// type, then shifts left and arithmetic shifts right to introduce a sign 110 /// extension. 111 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op); 112 113 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG. 114 /// 115 /// Shuffles the low lanes of the operand into place and blends zeros into 116 /// the remaining lanes, finally bitcasting to the proper type. 117 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op); 118 119 /// Implement expand-based legalization of ABS vector operations. 120 /// If following expanding is legal/custom then do it: 121 /// (ABS x) --> (XOR (ADD x, (SRA x, sizeof(x)-1)), (SRA x, sizeof(x)-1)) 122 /// else unroll the operation. 123 SDValue ExpandABS(SDValue Op); 124 125 /// Expand bswap of vectors into a shuffle if legal. 126 SDValue ExpandBSWAP(SDValue Op); 127 128 /// Implement vselect in terms of XOR, AND, OR when blend is not 129 /// supported by the target. 130 SDValue ExpandVSELECT(SDValue Op); 131 SDValue ExpandSELECT(SDValue Op); 132 SDValue ExpandLoad(SDValue Op); 133 SDValue ExpandStore(SDValue Op); 134 SDValue ExpandFNEG(SDValue Op); 135 SDValue ExpandFSUB(SDValue Op); 136 SDValue ExpandBITREVERSE(SDValue Op); 137 SDValue ExpandCTPOP(SDValue Op); 138 SDValue ExpandCTLZ(SDValue Op); 139 SDValue ExpandCTTZ(SDValue Op); 140 SDValue ExpandFunnelShift(SDValue Op); 141 SDValue ExpandROT(SDValue Op); 142 SDValue ExpandFMINNUM_FMAXNUM(SDValue Op); 143 SDValue ExpandAddSubSat(SDValue Op); 144 SDValue ExpandFixedPointMul(SDValue Op); 145 SDValue ExpandStrictFPOp(SDValue Op); 146 147 /// Implements vector promotion. 148 /// 149 /// This is essentially just bitcasting the operands to a different type and 150 /// bitcasting the result back to the original type. 151 SDValue Promote(SDValue Op); 152 153 /// Implements [SU]INT_TO_FP vector promotion. 154 /// 155 /// This is a [zs]ext of the input operand to a larger integer type. 156 SDValue PromoteINT_TO_FP(SDValue Op); 157 158 /// Implements FP_TO_[SU]INT vector promotion of the result type. 159 /// 160 /// It is promoted to a larger integer type. The result is then 161 /// truncated back to the original type. 162 SDValue PromoteFP_TO_INT(SDValue Op); 163 164 public: 165 VectorLegalizer(SelectionDAG& dag) : 166 DAG(dag), TLI(dag.getTargetLoweringInfo()) {} 167 168 /// Begin legalizer the vector operations in the DAG. 169 bool Run(); 170 }; 171 172 } // end anonymous namespace 173 174 bool VectorLegalizer::Run() { 175 // Before we start legalizing vector nodes, check if there are any vectors. 176 bool HasVectors = false; 177 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 178 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 179 // Check if the values of the nodes contain vectors. We don't need to check 180 // the operands because we are going to check their values at some point. 181 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); 182 J != E; ++J) 183 HasVectors |= J->isVector(); 184 185 // If we found a vector node we can start the legalization. 186 if (HasVectors) 187 break; 188 } 189 190 // If this basic block has no vectors then no need to legalize vectors. 191 if (!HasVectors) 192 return false; 193 194 // The legalize process is inherently a bottom-up recursive process (users 195 // legalize their uses before themselves). Given infinite stack space, we 196 // could just start legalizing on the root and traverse the whole graph. In 197 // practice however, this causes us to run out of stack space on large basic 198 // blocks. To avoid this problem, compute an ordering of the nodes where each 199 // node is only legalized after all of its operands are legalized. 200 DAG.AssignTopologicalOrder(); 201 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 202 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 203 LegalizeOp(SDValue(&*I, 0)); 204 205 // Finally, it's possible the root changed. Get the new root. 206 SDValue OldRoot = DAG.getRoot(); 207 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 208 DAG.setRoot(LegalizedNodes[OldRoot]); 209 210 LegalizedNodes.clear(); 211 212 // Remove dead nodes now. 213 DAG.RemoveDeadNodes(); 214 215 return Changed; 216 } 217 218 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { 219 // Generic legalization: just pass the operand through. 220 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) 221 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 222 return Result.getValue(Op.getResNo()); 223 } 224 225 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 226 // Note that LegalizeOp may be reentered even from single-use nodes, which 227 // means that we always must cache transformed nodes. 228 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 229 if (I != LegalizedNodes.end()) return I->second; 230 231 SDNode* Node = Op.getNode(); 232 233 // Legalize the operands 234 SmallVector<SDValue, 8> Ops; 235 for (const SDValue &Op : Node->op_values()) 236 Ops.push_back(LegalizeOp(Op)); 237 238 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 239 Op.getResNo()); 240 241 if (Op.getOpcode() == ISD::LOAD) { 242 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 243 ISD::LoadExtType ExtType = LD->getExtensionType(); 244 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) { 245 LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: "; 246 Node->dump(&DAG)); 247 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), 248 LD->getMemoryVT())) { 249 default: llvm_unreachable("This action is not supported yet!"); 250 case TargetLowering::Legal: 251 return TranslateLegalizeResults(Op, Result); 252 case TargetLowering::Custom: 253 if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) { 254 assert(Lowered->getNumValues() == Op->getNumValues() && 255 "Unexpected number of results"); 256 if (Lowered != Result) { 257 // Make sure the new code is also legal. 258 Lowered = LegalizeOp(Lowered); 259 Changed = true; 260 } 261 return TranslateLegalizeResults(Op, Lowered); 262 } 263 LLVM_FALLTHROUGH; 264 case TargetLowering::Expand: 265 Changed = true; 266 return LegalizeOp(ExpandLoad(Op)); 267 } 268 } 269 } else if (Op.getOpcode() == ISD::STORE) { 270 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 271 EVT StVT = ST->getMemoryVT(); 272 MVT ValVT = ST->getValue().getSimpleValueType(); 273 if (StVT.isVector() && ST->isTruncatingStore()) { 274 LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: "; 275 Node->dump(&DAG)); 276 switch (TLI.getTruncStoreAction(ValVT, StVT)) { 277 default: llvm_unreachable("This action is not supported yet!"); 278 case TargetLowering::Legal: 279 return TranslateLegalizeResults(Op, Result); 280 case TargetLowering::Custom: { 281 SDValue Lowered = TLI.LowerOperation(Result, DAG); 282 if (Lowered != Result) { 283 // Make sure the new code is also legal. 284 Lowered = LegalizeOp(Lowered); 285 Changed = true; 286 } 287 return TranslateLegalizeResults(Op, Lowered); 288 } 289 case TargetLowering::Expand: 290 Changed = true; 291 return LegalizeOp(ExpandStore(Op)); 292 } 293 } 294 } 295 296 bool HasVectorValue = false; 297 for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end(); 298 J != E; 299 ++J) 300 HasVectorValue |= J->isVector(); 301 if (!HasVectorValue) 302 return TranslateLegalizeResults(Op, Result); 303 304 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 305 switch (Op.getOpcode()) { 306 default: 307 return TranslateLegalizeResults(Op, Result); 308 case ISD::STRICT_FADD: 309 case ISD::STRICT_FSUB: 310 case ISD::STRICT_FMUL: 311 case ISD::STRICT_FDIV: 312 case ISD::STRICT_FREM: 313 case ISD::STRICT_FSQRT: 314 case ISD::STRICT_FMA: 315 case ISD::STRICT_FPOW: 316 case ISD::STRICT_FPOWI: 317 case ISD::STRICT_FSIN: 318 case ISD::STRICT_FCOS: 319 case ISD::STRICT_FEXP: 320 case ISD::STRICT_FEXP2: 321 case ISD::STRICT_FLOG: 322 case ISD::STRICT_FLOG10: 323 case ISD::STRICT_FLOG2: 324 case ISD::STRICT_FRINT: 325 case ISD::STRICT_FNEARBYINT: 326 case ISD::STRICT_FMAXNUM: 327 case ISD::STRICT_FMINNUM: 328 case ISD::STRICT_FCEIL: 329 case ISD::STRICT_FFLOOR: 330 case ISD::STRICT_FROUND: 331 case ISD::STRICT_FTRUNC: 332 // These pseudo-ops get legalized as if they were their non-strict 333 // equivalent. For instance, if ISD::FSQRT is legal then ISD::STRICT_FSQRT 334 // is also legal, but if ISD::FSQRT requires expansion then so does 335 // ISD::STRICT_FSQRT. 336 Action = TLI.getStrictFPOperationAction(Node->getOpcode(), 337 Node->getValueType(0)); 338 break; 339 case ISD::ADD: 340 case ISD::SUB: 341 case ISD::MUL: 342 case ISD::MULHS: 343 case ISD::MULHU: 344 case ISD::SDIV: 345 case ISD::UDIV: 346 case ISD::SREM: 347 case ISD::UREM: 348 case ISD::SDIVREM: 349 case ISD::UDIVREM: 350 case ISD::FADD: 351 case ISD::FSUB: 352 case ISD::FMUL: 353 case ISD::FDIV: 354 case ISD::FREM: 355 case ISD::AND: 356 case ISD::OR: 357 case ISD::XOR: 358 case ISD::SHL: 359 case ISD::SRA: 360 case ISD::SRL: 361 case ISD::FSHL: 362 case ISD::FSHR: 363 case ISD::ROTL: 364 case ISD::ROTR: 365 case ISD::ABS: 366 case ISD::BSWAP: 367 case ISD::BITREVERSE: 368 case ISD::CTLZ: 369 case ISD::CTTZ: 370 case ISD::CTLZ_ZERO_UNDEF: 371 case ISD::CTTZ_ZERO_UNDEF: 372 case ISD::CTPOP: 373 case ISD::SELECT: 374 case ISD::VSELECT: 375 case ISD::SELECT_CC: 376 case ISD::SETCC: 377 case ISD::ZERO_EXTEND: 378 case ISD::ANY_EXTEND: 379 case ISD::TRUNCATE: 380 case ISD::SIGN_EXTEND: 381 case ISD::FP_TO_SINT: 382 case ISD::FP_TO_UINT: 383 case ISD::FNEG: 384 case ISD::FABS: 385 case ISD::FMINNUM: 386 case ISD::FMAXNUM: 387 case ISD::FMINNUM_IEEE: 388 case ISD::FMAXNUM_IEEE: 389 case ISD::FMINIMUM: 390 case ISD::FMAXIMUM: 391 case ISD::FCOPYSIGN: 392 case ISD::FSQRT: 393 case ISD::FSIN: 394 case ISD::FCOS: 395 case ISD::FPOWI: 396 case ISD::FPOW: 397 case ISD::FLOG: 398 case ISD::FLOG2: 399 case ISD::FLOG10: 400 case ISD::FEXP: 401 case ISD::FEXP2: 402 case ISD::FCEIL: 403 case ISD::FTRUNC: 404 case ISD::FRINT: 405 case ISD::FNEARBYINT: 406 case ISD::FROUND: 407 case ISD::FFLOOR: 408 case ISD::FP_ROUND: 409 case ISD::FP_EXTEND: 410 case ISD::FMA: 411 case ISD::SIGN_EXTEND_INREG: 412 case ISD::ANY_EXTEND_VECTOR_INREG: 413 case ISD::SIGN_EXTEND_VECTOR_INREG: 414 case ISD::ZERO_EXTEND_VECTOR_INREG: 415 case ISD::SMIN: 416 case ISD::SMAX: 417 case ISD::UMIN: 418 case ISD::UMAX: 419 case ISD::SMUL_LOHI: 420 case ISD::UMUL_LOHI: 421 case ISD::FCANONICALIZE: 422 case ISD::SADDSAT: 423 case ISD::UADDSAT: 424 case ISD::SSUBSAT: 425 case ISD::USUBSAT: 426 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 427 break; 428 case ISD::SMULFIX: 429 case ISD::UMULFIX: { 430 unsigned Scale = Node->getConstantOperandVal(2); 431 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 432 Node->getValueType(0), Scale); 433 break; 434 } 435 case ISD::FP_ROUND_INREG: 436 Action = TLI.getOperationAction(Node->getOpcode(), 437 cast<VTSDNode>(Node->getOperand(1))->getVT()); 438 break; 439 case ISD::SINT_TO_FP: 440 case ISD::UINT_TO_FP: 441 Action = TLI.getOperationAction(Node->getOpcode(), 442 Node->getOperand(0).getValueType()); 443 break; 444 } 445 446 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG)); 447 448 switch (Action) { 449 default: llvm_unreachable("This action is not supported yet!"); 450 case TargetLowering::Promote: 451 Result = Promote(Op); 452 Changed = true; 453 break; 454 case TargetLowering::Legal: 455 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 456 break; 457 case TargetLowering::Custom: { 458 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 459 if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) { 460 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 461 Result = Tmp1; 462 break; 463 } 464 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 465 LLVM_FALLTHROUGH; 466 } 467 case TargetLowering::Expand: 468 Result = Expand(Op); 469 } 470 471 // Make sure that the generated code is itself legal. 472 if (Result != Op) { 473 Result = LegalizeOp(Result); 474 Changed = true; 475 } 476 477 // Note that LegalizeOp may be reentered even from single-use nodes, which 478 // means that we always must cache transformed nodes. 479 AddLegalizedOperand(Op, Result); 480 return Result; 481 } 482 483 SDValue VectorLegalizer::Promote(SDValue Op) { 484 // For a few operations there is a specific concept for promotion based on 485 // the operand's type. 486 switch (Op.getOpcode()) { 487 case ISD::SINT_TO_FP: 488 case ISD::UINT_TO_FP: 489 // "Promote" the operation by extending the operand. 490 return PromoteINT_TO_FP(Op); 491 case ISD::FP_TO_UINT: 492 case ISD::FP_TO_SINT: 493 // Promote the operation by extending the operand. 494 return PromoteFP_TO_INT(Op); 495 } 496 497 // There are currently two cases of vector promotion: 498 // 1) Bitcasting a vector of integers to a different type to a vector of the 499 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 500 // 2) Extending a vector of floats to a vector of the same number of larger 501 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 502 MVT VT = Op.getSimpleValueType(); 503 assert(Op.getNode()->getNumValues() == 1 && 504 "Can't promote a vector with multiple results!"); 505 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 506 SDLoc dl(Op); 507 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 508 509 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 510 if (Op.getOperand(j).getValueType().isVector()) 511 if (Op.getOperand(j) 512 .getValueType() 513 .getVectorElementType() 514 .isFloatingPoint() && 515 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 516 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j)); 517 else 518 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); 519 else 520 Operands[j] = Op.getOperand(j); 521 } 522 523 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags()); 524 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 525 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 526 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 527 return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl)); 528 else 529 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 530 } 531 532 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) { 533 // INT_TO_FP operations may require the input operand be promoted even 534 // when the type is otherwise legal. 535 MVT VT = Op.getOperand(0).getSimpleValueType(); 536 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 537 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 538 "Vectors have different number of elements!"); 539 540 SDLoc dl(Op); 541 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 542 543 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : 544 ISD::SIGN_EXTEND; 545 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 546 if (Op.getOperand(j).getValueType().isVector()) 547 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j)); 548 else 549 Operands[j] = Op.getOperand(j); 550 } 551 552 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands); 553 } 554 555 // For FP_TO_INT we promote the result type to a vector type with wider 556 // elements and then truncate the result. This is different from the default 557 // PromoteVector which uses bitcast to promote thus assumning that the 558 // promoted vector type has the same overall size. 559 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op) { 560 MVT VT = Op.getSimpleValueType(); 561 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 562 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 563 "Vectors have different number of elements!"); 564 565 unsigned NewOpc = Op->getOpcode(); 566 // Change FP_TO_UINT to FP_TO_SINT if possible. 567 // TODO: Should we only do this if FP_TO_UINT itself isn't legal? 568 if (NewOpc == ISD::FP_TO_UINT && 569 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT)) 570 NewOpc = ISD::FP_TO_SINT; 571 572 SDLoc dl(Op); 573 SDValue Promoted = DAG.getNode(NewOpc, dl, NVT, Op.getOperand(0)); 574 575 // Assert that the converted value fits in the original type. If it doesn't 576 // (eg: because the value being converted is too big), then the result of the 577 // original operation was undefined anyway, so the assert is still correct. 578 Promoted = DAG.getNode(Op->getOpcode() == ISD::FP_TO_UINT ? ISD::AssertZext 579 : ISD::AssertSext, 580 dl, NVT, Promoted, 581 DAG.getValueType(VT.getScalarType())); 582 return DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted); 583 } 584 585 SDValue VectorLegalizer::ExpandLoad(SDValue Op) { 586 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 587 588 EVT SrcVT = LD->getMemoryVT(); 589 EVT SrcEltVT = SrcVT.getScalarType(); 590 unsigned NumElem = SrcVT.getVectorNumElements(); 591 592 SDValue NewChain; 593 SDValue Value; 594 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { 595 SDLoc dl(Op); 596 597 SmallVector<SDValue, 8> Vals; 598 SmallVector<SDValue, 8> LoadChains; 599 600 EVT DstEltVT = LD->getValueType(0).getScalarType(); 601 SDValue Chain = LD->getChain(); 602 SDValue BasePTR = LD->getBasePtr(); 603 ISD::LoadExtType ExtType = LD->getExtensionType(); 604 605 // When elements in a vector is not byte-addressable, we cannot directly 606 // load each element by advancing pointer, which could only address bytes. 607 // Instead, we load all significant words, mask bits off, and concatenate 608 // them to form each element. Finally, they are extended to destination 609 // scalar type to build the destination vector. 610 EVT WideVT = TLI.getPointerTy(DAG.getDataLayout()); 611 612 assert(WideVT.isRound() && 613 "Could not handle the sophisticated case when the widest integer is" 614 " not power of 2."); 615 assert(WideVT.bitsGE(SrcEltVT) && 616 "Type is not legalized?"); 617 618 unsigned WideBytes = WideVT.getStoreSize(); 619 unsigned Offset = 0; 620 unsigned RemainingBytes = SrcVT.getStoreSize(); 621 SmallVector<SDValue, 8> LoadVals; 622 while (RemainingBytes > 0) { 623 SDValue ScalarLoad; 624 unsigned LoadBytes = WideBytes; 625 626 if (RemainingBytes >= LoadBytes) { 627 ScalarLoad = 628 DAG.getLoad(WideVT, dl, Chain, BasePTR, 629 LD->getPointerInfo().getWithOffset(Offset), 630 MinAlign(LD->getAlignment(), Offset), 631 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 632 } else { 633 EVT LoadVT = WideVT; 634 while (RemainingBytes < LoadBytes) { 635 LoadBytes >>= 1; // Reduce the load size by half. 636 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); 637 } 638 ScalarLoad = 639 DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, 640 LD->getPointerInfo().getWithOffset(Offset), LoadVT, 641 MinAlign(LD->getAlignment(), Offset), 642 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 643 } 644 645 RemainingBytes -= LoadBytes; 646 Offset += LoadBytes; 647 648 BasePTR = DAG.getObjectPtrOffset(dl, BasePTR, LoadBytes); 649 650 LoadVals.push_back(ScalarLoad.getValue(0)); 651 LoadChains.push_back(ScalarLoad.getValue(1)); 652 } 653 654 // Extract bits, pack and extend/trunc them into destination type. 655 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 656 SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT); 657 658 unsigned BitOffset = 0; 659 unsigned WideIdx = 0; 660 unsigned WideBits = WideVT.getSizeInBits(); 661 662 for (unsigned Idx = 0; Idx != NumElem; ++Idx) { 663 SDValue Lo, Hi, ShAmt; 664 665 if (BitOffset < WideBits) { 666 ShAmt = DAG.getConstant( 667 BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 668 Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); 669 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); 670 } 671 672 BitOffset += SrcEltBits; 673 if (BitOffset >= WideBits) { 674 WideIdx++; 675 BitOffset -= WideBits; 676 if (BitOffset > 0) { 677 ShAmt = DAG.getConstant( 678 SrcEltBits - BitOffset, dl, 679 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 680 Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); 681 Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask); 682 } 683 } 684 685 if (Hi.getNode()) 686 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); 687 688 switch (ExtType) { 689 default: llvm_unreachable("Unknown extended-load op!"); 690 case ISD::EXTLOAD: 691 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); 692 break; 693 case ISD::ZEXTLOAD: 694 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); 695 break; 696 case ISD::SEXTLOAD: 697 ShAmt = 698 DAG.getConstant(WideBits - SrcEltBits, dl, 699 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 700 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); 701 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); 702 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); 703 break; 704 } 705 Vals.push_back(Lo); 706 } 707 708 NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 709 Value = DAG.getBuildVector(Op.getNode()->getValueType(0), dl, Vals); 710 } else { 711 SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG); 712 // Skip past MERGE_VALUE node if known. 713 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) { 714 NewChain = Scalarized.getOperand(1); 715 Value = Scalarized.getOperand(0); 716 } else { 717 NewChain = Scalarized.getValue(1); 718 Value = Scalarized.getValue(0); 719 } 720 } 721 722 AddLegalizedOperand(Op.getValue(0), Value); 723 AddLegalizedOperand(Op.getValue(1), NewChain); 724 725 return (Op.getResNo() ? NewChain : Value); 726 } 727 728 SDValue VectorLegalizer::ExpandStore(SDValue Op) { 729 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 730 SDValue TF = TLI.scalarizeVectorStore(ST, DAG); 731 AddLegalizedOperand(Op, TF); 732 return TF; 733 } 734 735 SDValue VectorLegalizer::Expand(SDValue Op) { 736 switch (Op->getOpcode()) { 737 case ISD::SIGN_EXTEND_INREG: 738 return ExpandSEXTINREG(Op); 739 case ISD::ANY_EXTEND_VECTOR_INREG: 740 return ExpandANY_EXTEND_VECTOR_INREG(Op); 741 case ISD::SIGN_EXTEND_VECTOR_INREG: 742 return ExpandSIGN_EXTEND_VECTOR_INREG(Op); 743 case ISD::ZERO_EXTEND_VECTOR_INREG: 744 return ExpandZERO_EXTEND_VECTOR_INREG(Op); 745 case ISD::BSWAP: 746 return ExpandBSWAP(Op); 747 case ISD::VSELECT: 748 return ExpandVSELECT(Op); 749 case ISD::SELECT: 750 return ExpandSELECT(Op); 751 case ISD::FP_TO_UINT: 752 return ExpandFP_TO_UINT(Op); 753 case ISD::UINT_TO_FP: 754 return ExpandUINT_TO_FLOAT(Op); 755 case ISD::FNEG: 756 return ExpandFNEG(Op); 757 case ISD::FSUB: 758 return ExpandFSUB(Op); 759 case ISD::SETCC: 760 return UnrollVSETCC(Op); 761 case ISD::ABS: 762 return ExpandABS(Op); 763 case ISD::BITREVERSE: 764 return ExpandBITREVERSE(Op); 765 case ISD::CTPOP: 766 return ExpandCTPOP(Op); 767 case ISD::CTLZ: 768 case ISD::CTLZ_ZERO_UNDEF: 769 return ExpandCTLZ(Op); 770 case ISD::CTTZ: 771 case ISD::CTTZ_ZERO_UNDEF: 772 return ExpandCTTZ(Op); 773 case ISD::FSHL: 774 case ISD::FSHR: 775 return ExpandFunnelShift(Op); 776 case ISD::ROTL: 777 case ISD::ROTR: 778 return ExpandROT(Op); 779 case ISD::FMINNUM: 780 case ISD::FMAXNUM: 781 return ExpandFMINNUM_FMAXNUM(Op); 782 case ISD::USUBSAT: 783 case ISD::SSUBSAT: 784 case ISD::UADDSAT: 785 case ISD::SADDSAT: 786 return ExpandAddSubSat(Op); 787 case ISD::SMULFIX: 788 case ISD::UMULFIX: 789 return ExpandFixedPointMul(Op); 790 case ISD::STRICT_FADD: 791 case ISD::STRICT_FSUB: 792 case ISD::STRICT_FMUL: 793 case ISD::STRICT_FDIV: 794 case ISD::STRICT_FREM: 795 case ISD::STRICT_FSQRT: 796 case ISD::STRICT_FMA: 797 case ISD::STRICT_FPOW: 798 case ISD::STRICT_FPOWI: 799 case ISD::STRICT_FSIN: 800 case ISD::STRICT_FCOS: 801 case ISD::STRICT_FEXP: 802 case ISD::STRICT_FEXP2: 803 case ISD::STRICT_FLOG: 804 case ISD::STRICT_FLOG10: 805 case ISD::STRICT_FLOG2: 806 case ISD::STRICT_FRINT: 807 case ISD::STRICT_FNEARBYINT: 808 case ISD::STRICT_FMAXNUM: 809 case ISD::STRICT_FMINNUM: 810 case ISD::STRICT_FCEIL: 811 case ISD::STRICT_FFLOOR: 812 case ISD::STRICT_FROUND: 813 case ISD::STRICT_FTRUNC: 814 return ExpandStrictFPOp(Op); 815 default: 816 return DAG.UnrollVectorOp(Op.getNode()); 817 } 818 } 819 820 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) { 821 // Lower a select instruction where the condition is a scalar and the 822 // operands are vectors. Lower this select to VSELECT and implement it 823 // using XOR AND OR. The selector bit is broadcasted. 824 EVT VT = Op.getValueType(); 825 SDLoc DL(Op); 826 827 SDValue Mask = Op.getOperand(0); 828 SDValue Op1 = Op.getOperand(1); 829 SDValue Op2 = Op.getOperand(2); 830 831 assert(VT.isVector() && !Mask.getValueType().isVector() 832 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 833 834 // If we can't even use the basic vector operations of 835 // AND,OR,XOR, we will have to scalarize the op. 836 // Notice that the operation may be 'promoted' which means that it is 837 // 'bitcasted' to another type which is handled. 838 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 839 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 840 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 841 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 842 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 843 return DAG.UnrollVectorOp(Op.getNode()); 844 845 // Generate a mask operand. 846 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 847 848 // What is the size of each element in the vector mask. 849 EVT BitTy = MaskTy.getScalarType(); 850 851 Mask = DAG.getSelect(DL, BitTy, Mask, 852 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, 853 BitTy), 854 DAG.getConstant(0, DL, BitTy)); 855 856 // Broadcast the mask so that the entire vector is all-one or all zero. 857 Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask); 858 859 // Bitcast the operands to be the same type as the mask. 860 // This is needed when we select between FP types because 861 // the mask is a vector of integers. 862 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 863 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 864 865 SDValue AllOnes = DAG.getConstant( 866 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy); 867 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 868 869 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 870 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 871 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 872 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 873 } 874 875 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) { 876 EVT VT = Op.getValueType(); 877 878 // Make sure that the SRA and SHL instructions are available. 879 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 880 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 881 return DAG.UnrollVectorOp(Op.getNode()); 882 883 SDLoc DL(Op); 884 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT(); 885 886 unsigned BW = VT.getScalarSizeInBits(); 887 unsigned OrigBW = OrigTy.getScalarSizeInBits(); 888 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 889 890 Op = Op.getOperand(0); 891 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz); 892 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 893 } 894 895 // Generically expand a vector anyext in register to a shuffle of the relevant 896 // lanes into the appropriate locations, with other lanes left undef. 897 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) { 898 SDLoc DL(Op); 899 EVT VT = Op.getValueType(); 900 int NumElements = VT.getVectorNumElements(); 901 SDValue Src = Op.getOperand(0); 902 EVT SrcVT = Src.getValueType(); 903 int NumSrcElements = SrcVT.getVectorNumElements(); 904 905 // Build a base mask of undef shuffles. 906 SmallVector<int, 16> ShuffleMask; 907 ShuffleMask.resize(NumSrcElements, -1); 908 909 // Place the extended lanes into the correct locations. 910 int ExtLaneScale = NumSrcElements / NumElements; 911 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 912 for (int i = 0; i < NumElements; ++i) 913 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 914 915 return DAG.getNode( 916 ISD::BITCAST, DL, VT, 917 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 918 } 919 920 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) { 921 SDLoc DL(Op); 922 EVT VT = Op.getValueType(); 923 SDValue Src = Op.getOperand(0); 924 EVT SrcVT = Src.getValueType(); 925 926 // First build an any-extend node which can be legalized above when we 927 // recurse through it. 928 Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src); 929 930 // Now we need sign extend. Do this by shifting the elements. Even if these 931 // aren't legal operations, they have a better chance of being legalized 932 // without full scalarization than the sign extension does. 933 unsigned EltWidth = VT.getScalarSizeInBits(); 934 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); 935 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 936 return DAG.getNode(ISD::SRA, DL, VT, 937 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 938 ShiftAmount); 939 } 940 941 // Generically expand a vector zext in register to a shuffle of the relevant 942 // lanes into the appropriate locations, a blend of zero into the high bits, 943 // and a bitcast to the wider element type. 944 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) { 945 SDLoc DL(Op); 946 EVT VT = Op.getValueType(); 947 int NumElements = VT.getVectorNumElements(); 948 SDValue Src = Op.getOperand(0); 949 EVT SrcVT = Src.getValueType(); 950 int NumSrcElements = SrcVT.getVectorNumElements(); 951 952 // Build up a zero vector to blend into this one. 953 SDValue Zero = DAG.getConstant(0, DL, SrcVT); 954 955 // Shuffle the incoming lanes into the correct position, and pull all other 956 // lanes from the zero vector. 957 SmallVector<int, 16> ShuffleMask; 958 ShuffleMask.reserve(NumSrcElements); 959 for (int i = 0; i < NumSrcElements; ++i) 960 ShuffleMask.push_back(i); 961 962 int ExtLaneScale = NumSrcElements / NumElements; 963 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 964 for (int i = 0; i < NumElements; ++i) 965 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 966 967 return DAG.getNode(ISD::BITCAST, DL, VT, 968 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 969 } 970 971 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) { 972 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 973 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 974 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 975 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 976 } 977 978 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) { 979 EVT VT = Op.getValueType(); 980 981 // Generate a byte wise shuffle mask for the BSWAP. 982 SmallVector<int, 16> ShuffleMask; 983 createBSWAPShuffleMask(VT, ShuffleMask); 984 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 985 986 // Only emit a shuffle if the mask is legal. 987 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) 988 return DAG.UnrollVectorOp(Op.getNode()); 989 990 SDLoc DL(Op); 991 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 992 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); 993 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 994 } 995 996 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) { 997 EVT VT = Op.getValueType(); 998 999 // If we have the scalar operation, it's probably cheaper to unroll it. 1000 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) 1001 return DAG.UnrollVectorOp(Op.getNode()); 1002 1003 // If the vector element width is a whole number of bytes, test if its legal 1004 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte 1005 // vector. This greatly reduces the number of bit shifts necessary. 1006 unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); 1007 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { 1008 SmallVector<int, 16> BSWAPMask; 1009 createBSWAPShuffleMask(VT, BSWAPMask); 1010 1011 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); 1012 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && 1013 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || 1014 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && 1015 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && 1016 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && 1017 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { 1018 SDLoc DL(Op); 1019 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 1020 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 1021 BSWAPMask); 1022 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); 1023 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 1024 } 1025 } 1026 1027 // If we have the appropriate vector bit operations, it is better to use them 1028 // than unrolling and expanding each component. 1029 if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) || 1030 !TLI.isOperationLegalOrCustom(ISD::SRL, VT) || 1031 !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 1032 !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) 1033 return DAG.UnrollVectorOp(Op.getNode()); 1034 1035 // Let LegalizeDAG handle this later. 1036 return Op; 1037 } 1038 1039 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { 1040 // Implement VSELECT in terms of XOR, AND, OR 1041 // on platforms which do not support blend natively. 1042 SDLoc DL(Op); 1043 1044 SDValue Mask = Op.getOperand(0); 1045 SDValue Op1 = Op.getOperand(1); 1046 SDValue Op2 = Op.getOperand(2); 1047 1048 EVT VT = Mask.getValueType(); 1049 1050 // If we can't even use the basic vector operations of 1051 // AND,OR,XOR, we will have to scalarize the op. 1052 // Notice that the operation may be 'promoted' which means that it is 1053 // 'bitcasted' to another type which is handled. 1054 // This operation also isn't safe with AND, OR, XOR when the boolean 1055 // type is 0/1 as we need an all ones vector constant to mask with. 1056 // FIXME: Sign extend 1 to all ones if thats legal on the target. 1057 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 1058 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 1059 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 1060 TLI.getBooleanContents(Op1.getValueType()) != 1061 TargetLowering::ZeroOrNegativeOneBooleanContent) 1062 return DAG.UnrollVectorOp(Op.getNode()); 1063 1064 // If the mask and the type are different sizes, unroll the vector op. This 1065 // can occur when getSetCCResultType returns something that is different in 1066 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 1067 if (VT.getSizeInBits() != Op1.getValueSizeInBits()) 1068 return DAG.UnrollVectorOp(Op.getNode()); 1069 1070 // Bitcast the operands to be the same type as the mask. 1071 // This is needed when we select between FP types because 1072 // the mask is a vector of integers. 1073 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 1074 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 1075 1076 SDValue AllOnes = DAG.getConstant( 1077 APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT); 1078 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 1079 1080 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 1081 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 1082 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 1083 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 1084 } 1085 1086 SDValue VectorLegalizer::ExpandABS(SDValue Op) { 1087 // Attempt to expand using TargetLowering. 1088 SDValue Result; 1089 if (TLI.expandABS(Op.getNode(), Result, DAG)) 1090 return Result; 1091 1092 // Otherwise go ahead and unroll. 1093 return DAG.UnrollVectorOp(Op.getNode()); 1094 } 1095 1096 SDValue VectorLegalizer::ExpandFP_TO_UINT(SDValue Op) { 1097 // Attempt to expand using TargetLowering. 1098 SDValue Result; 1099 if (TLI.expandFP_TO_UINT(Op.getNode(), Result, DAG)) 1100 return Result; 1101 1102 // Otherwise go ahead and unroll. 1103 return DAG.UnrollVectorOp(Op.getNode()); 1104 } 1105 1106 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { 1107 EVT VT = Op.getOperand(0).getValueType(); 1108 SDLoc DL(Op); 1109 1110 // Attempt to expand using TargetLowering. 1111 SDValue Result; 1112 if (TLI.expandUINT_TO_FP(Op.getNode(), Result, DAG)) 1113 return Result; 1114 1115 // Make sure that the SINT_TO_FP and SRL instructions are available. 1116 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand || 1117 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) 1118 return DAG.UnrollVectorOp(Op.getNode()); 1119 1120 unsigned BW = VT.getScalarSizeInBits(); 1121 assert((BW == 64 || BW == 32) && 1122 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 1123 1124 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT); 1125 1126 // Constants to clear the upper part of the word. 1127 // Notice that we can also use SHL+SHR, but using a constant is slightly 1128 // faster on x86. 1129 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; 1130 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 1131 1132 // Two to the power of half-word-size. 1133 SDValue TWOHW = DAG.getConstantFP(1ULL << (BW / 2), DL, Op.getValueType()); 1134 1135 // Clear upper part of LO, lower HI 1136 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); 1137 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); 1138 1139 // Convert hi and lo to floats 1140 // Convert the hi part back to the upper values 1141 // TODO: Can any fast-math-flags be set on these nodes? 1142 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); 1143 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); 1144 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); 1145 1146 // Add the two halves 1147 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); 1148 } 1149 1150 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { 1151 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { 1152 SDLoc DL(Op); 1153 SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType()); 1154 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. 1155 return DAG.getNode(ISD::FSUB, DL, Op.getValueType(), 1156 Zero, Op.getOperand(0)); 1157 } 1158 return DAG.UnrollVectorOp(Op.getNode()); 1159 } 1160 1161 SDValue VectorLegalizer::ExpandFSUB(SDValue Op) { 1162 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal, 1163 // we can defer this to operation legalization where it will be lowered as 1164 // a+(-b). 1165 EVT VT = Op.getValueType(); 1166 if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && 1167 TLI.isOperationLegalOrCustom(ISD::FADD, VT)) 1168 return Op; // Defer to LegalizeDAG 1169 1170 return DAG.UnrollVectorOp(Op.getNode()); 1171 } 1172 1173 SDValue VectorLegalizer::ExpandCTPOP(SDValue Op) { 1174 SDValue Result; 1175 if (TLI.expandCTPOP(Op.getNode(), Result, DAG)) 1176 return Result; 1177 1178 return DAG.UnrollVectorOp(Op.getNode()); 1179 } 1180 1181 SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) { 1182 SDValue Result; 1183 if (TLI.expandCTLZ(Op.getNode(), Result, DAG)) 1184 return Result; 1185 1186 return DAG.UnrollVectorOp(Op.getNode()); 1187 } 1188 1189 SDValue VectorLegalizer::ExpandCTTZ(SDValue Op) { 1190 SDValue Result; 1191 if (TLI.expandCTTZ(Op.getNode(), Result, DAG)) 1192 return Result; 1193 1194 return DAG.UnrollVectorOp(Op.getNode()); 1195 } 1196 1197 SDValue VectorLegalizer::ExpandFunnelShift(SDValue Op) { 1198 SDValue Result; 1199 if (TLI.expandFunnelShift(Op.getNode(), Result, DAG)) 1200 return Result; 1201 1202 return DAG.UnrollVectorOp(Op.getNode()); 1203 } 1204 1205 SDValue VectorLegalizer::ExpandROT(SDValue Op) { 1206 SDValue Result; 1207 if (TLI.expandROT(Op.getNode(), Result, DAG)) 1208 return Result; 1209 1210 return DAG.UnrollVectorOp(Op.getNode()); 1211 } 1212 1213 SDValue VectorLegalizer::ExpandFMINNUM_FMAXNUM(SDValue Op) { 1214 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Op.getNode(), DAG)) 1215 return Expanded; 1216 return DAG.UnrollVectorOp(Op.getNode()); 1217 } 1218 1219 SDValue VectorLegalizer::ExpandAddSubSat(SDValue Op) { 1220 if (SDValue Expanded = TLI.expandAddSubSat(Op.getNode(), DAG)) 1221 return Expanded; 1222 return DAG.UnrollVectorOp(Op.getNode()); 1223 } 1224 1225 SDValue VectorLegalizer::ExpandFixedPointMul(SDValue Op) { 1226 if (SDValue Expanded = TLI.expandFixedPointMul(Op.getNode(), DAG)) 1227 return Expanded; 1228 return DAG.UnrollVectorOp(Op.getNode()); 1229 } 1230 1231 SDValue VectorLegalizer::ExpandStrictFPOp(SDValue Op) { 1232 EVT VT = Op.getValueType(); 1233 EVT EltVT = VT.getVectorElementType(); 1234 unsigned NumElems = VT.getVectorNumElements(); 1235 unsigned NumOpers = Op.getNumOperands(); 1236 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1237 EVT ValueVTs[] = {EltVT, MVT::Other}; 1238 SDValue Chain = Op.getOperand(0); 1239 SDLoc dl(Op); 1240 1241 SmallVector<SDValue, 32> OpValues; 1242 SmallVector<SDValue, 32> OpChains; 1243 for (unsigned i = 0; i < NumElems; ++i) { 1244 SmallVector<SDValue, 4> Opers; 1245 SDValue Idx = DAG.getConstant(i, dl, 1246 TLI.getVectorIdxTy(DAG.getDataLayout())); 1247 1248 // The Chain is the first operand. 1249 Opers.push_back(Chain); 1250 1251 // Now process the remaining operands. 1252 for (unsigned j = 1; j < NumOpers; ++j) { 1253 SDValue Oper = Op.getOperand(j); 1254 EVT OperVT = Oper.getValueType(); 1255 1256 if (OperVT.isVector()) 1257 Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 1258 EltVT, Oper, Idx); 1259 1260 Opers.push_back(Oper); 1261 } 1262 1263 SDValue ScalarOp = DAG.getNode(Op->getOpcode(), dl, ValueVTs, Opers); 1264 1265 OpValues.push_back(ScalarOp.getValue(0)); 1266 OpChains.push_back(ScalarOp.getValue(1)); 1267 } 1268 1269 SDValue Result = DAG.getBuildVector(VT, dl, OpValues); 1270 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains); 1271 1272 AddLegalizedOperand(Op.getValue(0), Result); 1273 AddLegalizedOperand(Op.getValue(1), NewChain); 1274 1275 return Op.getResNo() ? NewChain : Result; 1276 } 1277 1278 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { 1279 EVT VT = Op.getValueType(); 1280 unsigned NumElems = VT.getVectorNumElements(); 1281 EVT EltVT = VT.getVectorElementType(); 1282 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); 1283 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1284 SDLoc dl(Op); 1285 SmallVector<SDValue, 8> Ops(NumElems); 1286 for (unsigned i = 0; i < NumElems; ++i) { 1287 SDValue LHSElem = DAG.getNode( 1288 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1289 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1290 SDValue RHSElem = DAG.getNode( 1291 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1292 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1293 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1294 TLI.getSetCCResultType(DAG.getDataLayout(), 1295 *DAG.getContext(), TmpEltVT), 1296 LHSElem, RHSElem, CC); 1297 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 1298 DAG.getConstant(APInt::getAllOnesValue 1299 (EltVT.getSizeInBits()), dl, EltVT), 1300 DAG.getConstant(0, dl, EltVT)); 1301 } 1302 return DAG.getBuildVector(VT, dl, Ops); 1303 } 1304 1305 bool SelectionDAG::LegalizeVectors() { 1306 return VectorLegalizer(*this).Run(); 1307 } 1308