1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::LegalizeVectors method.
10 //
11 // The vector legalizer looks for vector operations which might need to be
12 // scalarized and legalizes them. This is a separate step from Legalize because
13 // scalarizing can introduce illegal types.  For example, suppose we have an
14 // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
16 // operation, which introduces nodes with the illegal type i64 which must be
17 // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
18 // the operation must be unrolled, which introduces nodes with the illegal
19 // type i8 which must be promoted.
20 //
21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
22 // or operations that happen to take a vector which are custom-lowered;
23 // the legalization for such operations never produces nodes
24 // with illegal types, so it's okay to put off legalizing them until
25 // SelectionDAG::Legalize runs.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/SelectionDAGNodes.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/MachineValueType.h"
43 #include "llvm/Support/MathExtras.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <iterator>
47 #include <utility>
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "legalizevectorops"
52 
53 namespace {
54 
55 class VectorLegalizer {
56   SelectionDAG& DAG;
57   const TargetLowering &TLI;
58   bool Changed = false; // Keep track of whether anything changed
59 
60   /// For nodes that are of legal width, and that have more than one use, this
61   /// map indicates what regularized operand to use.  This allows us to avoid
62   /// legalizing the same thing more than once.
63   SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
64 
65   /// Adds a node to the translation cache.
66   void AddLegalizedOperand(SDValue From, SDValue To) {
67     LegalizedNodes.insert(std::make_pair(From, To));
68     // If someone requests legalization of the new node, return itself.
69     if (From != To)
70       LegalizedNodes.insert(std::make_pair(To, To));
71   }
72 
73   /// Legalizes the given node.
74   SDValue LegalizeOp(SDValue Op);
75 
76   /// Assuming the node is legal, "legalize" the results.
77   SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
78 
79   /// Implements unrolling a VSETCC.
80   SDValue UnrollVSETCC(SDValue Op);
81 
82   /// Implement expand-based legalization of vector operations.
83   ///
84   /// This is just a high-level routine to dispatch to specific code paths for
85   /// operations to legalize them.
86   SDValue Expand(SDValue Op);
87 
88   /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
89   /// FP_TO_SINT isn't legal.
90   SDValue ExpandFP_TO_UINT(SDValue Op);
91 
92   /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
93   /// SINT_TO_FLOAT and SHR on vectors isn't legal.
94   SDValue ExpandUINT_TO_FLOAT(SDValue Op);
95 
96   /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
97   SDValue ExpandSEXTINREG(SDValue Op);
98 
99   /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
100   ///
101   /// Shuffles the low lanes of the operand into place and bitcasts to the proper
102   /// type. The contents of the bits in the extended part of each element are
103   /// undef.
104   SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op);
105 
106   /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
107   ///
108   /// Shuffles the low lanes of the operand into place, bitcasts to the proper
109   /// type, then shifts left and arithmetic shifts right to introduce a sign
110   /// extension.
111   SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op);
112 
113   /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
114   ///
115   /// Shuffles the low lanes of the operand into place and blends zeros into
116   /// the remaining lanes, finally bitcasting to the proper type.
117   SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op);
118 
119   /// Implement expand-based legalization of ABS vector operations.
120   /// If following expanding is legal/custom then do it:
121   /// (ABS x) --> (XOR (ADD x, (SRA x, sizeof(x)-1)), (SRA x, sizeof(x)-1))
122   /// else unroll the operation.
123   SDValue ExpandABS(SDValue Op);
124 
125   /// Expand bswap of vectors into a shuffle if legal.
126   SDValue ExpandBSWAP(SDValue Op);
127 
128   /// Implement vselect in terms of XOR, AND, OR when blend is not
129   /// supported by the target.
130   SDValue ExpandVSELECT(SDValue Op);
131   SDValue ExpandSELECT(SDValue Op);
132   SDValue ExpandLoad(SDValue Op);
133   SDValue ExpandStore(SDValue Op);
134   SDValue ExpandFNEG(SDValue Op);
135   SDValue ExpandFSUB(SDValue Op);
136   SDValue ExpandBITREVERSE(SDValue Op);
137   SDValue ExpandCTPOP(SDValue Op);
138   SDValue ExpandCTLZ(SDValue Op);
139   SDValue ExpandCTTZ(SDValue Op);
140   SDValue ExpandFunnelShift(SDValue Op);
141   SDValue ExpandROT(SDValue Op);
142   SDValue ExpandFMINNUM_FMAXNUM(SDValue Op);
143   SDValue ExpandAddSubSat(SDValue Op);
144   SDValue ExpandFixedPointMul(SDValue Op);
145   SDValue ExpandStrictFPOp(SDValue Op);
146 
147   /// Implements vector promotion.
148   ///
149   /// This is essentially just bitcasting the operands to a different type and
150   /// bitcasting the result back to the original type.
151   SDValue Promote(SDValue Op);
152 
153   /// Implements [SU]INT_TO_FP vector promotion.
154   ///
155   /// This is a [zs]ext of the input operand to a larger integer type.
156   SDValue PromoteINT_TO_FP(SDValue Op);
157 
158   /// Implements FP_TO_[SU]INT vector promotion of the result type.
159   ///
160   /// It is promoted to a larger integer type.  The result is then
161   /// truncated back to the original type.
162   SDValue PromoteFP_TO_INT(SDValue Op);
163 
164 public:
165   VectorLegalizer(SelectionDAG& dag) :
166       DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
167 
168   /// Begin legalizer the vector operations in the DAG.
169   bool Run();
170 };
171 
172 } // end anonymous namespace
173 
174 bool VectorLegalizer::Run() {
175   // Before we start legalizing vector nodes, check if there are any vectors.
176   bool HasVectors = false;
177   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
178        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
179     // Check if the values of the nodes contain vectors. We don't need to check
180     // the operands because we are going to check their values at some point.
181     for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
182          J != E; ++J)
183       HasVectors |= J->isVector();
184 
185     // If we found a vector node we can start the legalization.
186     if (HasVectors)
187       break;
188   }
189 
190   // If this basic block has no vectors then no need to legalize vectors.
191   if (!HasVectors)
192     return false;
193 
194   // The legalize process is inherently a bottom-up recursive process (users
195   // legalize their uses before themselves).  Given infinite stack space, we
196   // could just start legalizing on the root and traverse the whole graph.  In
197   // practice however, this causes us to run out of stack space on large basic
198   // blocks.  To avoid this problem, compute an ordering of the nodes where each
199   // node is only legalized after all of its operands are legalized.
200   DAG.AssignTopologicalOrder();
201   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
202        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
203     LegalizeOp(SDValue(&*I, 0));
204 
205   // Finally, it's possible the root changed.  Get the new root.
206   SDValue OldRoot = DAG.getRoot();
207   assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
208   DAG.setRoot(LegalizedNodes[OldRoot]);
209 
210   LegalizedNodes.clear();
211 
212   // Remove dead nodes now.
213   DAG.RemoveDeadNodes();
214 
215   return Changed;
216 }
217 
218 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
219   // Generic legalization: just pass the operand through.
220   for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
221     AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
222   return Result.getValue(Op.getResNo());
223 }
224 
225 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
226   // Note that LegalizeOp may be reentered even from single-use nodes, which
227   // means that we always must cache transformed nodes.
228   DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
229   if (I != LegalizedNodes.end()) return I->second;
230 
231   SDNode* Node = Op.getNode();
232 
233   // Legalize the operands
234   SmallVector<SDValue, 8> Ops;
235   for (const SDValue &Op : Node->op_values())
236     Ops.push_back(LegalizeOp(Op));
237 
238   SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops),
239                            Op.getResNo());
240 
241   if (Op.getOpcode() == ISD::LOAD) {
242     LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
243     ISD::LoadExtType ExtType = LD->getExtensionType();
244     if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) {
245       LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: ";
246                  Node->dump(&DAG));
247       switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
248                                    LD->getMemoryVT())) {
249       default: llvm_unreachable("This action is not supported yet!");
250       case TargetLowering::Legal:
251         return TranslateLegalizeResults(Op, Result);
252       case TargetLowering::Custom:
253         if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) {
254           assert(Lowered->getNumValues() == Op->getNumValues() &&
255                  "Unexpected number of results");
256           if (Lowered != Result) {
257             // Make sure the new code is also legal.
258             Lowered = LegalizeOp(Lowered);
259             Changed = true;
260           }
261           return TranslateLegalizeResults(Op, Lowered);
262         }
263         LLVM_FALLTHROUGH;
264       case TargetLowering::Expand:
265         Changed = true;
266         return LegalizeOp(ExpandLoad(Op));
267       }
268     }
269   } else if (Op.getOpcode() == ISD::STORE) {
270     StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
271     EVT StVT = ST->getMemoryVT();
272     MVT ValVT = ST->getValue().getSimpleValueType();
273     if (StVT.isVector() && ST->isTruncatingStore()) {
274       LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: ";
275                  Node->dump(&DAG));
276       switch (TLI.getTruncStoreAction(ValVT, StVT)) {
277       default: llvm_unreachable("This action is not supported yet!");
278       case TargetLowering::Legal:
279         return TranslateLegalizeResults(Op, Result);
280       case TargetLowering::Custom: {
281         SDValue Lowered = TLI.LowerOperation(Result, DAG);
282         if (Lowered != Result) {
283           // Make sure the new code is also legal.
284           Lowered = LegalizeOp(Lowered);
285           Changed = true;
286         }
287         return TranslateLegalizeResults(Op, Lowered);
288       }
289       case TargetLowering::Expand:
290         Changed = true;
291         return LegalizeOp(ExpandStore(Op));
292       }
293     }
294   }
295 
296   bool HasVectorValue = false;
297   for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end();
298        J != E;
299        ++J)
300     HasVectorValue |= J->isVector();
301   if (!HasVectorValue)
302     return TranslateLegalizeResults(Op, Result);
303 
304   TargetLowering::LegalizeAction Action = TargetLowering::Legal;
305   switch (Op.getOpcode()) {
306   default:
307     return TranslateLegalizeResults(Op, Result);
308   case ISD::STRICT_FADD:
309   case ISD::STRICT_FSUB:
310   case ISD::STRICT_FMUL:
311   case ISD::STRICT_FDIV:
312   case ISD::STRICT_FREM:
313   case ISD::STRICT_FSQRT:
314   case ISD::STRICT_FMA:
315   case ISD::STRICT_FPOW:
316   case ISD::STRICT_FPOWI:
317   case ISD::STRICT_FSIN:
318   case ISD::STRICT_FCOS:
319   case ISD::STRICT_FEXP:
320   case ISD::STRICT_FEXP2:
321   case ISD::STRICT_FLOG:
322   case ISD::STRICT_FLOG10:
323   case ISD::STRICT_FLOG2:
324   case ISD::STRICT_FRINT:
325   case ISD::STRICT_FNEARBYINT:
326   case ISD::STRICT_FMAXNUM:
327   case ISD::STRICT_FMINNUM:
328   case ISD::STRICT_FCEIL:
329   case ISD::STRICT_FFLOOR:
330   case ISD::STRICT_FROUND:
331   case ISD::STRICT_FTRUNC:
332     // These pseudo-ops get legalized as if they were their non-strict
333     // equivalent.  For instance, if ISD::FSQRT is legal then ISD::STRICT_FSQRT
334     // is also legal, but if ISD::FSQRT requires expansion then so does
335     // ISD::STRICT_FSQRT.
336     Action = TLI.getStrictFPOperationAction(Node->getOpcode(),
337                                             Node->getValueType(0));
338     break;
339   case ISD::ADD:
340   case ISD::SUB:
341   case ISD::MUL:
342   case ISD::MULHS:
343   case ISD::MULHU:
344   case ISD::SDIV:
345   case ISD::UDIV:
346   case ISD::SREM:
347   case ISD::UREM:
348   case ISD::SDIVREM:
349   case ISD::UDIVREM:
350   case ISD::FADD:
351   case ISD::FSUB:
352   case ISD::FMUL:
353   case ISD::FDIV:
354   case ISD::FREM:
355   case ISD::AND:
356   case ISD::OR:
357   case ISD::XOR:
358   case ISD::SHL:
359   case ISD::SRA:
360   case ISD::SRL:
361   case ISD::FSHL:
362   case ISD::FSHR:
363   case ISD::ROTL:
364   case ISD::ROTR:
365   case ISD::ABS:
366   case ISD::BSWAP:
367   case ISD::BITREVERSE:
368   case ISD::CTLZ:
369   case ISD::CTTZ:
370   case ISD::CTLZ_ZERO_UNDEF:
371   case ISD::CTTZ_ZERO_UNDEF:
372   case ISD::CTPOP:
373   case ISD::SELECT:
374   case ISD::VSELECT:
375   case ISD::SELECT_CC:
376   case ISD::SETCC:
377   case ISD::ZERO_EXTEND:
378   case ISD::ANY_EXTEND:
379   case ISD::TRUNCATE:
380   case ISD::SIGN_EXTEND:
381   case ISD::FP_TO_SINT:
382   case ISD::FP_TO_UINT:
383   case ISD::FNEG:
384   case ISD::FABS:
385   case ISD::FMINNUM:
386   case ISD::FMAXNUM:
387   case ISD::FMINNUM_IEEE:
388   case ISD::FMAXNUM_IEEE:
389   case ISD::FMINIMUM:
390   case ISD::FMAXIMUM:
391   case ISD::FCOPYSIGN:
392   case ISD::FSQRT:
393   case ISD::FSIN:
394   case ISD::FCOS:
395   case ISD::FPOWI:
396   case ISD::FPOW:
397   case ISD::FLOG:
398   case ISD::FLOG2:
399   case ISD::FLOG10:
400   case ISD::FEXP:
401   case ISD::FEXP2:
402   case ISD::FCEIL:
403   case ISD::FTRUNC:
404   case ISD::FRINT:
405   case ISD::FNEARBYINT:
406   case ISD::FROUND:
407   case ISD::FFLOOR:
408   case ISD::FP_ROUND:
409   case ISD::FP_EXTEND:
410   case ISD::FMA:
411   case ISD::SIGN_EXTEND_INREG:
412   case ISD::ANY_EXTEND_VECTOR_INREG:
413   case ISD::SIGN_EXTEND_VECTOR_INREG:
414   case ISD::ZERO_EXTEND_VECTOR_INREG:
415   case ISD::SMIN:
416   case ISD::SMAX:
417   case ISD::UMIN:
418   case ISD::UMAX:
419   case ISD::SMUL_LOHI:
420   case ISD::UMUL_LOHI:
421   case ISD::FCANONICALIZE:
422   case ISD::SADDSAT:
423   case ISD::UADDSAT:
424   case ISD::SSUBSAT:
425   case ISD::USUBSAT:
426     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
427     break;
428   case ISD::SMULFIX:
429   case ISD::UMULFIX: {
430     unsigned Scale = Node->getConstantOperandVal(2);
431     Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
432                                               Node->getValueType(0), Scale);
433     break;
434   }
435   case ISD::FP_ROUND_INREG:
436     Action = TLI.getOperationAction(Node->getOpcode(),
437                cast<VTSDNode>(Node->getOperand(1))->getVT());
438     break;
439   case ISD::SINT_TO_FP:
440   case ISD::UINT_TO_FP:
441     Action = TLI.getOperationAction(Node->getOpcode(),
442                                     Node->getOperand(0).getValueType());
443     break;
444   }
445 
446   LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
447 
448   switch (Action) {
449   default: llvm_unreachable("This action is not supported yet!");
450   case TargetLowering::Promote:
451     Result = Promote(Op);
452     Changed = true;
453     break;
454   case TargetLowering::Legal:
455     LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
456     break;
457   case TargetLowering::Custom: {
458     LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
459     if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) {
460       LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
461       Result = Tmp1;
462       break;
463     }
464     LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
465     LLVM_FALLTHROUGH;
466   }
467   case TargetLowering::Expand:
468     Result = Expand(Op);
469   }
470 
471   // Make sure that the generated code is itself legal.
472   if (Result != Op) {
473     Result = LegalizeOp(Result);
474     Changed = true;
475   }
476 
477   // Note that LegalizeOp may be reentered even from single-use nodes, which
478   // means that we always must cache transformed nodes.
479   AddLegalizedOperand(Op, Result);
480   return Result;
481 }
482 
483 SDValue VectorLegalizer::Promote(SDValue Op) {
484   // For a few operations there is a specific concept for promotion based on
485   // the operand's type.
486   switch (Op.getOpcode()) {
487   case ISD::SINT_TO_FP:
488   case ISD::UINT_TO_FP:
489     // "Promote" the operation by extending the operand.
490     return PromoteINT_TO_FP(Op);
491   case ISD::FP_TO_UINT:
492   case ISD::FP_TO_SINT:
493     // Promote the operation by extending the operand.
494     return PromoteFP_TO_INT(Op);
495   }
496 
497   // There are currently two cases of vector promotion:
498   // 1) Bitcasting a vector of integers to a different type to a vector of the
499   //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
500   // 2) Extending a vector of floats to a vector of the same number of larger
501   //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
502   MVT VT = Op.getSimpleValueType();
503   assert(Op.getNode()->getNumValues() == 1 &&
504          "Can't promote a vector with multiple results!");
505   MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
506   SDLoc dl(Op);
507   SmallVector<SDValue, 4> Operands(Op.getNumOperands());
508 
509   for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
510     if (Op.getOperand(j).getValueType().isVector())
511       if (Op.getOperand(j)
512               .getValueType()
513               .getVectorElementType()
514               .isFloatingPoint() &&
515           NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
516         Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j));
517       else
518         Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
519     else
520       Operands[j] = Op.getOperand(j);
521   }
522 
523   Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags());
524   if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
525       (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
526        NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
527     return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl));
528   else
529     return DAG.getNode(ISD::BITCAST, dl, VT, Op);
530 }
531 
532 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) {
533   // INT_TO_FP operations may require the input operand be promoted even
534   // when the type is otherwise legal.
535   MVT VT = Op.getOperand(0).getSimpleValueType();
536   MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
537   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
538          "Vectors have different number of elements!");
539 
540   SDLoc dl(Op);
541   SmallVector<SDValue, 4> Operands(Op.getNumOperands());
542 
543   unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND :
544     ISD::SIGN_EXTEND;
545   for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
546     if (Op.getOperand(j).getValueType().isVector())
547       Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
548     else
549       Operands[j] = Op.getOperand(j);
550   }
551 
552   return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands);
553 }
554 
555 // For FP_TO_INT we promote the result type to a vector type with wider
556 // elements and then truncate the result.  This is different from the default
557 // PromoteVector which uses bitcast to promote thus assumning that the
558 // promoted vector type has the same overall size.
559 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op) {
560   MVT VT = Op.getSimpleValueType();
561   MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
562   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
563          "Vectors have different number of elements!");
564 
565   unsigned NewOpc = Op->getOpcode();
566   // Change FP_TO_UINT to FP_TO_SINT if possible.
567   // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
568   if (NewOpc == ISD::FP_TO_UINT &&
569       TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
570     NewOpc = ISD::FP_TO_SINT;
571 
572   SDLoc dl(Op);
573   SDValue Promoted  = DAG.getNode(NewOpc, dl, NVT, Op.getOperand(0));
574 
575   // Assert that the converted value fits in the original type.  If it doesn't
576   // (eg: because the value being converted is too big), then the result of the
577   // original operation was undefined anyway, so the assert is still correct.
578   Promoted = DAG.getNode(Op->getOpcode() == ISD::FP_TO_UINT ? ISD::AssertZext
579                                                             : ISD::AssertSext,
580                          dl, NVT, Promoted,
581                          DAG.getValueType(VT.getScalarType()));
582   return DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
583 }
584 
585 SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
586   LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
587 
588   EVT SrcVT = LD->getMemoryVT();
589   EVT SrcEltVT = SrcVT.getScalarType();
590   unsigned NumElem = SrcVT.getVectorNumElements();
591 
592   SDValue NewChain;
593   SDValue Value;
594   if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
595     SDLoc dl(Op);
596 
597     SmallVector<SDValue, 8> Vals;
598     SmallVector<SDValue, 8> LoadChains;
599 
600     EVT DstEltVT = LD->getValueType(0).getScalarType();
601     SDValue Chain = LD->getChain();
602     SDValue BasePTR = LD->getBasePtr();
603     ISD::LoadExtType ExtType = LD->getExtensionType();
604 
605     // When elements in a vector is not byte-addressable, we cannot directly
606     // load each element by advancing pointer, which could only address bytes.
607     // Instead, we load all significant words, mask bits off, and concatenate
608     // them to form each element. Finally, they are extended to destination
609     // scalar type to build the destination vector.
610     EVT WideVT = TLI.getPointerTy(DAG.getDataLayout());
611 
612     assert(WideVT.isRound() &&
613            "Could not handle the sophisticated case when the widest integer is"
614            " not power of 2.");
615     assert(WideVT.bitsGE(SrcEltVT) &&
616            "Type is not legalized?");
617 
618     unsigned WideBytes = WideVT.getStoreSize();
619     unsigned Offset = 0;
620     unsigned RemainingBytes = SrcVT.getStoreSize();
621     SmallVector<SDValue, 8> LoadVals;
622     while (RemainingBytes > 0) {
623       SDValue ScalarLoad;
624       unsigned LoadBytes = WideBytes;
625 
626       if (RemainingBytes >= LoadBytes) {
627         ScalarLoad =
628             DAG.getLoad(WideVT, dl, Chain, BasePTR,
629                         LD->getPointerInfo().getWithOffset(Offset),
630                         MinAlign(LD->getAlignment(), Offset),
631                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
632       } else {
633         EVT LoadVT = WideVT;
634         while (RemainingBytes < LoadBytes) {
635           LoadBytes >>= 1; // Reduce the load size by half.
636           LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
637         }
638         ScalarLoad =
639             DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
640                            LD->getPointerInfo().getWithOffset(Offset), LoadVT,
641                            MinAlign(LD->getAlignment(), Offset),
642                            LD->getMemOperand()->getFlags(), LD->getAAInfo());
643       }
644 
645       RemainingBytes -= LoadBytes;
646       Offset += LoadBytes;
647 
648       BasePTR = DAG.getObjectPtrOffset(dl, BasePTR, LoadBytes);
649 
650       LoadVals.push_back(ScalarLoad.getValue(0));
651       LoadChains.push_back(ScalarLoad.getValue(1));
652     }
653 
654     // Extract bits, pack and extend/trunc them into destination type.
655     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
656     SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT);
657 
658     unsigned BitOffset = 0;
659     unsigned WideIdx = 0;
660     unsigned WideBits = WideVT.getSizeInBits();
661 
662     for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
663       SDValue Lo, Hi, ShAmt;
664 
665       if (BitOffset < WideBits) {
666         ShAmt = DAG.getConstant(
667             BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
668         Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
669         Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
670       }
671 
672       BitOffset += SrcEltBits;
673       if (BitOffset >= WideBits) {
674         WideIdx++;
675         BitOffset -= WideBits;
676         if (BitOffset > 0) {
677           ShAmt = DAG.getConstant(
678               SrcEltBits - BitOffset, dl,
679               TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
680           Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
681           Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask);
682         }
683       }
684 
685       if (Hi.getNode())
686         Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
687 
688       switch (ExtType) {
689       default: llvm_unreachable("Unknown extended-load op!");
690       case ISD::EXTLOAD:
691         Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
692         break;
693       case ISD::ZEXTLOAD:
694         Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
695         break;
696       case ISD::SEXTLOAD:
697         ShAmt =
698             DAG.getConstant(WideBits - SrcEltBits, dl,
699                             TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
700         Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
701         Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
702         Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
703         break;
704       }
705       Vals.push_back(Lo);
706     }
707 
708     NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
709     Value = DAG.getBuildVector(Op.getNode()->getValueType(0), dl, Vals);
710   } else {
711     SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG);
712     // Skip past MERGE_VALUE node if known.
713     if (Scalarized->getOpcode() == ISD::MERGE_VALUES) {
714       NewChain = Scalarized.getOperand(1);
715       Value = Scalarized.getOperand(0);
716     } else {
717       NewChain = Scalarized.getValue(1);
718       Value = Scalarized.getValue(0);
719     }
720   }
721 
722   AddLegalizedOperand(Op.getValue(0), Value);
723   AddLegalizedOperand(Op.getValue(1), NewChain);
724 
725   return (Op.getResNo() ? NewChain : Value);
726 }
727 
728 SDValue VectorLegalizer::ExpandStore(SDValue Op) {
729   StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
730   SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
731   AddLegalizedOperand(Op, TF);
732   return TF;
733 }
734 
735 SDValue VectorLegalizer::Expand(SDValue Op) {
736   switch (Op->getOpcode()) {
737   case ISD::SIGN_EXTEND_INREG:
738     return ExpandSEXTINREG(Op);
739   case ISD::ANY_EXTEND_VECTOR_INREG:
740     return ExpandANY_EXTEND_VECTOR_INREG(Op);
741   case ISD::SIGN_EXTEND_VECTOR_INREG:
742     return ExpandSIGN_EXTEND_VECTOR_INREG(Op);
743   case ISD::ZERO_EXTEND_VECTOR_INREG:
744     return ExpandZERO_EXTEND_VECTOR_INREG(Op);
745   case ISD::BSWAP:
746     return ExpandBSWAP(Op);
747   case ISD::VSELECT:
748     return ExpandVSELECT(Op);
749   case ISD::SELECT:
750     return ExpandSELECT(Op);
751   case ISD::FP_TO_UINT:
752     return ExpandFP_TO_UINT(Op);
753   case ISD::UINT_TO_FP:
754     return ExpandUINT_TO_FLOAT(Op);
755   case ISD::FNEG:
756     return ExpandFNEG(Op);
757   case ISD::FSUB:
758     return ExpandFSUB(Op);
759   case ISD::SETCC:
760     return UnrollVSETCC(Op);
761   case ISD::ABS:
762     return ExpandABS(Op);
763   case ISD::BITREVERSE:
764     return ExpandBITREVERSE(Op);
765   case ISD::CTPOP:
766     return ExpandCTPOP(Op);
767   case ISD::CTLZ:
768   case ISD::CTLZ_ZERO_UNDEF:
769     return ExpandCTLZ(Op);
770   case ISD::CTTZ:
771   case ISD::CTTZ_ZERO_UNDEF:
772     return ExpandCTTZ(Op);
773   case ISD::FSHL:
774   case ISD::FSHR:
775     return ExpandFunnelShift(Op);
776   case ISD::ROTL:
777   case ISD::ROTR:
778     return ExpandROT(Op);
779   case ISD::FMINNUM:
780   case ISD::FMAXNUM:
781     return ExpandFMINNUM_FMAXNUM(Op);
782   case ISD::USUBSAT:
783   case ISD::SSUBSAT:
784   case ISD::UADDSAT:
785   case ISD::SADDSAT:
786     return ExpandAddSubSat(Op);
787   case ISD::SMULFIX:
788   case ISD::UMULFIX:
789     return ExpandFixedPointMul(Op);
790   case ISD::STRICT_FADD:
791   case ISD::STRICT_FSUB:
792   case ISD::STRICT_FMUL:
793   case ISD::STRICT_FDIV:
794   case ISD::STRICT_FREM:
795   case ISD::STRICT_FSQRT:
796   case ISD::STRICT_FMA:
797   case ISD::STRICT_FPOW:
798   case ISD::STRICT_FPOWI:
799   case ISD::STRICT_FSIN:
800   case ISD::STRICT_FCOS:
801   case ISD::STRICT_FEXP:
802   case ISD::STRICT_FEXP2:
803   case ISD::STRICT_FLOG:
804   case ISD::STRICT_FLOG10:
805   case ISD::STRICT_FLOG2:
806   case ISD::STRICT_FRINT:
807   case ISD::STRICT_FNEARBYINT:
808   case ISD::STRICT_FMAXNUM:
809   case ISD::STRICT_FMINNUM:
810   case ISD::STRICT_FCEIL:
811   case ISD::STRICT_FFLOOR:
812   case ISD::STRICT_FROUND:
813   case ISD::STRICT_FTRUNC:
814     return ExpandStrictFPOp(Op);
815   default:
816     return DAG.UnrollVectorOp(Op.getNode());
817   }
818 }
819 
820 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
821   // Lower a select instruction where the condition is a scalar and the
822   // operands are vectors. Lower this select to VSELECT and implement it
823   // using XOR AND OR. The selector bit is broadcasted.
824   EVT VT = Op.getValueType();
825   SDLoc DL(Op);
826 
827   SDValue Mask = Op.getOperand(0);
828   SDValue Op1 = Op.getOperand(1);
829   SDValue Op2 = Op.getOperand(2);
830 
831   assert(VT.isVector() && !Mask.getValueType().isVector()
832          && Op1.getValueType() == Op2.getValueType() && "Invalid type");
833 
834   // If we can't even use the basic vector operations of
835   // AND,OR,XOR, we will have to scalarize the op.
836   // Notice that the operation may be 'promoted' which means that it is
837   // 'bitcasted' to another type which is handled.
838   // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
839   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
840       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
841       TLI.getOperationAction(ISD::OR,  VT) == TargetLowering::Expand ||
842       TLI.getOperationAction(ISD::BUILD_VECTOR,  VT) == TargetLowering::Expand)
843     return DAG.UnrollVectorOp(Op.getNode());
844 
845   // Generate a mask operand.
846   EVT MaskTy = VT.changeVectorElementTypeToInteger();
847 
848   // What is the size of each element in the vector mask.
849   EVT BitTy = MaskTy.getScalarType();
850 
851   Mask = DAG.getSelect(DL, BitTy, Mask,
852           DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
853                           BitTy),
854           DAG.getConstant(0, DL, BitTy));
855 
856   // Broadcast the mask so that the entire vector is all-one or all zero.
857   Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask);
858 
859   // Bitcast the operands to be the same type as the mask.
860   // This is needed when we select between FP types because
861   // the mask is a vector of integers.
862   Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
863   Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
864 
865   SDValue AllOnes = DAG.getConstant(
866             APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
867   SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
868 
869   Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
870   Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
871   SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
872   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
873 }
874 
875 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
876   EVT VT = Op.getValueType();
877 
878   // Make sure that the SRA and SHL instructions are available.
879   if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
880       TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
881     return DAG.UnrollVectorOp(Op.getNode());
882 
883   SDLoc DL(Op);
884   EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
885 
886   unsigned BW = VT.getScalarSizeInBits();
887   unsigned OrigBW = OrigTy.getScalarSizeInBits();
888   SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
889 
890   Op = Op.getOperand(0);
891   Op =   DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
892   return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
893 }
894 
895 // Generically expand a vector anyext in register to a shuffle of the relevant
896 // lanes into the appropriate locations, with other lanes left undef.
897 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) {
898   SDLoc DL(Op);
899   EVT VT = Op.getValueType();
900   int NumElements = VT.getVectorNumElements();
901   SDValue Src = Op.getOperand(0);
902   EVT SrcVT = Src.getValueType();
903   int NumSrcElements = SrcVT.getVectorNumElements();
904 
905   // Build a base mask of undef shuffles.
906   SmallVector<int, 16> ShuffleMask;
907   ShuffleMask.resize(NumSrcElements, -1);
908 
909   // Place the extended lanes into the correct locations.
910   int ExtLaneScale = NumSrcElements / NumElements;
911   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
912   for (int i = 0; i < NumElements; ++i)
913     ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
914 
915   return DAG.getNode(
916       ISD::BITCAST, DL, VT,
917       DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
918 }
919 
920 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) {
921   SDLoc DL(Op);
922   EVT VT = Op.getValueType();
923   SDValue Src = Op.getOperand(0);
924   EVT SrcVT = Src.getValueType();
925 
926   // First build an any-extend node which can be legalized above when we
927   // recurse through it.
928   Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src);
929 
930   // Now we need sign extend. Do this by shifting the elements. Even if these
931   // aren't legal operations, they have a better chance of being legalized
932   // without full scalarization than the sign extension does.
933   unsigned EltWidth = VT.getScalarSizeInBits();
934   unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
935   SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
936   return DAG.getNode(ISD::SRA, DL, VT,
937                      DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
938                      ShiftAmount);
939 }
940 
941 // Generically expand a vector zext in register to a shuffle of the relevant
942 // lanes into the appropriate locations, a blend of zero into the high bits,
943 // and a bitcast to the wider element type.
944 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) {
945   SDLoc DL(Op);
946   EVT VT = Op.getValueType();
947   int NumElements = VT.getVectorNumElements();
948   SDValue Src = Op.getOperand(0);
949   EVT SrcVT = Src.getValueType();
950   int NumSrcElements = SrcVT.getVectorNumElements();
951 
952   // Build up a zero vector to blend into this one.
953   SDValue Zero = DAG.getConstant(0, DL, SrcVT);
954 
955   // Shuffle the incoming lanes into the correct position, and pull all other
956   // lanes from the zero vector.
957   SmallVector<int, 16> ShuffleMask;
958   ShuffleMask.reserve(NumSrcElements);
959   for (int i = 0; i < NumSrcElements; ++i)
960     ShuffleMask.push_back(i);
961 
962   int ExtLaneScale = NumSrcElements / NumElements;
963   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
964   for (int i = 0; i < NumElements; ++i)
965     ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
966 
967   return DAG.getNode(ISD::BITCAST, DL, VT,
968                      DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
969 }
970 
971 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
972   int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
973   for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
974     for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
975       ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
976 }
977 
978 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) {
979   EVT VT = Op.getValueType();
980 
981   // Generate a byte wise shuffle mask for the BSWAP.
982   SmallVector<int, 16> ShuffleMask;
983   createBSWAPShuffleMask(VT, ShuffleMask);
984   EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
985 
986   // Only emit a shuffle if the mask is legal.
987   if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
988     return DAG.UnrollVectorOp(Op.getNode());
989 
990   SDLoc DL(Op);
991   Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
992   Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
993   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
994 }
995 
996 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) {
997   EVT VT = Op.getValueType();
998 
999   // If we have the scalar operation, it's probably cheaper to unroll it.
1000   if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType()))
1001     return DAG.UnrollVectorOp(Op.getNode());
1002 
1003   // If the vector element width is a whole number of bytes, test if its legal
1004   // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
1005   // vector. This greatly reduces the number of bit shifts necessary.
1006   unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
1007   if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
1008     SmallVector<int, 16> BSWAPMask;
1009     createBSWAPShuffleMask(VT, BSWAPMask);
1010 
1011     EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
1012     if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
1013         (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
1014          (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
1015           TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
1016           TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
1017           TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
1018       SDLoc DL(Op);
1019       Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
1020       Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
1021                                 BSWAPMask);
1022       Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
1023       return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1024     }
1025   }
1026 
1027   // If we have the appropriate vector bit operations, it is better to use them
1028   // than unrolling and expanding each component.
1029   if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) ||
1030       !TLI.isOperationLegalOrCustom(ISD::SRL, VT) ||
1031       !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
1032       !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
1033     return DAG.UnrollVectorOp(Op.getNode());
1034 
1035   // Let LegalizeDAG handle this later.
1036   return Op;
1037 }
1038 
1039 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
1040   // Implement VSELECT in terms of XOR, AND, OR
1041   // on platforms which do not support blend natively.
1042   SDLoc DL(Op);
1043 
1044   SDValue Mask = Op.getOperand(0);
1045   SDValue Op1 = Op.getOperand(1);
1046   SDValue Op2 = Op.getOperand(2);
1047 
1048   EVT VT = Mask.getValueType();
1049 
1050   // If we can't even use the basic vector operations of
1051   // AND,OR,XOR, we will have to scalarize the op.
1052   // Notice that the operation may be 'promoted' which means that it is
1053   // 'bitcasted' to another type which is handled.
1054   // This operation also isn't safe with AND, OR, XOR when the boolean
1055   // type is 0/1 as we need an all ones vector constant to mask with.
1056   // FIXME: Sign extend 1 to all ones if thats legal on the target.
1057   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1058       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1059       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
1060       TLI.getBooleanContents(Op1.getValueType()) !=
1061           TargetLowering::ZeroOrNegativeOneBooleanContent)
1062     return DAG.UnrollVectorOp(Op.getNode());
1063 
1064   // If the mask and the type are different sizes, unroll the vector op. This
1065   // can occur when getSetCCResultType returns something that is different in
1066   // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1067   if (VT.getSizeInBits() != Op1.getValueSizeInBits())
1068     return DAG.UnrollVectorOp(Op.getNode());
1069 
1070   // Bitcast the operands to be the same type as the mask.
1071   // This is needed when we select between FP types because
1072   // the mask is a vector of integers.
1073   Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
1074   Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
1075 
1076   SDValue AllOnes = DAG.getConstant(
1077     APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT);
1078   SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
1079 
1080   Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
1081   Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
1082   SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
1083   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
1084 }
1085 
1086 SDValue VectorLegalizer::ExpandABS(SDValue Op) {
1087   // Attempt to expand using TargetLowering.
1088   SDValue Result;
1089   if (TLI.expandABS(Op.getNode(), Result, DAG))
1090     return Result;
1091 
1092   // Otherwise go ahead and unroll.
1093   return DAG.UnrollVectorOp(Op.getNode());
1094 }
1095 
1096 SDValue VectorLegalizer::ExpandFP_TO_UINT(SDValue Op) {
1097   // Attempt to expand using TargetLowering.
1098   SDValue Result;
1099   if (TLI.expandFP_TO_UINT(Op.getNode(), Result, DAG))
1100     return Result;
1101 
1102   // Otherwise go ahead and unroll.
1103   return DAG.UnrollVectorOp(Op.getNode());
1104 }
1105 
1106 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
1107   EVT VT = Op.getOperand(0).getValueType();
1108   SDLoc DL(Op);
1109 
1110   // Attempt to expand using TargetLowering.
1111   SDValue Result;
1112   if (TLI.expandUINT_TO_FP(Op.getNode(), Result, DAG))
1113     return Result;
1114 
1115   // Make sure that the SINT_TO_FP and SRL instructions are available.
1116   if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand ||
1117       TLI.getOperationAction(ISD::SRL,        VT) == TargetLowering::Expand)
1118     return DAG.UnrollVectorOp(Op.getNode());
1119 
1120   unsigned BW = VT.getScalarSizeInBits();
1121   assert((BW == 64 || BW == 32) &&
1122          "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1123 
1124   SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
1125 
1126   // Constants to clear the upper part of the word.
1127   // Notice that we can also use SHL+SHR, but using a constant is slightly
1128   // faster on x86.
1129   uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1130   SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
1131 
1132   // Two to the power of half-word-size.
1133   SDValue TWOHW = DAG.getConstantFP(1ULL << (BW / 2), DL, Op.getValueType());
1134 
1135   // Clear upper part of LO, lower HI
1136   SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
1137   SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask);
1138 
1139   // Convert hi and lo to floats
1140   // Convert the hi part back to the upper values
1141   // TODO: Can any fast-math-flags be set on these nodes?
1142   SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
1143           fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
1144   SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);
1145 
1146   // Add the two halves
1147   return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
1148 }
1149 
1150 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
1151   if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
1152     SDLoc DL(Op);
1153     SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType());
1154     // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1155     return DAG.getNode(ISD::FSUB, DL, Op.getValueType(),
1156                        Zero, Op.getOperand(0));
1157   }
1158   return DAG.UnrollVectorOp(Op.getNode());
1159 }
1160 
1161 SDValue VectorLegalizer::ExpandFSUB(SDValue Op) {
1162   // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1163   // we can defer this to operation legalization where it will be lowered as
1164   // a+(-b).
1165   EVT VT = Op.getValueType();
1166   if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
1167       TLI.isOperationLegalOrCustom(ISD::FADD, VT))
1168     return Op; // Defer to LegalizeDAG
1169 
1170   return DAG.UnrollVectorOp(Op.getNode());
1171 }
1172 
1173 SDValue VectorLegalizer::ExpandCTPOP(SDValue Op) {
1174   SDValue Result;
1175   if (TLI.expandCTPOP(Op.getNode(), Result, DAG))
1176     return Result;
1177 
1178   return DAG.UnrollVectorOp(Op.getNode());
1179 }
1180 
1181 SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) {
1182   SDValue Result;
1183   if (TLI.expandCTLZ(Op.getNode(), Result, DAG))
1184     return Result;
1185 
1186   return DAG.UnrollVectorOp(Op.getNode());
1187 }
1188 
1189 SDValue VectorLegalizer::ExpandCTTZ(SDValue Op) {
1190   SDValue Result;
1191   if (TLI.expandCTTZ(Op.getNode(), Result, DAG))
1192     return Result;
1193 
1194   return DAG.UnrollVectorOp(Op.getNode());
1195 }
1196 
1197 SDValue VectorLegalizer::ExpandFunnelShift(SDValue Op) {
1198   SDValue Result;
1199   if (TLI.expandFunnelShift(Op.getNode(), Result, DAG))
1200     return Result;
1201 
1202   return DAG.UnrollVectorOp(Op.getNode());
1203 }
1204 
1205 SDValue VectorLegalizer::ExpandROT(SDValue Op) {
1206   SDValue Result;
1207   if (TLI.expandROT(Op.getNode(), Result, DAG))
1208     return Result;
1209 
1210   return DAG.UnrollVectorOp(Op.getNode());
1211 }
1212 
1213 SDValue VectorLegalizer::ExpandFMINNUM_FMAXNUM(SDValue Op) {
1214   if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Op.getNode(), DAG))
1215     return Expanded;
1216   return DAG.UnrollVectorOp(Op.getNode());
1217 }
1218 
1219 SDValue VectorLegalizer::ExpandAddSubSat(SDValue Op) {
1220   if (SDValue Expanded = TLI.expandAddSubSat(Op.getNode(), DAG))
1221     return Expanded;
1222   return DAG.UnrollVectorOp(Op.getNode());
1223 }
1224 
1225 SDValue VectorLegalizer::ExpandFixedPointMul(SDValue Op) {
1226   if (SDValue Expanded = TLI.expandFixedPointMul(Op.getNode(), DAG))
1227     return Expanded;
1228   return DAG.UnrollVectorOp(Op.getNode());
1229 }
1230 
1231 SDValue VectorLegalizer::ExpandStrictFPOp(SDValue Op) {
1232   EVT VT = Op.getValueType();
1233   EVT EltVT = VT.getVectorElementType();
1234   unsigned NumElems = VT.getVectorNumElements();
1235   unsigned NumOpers = Op.getNumOperands();
1236   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1237   EVT ValueVTs[] = {EltVT, MVT::Other};
1238   SDValue Chain = Op.getOperand(0);
1239   SDLoc dl(Op);
1240 
1241   SmallVector<SDValue, 32> OpValues;
1242   SmallVector<SDValue, 32> OpChains;
1243   for (unsigned i = 0; i < NumElems; ++i) {
1244     SmallVector<SDValue, 4> Opers;
1245     SDValue Idx = DAG.getConstant(i, dl,
1246                                   TLI.getVectorIdxTy(DAG.getDataLayout()));
1247 
1248     // The Chain is the first operand.
1249     Opers.push_back(Chain);
1250 
1251     // Now process the remaining operands.
1252     for (unsigned j = 1; j < NumOpers; ++j) {
1253       SDValue Oper = Op.getOperand(j);
1254       EVT OperVT = Oper.getValueType();
1255 
1256       if (OperVT.isVector())
1257         Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1258                            EltVT, Oper, Idx);
1259 
1260       Opers.push_back(Oper);
1261     }
1262 
1263     SDValue ScalarOp = DAG.getNode(Op->getOpcode(), dl, ValueVTs, Opers);
1264 
1265     OpValues.push_back(ScalarOp.getValue(0));
1266     OpChains.push_back(ScalarOp.getValue(1));
1267   }
1268 
1269   SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
1270   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
1271 
1272   AddLegalizedOperand(Op.getValue(0), Result);
1273   AddLegalizedOperand(Op.getValue(1), NewChain);
1274 
1275   return Op.getResNo() ? NewChain : Result;
1276 }
1277 
1278 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
1279   EVT VT = Op.getValueType();
1280   unsigned NumElems = VT.getVectorNumElements();
1281   EVT EltVT = VT.getVectorElementType();
1282   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
1283   EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1284   SDLoc dl(Op);
1285   SmallVector<SDValue, 8> Ops(NumElems);
1286   for (unsigned i = 0; i < NumElems; ++i) {
1287     SDValue LHSElem = DAG.getNode(
1288         ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1289         DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1290     SDValue RHSElem = DAG.getNode(
1291         ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1292         DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1293     Ops[i] = DAG.getNode(ISD::SETCC, dl,
1294                          TLI.getSetCCResultType(DAG.getDataLayout(),
1295                                                 *DAG.getContext(), TmpEltVT),
1296                          LHSElem, RHSElem, CC);
1297     Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
1298                            DAG.getConstant(APInt::getAllOnesValue
1299                                            (EltVT.getSizeInBits()), dl, EltVT),
1300                            DAG.getConstant(0, dl, EltVT));
1301   }
1302   return DAG.getBuildVector(VT, dl, Ops);
1303 }
1304 
1305 bool SelectionDAG::LegalizeVectors() {
1306   return VectorLegalizer(*this).Run();
1307 }
1308