1 //===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SelectionDAG::LegalizeVectors method. 11 // 12 // The vector legalizer looks for vector operations which might need to be 13 // scalarized and legalizes them. This is a separate step from Legalize because 14 // scalarizing can introduce illegal types. For example, suppose we have an 15 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 17 // operation, which introduces nodes with the illegal type i64 which must be 18 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 19 // the operation must be unrolled, which introduces nodes with the illegal 20 // type i8 which must be promoted. 21 // 22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 23 // or operations that happen to take a vector which are custom-lowered; 24 // the legalization for such operations never produces nodes 25 // with illegal types, so it's okay to put off legalizing them until 26 // SelectionDAG::Legalize runs. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/Target/TargetLowering.h" 32 using namespace llvm; 33 34 namespace { 35 class VectorLegalizer { 36 SelectionDAG& DAG; 37 const TargetLowering &TLI; 38 bool Changed; // Keep track of whether anything changed 39 40 /// For nodes that are of legal width, and that have more than one use, this 41 /// map indicates what regularized operand to use. This allows us to avoid 42 /// legalizing the same thing more than once. 43 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 44 45 /// \brief Adds a node to the translation cache. 46 void AddLegalizedOperand(SDValue From, SDValue To) { 47 LegalizedNodes.insert(std::make_pair(From, To)); 48 // If someone requests legalization of the new node, return itself. 49 if (From != To) 50 LegalizedNodes.insert(std::make_pair(To, To)); 51 } 52 53 /// \brief Legalizes the given node. 54 SDValue LegalizeOp(SDValue Op); 55 56 /// \brief Assuming the node is legal, "legalize" the results. 57 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); 58 59 /// \brief Implements unrolling a VSETCC. 60 SDValue UnrollVSETCC(SDValue Op); 61 62 /// \brief Implement expand-based legalization of vector operations. 63 /// 64 /// This is just a high-level routine to dispatch to specific code paths for 65 /// operations to legalize them. 66 SDValue Expand(SDValue Op); 67 68 /// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if 69 /// FSUB isn't legal. 70 /// 71 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 72 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 73 SDValue ExpandUINT_TO_FLOAT(SDValue Op); 74 75 /// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 76 SDValue ExpandSEXTINREG(SDValue Op); 77 78 /// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG. 79 /// 80 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 81 /// type. The contents of the bits in the extended part of each element are 82 /// undef. 83 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op); 84 85 /// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG. 86 /// 87 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 88 /// type, then shifts left and arithmetic shifts right to introduce a sign 89 /// extension. 90 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op); 91 92 /// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG. 93 /// 94 /// Shuffles the low lanes of the operand into place and blends zeros into 95 /// the remaining lanes, finally bitcasting to the proper type. 96 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op); 97 98 /// \brief Expand bswap of vectors into a shuffle if legal. 99 SDValue ExpandBSWAP(SDValue Op); 100 101 /// \brief Implement vselect in terms of XOR, AND, OR when blend is not 102 /// supported by the target. 103 SDValue ExpandVSELECT(SDValue Op); 104 SDValue ExpandSELECT(SDValue Op); 105 SDValue ExpandLoad(SDValue Op); 106 SDValue ExpandStore(SDValue Op); 107 SDValue ExpandFNEG(SDValue Op); 108 SDValue ExpandABSDIFF(SDValue Op); 109 110 /// \brief Implements vector promotion. 111 /// 112 /// This is essentially just bitcasting the operands to a different type and 113 /// bitcasting the result back to the original type. 114 SDValue Promote(SDValue Op); 115 116 /// \brief Implements [SU]INT_TO_FP vector promotion. 117 /// 118 /// This is a [zs]ext of the input operand to the next size up. 119 SDValue PromoteINT_TO_FP(SDValue Op); 120 121 /// \brief Implements FP_TO_[SU]INT vector promotion of the result type. 122 /// 123 /// It is promoted to the next size up integer type. The result is then 124 /// truncated back to the original type. 125 SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned); 126 127 public: 128 /// \brief Begin legalizer the vector operations in the DAG. 129 bool Run(); 130 VectorLegalizer(SelectionDAG& dag) : 131 DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {} 132 }; 133 134 bool VectorLegalizer::Run() { 135 // Before we start legalizing vector nodes, check if there are any vectors. 136 bool HasVectors = false; 137 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 138 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 139 // Check if the values of the nodes contain vectors. We don't need to check 140 // the operands because we are going to check their values at some point. 141 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); 142 J != E; ++J) 143 HasVectors |= J->isVector(); 144 145 // If we found a vector node we can start the legalization. 146 if (HasVectors) 147 break; 148 } 149 150 // If this basic block has no vectors then no need to legalize vectors. 151 if (!HasVectors) 152 return false; 153 154 // The legalize process is inherently a bottom-up recursive process (users 155 // legalize their uses before themselves). Given infinite stack space, we 156 // could just start legalizing on the root and traverse the whole graph. In 157 // practice however, this causes us to run out of stack space on large basic 158 // blocks. To avoid this problem, compute an ordering of the nodes where each 159 // node is only legalized after all of its operands are legalized. 160 DAG.AssignTopologicalOrder(); 161 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 162 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 163 LegalizeOp(SDValue(I, 0)); 164 165 // Finally, it's possible the root changed. Get the new root. 166 SDValue OldRoot = DAG.getRoot(); 167 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 168 DAG.setRoot(LegalizedNodes[OldRoot]); 169 170 LegalizedNodes.clear(); 171 172 // Remove dead nodes now. 173 DAG.RemoveDeadNodes(); 174 175 return Changed; 176 } 177 178 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { 179 // Generic legalization: just pass the operand through. 180 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) 181 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 182 return Result.getValue(Op.getResNo()); 183 } 184 185 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 186 // Note that LegalizeOp may be reentered even from single-use nodes, which 187 // means that we always must cache transformed nodes. 188 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 189 if (I != LegalizedNodes.end()) return I->second; 190 191 SDNode* Node = Op.getNode(); 192 193 // Legalize the operands 194 SmallVector<SDValue, 8> Ops; 195 for (const SDValue &Op : Node->op_values()) 196 Ops.push_back(LegalizeOp(Op)); 197 198 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0); 199 200 bool HasVectorValue = false; 201 if (Op.getOpcode() == ISD::LOAD) { 202 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 203 ISD::LoadExtType ExtType = LD->getExtensionType(); 204 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) 205 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), 206 LD->getMemoryVT())) { 207 default: llvm_unreachable("This action is not supported yet!"); 208 case TargetLowering::Legal: 209 return TranslateLegalizeResults(Op, Result); 210 case TargetLowering::Custom: 211 if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) { 212 if (Lowered == Result) 213 return TranslateLegalizeResults(Op, Lowered); 214 Changed = true; 215 if (Lowered->getNumValues() != Op->getNumValues()) { 216 // This expanded to something other than the load. Assume the 217 // lowering code took care of any chain values, and just handle the 218 // returned value. 219 assert(Result.getValue(1).use_empty() && 220 "There are still live users of the old chain!"); 221 return LegalizeOp(Lowered); 222 } else { 223 return TranslateLegalizeResults(Op, Lowered); 224 } 225 } 226 case TargetLowering::Expand: 227 Changed = true; 228 return LegalizeOp(ExpandLoad(Op)); 229 } 230 } else if (Op.getOpcode() == ISD::STORE) { 231 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 232 EVT StVT = ST->getMemoryVT(); 233 MVT ValVT = ST->getValue().getSimpleValueType(); 234 if (StVT.isVector() && ST->isTruncatingStore()) 235 switch (TLI.getTruncStoreAction(ValVT, StVT.getSimpleVT())) { 236 default: llvm_unreachable("This action is not supported yet!"); 237 case TargetLowering::Legal: 238 return TranslateLegalizeResults(Op, Result); 239 case TargetLowering::Custom: { 240 SDValue Lowered = TLI.LowerOperation(Result, DAG); 241 Changed = Lowered != Result; 242 return TranslateLegalizeResults(Op, Lowered); 243 } 244 case TargetLowering::Expand: 245 Changed = true; 246 return LegalizeOp(ExpandStore(Op)); 247 } 248 } else if (Op.getOpcode() == ISD::MSCATTER) 249 HasVectorValue = true; 250 251 for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end(); 252 J != E; 253 ++J) 254 HasVectorValue |= J->isVector(); 255 if (!HasVectorValue) 256 return TranslateLegalizeResults(Op, Result); 257 258 EVT QueryType; 259 switch (Op.getOpcode()) { 260 default: 261 return TranslateLegalizeResults(Op, Result); 262 case ISD::ADD: 263 case ISD::SUB: 264 case ISD::MUL: 265 case ISD::SDIV: 266 case ISD::UDIV: 267 case ISD::SREM: 268 case ISD::UREM: 269 case ISD::FADD: 270 case ISD::FSUB: 271 case ISD::FMUL: 272 case ISD::FDIV: 273 case ISD::FREM: 274 case ISD::AND: 275 case ISD::OR: 276 case ISD::XOR: 277 case ISD::SHL: 278 case ISD::SRA: 279 case ISD::SRL: 280 case ISD::ROTL: 281 case ISD::ROTR: 282 case ISD::BSWAP: 283 case ISD::CTLZ: 284 case ISD::CTTZ: 285 case ISD::CTLZ_ZERO_UNDEF: 286 case ISD::CTTZ_ZERO_UNDEF: 287 case ISD::CTPOP: 288 case ISD::SELECT: 289 case ISD::VSELECT: 290 case ISD::SELECT_CC: 291 case ISD::SETCC: 292 case ISD::ZERO_EXTEND: 293 case ISD::ANY_EXTEND: 294 case ISD::TRUNCATE: 295 case ISD::SIGN_EXTEND: 296 case ISD::FP_TO_SINT: 297 case ISD::FP_TO_UINT: 298 case ISD::FNEG: 299 case ISD::FABS: 300 case ISD::FMINNUM: 301 case ISD::FMAXNUM: 302 case ISD::FCOPYSIGN: 303 case ISD::FSQRT: 304 case ISD::FSIN: 305 case ISD::FCOS: 306 case ISD::FPOWI: 307 case ISD::FPOW: 308 case ISD::FLOG: 309 case ISD::FLOG2: 310 case ISD::FLOG10: 311 case ISD::FEXP: 312 case ISD::FEXP2: 313 case ISD::FCEIL: 314 case ISD::FTRUNC: 315 case ISD::FRINT: 316 case ISD::FNEARBYINT: 317 case ISD::FROUND: 318 case ISD::FFLOOR: 319 case ISD::FP_ROUND: 320 case ISD::FP_EXTEND: 321 case ISD::FMA: 322 case ISD::SIGN_EXTEND_INREG: 323 case ISD::ANY_EXTEND_VECTOR_INREG: 324 case ISD::SIGN_EXTEND_VECTOR_INREG: 325 case ISD::ZERO_EXTEND_VECTOR_INREG: 326 case ISD::SMIN: 327 case ISD::SMAX: 328 case ISD::UMIN: 329 case ISD::UMAX: 330 case ISD::UABSDIFF: 331 case ISD::SABSDIFF: 332 QueryType = Node->getValueType(0); 333 break; 334 case ISD::FP_ROUND_INREG: 335 QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 336 break; 337 case ISD::SINT_TO_FP: 338 case ISD::UINT_TO_FP: 339 QueryType = Node->getOperand(0).getValueType(); 340 break; 341 case ISD::MSCATTER: 342 QueryType = cast<MaskedScatterSDNode>(Node)->getValue().getValueType(); 343 break; 344 } 345 346 switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) { 347 case TargetLowering::Promote: 348 Result = Promote(Op); 349 Changed = true; 350 break; 351 case TargetLowering::Legal: 352 break; 353 case TargetLowering::Custom: { 354 SDValue Tmp1 = TLI.LowerOperation(Op, DAG); 355 if (Tmp1.getNode()) { 356 Result = Tmp1; 357 break; 358 } 359 // FALL THROUGH 360 } 361 case TargetLowering::Expand: 362 Result = Expand(Op); 363 } 364 365 // Make sure that the generated code is itself legal. 366 if (Result != Op) { 367 Result = LegalizeOp(Result); 368 Changed = true; 369 } 370 371 // Note that LegalizeOp may be reentered even from single-use nodes, which 372 // means that we always must cache transformed nodes. 373 AddLegalizedOperand(Op, Result); 374 return Result; 375 } 376 377 SDValue VectorLegalizer::Promote(SDValue Op) { 378 // For a few operations there is a specific concept for promotion based on 379 // the operand's type. 380 switch (Op.getOpcode()) { 381 case ISD::SINT_TO_FP: 382 case ISD::UINT_TO_FP: 383 // "Promote" the operation by extending the operand. 384 return PromoteINT_TO_FP(Op); 385 case ISD::FP_TO_UINT: 386 case ISD::FP_TO_SINT: 387 // Promote the operation by extending the operand. 388 return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT); 389 } 390 391 // There are currently two cases of vector promotion: 392 // 1) Bitcasting a vector of integers to a different type to a vector of the 393 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 394 // 2) Extending a vector of floats to a vector of the same number of larger 395 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 396 MVT VT = Op.getSimpleValueType(); 397 assert(Op.getNode()->getNumValues() == 1 && 398 "Can't promote a vector with multiple results!"); 399 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 400 SDLoc dl(Op); 401 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 402 403 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 404 if (Op.getOperand(j).getValueType().isVector()) 405 if (Op.getOperand(j) 406 .getValueType() 407 .getVectorElementType() 408 .isFloatingPoint() && 409 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 410 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j)); 411 else 412 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); 413 else 414 Operands[j] = Op.getOperand(j); 415 } 416 417 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands); 418 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 419 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 420 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 421 return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl)); 422 else 423 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 424 } 425 426 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) { 427 // INT_TO_FP operations may require the input operand be promoted even 428 // when the type is otherwise legal. 429 EVT VT = Op.getOperand(0).getValueType(); 430 assert(Op.getNode()->getNumValues() == 1 && 431 "Can't promote a vector with multiple results!"); 432 433 // Normal getTypeToPromoteTo() doesn't work here, as that will promote 434 // by widening the vector w/ the same element width and twice the number 435 // of elements. We want the other way around, the same number of elements, 436 // each twice the width. 437 // 438 // Increase the bitwidth of the element to the next pow-of-two 439 // (which is greater than 8 bits). 440 441 EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext()); 442 assert(NVT.isSimple() && "Promoting to a non-simple vector type!"); 443 SDLoc dl(Op); 444 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 445 446 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : 447 ISD::SIGN_EXTEND; 448 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 449 if (Op.getOperand(j).getValueType().isVector()) 450 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j)); 451 else 452 Operands[j] = Op.getOperand(j); 453 } 454 455 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands); 456 } 457 458 // For FP_TO_INT we promote the result type to a vector type with wider 459 // elements and then truncate the result. This is different from the default 460 // PromoteVector which uses bitcast to promote thus assumning that the 461 // promoted vector type has the same overall size. 462 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) { 463 assert(Op.getNode()->getNumValues() == 1 && 464 "Can't promote a vector with multiple results!"); 465 EVT VT = Op.getValueType(); 466 467 EVT NewVT; 468 unsigned NewOpc; 469 while (1) { 470 NewVT = VT.widenIntegerVectorElementType(*DAG.getContext()); 471 assert(NewVT.isSimple() && "Promoting to a non-simple vector type!"); 472 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) { 473 NewOpc = ISD::FP_TO_SINT; 474 break; 475 } 476 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) { 477 NewOpc = ISD::FP_TO_UINT; 478 break; 479 } 480 } 481 482 SDLoc loc(Op); 483 SDValue promoted = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0)); 484 return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted); 485 } 486 487 488 SDValue VectorLegalizer::ExpandLoad(SDValue Op) { 489 SDLoc dl(Op); 490 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 491 SDValue Chain = LD->getChain(); 492 SDValue BasePTR = LD->getBasePtr(); 493 EVT SrcVT = LD->getMemoryVT(); 494 ISD::LoadExtType ExtType = LD->getExtensionType(); 495 496 SmallVector<SDValue, 8> Vals; 497 SmallVector<SDValue, 8> LoadChains; 498 unsigned NumElem = SrcVT.getVectorNumElements(); 499 500 EVT SrcEltVT = SrcVT.getScalarType(); 501 EVT DstEltVT = Op.getNode()->getValueType(0).getScalarType(); 502 503 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { 504 // When elements in a vector is not byte-addressable, we cannot directly 505 // load each element by advancing pointer, which could only address bytes. 506 // Instead, we load all significant words, mask bits off, and concatenate 507 // them to form each element. Finally, they are extended to destination 508 // scalar type to build the destination vector. 509 EVT WideVT = TLI.getPointerTy(DAG.getDataLayout()); 510 511 assert(WideVT.isRound() && 512 "Could not handle the sophisticated case when the widest integer is" 513 " not power of 2."); 514 assert(WideVT.bitsGE(SrcEltVT) && 515 "Type is not legalized?"); 516 517 unsigned WideBytes = WideVT.getStoreSize(); 518 unsigned Offset = 0; 519 unsigned RemainingBytes = SrcVT.getStoreSize(); 520 SmallVector<SDValue, 8> LoadVals; 521 522 while (RemainingBytes > 0) { 523 SDValue ScalarLoad; 524 unsigned LoadBytes = WideBytes; 525 526 if (RemainingBytes >= LoadBytes) { 527 ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR, 528 LD->getPointerInfo().getWithOffset(Offset), 529 LD->isVolatile(), LD->isNonTemporal(), 530 LD->isInvariant(), 531 MinAlign(LD->getAlignment(), Offset), 532 LD->getAAInfo()); 533 } else { 534 EVT LoadVT = WideVT; 535 while (RemainingBytes < LoadBytes) { 536 LoadBytes >>= 1; // Reduce the load size by half. 537 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); 538 } 539 ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, 540 LD->getPointerInfo().getWithOffset(Offset), 541 LoadVT, LD->isVolatile(), 542 LD->isNonTemporal(), LD->isInvariant(), 543 MinAlign(LD->getAlignment(), Offset), 544 LD->getAAInfo()); 545 } 546 547 RemainingBytes -= LoadBytes; 548 Offset += LoadBytes; 549 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 550 DAG.getConstant(LoadBytes, dl, 551 BasePTR.getValueType())); 552 553 LoadVals.push_back(ScalarLoad.getValue(0)); 554 LoadChains.push_back(ScalarLoad.getValue(1)); 555 } 556 557 // Extract bits, pack and extend/trunc them into destination type. 558 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 559 SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT); 560 561 unsigned BitOffset = 0; 562 unsigned WideIdx = 0; 563 unsigned WideBits = WideVT.getSizeInBits(); 564 565 for (unsigned Idx = 0; Idx != NumElem; ++Idx) { 566 SDValue Lo, Hi, ShAmt; 567 568 if (BitOffset < WideBits) { 569 ShAmt = DAG.getConstant( 570 BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 571 Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); 572 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); 573 } 574 575 BitOffset += SrcEltBits; 576 if (BitOffset >= WideBits) { 577 WideIdx++; 578 BitOffset -= WideBits; 579 if (BitOffset > 0) { 580 ShAmt = DAG.getConstant( 581 SrcEltBits - BitOffset, dl, 582 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 583 Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); 584 Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask); 585 } 586 } 587 588 if (Hi.getNode()) 589 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); 590 591 switch (ExtType) { 592 default: llvm_unreachable("Unknown extended-load op!"); 593 case ISD::EXTLOAD: 594 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); 595 break; 596 case ISD::ZEXTLOAD: 597 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); 598 break; 599 case ISD::SEXTLOAD: 600 ShAmt = 601 DAG.getConstant(WideBits - SrcEltBits, dl, 602 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 603 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); 604 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); 605 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); 606 break; 607 } 608 Vals.push_back(Lo); 609 } 610 } else { 611 unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8; 612 613 for (unsigned Idx=0; Idx<NumElem; Idx++) { 614 SDValue ScalarLoad = DAG.getExtLoad(ExtType, dl, 615 Op.getNode()->getValueType(0).getScalarType(), 616 Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride), 617 SrcVT.getScalarType(), 618 LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), 619 MinAlign(LD->getAlignment(), Idx * Stride), LD->getAAInfo()); 620 621 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 622 DAG.getConstant(Stride, dl, BasePTR.getValueType())); 623 624 Vals.push_back(ScalarLoad.getValue(0)); 625 LoadChains.push_back(ScalarLoad.getValue(1)); 626 } 627 } 628 629 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 630 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, 631 Op.getNode()->getValueType(0), Vals); 632 633 AddLegalizedOperand(Op.getValue(0), Value); 634 AddLegalizedOperand(Op.getValue(1), NewChain); 635 636 return (Op.getResNo() ? NewChain : Value); 637 } 638 639 SDValue VectorLegalizer::ExpandStore(SDValue Op) { 640 SDLoc dl(Op); 641 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 642 SDValue Chain = ST->getChain(); 643 SDValue BasePTR = ST->getBasePtr(); 644 SDValue Value = ST->getValue(); 645 EVT StVT = ST->getMemoryVT(); 646 647 unsigned Alignment = ST->getAlignment(); 648 bool isVolatile = ST->isVolatile(); 649 bool isNonTemporal = ST->isNonTemporal(); 650 AAMDNodes AAInfo = ST->getAAInfo(); 651 652 unsigned NumElem = StVT.getVectorNumElements(); 653 // The type of the data we want to save 654 EVT RegVT = Value.getValueType(); 655 EVT RegSclVT = RegVT.getScalarType(); 656 // The type of data as saved in memory. 657 EVT MemSclVT = StVT.getScalarType(); 658 659 // Cast floats into integers 660 unsigned ScalarSize = MemSclVT.getSizeInBits(); 661 662 // Round odd types to the next pow of two. 663 if (!isPowerOf2_32(ScalarSize)) 664 ScalarSize = NextPowerOf2(ScalarSize); 665 666 // Store Stride in bytes 667 unsigned Stride = ScalarSize/8; 668 // Extract each of the elements from the original vector 669 // and save them into memory individually. 670 SmallVector<SDValue, 8> Stores; 671 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 672 SDValue Ex = DAG.getNode( 673 ISD::EXTRACT_VECTOR_ELT, dl, RegSclVT, Value, 674 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 675 676 // This scalar TruncStore may be illegal, but we legalize it later. 677 SDValue Store = DAG.getTruncStore(Chain, dl, Ex, BasePTR, 678 ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT, 679 isVolatile, isNonTemporal, MinAlign(Alignment, Idx*Stride), 680 AAInfo); 681 682 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 683 DAG.getConstant(Stride, dl, BasePTR.getValueType())); 684 685 Stores.push_back(Store); 686 } 687 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 688 AddLegalizedOperand(Op, TF); 689 return TF; 690 } 691 692 SDValue VectorLegalizer::Expand(SDValue Op) { 693 switch (Op->getOpcode()) { 694 case ISD::SIGN_EXTEND_INREG: 695 return ExpandSEXTINREG(Op); 696 case ISD::ANY_EXTEND_VECTOR_INREG: 697 return ExpandANY_EXTEND_VECTOR_INREG(Op); 698 case ISD::SIGN_EXTEND_VECTOR_INREG: 699 return ExpandSIGN_EXTEND_VECTOR_INREG(Op); 700 case ISD::ZERO_EXTEND_VECTOR_INREG: 701 return ExpandZERO_EXTEND_VECTOR_INREG(Op); 702 case ISD::BSWAP: 703 return ExpandBSWAP(Op); 704 case ISD::VSELECT: 705 return ExpandVSELECT(Op); 706 case ISD::SELECT: 707 return ExpandSELECT(Op); 708 case ISD::UINT_TO_FP: 709 return ExpandUINT_TO_FLOAT(Op); 710 case ISD::FNEG: 711 return ExpandFNEG(Op); 712 case ISD::SETCC: 713 return UnrollVSETCC(Op); 714 case ISD::UABSDIFF: 715 case ISD::SABSDIFF: 716 return ExpandABSDIFF(Op); 717 default: 718 return DAG.UnrollVectorOp(Op.getNode()); 719 } 720 } 721 722 SDValue VectorLegalizer::ExpandABSDIFF(SDValue Op) { 723 SDLoc dl(Op); 724 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 725 EVT VT = Op.getValueType(); 726 SDNodeFlags Flags; 727 Flags.setNoSignedWrap(Op->getOpcode() == ISD::SABSDIFF); 728 729 Tmp2 = Op.getOperand(0); 730 Tmp3 = Op.getOperand(1); 731 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp3, &Flags); 732 Tmp2 = 733 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), Tmp1, &Flags); 734 Tmp4 = DAG.getNode( 735 ISD::SETCC, dl, 736 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), Tmp2, 737 DAG.getConstant(0, dl, VT), 738 DAG.getCondCode(Op->getOpcode() == ISD::SABSDIFF ? ISD::SETLT 739 : ISD::SETULT)); 740 Tmp1 = DAG.getNode(ISD::VSELECT, dl, VT, Tmp4, Tmp1, Tmp2); 741 return Tmp1; 742 } 743 744 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) { 745 // Lower a select instruction where the condition is a scalar and the 746 // operands are vectors. Lower this select to VSELECT and implement it 747 // using XOR AND OR. The selector bit is broadcasted. 748 EVT VT = Op.getValueType(); 749 SDLoc DL(Op); 750 751 SDValue Mask = Op.getOperand(0); 752 SDValue Op1 = Op.getOperand(1); 753 SDValue Op2 = Op.getOperand(2); 754 755 assert(VT.isVector() && !Mask.getValueType().isVector() 756 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 757 758 unsigned NumElem = VT.getVectorNumElements(); 759 760 // If we can't even use the basic vector operations of 761 // AND,OR,XOR, we will have to scalarize the op. 762 // Notice that the operation may be 'promoted' which means that it is 763 // 'bitcasted' to another type which is handled. 764 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 765 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 766 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 767 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 768 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 769 return DAG.UnrollVectorOp(Op.getNode()); 770 771 // Generate a mask operand. 772 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 773 774 // What is the size of each element in the vector mask. 775 EVT BitTy = MaskTy.getScalarType(); 776 777 Mask = DAG.getSelect(DL, BitTy, Mask, 778 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, 779 BitTy), 780 DAG.getConstant(0, DL, BitTy)); 781 782 // Broadcast the mask so that the entire vector is all-one or all zero. 783 SmallVector<SDValue, 8> Ops(NumElem, Mask); 784 Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, Ops); 785 786 // Bitcast the operands to be the same type as the mask. 787 // This is needed when we select between FP types because 788 // the mask is a vector of integers. 789 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 790 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 791 792 SDValue AllOnes = DAG.getConstant( 793 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy); 794 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 795 796 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 797 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 798 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 799 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 800 } 801 802 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) { 803 EVT VT = Op.getValueType(); 804 805 // Make sure that the SRA and SHL instructions are available. 806 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 807 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 808 return DAG.UnrollVectorOp(Op.getNode()); 809 810 SDLoc DL(Op); 811 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT(); 812 813 unsigned BW = VT.getScalarType().getSizeInBits(); 814 unsigned OrigBW = OrigTy.getScalarType().getSizeInBits(); 815 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 816 817 Op = Op.getOperand(0); 818 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz); 819 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 820 } 821 822 // Generically expand a vector anyext in register to a shuffle of the relevant 823 // lanes into the appropriate locations, with other lanes left undef. 824 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) { 825 SDLoc DL(Op); 826 EVT VT = Op.getValueType(); 827 int NumElements = VT.getVectorNumElements(); 828 SDValue Src = Op.getOperand(0); 829 EVT SrcVT = Src.getValueType(); 830 int NumSrcElements = SrcVT.getVectorNumElements(); 831 832 // Build a base mask of undef shuffles. 833 SmallVector<int, 16> ShuffleMask; 834 ShuffleMask.resize(NumSrcElements, -1); 835 836 // Place the extended lanes into the correct locations. 837 int ExtLaneScale = NumSrcElements / NumElements; 838 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 839 for (int i = 0; i < NumElements; ++i) 840 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 841 842 return DAG.getNode( 843 ISD::BITCAST, DL, VT, 844 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 845 } 846 847 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) { 848 SDLoc DL(Op); 849 EVT VT = Op.getValueType(); 850 SDValue Src = Op.getOperand(0); 851 EVT SrcVT = Src.getValueType(); 852 853 // First build an any-extend node which can be legalized above when we 854 // recurse through it. 855 Op = DAG.getAnyExtendVectorInReg(Src, DL, VT); 856 857 // Now we need sign extend. Do this by shifting the elements. Even if these 858 // aren't legal operations, they have a better chance of being legalized 859 // without full scalarization than the sign extension does. 860 unsigned EltWidth = VT.getVectorElementType().getSizeInBits(); 861 unsigned SrcEltWidth = SrcVT.getVectorElementType().getSizeInBits(); 862 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 863 return DAG.getNode(ISD::SRA, DL, VT, 864 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 865 ShiftAmount); 866 } 867 868 // Generically expand a vector zext in register to a shuffle of the relevant 869 // lanes into the appropriate locations, a blend of zero into the high bits, 870 // and a bitcast to the wider element type. 871 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) { 872 SDLoc DL(Op); 873 EVT VT = Op.getValueType(); 874 int NumElements = VT.getVectorNumElements(); 875 SDValue Src = Op.getOperand(0); 876 EVT SrcVT = Src.getValueType(); 877 int NumSrcElements = SrcVT.getVectorNumElements(); 878 879 // Build up a zero vector to blend into this one. 880 EVT SrcScalarVT = SrcVT.getScalarType(); 881 SDValue ScalarZero = DAG.getTargetConstant(0, DL, SrcScalarVT); 882 SmallVector<SDValue, 4> BuildVectorOperands(NumSrcElements, ScalarZero); 883 SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, DL, SrcVT, BuildVectorOperands); 884 885 // Shuffle the incoming lanes into the correct position, and pull all other 886 // lanes from the zero vector. 887 SmallVector<int, 16> ShuffleMask; 888 ShuffleMask.reserve(NumSrcElements); 889 for (int i = 0; i < NumSrcElements; ++i) 890 ShuffleMask.push_back(i); 891 892 int ExtLaneScale = NumSrcElements / NumElements; 893 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 894 for (int i = 0; i < NumElements; ++i) 895 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 896 897 return DAG.getNode(ISD::BITCAST, DL, VT, 898 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 899 } 900 901 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) { 902 EVT VT = Op.getValueType(); 903 904 // Generate a byte wise shuffle mask for the BSWAP. 905 SmallVector<int, 16> ShuffleMask; 906 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 907 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 908 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 909 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 910 911 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 912 913 // Only emit a shuffle if the mask is legal. 914 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) 915 return DAG.UnrollVectorOp(Op.getNode()); 916 917 SDLoc DL(Op); 918 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 919 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 920 ShuffleMask.data()); 921 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 922 } 923 924 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { 925 // Implement VSELECT in terms of XOR, AND, OR 926 // on platforms which do not support blend natively. 927 SDLoc DL(Op); 928 929 SDValue Mask = Op.getOperand(0); 930 SDValue Op1 = Op.getOperand(1); 931 SDValue Op2 = Op.getOperand(2); 932 933 EVT VT = Mask.getValueType(); 934 935 // If we can't even use the basic vector operations of 936 // AND,OR,XOR, we will have to scalarize the op. 937 // Notice that the operation may be 'promoted' which means that it is 938 // 'bitcasted' to another type which is handled. 939 // This operation also isn't safe with AND, OR, XOR when the boolean 940 // type is 0/1 as we need an all ones vector constant to mask with. 941 // FIXME: Sign extend 1 to all ones if thats legal on the target. 942 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 943 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 944 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 945 TLI.getBooleanContents(Op1.getValueType()) != 946 TargetLowering::ZeroOrNegativeOneBooleanContent) 947 return DAG.UnrollVectorOp(Op.getNode()); 948 949 // If the mask and the type are different sizes, unroll the vector op. This 950 // can occur when getSetCCResultType returns something that is different in 951 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 952 if (VT.getSizeInBits() != Op1.getValueType().getSizeInBits()) 953 return DAG.UnrollVectorOp(Op.getNode()); 954 955 // Bitcast the operands to be the same type as the mask. 956 // This is needed when we select between FP types because 957 // the mask is a vector of integers. 958 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 959 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 960 961 SDValue AllOnes = DAG.getConstant( 962 APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), DL, VT); 963 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 964 965 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 966 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 967 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 968 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 969 } 970 971 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { 972 EVT VT = Op.getOperand(0).getValueType(); 973 SDLoc DL(Op); 974 975 // Make sure that the SINT_TO_FP and SRL instructions are available. 976 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand || 977 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) 978 return DAG.UnrollVectorOp(Op.getNode()); 979 980 EVT SVT = VT.getScalarType(); 981 assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) && 982 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 983 984 unsigned BW = SVT.getSizeInBits(); 985 SDValue HalfWord = DAG.getConstant(BW/2, DL, VT); 986 987 // Constants to clear the upper part of the word. 988 // Notice that we can also use SHL+SHR, but using a constant is slightly 989 // faster on x86. 990 uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF; 991 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 992 993 // Two to the power of half-word-size. 994 SDValue TWOHW = DAG.getConstantFP(1 << (BW/2), DL, Op.getValueType()); 995 996 // Clear upper part of LO, lower HI 997 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); 998 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); 999 1000 // Convert hi and lo to floats 1001 // Convert the hi part back to the upper values 1002 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); 1003 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); 1004 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); 1005 1006 // Add the two halves 1007 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); 1008 } 1009 1010 1011 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { 1012 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { 1013 SDLoc DL(Op); 1014 SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType()); 1015 return DAG.getNode(ISD::FSUB, DL, Op.getValueType(), 1016 Zero, Op.getOperand(0)); 1017 } 1018 return DAG.UnrollVectorOp(Op.getNode()); 1019 } 1020 1021 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { 1022 EVT VT = Op.getValueType(); 1023 unsigned NumElems = VT.getVectorNumElements(); 1024 EVT EltVT = VT.getVectorElementType(); 1025 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); 1026 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1027 SDLoc dl(Op); 1028 SmallVector<SDValue, 8> Ops(NumElems); 1029 for (unsigned i = 0; i < NumElems; ++i) { 1030 SDValue LHSElem = DAG.getNode( 1031 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1032 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1033 SDValue RHSElem = DAG.getNode( 1034 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1035 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1036 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1037 TLI.getSetCCResultType(DAG.getDataLayout(), 1038 *DAG.getContext(), TmpEltVT), 1039 LHSElem, RHSElem, CC); 1040 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 1041 DAG.getConstant(APInt::getAllOnesValue 1042 (EltVT.getSizeInBits()), dl, EltVT), 1043 DAG.getConstant(0, dl, EltVT)); 1044 } 1045 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 1046 } 1047 1048 } 1049 1050 bool SelectionDAG::LegalizeVectors() { 1051 return VectorLegalizer(*this).Run(); 1052 } 1053