1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SelectionDAG::LegalizeVectors method.
11 //
12 // The vector legalizer looks for vector operations which might need to be
13 // scalarized and legalizes them. This is a separate step from Legalize because
14 // scalarizing can introduce illegal types.  For example, suppose we have an
15 // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
17 // operation, which introduces nodes with the illegal type i64 which must be
18 // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
19 // the operation must be unrolled, which introduces nodes with the illegal
20 // type i8 which must be promoted.
21 //
22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
23 // or operations that happen to take a vector which are custom-lowered;
24 // the legalization for such operations never produces nodes
25 // with illegal types, so it's okay to put off legalizing them until
26 // SelectionDAG::Legalize runs.
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #include "llvm/ADT/APInt.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/SelectionDAG.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/ValueTypes.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MachineValueType.h"
44 #include "llvm/Support/MathExtras.h"
45 #include <cassert>
46 #include <cstdint>
47 #include <iterator>
48 #include <utility>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "legalizevectorops"
53 
54 namespace {
55 
56 class VectorLegalizer {
57   SelectionDAG& DAG;
58   const TargetLowering &TLI;
59   bool Changed = false; // Keep track of whether anything changed
60 
61   /// For nodes that are of legal width, and that have more than one use, this
62   /// map indicates what regularized operand to use.  This allows us to avoid
63   /// legalizing the same thing more than once.
64   SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
65 
66   /// Adds a node to the translation cache.
67   void AddLegalizedOperand(SDValue From, SDValue To) {
68     LegalizedNodes.insert(std::make_pair(From, To));
69     // If someone requests legalization of the new node, return itself.
70     if (From != To)
71       LegalizedNodes.insert(std::make_pair(To, To));
72   }
73 
74   /// Legalizes the given node.
75   SDValue LegalizeOp(SDValue Op);
76 
77   /// Assuming the node is legal, "legalize" the results.
78   SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
79 
80   /// Implements unrolling a VSETCC.
81   SDValue UnrollVSETCC(SDValue Op);
82 
83   /// Implement expand-based legalization of vector operations.
84   ///
85   /// This is just a high-level routine to dispatch to specific code paths for
86   /// operations to legalize them.
87   SDValue Expand(SDValue Op);
88 
89   /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
90   /// FP_TO_SINT isn't legal.
91   SDValue ExpandFP_TO_UINT(SDValue Op);
92 
93   /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
94   /// SINT_TO_FLOAT and SHR on vectors isn't legal.
95   SDValue ExpandUINT_TO_FLOAT(SDValue Op);
96 
97   /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
98   SDValue ExpandSEXTINREG(SDValue Op);
99 
100   /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
101   ///
102   /// Shuffles the low lanes of the operand into place and bitcasts to the proper
103   /// type. The contents of the bits in the extended part of each element are
104   /// undef.
105   SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op);
106 
107   /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
108   ///
109   /// Shuffles the low lanes of the operand into place, bitcasts to the proper
110   /// type, then shifts left and arithmetic shifts right to introduce a sign
111   /// extension.
112   SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op);
113 
114   /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
115   ///
116   /// Shuffles the low lanes of the operand into place and blends zeros into
117   /// the remaining lanes, finally bitcasting to the proper type.
118   SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op);
119 
120   /// Expand bswap of vectors into a shuffle if legal.
121   SDValue ExpandBSWAP(SDValue Op);
122 
123   /// Implement vselect in terms of XOR, AND, OR when blend is not
124   /// supported by the target.
125   SDValue ExpandVSELECT(SDValue Op);
126   SDValue ExpandSELECT(SDValue Op);
127   SDValue ExpandLoad(SDValue Op);
128   SDValue ExpandStore(SDValue Op);
129   SDValue ExpandFNEG(SDValue Op);
130   SDValue ExpandFSUB(SDValue Op);
131   SDValue ExpandBITREVERSE(SDValue Op);
132   SDValue ExpandCTPOP(SDValue Op);
133   SDValue ExpandCTLZ(SDValue Op);
134   SDValue ExpandCTTZ(SDValue Op);
135   SDValue ExpandFMINNUM_FMAXNUM(SDValue Op);
136   SDValue ExpandStrictFPOp(SDValue Op);
137 
138   /// Implements vector promotion.
139   ///
140   /// This is essentially just bitcasting the operands to a different type and
141   /// bitcasting the result back to the original type.
142   SDValue Promote(SDValue Op);
143 
144   /// Implements [SU]INT_TO_FP vector promotion.
145   ///
146   /// This is a [zs]ext of the input operand to a larger integer type.
147   SDValue PromoteINT_TO_FP(SDValue Op);
148 
149   /// Implements FP_TO_[SU]INT vector promotion of the result type.
150   ///
151   /// It is promoted to a larger integer type.  The result is then
152   /// truncated back to the original type.
153   SDValue PromoteFP_TO_INT(SDValue Op);
154 
155 public:
156   VectorLegalizer(SelectionDAG& dag) :
157       DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
158 
159   /// Begin legalizer the vector operations in the DAG.
160   bool Run();
161 };
162 
163 } // end anonymous namespace
164 
165 bool VectorLegalizer::Run() {
166   // Before we start legalizing vector nodes, check if there are any vectors.
167   bool HasVectors = false;
168   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
169        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
170     // Check if the values of the nodes contain vectors. We don't need to check
171     // the operands because we are going to check their values at some point.
172     for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
173          J != E; ++J)
174       HasVectors |= J->isVector();
175 
176     // If we found a vector node we can start the legalization.
177     if (HasVectors)
178       break;
179   }
180 
181   // If this basic block has no vectors then no need to legalize vectors.
182   if (!HasVectors)
183     return false;
184 
185   // The legalize process is inherently a bottom-up recursive process (users
186   // legalize their uses before themselves).  Given infinite stack space, we
187   // could just start legalizing on the root and traverse the whole graph.  In
188   // practice however, this causes us to run out of stack space on large basic
189   // blocks.  To avoid this problem, compute an ordering of the nodes where each
190   // node is only legalized after all of its operands are legalized.
191   DAG.AssignTopologicalOrder();
192   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
193        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
194     LegalizeOp(SDValue(&*I, 0));
195 
196   // Finally, it's possible the root changed.  Get the new root.
197   SDValue OldRoot = DAG.getRoot();
198   assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
199   DAG.setRoot(LegalizedNodes[OldRoot]);
200 
201   LegalizedNodes.clear();
202 
203   // Remove dead nodes now.
204   DAG.RemoveDeadNodes();
205 
206   return Changed;
207 }
208 
209 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
210   // Generic legalization: just pass the operand through.
211   for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
212     AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
213   return Result.getValue(Op.getResNo());
214 }
215 
216 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
217   // Note that LegalizeOp may be reentered even from single-use nodes, which
218   // means that we always must cache transformed nodes.
219   DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
220   if (I != LegalizedNodes.end()) return I->second;
221 
222   SDNode* Node = Op.getNode();
223 
224   // Legalize the operands
225   SmallVector<SDValue, 8> Ops;
226   for (const SDValue &Op : Node->op_values())
227     Ops.push_back(LegalizeOp(Op));
228 
229   SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops),
230                            Op.getResNo());
231 
232   if (Op.getOpcode() == ISD::LOAD) {
233     LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
234     ISD::LoadExtType ExtType = LD->getExtensionType();
235     if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) {
236       LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: ";
237                  Node->dump(&DAG));
238       switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
239                                    LD->getMemoryVT())) {
240       default: llvm_unreachable("This action is not supported yet!");
241       case TargetLowering::Legal:
242         return TranslateLegalizeResults(Op, Result);
243       case TargetLowering::Custom:
244         if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) {
245           assert(Lowered->getNumValues() == Op->getNumValues() &&
246                  "Unexpected number of results");
247           if (Lowered != Result) {
248             // Make sure the new code is also legal.
249             Lowered = LegalizeOp(Lowered);
250             Changed = true;
251           }
252           return TranslateLegalizeResults(Op, Lowered);
253         }
254         LLVM_FALLTHROUGH;
255       case TargetLowering::Expand:
256         Changed = true;
257         return LegalizeOp(ExpandLoad(Op));
258       }
259     }
260   } else if (Op.getOpcode() == ISD::STORE) {
261     StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
262     EVT StVT = ST->getMemoryVT();
263     MVT ValVT = ST->getValue().getSimpleValueType();
264     if (StVT.isVector() && ST->isTruncatingStore()) {
265       LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: ";
266                  Node->dump(&DAG));
267       switch (TLI.getTruncStoreAction(ValVT, StVT)) {
268       default: llvm_unreachable("This action is not supported yet!");
269       case TargetLowering::Legal:
270         return TranslateLegalizeResults(Op, Result);
271       case TargetLowering::Custom: {
272         SDValue Lowered = TLI.LowerOperation(Result, DAG);
273         if (Lowered != Result) {
274           // Make sure the new code is also legal.
275           Lowered = LegalizeOp(Lowered);
276           Changed = true;
277         }
278         return TranslateLegalizeResults(Op, Lowered);
279       }
280       case TargetLowering::Expand:
281         Changed = true;
282         return LegalizeOp(ExpandStore(Op));
283       }
284     }
285   }
286 
287   bool HasVectorValue = false;
288   for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end();
289        J != E;
290        ++J)
291     HasVectorValue |= J->isVector();
292   if (!HasVectorValue)
293     return TranslateLegalizeResults(Op, Result);
294 
295   TargetLowering::LegalizeAction Action = TargetLowering::Legal;
296   switch (Op.getOpcode()) {
297   default:
298     return TranslateLegalizeResults(Op, Result);
299   case ISD::STRICT_FADD:
300   case ISD::STRICT_FSUB:
301   case ISD::STRICT_FMUL:
302   case ISD::STRICT_FDIV:
303   case ISD::STRICT_FREM:
304   case ISD::STRICT_FSQRT:
305   case ISD::STRICT_FMA:
306   case ISD::STRICT_FPOW:
307   case ISD::STRICT_FPOWI:
308   case ISD::STRICT_FSIN:
309   case ISD::STRICT_FCOS:
310   case ISD::STRICT_FEXP:
311   case ISD::STRICT_FEXP2:
312   case ISD::STRICT_FLOG:
313   case ISD::STRICT_FLOG10:
314   case ISD::STRICT_FLOG2:
315   case ISD::STRICT_FRINT:
316   case ISD::STRICT_FNEARBYINT:
317   case ISD::STRICT_FMAXNUM:
318   case ISD::STRICT_FMINNUM:
319   case ISD::STRICT_FCEIL:
320   case ISD::STRICT_FFLOOR:
321   case ISD::STRICT_FROUND:
322   case ISD::STRICT_FTRUNC:
323     // These pseudo-ops get legalized as if they were their non-strict
324     // equivalent.  For instance, if ISD::FSQRT is legal then ISD::STRICT_FSQRT
325     // is also legal, but if ISD::FSQRT requires expansion then so does
326     // ISD::STRICT_FSQRT.
327     Action = TLI.getStrictFPOperationAction(Node->getOpcode(),
328                                             Node->getValueType(0));
329     break;
330   case ISD::ADD:
331   case ISD::SUB:
332   case ISD::MUL:
333   case ISD::SDIV:
334   case ISD::UDIV:
335   case ISD::SREM:
336   case ISD::UREM:
337   case ISD::SDIVREM:
338   case ISD::UDIVREM:
339   case ISD::FADD:
340   case ISD::FSUB:
341   case ISD::FMUL:
342   case ISD::FDIV:
343   case ISD::FREM:
344   case ISD::AND:
345   case ISD::OR:
346   case ISD::XOR:
347   case ISD::SHL:
348   case ISD::SRA:
349   case ISD::SRL:
350   case ISD::ROTL:
351   case ISD::ROTR:
352   case ISD::BSWAP:
353   case ISD::BITREVERSE:
354   case ISD::CTLZ:
355   case ISD::CTTZ:
356   case ISD::CTLZ_ZERO_UNDEF:
357   case ISD::CTTZ_ZERO_UNDEF:
358   case ISD::CTPOP:
359   case ISD::SELECT:
360   case ISD::VSELECT:
361   case ISD::SELECT_CC:
362   case ISD::SETCC:
363   case ISD::ZERO_EXTEND:
364   case ISD::ANY_EXTEND:
365   case ISD::TRUNCATE:
366   case ISD::SIGN_EXTEND:
367   case ISD::FP_TO_SINT:
368   case ISD::FP_TO_UINT:
369   case ISD::FNEG:
370   case ISD::FABS:
371   case ISD::FMINNUM:
372   case ISD::FMAXNUM:
373   case ISD::FMINNUM_IEEE:
374   case ISD::FMAXNUM_IEEE:
375   case ISD::FMINIMUM:
376   case ISD::FMAXIMUM:
377   case ISD::FCOPYSIGN:
378   case ISD::FSQRT:
379   case ISD::FSIN:
380   case ISD::FCOS:
381   case ISD::FPOWI:
382   case ISD::FPOW:
383   case ISD::FLOG:
384   case ISD::FLOG2:
385   case ISD::FLOG10:
386   case ISD::FEXP:
387   case ISD::FEXP2:
388   case ISD::FCEIL:
389   case ISD::FTRUNC:
390   case ISD::FRINT:
391   case ISD::FNEARBYINT:
392   case ISD::FROUND:
393   case ISD::FFLOOR:
394   case ISD::FP_ROUND:
395   case ISD::FP_EXTEND:
396   case ISD::FMA:
397   case ISD::SIGN_EXTEND_INREG:
398   case ISD::ANY_EXTEND_VECTOR_INREG:
399   case ISD::SIGN_EXTEND_VECTOR_INREG:
400   case ISD::ZERO_EXTEND_VECTOR_INREG:
401   case ISD::SMIN:
402   case ISD::SMAX:
403   case ISD::UMIN:
404   case ISD::UMAX:
405   case ISD::SMUL_LOHI:
406   case ISD::UMUL_LOHI:
407   case ISD::FCANONICALIZE:
408   case ISD::SADDSAT:
409   case ISD::UADDSAT:
410   case ISD::SSUBSAT:
411   case ISD::USUBSAT:
412     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
413     break;
414   case ISD::FP_ROUND_INREG:
415     Action = TLI.getOperationAction(Node->getOpcode(),
416                cast<VTSDNode>(Node->getOperand(1))->getVT());
417     break;
418   case ISD::SINT_TO_FP:
419   case ISD::UINT_TO_FP:
420     Action = TLI.getOperationAction(Node->getOpcode(),
421                                     Node->getOperand(0).getValueType());
422     break;
423   }
424 
425   LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
426 
427   switch (Action) {
428   default: llvm_unreachable("This action is not supported yet!");
429   case TargetLowering::Promote:
430     Result = Promote(Op);
431     Changed = true;
432     break;
433   case TargetLowering::Legal:
434     LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
435     break;
436   case TargetLowering::Custom: {
437     LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
438     if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) {
439       LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
440       Result = Tmp1;
441       break;
442     }
443     LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
444     LLVM_FALLTHROUGH;
445   }
446   case TargetLowering::Expand:
447     Result = Expand(Op);
448   }
449 
450   // Make sure that the generated code is itself legal.
451   if (Result != Op) {
452     Result = LegalizeOp(Result);
453     Changed = true;
454   }
455 
456   // Note that LegalizeOp may be reentered even from single-use nodes, which
457   // means that we always must cache transformed nodes.
458   AddLegalizedOperand(Op, Result);
459   return Result;
460 }
461 
462 SDValue VectorLegalizer::Promote(SDValue Op) {
463   // For a few operations there is a specific concept for promotion based on
464   // the operand's type.
465   switch (Op.getOpcode()) {
466   case ISD::SINT_TO_FP:
467   case ISD::UINT_TO_FP:
468     // "Promote" the operation by extending the operand.
469     return PromoteINT_TO_FP(Op);
470   case ISD::FP_TO_UINT:
471   case ISD::FP_TO_SINT:
472     // Promote the operation by extending the operand.
473     return PromoteFP_TO_INT(Op);
474   }
475 
476   // There are currently two cases of vector promotion:
477   // 1) Bitcasting a vector of integers to a different type to a vector of the
478   //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
479   // 2) Extending a vector of floats to a vector of the same number of larger
480   //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
481   MVT VT = Op.getSimpleValueType();
482   assert(Op.getNode()->getNumValues() == 1 &&
483          "Can't promote a vector with multiple results!");
484   MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
485   SDLoc dl(Op);
486   SmallVector<SDValue, 4> Operands(Op.getNumOperands());
487 
488   for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
489     if (Op.getOperand(j).getValueType().isVector())
490       if (Op.getOperand(j)
491               .getValueType()
492               .getVectorElementType()
493               .isFloatingPoint() &&
494           NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
495         Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j));
496       else
497         Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
498     else
499       Operands[j] = Op.getOperand(j);
500   }
501 
502   Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags());
503   if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
504       (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
505        NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
506     return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl));
507   else
508     return DAG.getNode(ISD::BITCAST, dl, VT, Op);
509 }
510 
511 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) {
512   // INT_TO_FP operations may require the input operand be promoted even
513   // when the type is otherwise legal.
514   MVT VT = Op.getOperand(0).getSimpleValueType();
515   MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
516   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
517          "Vectors have different number of elements!");
518 
519   SDLoc dl(Op);
520   SmallVector<SDValue, 4> Operands(Op.getNumOperands());
521 
522   unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND :
523     ISD::SIGN_EXTEND;
524   for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
525     if (Op.getOperand(j).getValueType().isVector())
526       Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
527     else
528       Operands[j] = Op.getOperand(j);
529   }
530 
531   return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands);
532 }
533 
534 // For FP_TO_INT we promote the result type to a vector type with wider
535 // elements and then truncate the result.  This is different from the default
536 // PromoteVector which uses bitcast to promote thus assumning that the
537 // promoted vector type has the same overall size.
538 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op) {
539   MVT VT = Op.getSimpleValueType();
540   MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
541   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
542          "Vectors have different number of elements!");
543 
544   unsigned NewOpc = Op->getOpcode();
545   // Change FP_TO_UINT to FP_TO_SINT if possible.
546   // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
547   if (NewOpc == ISD::FP_TO_UINT &&
548       TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
549     NewOpc = ISD::FP_TO_SINT;
550 
551   SDLoc dl(Op);
552   SDValue Promoted  = DAG.getNode(NewOpc, dl, NVT, Op.getOperand(0));
553 
554   // Assert that the converted value fits in the original type.  If it doesn't
555   // (eg: because the value being converted is too big), then the result of the
556   // original operation was undefined anyway, so the assert is still correct.
557   Promoted = DAG.getNode(Op->getOpcode() == ISD::FP_TO_UINT ? ISD::AssertZext
558                                                             : ISD::AssertSext,
559                          dl, NVT, Promoted,
560                          DAG.getValueType(VT.getScalarType()));
561   return DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
562 }
563 
564 SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
565   LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
566 
567   EVT SrcVT = LD->getMemoryVT();
568   EVT SrcEltVT = SrcVT.getScalarType();
569   unsigned NumElem = SrcVT.getVectorNumElements();
570 
571   SDValue NewChain;
572   SDValue Value;
573   if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
574     SDLoc dl(Op);
575 
576     SmallVector<SDValue, 8> Vals;
577     SmallVector<SDValue, 8> LoadChains;
578 
579     EVT DstEltVT = LD->getValueType(0).getScalarType();
580     SDValue Chain = LD->getChain();
581     SDValue BasePTR = LD->getBasePtr();
582     ISD::LoadExtType ExtType = LD->getExtensionType();
583 
584     // When elements in a vector is not byte-addressable, we cannot directly
585     // load each element by advancing pointer, which could only address bytes.
586     // Instead, we load all significant words, mask bits off, and concatenate
587     // them to form each element. Finally, they are extended to destination
588     // scalar type to build the destination vector.
589     EVT WideVT = TLI.getPointerTy(DAG.getDataLayout());
590 
591     assert(WideVT.isRound() &&
592            "Could not handle the sophisticated case when the widest integer is"
593            " not power of 2.");
594     assert(WideVT.bitsGE(SrcEltVT) &&
595            "Type is not legalized?");
596 
597     unsigned WideBytes = WideVT.getStoreSize();
598     unsigned Offset = 0;
599     unsigned RemainingBytes = SrcVT.getStoreSize();
600     SmallVector<SDValue, 8> LoadVals;
601     while (RemainingBytes > 0) {
602       SDValue ScalarLoad;
603       unsigned LoadBytes = WideBytes;
604 
605       if (RemainingBytes >= LoadBytes) {
606         ScalarLoad =
607             DAG.getLoad(WideVT, dl, Chain, BasePTR,
608                         LD->getPointerInfo().getWithOffset(Offset),
609                         MinAlign(LD->getAlignment(), Offset),
610                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
611       } else {
612         EVT LoadVT = WideVT;
613         while (RemainingBytes < LoadBytes) {
614           LoadBytes >>= 1; // Reduce the load size by half.
615           LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
616         }
617         ScalarLoad =
618             DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
619                            LD->getPointerInfo().getWithOffset(Offset), LoadVT,
620                            MinAlign(LD->getAlignment(), Offset),
621                            LD->getMemOperand()->getFlags(), LD->getAAInfo());
622       }
623 
624       RemainingBytes -= LoadBytes;
625       Offset += LoadBytes;
626 
627       BasePTR = DAG.getObjectPtrOffset(dl, BasePTR, LoadBytes);
628 
629       LoadVals.push_back(ScalarLoad.getValue(0));
630       LoadChains.push_back(ScalarLoad.getValue(1));
631     }
632 
633     // Extract bits, pack and extend/trunc them into destination type.
634     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
635     SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT);
636 
637     unsigned BitOffset = 0;
638     unsigned WideIdx = 0;
639     unsigned WideBits = WideVT.getSizeInBits();
640 
641     for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
642       SDValue Lo, Hi, ShAmt;
643 
644       if (BitOffset < WideBits) {
645         ShAmt = DAG.getConstant(
646             BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
647         Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
648         Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
649       }
650 
651       BitOffset += SrcEltBits;
652       if (BitOffset >= WideBits) {
653         WideIdx++;
654         BitOffset -= WideBits;
655         if (BitOffset > 0) {
656           ShAmt = DAG.getConstant(
657               SrcEltBits - BitOffset, dl,
658               TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
659           Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
660           Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask);
661         }
662       }
663 
664       if (Hi.getNode())
665         Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
666 
667       switch (ExtType) {
668       default: llvm_unreachable("Unknown extended-load op!");
669       case ISD::EXTLOAD:
670         Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
671         break;
672       case ISD::ZEXTLOAD:
673         Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
674         break;
675       case ISD::SEXTLOAD:
676         ShAmt =
677             DAG.getConstant(WideBits - SrcEltBits, dl,
678                             TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
679         Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
680         Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
681         Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
682         break;
683       }
684       Vals.push_back(Lo);
685     }
686 
687     NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
688     Value = DAG.getBuildVector(Op.getNode()->getValueType(0), dl, Vals);
689   } else {
690     SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG);
691     // Skip past MERGE_VALUE node if known.
692     if (Scalarized->getOpcode() == ISD::MERGE_VALUES) {
693       NewChain = Scalarized.getOperand(1);
694       Value = Scalarized.getOperand(0);
695     } else {
696       NewChain = Scalarized.getValue(1);
697       Value = Scalarized.getValue(0);
698     }
699   }
700 
701   AddLegalizedOperand(Op.getValue(0), Value);
702   AddLegalizedOperand(Op.getValue(1), NewChain);
703 
704   return (Op.getResNo() ? NewChain : Value);
705 }
706 
707 SDValue VectorLegalizer::ExpandStore(SDValue Op) {
708   StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
709   SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
710   AddLegalizedOperand(Op, TF);
711   return TF;
712 }
713 
714 SDValue VectorLegalizer::Expand(SDValue Op) {
715   switch (Op->getOpcode()) {
716   case ISD::SIGN_EXTEND_INREG:
717     return ExpandSEXTINREG(Op);
718   case ISD::ANY_EXTEND_VECTOR_INREG:
719     return ExpandANY_EXTEND_VECTOR_INREG(Op);
720   case ISD::SIGN_EXTEND_VECTOR_INREG:
721     return ExpandSIGN_EXTEND_VECTOR_INREG(Op);
722   case ISD::ZERO_EXTEND_VECTOR_INREG:
723     return ExpandZERO_EXTEND_VECTOR_INREG(Op);
724   case ISD::BSWAP:
725     return ExpandBSWAP(Op);
726   case ISD::VSELECT:
727     return ExpandVSELECT(Op);
728   case ISD::SELECT:
729     return ExpandSELECT(Op);
730   case ISD::FP_TO_UINT:
731     return ExpandFP_TO_UINT(Op);
732   case ISD::UINT_TO_FP:
733     return ExpandUINT_TO_FLOAT(Op);
734   case ISD::FNEG:
735     return ExpandFNEG(Op);
736   case ISD::FSUB:
737     return ExpandFSUB(Op);
738   case ISD::SETCC:
739     return UnrollVSETCC(Op);
740   case ISD::BITREVERSE:
741     return ExpandBITREVERSE(Op);
742   case ISD::CTPOP:
743     return ExpandCTPOP(Op);
744   case ISD::CTLZ:
745   case ISD::CTLZ_ZERO_UNDEF:
746     return ExpandCTLZ(Op);
747   case ISD::CTTZ:
748   case ISD::CTTZ_ZERO_UNDEF:
749     return ExpandCTTZ(Op);
750   case ISD::FMINNUM:
751   case ISD::FMAXNUM:
752     return ExpandFMINNUM_FMAXNUM(Op);
753   case ISD::STRICT_FADD:
754   case ISD::STRICT_FSUB:
755   case ISD::STRICT_FMUL:
756   case ISD::STRICT_FDIV:
757   case ISD::STRICT_FREM:
758   case ISD::STRICT_FSQRT:
759   case ISD::STRICT_FMA:
760   case ISD::STRICT_FPOW:
761   case ISD::STRICT_FPOWI:
762   case ISD::STRICT_FSIN:
763   case ISD::STRICT_FCOS:
764   case ISD::STRICT_FEXP:
765   case ISD::STRICT_FEXP2:
766   case ISD::STRICT_FLOG:
767   case ISD::STRICT_FLOG10:
768   case ISD::STRICT_FLOG2:
769   case ISD::STRICT_FRINT:
770   case ISD::STRICT_FNEARBYINT:
771   case ISD::STRICT_FMAXNUM:
772   case ISD::STRICT_FMINNUM:
773   case ISD::STRICT_FCEIL:
774   case ISD::STRICT_FFLOOR:
775   case ISD::STRICT_FROUND:
776   case ISD::STRICT_FTRUNC:
777     return ExpandStrictFPOp(Op);
778   default:
779     return DAG.UnrollVectorOp(Op.getNode());
780   }
781 }
782 
783 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
784   // Lower a select instruction where the condition is a scalar and the
785   // operands are vectors. Lower this select to VSELECT and implement it
786   // using XOR AND OR. The selector bit is broadcasted.
787   EVT VT = Op.getValueType();
788   SDLoc DL(Op);
789 
790   SDValue Mask = Op.getOperand(0);
791   SDValue Op1 = Op.getOperand(1);
792   SDValue Op2 = Op.getOperand(2);
793 
794   assert(VT.isVector() && !Mask.getValueType().isVector()
795          && Op1.getValueType() == Op2.getValueType() && "Invalid type");
796 
797   // If we can't even use the basic vector operations of
798   // AND,OR,XOR, we will have to scalarize the op.
799   // Notice that the operation may be 'promoted' which means that it is
800   // 'bitcasted' to another type which is handled.
801   // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
802   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
803       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
804       TLI.getOperationAction(ISD::OR,  VT) == TargetLowering::Expand ||
805       TLI.getOperationAction(ISD::BUILD_VECTOR,  VT) == TargetLowering::Expand)
806     return DAG.UnrollVectorOp(Op.getNode());
807 
808   // Generate a mask operand.
809   EVT MaskTy = VT.changeVectorElementTypeToInteger();
810 
811   // What is the size of each element in the vector mask.
812   EVT BitTy = MaskTy.getScalarType();
813 
814   Mask = DAG.getSelect(DL, BitTy, Mask,
815           DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
816                           BitTy),
817           DAG.getConstant(0, DL, BitTy));
818 
819   // Broadcast the mask so that the entire vector is all-one or all zero.
820   Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask);
821 
822   // Bitcast the operands to be the same type as the mask.
823   // This is needed when we select between FP types because
824   // the mask is a vector of integers.
825   Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
826   Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
827 
828   SDValue AllOnes = DAG.getConstant(
829             APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
830   SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
831 
832   Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
833   Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
834   SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
835   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
836 }
837 
838 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
839   EVT VT = Op.getValueType();
840 
841   // Make sure that the SRA and SHL instructions are available.
842   if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
843       TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
844     return DAG.UnrollVectorOp(Op.getNode());
845 
846   SDLoc DL(Op);
847   EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
848 
849   unsigned BW = VT.getScalarSizeInBits();
850   unsigned OrigBW = OrigTy.getScalarSizeInBits();
851   SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
852 
853   Op = Op.getOperand(0);
854   Op =   DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
855   return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
856 }
857 
858 // Generically expand a vector anyext in register to a shuffle of the relevant
859 // lanes into the appropriate locations, with other lanes left undef.
860 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) {
861   SDLoc DL(Op);
862   EVT VT = Op.getValueType();
863   int NumElements = VT.getVectorNumElements();
864   SDValue Src = Op.getOperand(0);
865   EVT SrcVT = Src.getValueType();
866   int NumSrcElements = SrcVT.getVectorNumElements();
867 
868   // Build a base mask of undef shuffles.
869   SmallVector<int, 16> ShuffleMask;
870   ShuffleMask.resize(NumSrcElements, -1);
871 
872   // Place the extended lanes into the correct locations.
873   int ExtLaneScale = NumSrcElements / NumElements;
874   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
875   for (int i = 0; i < NumElements; ++i)
876     ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
877 
878   return DAG.getNode(
879       ISD::BITCAST, DL, VT,
880       DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
881 }
882 
883 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) {
884   SDLoc DL(Op);
885   EVT VT = Op.getValueType();
886   SDValue Src = Op.getOperand(0);
887   EVT SrcVT = Src.getValueType();
888 
889   // First build an any-extend node which can be legalized above when we
890   // recurse through it.
891   Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src);
892 
893   // Now we need sign extend. Do this by shifting the elements. Even if these
894   // aren't legal operations, they have a better chance of being legalized
895   // without full scalarization than the sign extension does.
896   unsigned EltWidth = VT.getScalarSizeInBits();
897   unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
898   SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
899   return DAG.getNode(ISD::SRA, DL, VT,
900                      DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
901                      ShiftAmount);
902 }
903 
904 // Generically expand a vector zext in register to a shuffle of the relevant
905 // lanes into the appropriate locations, a blend of zero into the high bits,
906 // and a bitcast to the wider element type.
907 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) {
908   SDLoc DL(Op);
909   EVT VT = Op.getValueType();
910   int NumElements = VT.getVectorNumElements();
911   SDValue Src = Op.getOperand(0);
912   EVT SrcVT = Src.getValueType();
913   int NumSrcElements = SrcVT.getVectorNumElements();
914 
915   // Build up a zero vector to blend into this one.
916   SDValue Zero = DAG.getConstant(0, DL, SrcVT);
917 
918   // Shuffle the incoming lanes into the correct position, and pull all other
919   // lanes from the zero vector.
920   SmallVector<int, 16> ShuffleMask;
921   ShuffleMask.reserve(NumSrcElements);
922   for (int i = 0; i < NumSrcElements; ++i)
923     ShuffleMask.push_back(i);
924 
925   int ExtLaneScale = NumSrcElements / NumElements;
926   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
927   for (int i = 0; i < NumElements; ++i)
928     ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
929 
930   return DAG.getNode(ISD::BITCAST, DL, VT,
931                      DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
932 }
933 
934 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
935   int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
936   for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
937     for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
938       ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
939 }
940 
941 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) {
942   EVT VT = Op.getValueType();
943 
944   // Generate a byte wise shuffle mask for the BSWAP.
945   SmallVector<int, 16> ShuffleMask;
946   createBSWAPShuffleMask(VT, ShuffleMask);
947   EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
948 
949   // Only emit a shuffle if the mask is legal.
950   if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
951     return DAG.UnrollVectorOp(Op.getNode());
952 
953   SDLoc DL(Op);
954   Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
955   Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
956   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
957 }
958 
959 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) {
960   EVT VT = Op.getValueType();
961 
962   // If we have the scalar operation, it's probably cheaper to unroll it.
963   if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType()))
964     return DAG.UnrollVectorOp(Op.getNode());
965 
966   // If the vector element width is a whole number of bytes, test if its legal
967   // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
968   // vector. This greatly reduces the number of bit shifts necessary.
969   unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
970   if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
971     SmallVector<int, 16> BSWAPMask;
972     createBSWAPShuffleMask(VT, BSWAPMask);
973 
974     EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
975     if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
976         (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
977          (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
978           TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
979           TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
980           TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
981       SDLoc DL(Op);
982       Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
983       Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
984                                 BSWAPMask);
985       Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
986       return DAG.getNode(ISD::BITCAST, DL, VT, Op);
987     }
988   }
989 
990   // If we have the appropriate vector bit operations, it is better to use them
991   // than unrolling and expanding each component.
992   if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) ||
993       !TLI.isOperationLegalOrCustom(ISD::SRL, VT) ||
994       !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
995       !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
996     return DAG.UnrollVectorOp(Op.getNode());
997 
998   // Let LegalizeDAG handle this later.
999   return Op;
1000 }
1001 
1002 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
1003   // Implement VSELECT in terms of XOR, AND, OR
1004   // on platforms which do not support blend natively.
1005   SDLoc DL(Op);
1006 
1007   SDValue Mask = Op.getOperand(0);
1008   SDValue Op1 = Op.getOperand(1);
1009   SDValue Op2 = Op.getOperand(2);
1010 
1011   EVT VT = Mask.getValueType();
1012 
1013   // If we can't even use the basic vector operations of
1014   // AND,OR,XOR, we will have to scalarize the op.
1015   // Notice that the operation may be 'promoted' which means that it is
1016   // 'bitcasted' to another type which is handled.
1017   // This operation also isn't safe with AND, OR, XOR when the boolean
1018   // type is 0/1 as we need an all ones vector constant to mask with.
1019   // FIXME: Sign extend 1 to all ones if thats legal on the target.
1020   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1021       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1022       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
1023       TLI.getBooleanContents(Op1.getValueType()) !=
1024           TargetLowering::ZeroOrNegativeOneBooleanContent)
1025     return DAG.UnrollVectorOp(Op.getNode());
1026 
1027   // If the mask and the type are different sizes, unroll the vector op. This
1028   // can occur when getSetCCResultType returns something that is different in
1029   // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1030   if (VT.getSizeInBits() != Op1.getValueSizeInBits())
1031     return DAG.UnrollVectorOp(Op.getNode());
1032 
1033   // Bitcast the operands to be the same type as the mask.
1034   // This is needed when we select between FP types because
1035   // the mask is a vector of integers.
1036   Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
1037   Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
1038 
1039   SDValue AllOnes = DAG.getConstant(
1040     APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT);
1041   SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
1042 
1043   Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
1044   Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
1045   SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
1046   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
1047 }
1048 
1049 SDValue VectorLegalizer::ExpandFP_TO_UINT(SDValue Op) {
1050   // Attempt to expand using TargetLowering.
1051   SDValue Result;
1052   if (TLI.expandFP_TO_UINT(Op.getNode(), Result, DAG))
1053     return Result;
1054 
1055   // Otherwise go ahead and unroll.
1056   return DAG.UnrollVectorOp(Op.getNode());
1057 }
1058 
1059 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
1060   EVT VT = Op.getOperand(0).getValueType();
1061   SDLoc DL(Op);
1062 
1063   // Attempt to expand using TargetLowering.
1064   SDValue Result;
1065   if (TLI.expandUINT_TO_FP(Op.getNode(), Result, DAG))
1066     return Result;
1067 
1068   // Make sure that the SINT_TO_FP and SRL instructions are available.
1069   if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand ||
1070       TLI.getOperationAction(ISD::SRL,        VT) == TargetLowering::Expand)
1071     return DAG.UnrollVectorOp(Op.getNode());
1072 
1073   unsigned BW = VT.getScalarSizeInBits();
1074   assert((BW == 64 || BW == 32) &&
1075          "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1076 
1077   SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
1078 
1079   // Constants to clear the upper part of the word.
1080   // Notice that we can also use SHL+SHR, but using a constant is slightly
1081   // faster on x86.
1082   uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1083   SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
1084 
1085   // Two to the power of half-word-size.
1086   SDValue TWOHW = DAG.getConstantFP(1ULL << (BW / 2), DL, Op.getValueType());
1087 
1088   // Clear upper part of LO, lower HI
1089   SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
1090   SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask);
1091 
1092   // Convert hi and lo to floats
1093   // Convert the hi part back to the upper values
1094   // TODO: Can any fast-math-flags be set on these nodes?
1095   SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
1096           fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
1097   SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);
1098 
1099   // Add the two halves
1100   return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
1101 }
1102 
1103 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
1104   if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
1105     SDLoc DL(Op);
1106     SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType());
1107     // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1108     return DAG.getNode(ISD::FSUB, DL, Op.getValueType(),
1109                        Zero, Op.getOperand(0));
1110   }
1111   return DAG.UnrollVectorOp(Op.getNode());
1112 }
1113 
1114 SDValue VectorLegalizer::ExpandFSUB(SDValue Op) {
1115   // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1116   // we can defer this to operation legalization where it will be lowered as
1117   // a+(-b).
1118   EVT VT = Op.getValueType();
1119   if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
1120       TLI.isOperationLegalOrCustom(ISD::FADD, VT))
1121     return Op; // Defer to LegalizeDAG
1122 
1123   return DAG.UnrollVectorOp(Op.getNode());
1124 }
1125 
1126 SDValue VectorLegalizer::ExpandCTPOP(SDValue Op) {
1127   // Attempt to expand using TargetLowering.
1128   SDValue Result;
1129   if (TLI.expandCTPOP(Op.getNode(), Result, DAG))
1130     return Result;
1131 
1132   // Otherwise go ahead and unroll.
1133   return DAG.UnrollVectorOp(Op.getNode());
1134 }
1135 
1136 SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) {
1137   // Attempt to expand using TargetLowering.
1138   SDValue Result;
1139   if (TLI.expandCTLZ(Op.getNode(), Result, DAG))
1140     return Result;
1141 
1142   // Otherwise go ahead and unroll.
1143   return DAG.UnrollVectorOp(Op.getNode());
1144 }
1145 
1146 SDValue VectorLegalizer::ExpandCTTZ(SDValue Op) {
1147   // Attempt to expand using TargetLowering.
1148   SDValue Result;
1149   if (TLI.expandCTTZ(Op.getNode(), Result, DAG))
1150     return Result;
1151 
1152   // Otherwise go ahead and unroll.
1153   return DAG.UnrollVectorOp(Op.getNode());
1154 }
1155 
1156 SDValue VectorLegalizer::ExpandFMINNUM_FMAXNUM(SDValue Op) {
1157   if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Op.getNode(), DAG))
1158     return Expanded;
1159   return DAG.UnrollVectorOp(Op.getNode());
1160 }
1161 
1162 SDValue VectorLegalizer::ExpandStrictFPOp(SDValue Op) {
1163   EVT VT = Op.getValueType();
1164   EVT EltVT = VT.getVectorElementType();
1165   unsigned NumElems = VT.getVectorNumElements();
1166   unsigned NumOpers = Op.getNumOperands();
1167   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1168   EVT ValueVTs[] = {EltVT, MVT::Other};
1169   SDValue Chain = Op.getOperand(0);
1170   SDLoc dl(Op);
1171 
1172   SmallVector<SDValue, 32> OpValues;
1173   SmallVector<SDValue, 32> OpChains;
1174   for (unsigned i = 0; i < NumElems; ++i) {
1175     SmallVector<SDValue, 4> Opers;
1176     SDValue Idx = DAG.getConstant(i, dl,
1177                                   TLI.getVectorIdxTy(DAG.getDataLayout()));
1178 
1179     // The Chain is the first operand.
1180     Opers.push_back(Chain);
1181 
1182     // Now process the remaining operands.
1183     for (unsigned j = 1; j < NumOpers; ++j) {
1184       SDValue Oper = Op.getOperand(j);
1185       EVT OperVT = Oper.getValueType();
1186 
1187       if (OperVT.isVector())
1188         Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1189                            EltVT, Oper, Idx);
1190 
1191       Opers.push_back(Oper);
1192     }
1193 
1194     SDValue ScalarOp = DAG.getNode(Op->getOpcode(), dl, ValueVTs, Opers);
1195 
1196     OpValues.push_back(ScalarOp.getValue(0));
1197     OpChains.push_back(ScalarOp.getValue(1));
1198   }
1199 
1200   SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
1201   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
1202 
1203   AddLegalizedOperand(Op.getValue(0), Result);
1204   AddLegalizedOperand(Op.getValue(1), NewChain);
1205 
1206   return Op.getResNo() ? NewChain : Result;
1207 }
1208 
1209 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
1210   EVT VT = Op.getValueType();
1211   unsigned NumElems = VT.getVectorNumElements();
1212   EVT EltVT = VT.getVectorElementType();
1213   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
1214   EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1215   SDLoc dl(Op);
1216   SmallVector<SDValue, 8> Ops(NumElems);
1217   for (unsigned i = 0; i < NumElems; ++i) {
1218     SDValue LHSElem = DAG.getNode(
1219         ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1220         DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1221     SDValue RHSElem = DAG.getNode(
1222         ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1223         DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1224     Ops[i] = DAG.getNode(ISD::SETCC, dl,
1225                          TLI.getSetCCResultType(DAG.getDataLayout(),
1226                                                 *DAG.getContext(), TmpEltVT),
1227                          LHSElem, RHSElem, CC);
1228     Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
1229                            DAG.getConstant(APInt::getAllOnesValue
1230                                            (EltVT.getSizeInBits()), dl, EltVT),
1231                            DAG.getConstant(0, dl, EltVT));
1232   }
1233   return DAG.getBuildVector(VT, dl, Ops);
1234 }
1235 
1236 bool SelectionDAG::LegalizeVectors() {
1237   return VectorLegalizer(*this).Run();
1238 }
1239