1 //===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SelectionDAG::LegalizeVectors method. 11 // 12 // The vector legalizer looks for vector operations which might need to be 13 // scalarized and legalizes them. This is a separate step from Legalize because 14 // scalarizing can introduce illegal types. For example, suppose we have an 15 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 17 // operation, which introduces nodes with the illegal type i64 which must be 18 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 19 // the operation must be unrolled, which introduces nodes with the illegal 20 // type i8 which must be promoted. 21 // 22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 23 // or operations that happen to take a vector which are custom-lowered; 24 // the legalization for such operations never produces nodes 25 // with illegal types, so it's okay to put off legalizing them until 26 // SelectionDAG::Legalize runs. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/Target/TargetLowering.h" 32 using namespace llvm; 33 34 namespace { 35 class VectorLegalizer { 36 SelectionDAG& DAG; 37 const TargetLowering &TLI; 38 bool Changed; // Keep track of whether anything changed 39 40 /// For nodes that are of legal width, and that have more than one use, this 41 /// map indicates what regularized operand to use. This allows us to avoid 42 /// legalizing the same thing more than once. 43 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 44 45 /// \brief Adds a node to the translation cache. 46 void AddLegalizedOperand(SDValue From, SDValue To) { 47 LegalizedNodes.insert(std::make_pair(From, To)); 48 // If someone requests legalization of the new node, return itself. 49 if (From != To) 50 LegalizedNodes.insert(std::make_pair(To, To)); 51 } 52 53 /// \brief Legalizes the given node. 54 SDValue LegalizeOp(SDValue Op); 55 56 /// \brief Assuming the node is legal, "legalize" the results. 57 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); 58 59 /// \brief Implements unrolling a VSETCC. 60 SDValue UnrollVSETCC(SDValue Op); 61 62 /// \brief Implement expand-based legalization of vector operations. 63 /// 64 /// This is just a high-level routine to dispatch to specific code paths for 65 /// operations to legalize them. 66 SDValue Expand(SDValue Op); 67 68 /// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if 69 /// FSUB isn't legal. 70 /// 71 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 72 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 73 SDValue ExpandUINT_TO_FLOAT(SDValue Op); 74 75 /// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 76 SDValue ExpandSEXTINREG(SDValue Op); 77 78 /// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG. 79 /// 80 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 81 /// type. The contents of the bits in the extended part of each element are 82 /// undef. 83 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op); 84 85 /// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG. 86 /// 87 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 88 /// type, then shifts left and arithmetic shifts right to introduce a sign 89 /// extension. 90 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op); 91 92 /// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG. 93 /// 94 /// Shuffles the low lanes of the operand into place and blends zeros into 95 /// the remaining lanes, finally bitcasting to the proper type. 96 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op); 97 98 /// \brief Expand bswap of vectors into a shuffle if legal. 99 SDValue ExpandBSWAP(SDValue Op); 100 101 /// \brief Implement vselect in terms of XOR, AND, OR when blend is not 102 /// supported by the target. 103 SDValue ExpandVSELECT(SDValue Op); 104 SDValue ExpandSELECT(SDValue Op); 105 SDValue ExpandLoad(SDValue Op); 106 SDValue ExpandStore(SDValue Op); 107 SDValue ExpandFNEG(SDValue Op); 108 SDValue ExpandBITREVERSE(SDValue Op); 109 SDValue ExpandCTLZ(SDValue Op); 110 SDValue ExpandCTTZ_ZERO_UNDEF(SDValue Op); 111 112 /// \brief Implements vector promotion. 113 /// 114 /// This is essentially just bitcasting the operands to a different type and 115 /// bitcasting the result back to the original type. 116 SDValue Promote(SDValue Op); 117 118 /// \brief Implements [SU]INT_TO_FP vector promotion. 119 /// 120 /// This is a [zs]ext of the input operand to the next size up. 121 SDValue PromoteINT_TO_FP(SDValue Op); 122 123 /// \brief Implements FP_TO_[SU]INT vector promotion of the result type. 124 /// 125 /// It is promoted to the next size up integer type. The result is then 126 /// truncated back to the original type. 127 SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned); 128 129 public: 130 /// \brief Begin legalizer the vector operations in the DAG. 131 bool Run(); 132 VectorLegalizer(SelectionDAG& dag) : 133 DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {} 134 }; 135 136 bool VectorLegalizer::Run() { 137 // Before we start legalizing vector nodes, check if there are any vectors. 138 bool HasVectors = false; 139 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 140 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 141 // Check if the values of the nodes contain vectors. We don't need to check 142 // the operands because we are going to check their values at some point. 143 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); 144 J != E; ++J) 145 HasVectors |= J->isVector(); 146 147 // If we found a vector node we can start the legalization. 148 if (HasVectors) 149 break; 150 } 151 152 // If this basic block has no vectors then no need to legalize vectors. 153 if (!HasVectors) 154 return false; 155 156 // The legalize process is inherently a bottom-up recursive process (users 157 // legalize their uses before themselves). Given infinite stack space, we 158 // could just start legalizing on the root and traverse the whole graph. In 159 // practice however, this causes us to run out of stack space on large basic 160 // blocks. To avoid this problem, compute an ordering of the nodes where each 161 // node is only legalized after all of its operands are legalized. 162 DAG.AssignTopologicalOrder(); 163 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 164 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 165 LegalizeOp(SDValue(&*I, 0)); 166 167 // Finally, it's possible the root changed. Get the new root. 168 SDValue OldRoot = DAG.getRoot(); 169 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 170 DAG.setRoot(LegalizedNodes[OldRoot]); 171 172 LegalizedNodes.clear(); 173 174 // Remove dead nodes now. 175 DAG.RemoveDeadNodes(); 176 177 return Changed; 178 } 179 180 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { 181 // Generic legalization: just pass the operand through. 182 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) 183 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 184 return Result.getValue(Op.getResNo()); 185 } 186 187 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 188 // Note that LegalizeOp may be reentered even from single-use nodes, which 189 // means that we always must cache transformed nodes. 190 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 191 if (I != LegalizedNodes.end()) return I->second; 192 193 SDNode* Node = Op.getNode(); 194 195 // Legalize the operands 196 SmallVector<SDValue, 8> Ops; 197 for (const SDValue &Op : Node->op_values()) 198 Ops.push_back(LegalizeOp(Op)); 199 200 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0); 201 202 bool HasVectorValue = false; 203 if (Op.getOpcode() == ISD::LOAD) { 204 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 205 ISD::LoadExtType ExtType = LD->getExtensionType(); 206 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) 207 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), 208 LD->getMemoryVT())) { 209 default: llvm_unreachable("This action is not supported yet!"); 210 case TargetLowering::Legal: 211 return TranslateLegalizeResults(Op, Result); 212 case TargetLowering::Custom: 213 if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) { 214 if (Lowered == Result) 215 return TranslateLegalizeResults(Op, Lowered); 216 Changed = true; 217 if (Lowered->getNumValues() != Op->getNumValues()) { 218 // This expanded to something other than the load. Assume the 219 // lowering code took care of any chain values, and just handle the 220 // returned value. 221 assert(Result.getValue(1).use_empty() && 222 "There are still live users of the old chain!"); 223 return LegalizeOp(Lowered); 224 } 225 return TranslateLegalizeResults(Op, Lowered); 226 } 227 case TargetLowering::Expand: 228 Changed = true; 229 return LegalizeOp(ExpandLoad(Op)); 230 } 231 } else if (Op.getOpcode() == ISD::STORE) { 232 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 233 EVT StVT = ST->getMemoryVT(); 234 MVT ValVT = ST->getValue().getSimpleValueType(); 235 if (StVT.isVector() && ST->isTruncatingStore()) 236 switch (TLI.getTruncStoreAction(ValVT, StVT)) { 237 default: llvm_unreachable("This action is not supported yet!"); 238 case TargetLowering::Legal: 239 return TranslateLegalizeResults(Op, Result); 240 case TargetLowering::Custom: { 241 SDValue Lowered = TLI.LowerOperation(Result, DAG); 242 Changed = Lowered != Result; 243 return TranslateLegalizeResults(Op, Lowered); 244 } 245 case TargetLowering::Expand: 246 Changed = true; 247 return LegalizeOp(ExpandStore(Op)); 248 } 249 } else if (Op.getOpcode() == ISD::MSCATTER || Op.getOpcode() == ISD::MSTORE) 250 HasVectorValue = true; 251 252 for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end(); 253 J != E; 254 ++J) 255 HasVectorValue |= J->isVector(); 256 if (!HasVectorValue) 257 return TranslateLegalizeResults(Op, Result); 258 259 EVT QueryType; 260 switch (Op.getOpcode()) { 261 default: 262 return TranslateLegalizeResults(Op, Result); 263 case ISD::ADD: 264 case ISD::SUB: 265 case ISD::MUL: 266 case ISD::SDIV: 267 case ISD::UDIV: 268 case ISD::SREM: 269 case ISD::UREM: 270 case ISD::SDIVREM: 271 case ISD::UDIVREM: 272 case ISD::FADD: 273 case ISD::FSUB: 274 case ISD::FMUL: 275 case ISD::FDIV: 276 case ISD::FREM: 277 case ISD::AND: 278 case ISD::OR: 279 case ISD::XOR: 280 case ISD::SHL: 281 case ISD::SRA: 282 case ISD::SRL: 283 case ISD::ROTL: 284 case ISD::ROTR: 285 case ISD::BSWAP: 286 case ISD::BITREVERSE: 287 case ISD::CTLZ: 288 case ISD::CTTZ: 289 case ISD::CTLZ_ZERO_UNDEF: 290 case ISD::CTTZ_ZERO_UNDEF: 291 case ISD::CTPOP: 292 case ISD::SELECT: 293 case ISD::VSELECT: 294 case ISD::SELECT_CC: 295 case ISD::SETCC: 296 case ISD::ZERO_EXTEND: 297 case ISD::ANY_EXTEND: 298 case ISD::TRUNCATE: 299 case ISD::SIGN_EXTEND: 300 case ISD::FP_TO_SINT: 301 case ISD::FP_TO_UINT: 302 case ISD::FNEG: 303 case ISD::FABS: 304 case ISD::FMINNUM: 305 case ISD::FMAXNUM: 306 case ISD::FMINNAN: 307 case ISD::FMAXNAN: 308 case ISD::FCOPYSIGN: 309 case ISD::FSQRT: 310 case ISD::FSIN: 311 case ISD::FCOS: 312 case ISD::FPOWI: 313 case ISD::FPOW: 314 case ISD::FLOG: 315 case ISD::FLOG2: 316 case ISD::FLOG10: 317 case ISD::FEXP: 318 case ISD::FEXP2: 319 case ISD::FCEIL: 320 case ISD::FTRUNC: 321 case ISD::FRINT: 322 case ISD::FNEARBYINT: 323 case ISD::FROUND: 324 case ISD::FFLOOR: 325 case ISD::FP_ROUND: 326 case ISD::FP_EXTEND: 327 case ISD::FMA: 328 case ISD::SIGN_EXTEND_INREG: 329 case ISD::ANY_EXTEND_VECTOR_INREG: 330 case ISD::SIGN_EXTEND_VECTOR_INREG: 331 case ISD::ZERO_EXTEND_VECTOR_INREG: 332 case ISD::SMIN: 333 case ISD::SMAX: 334 case ISD::UMIN: 335 case ISD::UMAX: 336 case ISD::SMUL_LOHI: 337 case ISD::UMUL_LOHI: 338 QueryType = Node->getValueType(0); 339 break; 340 case ISD::FP_ROUND_INREG: 341 QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 342 break; 343 case ISD::SINT_TO_FP: 344 case ISD::UINT_TO_FP: 345 QueryType = Node->getOperand(0).getValueType(); 346 break; 347 case ISD::MSCATTER: 348 QueryType = cast<MaskedScatterSDNode>(Node)->getValue().getValueType(); 349 break; 350 case ISD::MSTORE: 351 QueryType = cast<MaskedStoreSDNode>(Node)->getValue().getValueType(); 352 break; 353 } 354 355 switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) { 356 default: llvm_unreachable("This action is not supported yet!"); 357 case TargetLowering::Promote: 358 Result = Promote(Op); 359 Changed = true; 360 break; 361 case TargetLowering::Legal: 362 break; 363 case TargetLowering::Custom: { 364 if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) { 365 Result = Tmp1; 366 break; 367 } 368 LLVM_FALLTHROUGH; 369 } 370 case TargetLowering::Expand: 371 Result = Expand(Op); 372 } 373 374 // Make sure that the generated code is itself legal. 375 if (Result != Op) { 376 Result = LegalizeOp(Result); 377 Changed = true; 378 } 379 380 // Note that LegalizeOp may be reentered even from single-use nodes, which 381 // means that we always must cache transformed nodes. 382 AddLegalizedOperand(Op, Result); 383 return Result; 384 } 385 386 SDValue VectorLegalizer::Promote(SDValue Op) { 387 // For a few operations there is a specific concept for promotion based on 388 // the operand's type. 389 switch (Op.getOpcode()) { 390 case ISD::SINT_TO_FP: 391 case ISD::UINT_TO_FP: 392 // "Promote" the operation by extending the operand. 393 return PromoteINT_TO_FP(Op); 394 case ISD::FP_TO_UINT: 395 case ISD::FP_TO_SINT: 396 // Promote the operation by extending the operand. 397 return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT); 398 } 399 400 // There are currently two cases of vector promotion: 401 // 1) Bitcasting a vector of integers to a different type to a vector of the 402 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 403 // 2) Extending a vector of floats to a vector of the same number of larger 404 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 405 MVT VT = Op.getSimpleValueType(); 406 assert(Op.getNode()->getNumValues() == 1 && 407 "Can't promote a vector with multiple results!"); 408 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 409 SDLoc dl(Op); 410 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 411 412 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 413 if (Op.getOperand(j).getValueType().isVector()) 414 if (Op.getOperand(j) 415 .getValueType() 416 .getVectorElementType() 417 .isFloatingPoint() && 418 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 419 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j)); 420 else 421 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); 422 else 423 Operands[j] = Op.getOperand(j); 424 } 425 426 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags()); 427 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 428 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 429 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 430 return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl)); 431 else 432 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 433 } 434 435 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) { 436 // INT_TO_FP operations may require the input operand be promoted even 437 // when the type is otherwise legal. 438 EVT VT = Op.getOperand(0).getValueType(); 439 assert(Op.getNode()->getNumValues() == 1 && 440 "Can't promote a vector with multiple results!"); 441 442 // Normal getTypeToPromoteTo() doesn't work here, as that will promote 443 // by widening the vector w/ the same element width and twice the number 444 // of elements. We want the other way around, the same number of elements, 445 // each twice the width. 446 // 447 // Increase the bitwidth of the element to the next pow-of-two 448 // (which is greater than 8 bits). 449 450 EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext()); 451 assert(NVT.isSimple() && "Promoting to a non-simple vector type!"); 452 SDLoc dl(Op); 453 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 454 455 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : 456 ISD::SIGN_EXTEND; 457 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 458 if (Op.getOperand(j).getValueType().isVector()) 459 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j)); 460 else 461 Operands[j] = Op.getOperand(j); 462 } 463 464 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands); 465 } 466 467 // For FP_TO_INT we promote the result type to a vector type with wider 468 // elements and then truncate the result. This is different from the default 469 // PromoteVector which uses bitcast to promote thus assumning that the 470 // promoted vector type has the same overall size. 471 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) { 472 assert(Op.getNode()->getNumValues() == 1 && 473 "Can't promote a vector with multiple results!"); 474 EVT VT = Op.getValueType(); 475 476 EVT NewVT; 477 unsigned NewOpc; 478 while (1) { 479 NewVT = VT.widenIntegerVectorElementType(*DAG.getContext()); 480 assert(NewVT.isSimple() && "Promoting to a non-simple vector type!"); 481 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) { 482 NewOpc = ISD::FP_TO_SINT; 483 break; 484 } 485 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) { 486 NewOpc = ISD::FP_TO_UINT; 487 break; 488 } 489 } 490 491 SDLoc loc(Op); 492 SDValue promoted = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0)); 493 return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted); 494 } 495 496 497 SDValue VectorLegalizer::ExpandLoad(SDValue Op) { 498 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 499 500 EVT SrcVT = LD->getMemoryVT(); 501 EVT SrcEltVT = SrcVT.getScalarType(); 502 unsigned NumElem = SrcVT.getVectorNumElements(); 503 504 505 SDValue NewChain; 506 SDValue Value; 507 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { 508 SDLoc dl(Op); 509 510 SmallVector<SDValue, 8> Vals; 511 SmallVector<SDValue, 8> LoadChains; 512 513 EVT DstEltVT = LD->getValueType(0).getScalarType(); 514 SDValue Chain = LD->getChain(); 515 SDValue BasePTR = LD->getBasePtr(); 516 ISD::LoadExtType ExtType = LD->getExtensionType(); 517 518 // When elements in a vector is not byte-addressable, we cannot directly 519 // load each element by advancing pointer, which could only address bytes. 520 // Instead, we load all significant words, mask bits off, and concatenate 521 // them to form each element. Finally, they are extended to destination 522 // scalar type to build the destination vector. 523 EVT WideVT = TLI.getPointerTy(DAG.getDataLayout()); 524 525 assert(WideVT.isRound() && 526 "Could not handle the sophisticated case when the widest integer is" 527 " not power of 2."); 528 assert(WideVT.bitsGE(SrcEltVT) && 529 "Type is not legalized?"); 530 531 unsigned WideBytes = WideVT.getStoreSize(); 532 unsigned Offset = 0; 533 unsigned RemainingBytes = SrcVT.getStoreSize(); 534 SmallVector<SDValue, 8> LoadVals; 535 536 while (RemainingBytes > 0) { 537 SDValue ScalarLoad; 538 unsigned LoadBytes = WideBytes; 539 540 if (RemainingBytes >= LoadBytes) { 541 ScalarLoad = 542 DAG.getLoad(WideVT, dl, Chain, BasePTR, 543 LD->getPointerInfo().getWithOffset(Offset), 544 MinAlign(LD->getAlignment(), Offset), 545 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 546 } else { 547 EVT LoadVT = WideVT; 548 while (RemainingBytes < LoadBytes) { 549 LoadBytes >>= 1; // Reduce the load size by half. 550 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); 551 } 552 ScalarLoad = 553 DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, 554 LD->getPointerInfo().getWithOffset(Offset), LoadVT, 555 MinAlign(LD->getAlignment(), Offset), 556 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 557 } 558 559 RemainingBytes -= LoadBytes; 560 Offset += LoadBytes; 561 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 562 DAG.getConstant(LoadBytes, dl, 563 BasePTR.getValueType())); 564 565 LoadVals.push_back(ScalarLoad.getValue(0)); 566 LoadChains.push_back(ScalarLoad.getValue(1)); 567 } 568 569 // Extract bits, pack and extend/trunc them into destination type. 570 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 571 SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT); 572 573 unsigned BitOffset = 0; 574 unsigned WideIdx = 0; 575 unsigned WideBits = WideVT.getSizeInBits(); 576 577 for (unsigned Idx = 0; Idx != NumElem; ++Idx) { 578 SDValue Lo, Hi, ShAmt; 579 580 if (BitOffset < WideBits) { 581 ShAmt = DAG.getConstant( 582 BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 583 Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); 584 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); 585 } 586 587 BitOffset += SrcEltBits; 588 if (BitOffset >= WideBits) { 589 WideIdx++; 590 BitOffset -= WideBits; 591 if (BitOffset > 0) { 592 ShAmt = DAG.getConstant( 593 SrcEltBits - BitOffset, dl, 594 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 595 Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); 596 Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask); 597 } 598 } 599 600 if (Hi.getNode()) 601 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); 602 603 switch (ExtType) { 604 default: llvm_unreachable("Unknown extended-load op!"); 605 case ISD::EXTLOAD: 606 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); 607 break; 608 case ISD::ZEXTLOAD: 609 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); 610 break; 611 case ISD::SEXTLOAD: 612 ShAmt = 613 DAG.getConstant(WideBits - SrcEltBits, dl, 614 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 615 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); 616 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); 617 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); 618 break; 619 } 620 Vals.push_back(Lo); 621 } 622 623 NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 624 Value = DAG.getNode(ISD::BUILD_VECTOR, dl, 625 Op.getNode()->getValueType(0), Vals); 626 } else { 627 SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG); 628 629 NewChain = Scalarized.getValue(1); 630 Value = Scalarized.getValue(0); 631 } 632 633 AddLegalizedOperand(Op.getValue(0), Value); 634 AddLegalizedOperand(Op.getValue(1), NewChain); 635 636 return (Op.getResNo() ? NewChain : Value); 637 } 638 639 SDValue VectorLegalizer::ExpandStore(SDValue Op) { 640 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 641 642 EVT StVT = ST->getMemoryVT(); 643 EVT MemSclVT = StVT.getScalarType(); 644 unsigned ScalarSize = MemSclVT.getSizeInBits(); 645 646 // Round odd types to the next pow of two. 647 if (!isPowerOf2_32(ScalarSize)) { 648 // FIXME: This is completely broken and inconsistent with ExpandLoad 649 // handling. 650 651 // For sub-byte element sizes, this ends up with 0 stride between elements, 652 // so the same element just gets re-written to the same location. There seem 653 // to be tests explicitly testing for this broken behavior though. tests 654 // for this broken behavior. 655 656 LLVMContext &Ctx = *DAG.getContext(); 657 658 EVT NewMemVT 659 = EVT::getVectorVT(Ctx, 660 MemSclVT.getIntegerVT(Ctx, NextPowerOf2(ScalarSize)), 661 StVT.getVectorNumElements()); 662 663 SDValue NewVectorStore = DAG.getTruncStore( 664 ST->getChain(), SDLoc(Op), ST->getValue(), ST->getBasePtr(), 665 ST->getPointerInfo(), NewMemVT, ST->getAlignment(), 666 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 667 ST = cast<StoreSDNode>(NewVectorStore.getNode()); 668 } 669 670 SDValue TF = TLI.scalarizeVectorStore(ST, DAG); 671 AddLegalizedOperand(Op, TF); 672 return TF; 673 } 674 675 SDValue VectorLegalizer::Expand(SDValue Op) { 676 switch (Op->getOpcode()) { 677 case ISD::SIGN_EXTEND_INREG: 678 return ExpandSEXTINREG(Op); 679 case ISD::ANY_EXTEND_VECTOR_INREG: 680 return ExpandANY_EXTEND_VECTOR_INREG(Op); 681 case ISD::SIGN_EXTEND_VECTOR_INREG: 682 return ExpandSIGN_EXTEND_VECTOR_INREG(Op); 683 case ISD::ZERO_EXTEND_VECTOR_INREG: 684 return ExpandZERO_EXTEND_VECTOR_INREG(Op); 685 case ISD::BSWAP: 686 return ExpandBSWAP(Op); 687 case ISD::VSELECT: 688 return ExpandVSELECT(Op); 689 case ISD::SELECT: 690 return ExpandSELECT(Op); 691 case ISD::UINT_TO_FP: 692 return ExpandUINT_TO_FLOAT(Op); 693 case ISD::FNEG: 694 return ExpandFNEG(Op); 695 case ISD::SETCC: 696 return UnrollVSETCC(Op); 697 case ISD::BITREVERSE: 698 return ExpandBITREVERSE(Op); 699 case ISD::CTLZ: 700 case ISD::CTLZ_ZERO_UNDEF: 701 return ExpandCTLZ(Op); 702 case ISD::CTTZ_ZERO_UNDEF: 703 return ExpandCTTZ_ZERO_UNDEF(Op); 704 default: 705 return DAG.UnrollVectorOp(Op.getNode()); 706 } 707 } 708 709 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) { 710 // Lower a select instruction where the condition is a scalar and the 711 // operands are vectors. Lower this select to VSELECT and implement it 712 // using XOR AND OR. The selector bit is broadcasted. 713 EVT VT = Op.getValueType(); 714 SDLoc DL(Op); 715 716 SDValue Mask = Op.getOperand(0); 717 SDValue Op1 = Op.getOperand(1); 718 SDValue Op2 = Op.getOperand(2); 719 720 assert(VT.isVector() && !Mask.getValueType().isVector() 721 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 722 723 unsigned NumElem = VT.getVectorNumElements(); 724 725 // If we can't even use the basic vector operations of 726 // AND,OR,XOR, we will have to scalarize the op. 727 // Notice that the operation may be 'promoted' which means that it is 728 // 'bitcasted' to another type which is handled. 729 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 730 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 731 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 732 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 733 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 734 return DAG.UnrollVectorOp(Op.getNode()); 735 736 // Generate a mask operand. 737 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 738 739 // What is the size of each element in the vector mask. 740 EVT BitTy = MaskTy.getScalarType(); 741 742 Mask = DAG.getSelect(DL, BitTy, Mask, 743 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, 744 BitTy), 745 DAG.getConstant(0, DL, BitTy)); 746 747 // Broadcast the mask so that the entire vector is all-one or all zero. 748 SmallVector<SDValue, 8> Ops(NumElem, Mask); 749 Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, Ops); 750 751 // Bitcast the operands to be the same type as the mask. 752 // This is needed when we select between FP types because 753 // the mask is a vector of integers. 754 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 755 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 756 757 SDValue AllOnes = DAG.getConstant( 758 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy); 759 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 760 761 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 762 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 763 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 764 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 765 } 766 767 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) { 768 EVT VT = Op.getValueType(); 769 770 // Make sure that the SRA and SHL instructions are available. 771 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 772 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 773 return DAG.UnrollVectorOp(Op.getNode()); 774 775 SDLoc DL(Op); 776 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT(); 777 778 unsigned BW = VT.getScalarSizeInBits(); 779 unsigned OrigBW = OrigTy.getScalarSizeInBits(); 780 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 781 782 Op = Op.getOperand(0); 783 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz); 784 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 785 } 786 787 // Generically expand a vector anyext in register to a shuffle of the relevant 788 // lanes into the appropriate locations, with other lanes left undef. 789 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) { 790 SDLoc DL(Op); 791 EVT VT = Op.getValueType(); 792 int NumElements = VT.getVectorNumElements(); 793 SDValue Src = Op.getOperand(0); 794 EVT SrcVT = Src.getValueType(); 795 int NumSrcElements = SrcVT.getVectorNumElements(); 796 797 // Build a base mask of undef shuffles. 798 SmallVector<int, 16> ShuffleMask; 799 ShuffleMask.resize(NumSrcElements, -1); 800 801 // Place the extended lanes into the correct locations. 802 int ExtLaneScale = NumSrcElements / NumElements; 803 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 804 for (int i = 0; i < NumElements; ++i) 805 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 806 807 return DAG.getNode( 808 ISD::BITCAST, DL, VT, 809 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 810 } 811 812 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) { 813 SDLoc DL(Op); 814 EVT VT = Op.getValueType(); 815 SDValue Src = Op.getOperand(0); 816 EVT SrcVT = Src.getValueType(); 817 818 // First build an any-extend node which can be legalized above when we 819 // recurse through it. 820 Op = DAG.getAnyExtendVectorInReg(Src, DL, VT); 821 822 // Now we need sign extend. Do this by shifting the elements. Even if these 823 // aren't legal operations, they have a better chance of being legalized 824 // without full scalarization than the sign extension does. 825 unsigned EltWidth = VT.getScalarSizeInBits(); 826 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); 827 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 828 return DAG.getNode(ISD::SRA, DL, VT, 829 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 830 ShiftAmount); 831 } 832 833 // Generically expand a vector zext in register to a shuffle of the relevant 834 // lanes into the appropriate locations, a blend of zero into the high bits, 835 // and a bitcast to the wider element type. 836 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) { 837 SDLoc DL(Op); 838 EVT VT = Op.getValueType(); 839 int NumElements = VT.getVectorNumElements(); 840 SDValue Src = Op.getOperand(0); 841 EVT SrcVT = Src.getValueType(); 842 int NumSrcElements = SrcVT.getVectorNumElements(); 843 844 // Build up a zero vector to blend into this one. 845 SDValue Zero = DAG.getConstant(0, DL, SrcVT); 846 847 // Shuffle the incoming lanes into the correct position, and pull all other 848 // lanes from the zero vector. 849 SmallVector<int, 16> ShuffleMask; 850 ShuffleMask.reserve(NumSrcElements); 851 for (int i = 0; i < NumSrcElements; ++i) 852 ShuffleMask.push_back(i); 853 854 int ExtLaneScale = NumSrcElements / NumElements; 855 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 856 for (int i = 0; i < NumElements; ++i) 857 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 858 859 return DAG.getNode(ISD::BITCAST, DL, VT, 860 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 861 } 862 863 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) { 864 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 865 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 866 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 867 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 868 } 869 870 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) { 871 EVT VT = Op.getValueType(); 872 873 // Generate a byte wise shuffle mask for the BSWAP. 874 SmallVector<int, 16> ShuffleMask; 875 createBSWAPShuffleMask(VT, ShuffleMask); 876 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 877 878 // Only emit a shuffle if the mask is legal. 879 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) 880 return DAG.UnrollVectorOp(Op.getNode()); 881 882 SDLoc DL(Op); 883 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 884 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); 885 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 886 } 887 888 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) { 889 EVT VT = Op.getValueType(); 890 891 // If we have the scalar operation, it's probably cheaper to unroll it. 892 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) 893 return DAG.UnrollVectorOp(Op.getNode()); 894 895 // If the vector element width is a whole number of bytes, test if its legal 896 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte 897 // vector. This greatly reduces the number of bit shifts necessary. 898 unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); 899 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { 900 SmallVector<int, 16> BSWAPMask; 901 createBSWAPShuffleMask(VT, BSWAPMask); 902 903 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); 904 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && 905 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || 906 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && 907 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && 908 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && 909 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { 910 SDLoc DL(Op); 911 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 912 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 913 BSWAPMask); 914 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); 915 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 916 } 917 } 918 919 // If we have the appropriate vector bit operations, it is better to use them 920 // than unrolling and expanding each component. 921 if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) || 922 !TLI.isOperationLegalOrCustom(ISD::SRL, VT) || 923 !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 924 !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) 925 return DAG.UnrollVectorOp(Op.getNode()); 926 927 // Let LegalizeDAG handle this later. 928 return Op; 929 } 930 931 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { 932 // Implement VSELECT in terms of XOR, AND, OR 933 // on platforms which do not support blend natively. 934 SDLoc DL(Op); 935 936 SDValue Mask = Op.getOperand(0); 937 SDValue Op1 = Op.getOperand(1); 938 SDValue Op2 = Op.getOperand(2); 939 940 EVT VT = Mask.getValueType(); 941 942 // If we can't even use the basic vector operations of 943 // AND,OR,XOR, we will have to scalarize the op. 944 // Notice that the operation may be 'promoted' which means that it is 945 // 'bitcasted' to another type which is handled. 946 // This operation also isn't safe with AND, OR, XOR when the boolean 947 // type is 0/1 as we need an all ones vector constant to mask with. 948 // FIXME: Sign extend 1 to all ones if thats legal on the target. 949 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 950 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 951 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 952 TLI.getBooleanContents(Op1.getValueType()) != 953 TargetLowering::ZeroOrNegativeOneBooleanContent) 954 return DAG.UnrollVectorOp(Op.getNode()); 955 956 // If the mask and the type are different sizes, unroll the vector op. This 957 // can occur when getSetCCResultType returns something that is different in 958 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 959 if (VT.getSizeInBits() != Op1.getValueSizeInBits()) 960 return DAG.UnrollVectorOp(Op.getNode()); 961 962 // Bitcast the operands to be the same type as the mask. 963 // This is needed when we select between FP types because 964 // the mask is a vector of integers. 965 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 966 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 967 968 SDValue AllOnes = DAG.getConstant( 969 APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT); 970 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 971 972 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 973 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 974 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 975 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 976 } 977 978 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { 979 EVT VT = Op.getOperand(0).getValueType(); 980 SDLoc DL(Op); 981 982 // Make sure that the SINT_TO_FP and SRL instructions are available. 983 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand || 984 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) 985 return DAG.UnrollVectorOp(Op.getNode()); 986 987 unsigned BW = VT.getScalarSizeInBits(); 988 assert((BW == 64 || BW == 32) && 989 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 990 991 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT); 992 993 // Constants to clear the upper part of the word. 994 // Notice that we can also use SHL+SHR, but using a constant is slightly 995 // faster on x86. 996 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; 997 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 998 999 // Two to the power of half-word-size. 1000 SDValue TWOHW = DAG.getConstantFP(1 << (BW / 2), DL, Op.getValueType()); 1001 1002 // Clear upper part of LO, lower HI 1003 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); 1004 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); 1005 1006 // Convert hi and lo to floats 1007 // Convert the hi part back to the upper values 1008 // TODO: Can any fast-math-flags be set on these nodes? 1009 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); 1010 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); 1011 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); 1012 1013 // Add the two halves 1014 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); 1015 } 1016 1017 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { 1018 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { 1019 SDLoc DL(Op); 1020 SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType()); 1021 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. 1022 return DAG.getNode(ISD::FSUB, DL, Op.getValueType(), 1023 Zero, Op.getOperand(0)); 1024 } 1025 return DAG.UnrollVectorOp(Op.getNode()); 1026 } 1027 1028 SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) { 1029 EVT VT = Op.getValueType(); 1030 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 1031 1032 // If the non-ZERO_UNDEF version is supported we can use that instead. 1033 if (Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF && 1034 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) { 1035 SDLoc DL(Op); 1036 return DAG.getNode(ISD::CTLZ, DL, Op.getValueType(), Op.getOperand(0)); 1037 } 1038 1039 // If CTPOP is available we can lower with a CTPOP based method: 1040 // u16 ctlz(u16 x) { 1041 // x |= (x >> 1); 1042 // x |= (x >> 2); 1043 // x |= (x >> 4); 1044 // x |= (x >> 8); 1045 // return ctpop(~x); 1046 // } 1047 // Ref: "Hacker's Delight" by Henry Warren 1048 if (isPowerOf2_32(NumBitsPerElt) && 1049 TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && 1050 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 1051 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT) && 1052 TLI.isOperationLegalOrCustomOrPromote(ISD::XOR, VT)) { 1053 SDLoc DL(Op); 1054 SDValue Res = Op.getOperand(0); 1055 EVT ShiftTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 1056 1057 for (unsigned i = 1; i != NumBitsPerElt; i *= 2) 1058 Res = DAG.getNode( 1059 ISD::OR, DL, VT, Res, 1060 DAG.getNode(ISD::SRL, DL, VT, Res, DAG.getConstant(i, DL, ShiftTy))); 1061 1062 Res = DAG.getNOT(DL, Res, VT); 1063 return DAG.getNode(ISD::CTPOP, DL, VT, Res); 1064 } 1065 1066 // Otherwise go ahead and unroll. 1067 return DAG.UnrollVectorOp(Op.getNode()); 1068 } 1069 1070 SDValue VectorLegalizer::ExpandCTTZ_ZERO_UNDEF(SDValue Op) { 1071 // If the non-ZERO_UNDEF version is supported we can use that instead. 1072 if (TLI.isOperationLegalOrCustom(ISD::CTTZ, Op.getValueType())) { 1073 SDLoc DL(Op); 1074 return DAG.getNode(ISD::CTTZ, DL, Op.getValueType(), Op.getOperand(0)); 1075 } 1076 1077 // Otherwise go ahead and unroll. 1078 return DAG.UnrollVectorOp(Op.getNode()); 1079 } 1080 1081 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { 1082 EVT VT = Op.getValueType(); 1083 unsigned NumElems = VT.getVectorNumElements(); 1084 EVT EltVT = VT.getVectorElementType(); 1085 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); 1086 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1087 SDLoc dl(Op); 1088 SmallVector<SDValue, 8> Ops(NumElems); 1089 for (unsigned i = 0; i < NumElems; ++i) { 1090 SDValue LHSElem = DAG.getNode( 1091 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1092 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1093 SDValue RHSElem = DAG.getNode( 1094 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1095 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1096 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1097 TLI.getSetCCResultType(DAG.getDataLayout(), 1098 *DAG.getContext(), TmpEltVT), 1099 LHSElem, RHSElem, CC); 1100 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 1101 DAG.getConstant(APInt::getAllOnesValue 1102 (EltVT.getSizeInBits()), dl, EltVT), 1103 DAG.getConstant(0, dl, EltVT)); 1104 } 1105 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 1106 } 1107 1108 } 1109 1110 bool SelectionDAG::LegalizeVectors() { 1111 return VectorLegalizer(*this).Run(); 1112 } 1113